List of Figures

Chapter 1

Fig.1.1: Illustration compares size of different objects ranging from 1 meter to 0.1 nm.	1
Fig. 1.2 Density of states as a function of dimension for different nanostructures	4
Fig. 1.3 Variation of color in gold nanoparticles	5
Fig.1.4 The melting temperature of Tin dioxide (SnO ₂) decreases rapidly for	6
the particle size below 5nm	
Fig. 1.5 Crystal structures of three polymorphs of TiO_2	10
Fig. 1.6 Crystal structure of SnO ₂	13
Chapter 3	
Fig. 3.1 Schematic representation of top-down and bottom-up approach	43
Fig. 3.2 A general synthesis route of nanomaterials by co-precipitation method	45
Fig. 3.3 A general synthesis route of nanomaterials by sol-gel method	47
Fig. 3.4 A schematic diagram of milling process	49
Fig. 3.5 Source: alpha.chem.umb.edu/chemistry/ch471/documents/Ballmilling-Jackie.pdf	50
Fig. 3.6 Diffraction of two beams from two different atoms in crystalline solid	52
Fig. 3.7 Bragg-Brentano geometry in powder diffractometer	53
Fig. 3.8 PANlytical X'pert Pro diffractometer	54
Fig. 3.9 JEOL JSM-5610LV scanning electron microscope	56
Fig. 3.10 Shimadzu DSC-50 Differential Scanning Calorimetry	58
Chapter 4	
Fig. 4.1The related parameters to calculate size dependent melting temperature of	66
SnO ₂ nanoparticles are h=0.2057nm $T_m(\infty)$ =1903K and $S_{vib}(\infty)$ =4.098 Jmol ⁻¹ K ⁻¹	
Fig. 4.2 Variation of glass transition T_g with the size for SnO_2 nanoparticles	67

Fig. 4.3 Size dependent Kauzmann temperature of SnO ₂ nanoparticles	68
Fig. 4.4 Variation of diffusion coefficient D(r.T) with size and dimensions of	69
SnO ₂ nanoparticles	
Fig.4.5 Diffusion coefficients of nitrogen diffused SnO ₂ nanoparticles	70
Fig. 4.6 (a) $\gamma_{LV}(D)$ as functions of size for anatase TiO ₂ nanoparticles	73
(b) $\gamma_{LV}(D)$ as a function of size for SnO ₂ (110) face	74
Fig. 4.7 (a) $\gamma_{LV}(D)/\gamma_{LV}(\infty)$ as functions of size for rutile TiO ₂ nanoparticles	75
(b) $\gamma_{LV}(D)/\gamma_{LV}(\infty)$ as a function of size for SnO ₂ nanoparticles	75
Fig. 4.8 (a) $\gamma_{LV}(D)$ as functions of size for anatase TiO ₂ nanoparticles	76
(b) $\gamma_{LV}(D)$ as a function of size for SnO ₂ nanoaprticles	77
Fig. 4.9 (a) $\delta(D)$ as functions of size for anatase TiO ₂ nanoaprticles	78
(b) $\delta(D)$ as functions of size for SnO ₂ nanoparticles	79
Fig. 4.10 $E_C(D)/E_C(\infty)$ as a function of size and dimensions for nano structured (a) rutile	80
TiO_2 (b) CeO_2 and (c) SnO_2	
Fig. 4.11 $E_C(D)/E_C(\infty)$ as a function of size and shapes for rutile TiO ₂	81
Fig. 4.12 $E_C(D)/E_C(\infty)$ as a function of size for tetrahedral shaped TiO ₂ , CeO ₂ and SnO ₂	82
nanoparticles	
Chapter 5	
Fig. 5.1 XRD pattern of TiO ₂ after drying in oven	92
Fig. 5.2 XRD pattern of TiO_2 annealed at $300^{\circ}C$	92
Fig. 5.3 XRD pattern of TiO_2 annealed at $400^{\circ}C$	93
Fig.5.4 XRD patterns of nano SnO ₂ annealed at different temperatures	94
(a) at room temperature	94
(b) annealed at 200° C temperature	95

(c) annealed at 400° C temperature

95

(d) annealed at 600° C temperature	96
Fig.5.5 SnO ₂ nanoparticles annealed at different temperatures	97
Fig. 5.6 (a) W-H plot for SnO_2 annealed at $200^{\circ}C$	98
(b) W-H plot for SnO_2 annealed at $400^{\circ}C$	98
(c) W-H plot for SnO_2 annealed at $600^{\circ}C$	99
Fig. 5.7 DSC curve of SnO ₂ prepared at room temperature	100
Fig. 5.8 Baseline corrected DSC curve of SnO ₂ prepared at room temperature	100
Fig. 5.9 SEM image of SnO ₂ nanoparticles	101
Fig. 5.10 XRD pattern of Fe doped SnO ₂ nanoparticles	102
Fig. 5.11 EDS spectra of Fe doped SnO ₂	103
Fig.5.12 SEM image of Fe doped SnO_2	103
Fig. 5.13 XRD patterns of Ag-SnO ₂ nanocomposites after milling of different time	105
Fig. 5.14 W-H plot for Ag-SnO ₂ nanocomposites after different times of milling	106
(a) 1 hour milling	106
(b) 2hours milling	107
(c) 3hours milling	107

List of Tables

Chapter 1

Table 1.1 Nanostructures and dimensionality	3
Table 1.2 Applications of nanomaterials	8
Table 1.3 Crystal structure of three polymorphs of TiO ₂	11
Table 1.4 Details of tin precursor and solvent to synthesize 0-,1- and 2-D SnO ₂	15
nanostructure	

Chapter 3

Table 3.1 Examples of synthesis methods based on top-down and bottom-up approach43

Chapter 4

Table 4.1 Calculated results of size dependent melting temperature of SnO₂ nanoparticles 64

Chapter 5

Table 5.2 Details of crystallite size in SnO2 nanocrystals using two different methods99Table 5.3 Chemical composition of Fe doped SnO2103Table 5.4 Calculated crystallite size of Ag-SnO2 nano composites106Table 5.5 (a) Density of Ag-SnO2 nanocomposites before sintering108(b) Density of Ag-SnO2 nanocomposites after sintering108	Table 5.1 Comparison of SnO ₂ XRD data with JCPDS card.21-1250	96
Table 5.3 Chemical composition of Fe doped SnO2103Table 5.4 Calculated crystallite size of Ag-SnO2 nano composites106Table 5.5 (a) Density of Ag-SnO2 nanocomposites before sintering108(b) Density of Ag-SnO2 nanocomposites after sintering108	Table 5.2 Details of crystallite size in SnO2 nanocrystals using two different methods	99
Table 5.4 Calculated crystallite size of Ag-SnO2 nano composites106Table 5.5 (a) Density of Ag-SnO2 nanocomposites before sintering108(b) Density of Ag-SnO2 nanocomposites after sintering108	Table 5.3 Chemical composition of Fe doped SnO ₂	103
Table 5.5 (a) Density of Ag-SnO2 nanocomposites before sintering108(b) Density of Ag-SnO2 nanocomposites after sintering	Table 5.4 Calculated crystallite size of Ag-SnO ₂ nano composites	106
(b) Density of Ag-SnO ₂ nanocomposites after sintering	Table 5.5 (a) Density of Ag-SnO ₂ nanocomposites before sintering	108
	(b) Density of Ag-SnO ₂ nanocomposites after sintering	

(c) Density of Ag-SnO $_2$ nanocomposites after re-pressing

List of Publications

1. Study of size dependent glass transition and Kauzmann temperatures of tin dioxide nanoparticles.

Journal of Thermal analysis and Calorimetry, 110, 535 (2012).

Purvi A. Bhatt, Arun Pratap, Prafulla K. Jha

 Size and dimension dependent diffusion coefficients of SnO₂ nanoparticles. AIP Conf. Proc. **1536**, 237 (2013).
 Purvi A. Bhatt, Arun Pratap, Prafulla K. Jha

3. Size-dependent surface energy and Tolman length of TiO₂ and SnO₂ nanoparticles.
Physica B: Condensed Matter, 461, 101 (2015)
Purvi A. Bhatt, Shree Mishra, Prafulla K. Jha, Arun Pratap

4. Size and shape dependent catalytic activation energy of different nano structures.
Journal of Research in Nanotechnology, 2015, 557871(2015)
Purvi A. Bhatt, Arun Pratap, Prafulla K. Jha