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2.1 Introduction 

 The study of size and shape dependent properties have attracted intensive interest in 

last few years as they play a key role to understand the physical and chemical nature of the 

material at nano scale. It is well known that a material in the range of nanometer, shows 

drastic changes in its fundamental properties like thermodynamic, electronic, optic, magnetic, 

catalytic, vibrational and many others than its bulk counterpart. The two major effects (a) 

large surface-to-volume ratio and (b) quantum confinement are accountable for this 

favourable change in the properties of materials. There have been several theoretical models 

proposed to estimate the size dependent properties of nanomaterials based on nano 

thermodynamics, the theory that links macroscopic and microscopic systems by extending 

classical thermodynamics to nanometer scale [2.1].  

 In this regard, the pioneer work was done by M. Takagi, who observed that the 

metallic nanoparticles melt at lower temperature than the corresponding bulk material. It can 

be considered as a fundamental investigation for the study of phase transition and other 

physicochemical properties [2.2]. In the later years, theory extended to evaluate other 

properties like cohesive energy, interface energy, surface energy, diffusion coefficient and 

catalytic activation energy. The structural and magnetic properties, glass-to-crystal transition, 

and surface morphology, are strongly influenced by the self-diffusion of the constituents. In 

addition to this, self diffusion mechanism plays an important role in the control of the long-

standing application of devices based on amorphous and nanocrystalline alloys [2.3]. The 

surface energy of materials is another important physical quantity to understand relative 

stability of stoichiometric oxide surfaces. Nanoparticles of different materials act as efficient 

catalysts and therefore enormous efforts have been devoted to the study of size and shape 
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dependence on catalytic performance of nanoparticles. With this consideration, in the 

following section we discuss the theoretical models used to calculate size and dimension 

dependent thermal and other properties of titanium dioxide (TiO2) and tin dioxide (SnO2) 

nanoparticles because of their diverse range of applications. 

2.2 Different Thermodynamic models for different properties in nanostructures 

 The theory of classical thermodynamics explains macroscopic behaviours of bulk 

systems using fundamental thermodynamic parameters as presented in following equation. 

dU=TdS-PdV                      ...(1) 

Where U is the internal energy of the system, T is temperature, S is the entropy, P is pressure 

and V denotes volume of the system. But, the Eqn.(1) is no longer valid when applied to 

small objects particularly at nanometer scale [2.4]. To overcome this limitation, Gibbs 

included chemical potential and modified the theory in simple form [2.5-2.6]. 

     ...(2)                                                                                                                   

In terms of Gibbs free energy, equation can be written as,  

�� = −��� + ��� + ��� + ∑ ������      ...(3) 

Where dG presents change in Gibbs free energy and μi is the chemical potential of the system 

with i particles. The new parameter γA introduced here is surface excess energy (γ) of area A. 

Eqn. (3) is applicable to the particles with size at least in micron range thereby it needs 

modification when used for nanomaterials. It can be achieved by understanding the size 

dependent variation of simple phase transition i.e., melting phenomenon [2.7]. In 1910, 
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Lindemann proposed a simple model to examine melting transition in single component 

crystals based on kinetic theory [2.8]. It was developed from Einstein’s theory of low 

temperature specific heat of crystals which is based on the concept that the atoms in a solid 

vibrate as quantized harmonic oscillators. As per Lindemann’s criteria, when amplitude of 

these vibrations (σ(∞)) will have some threshold value, the melting can take place in 

materials. In other words, to melt a crystal, the root mean square (rms) value of atomic 

vibrational displacement should reach to fixed fraction of the atomic diameter (h) [2.4,2.8]. 

Therefore, 

σ(∞)/h=c                                                ...(4) 

In 1954, Takagi developed model using basic parameters like radius (r) and dimension (d) to 

find variation in melting temperature with size of the particle. Using this method, it can be 

found that the melting temperature for a particular particle size, i.e. Tm(r) is inversely 

proportional to the radius/diameter (r). Some of the previous models have observed decrease 

in melting temperature (Tm) rather than bulk counterpart known as undercooling while some 

researchers observed increase in Tm than bulk system which is called superheating [2.4,2.9-

2.18]. Before Lindemann and Takagi, Pawlow in 1909 derived Tm(r)  by considering only the 

relative change from Tm(∞) which can be written as [2.19], 

Tm(r)/Tm(∞)=1-2Vs[γsv-γlv(ρs/ρl)
2/3]/(rHm) ...(5) 

Where ρ is the mass density, γsv is surface-vapor interfacial energy and γlv is liquid-vapor 

interfacial energy. Generally, in the case of cubic metals [2.20,2.21], 

γsv- γlv=γsl                                                                 ...(6) 
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If ρs≈ ρl, eqn. (5) can be written as, 

Tm(r)/Tm(∞)≈1-2Vsγsl/(rHm)                       ...(7) 

Eqn. (7) is similar to the Tm(r) function given by Gibbs-Thomsson [2.22], 

Tm(r)/Tm(∞)=1-(1/r1+1/r2)Vsγsl/Hm           ...(8) 

Here, r1 and r2 are radius of the curvature of interface and for a sphere shaped particle 

1/r1=1/r2=1/r. In 1977, Couchman and Jesser have presented Tm(r) as [2.23],  

Tm(r)/Tm(∞)=1-[3(Vs+Vl)(γsM-γlM)/2r-ΔU]/Hm  ...(9) 

Here, subscript M shows matrix and ΔU is the energy density difference between nanocrystal 

and nanoliquid. In this model, value of Tm(r) depends upon sign of γsM-γlM. Usually, γlM - 

γsM=γslcosθ where θ shows contact angle between particle and matrix [2.24]. However, in this 

models only the mechanical effects were taken in account and chemical effect was neglected, 

there was very poor agreement with experimental results. The size dependent melting 

temperature with the inclusion of surface effects is given by [2.4,2.21,2.25-2.27]: 

Tm(r)/Tm(∞)=1-2Vs[γsl/(1-δ/r)-γlv(1-ρs/ρl)]/(rHm)            ...(10) 
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���(���/�)�
 ...(11) 

Tm(r)/Tm(∞)=1-2Vsγsl/[rHm(1-δ/r)]                                  ...(12) 

Where δ denotes thickness of the surface layer of liquid and ξ is the correlation length of  

solid/liquid interface. These equations indicate that the surface melting phenomena is almost 

size independent for the large value of r and rapid decrease in Tm. According to 
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Semenchenko, Tm(r) can be calculated by considering melting of a small solid particle 

embedded in the corresponding liquid that is expressed as [2.28], 

Tm(r)/Tm(∞)=exp[-2Vsγsl/(rHm)]               ...(13) 

For the full size range of nanocrystals, results obtained from eqn.(13) are almost similar to 

the those from eqns. (10-12). Here γsl is an essential thermodynamic quantity to calculate 

Tm(r) and can be derived from Gibbs-Thomson eqn. [2.22], 

γsl=2hSvib(∞)Hm/(3VsR)                        ...(14) 

In above equation Svib(∞) is the vibrational melting entropy of bulk system and R is the 

universal gas constant. It is used to estimate accurate value of γsl for nanosized elements and 

compounds [2.22, 2.29]. However, the present approach neglects crystalline anisotropy. In 

conclusion, all these models explain linear relationship between Tm(r) and 1/r for the large 

values of r (>10nm). However, the theory fails in developing size dependency of some other 

basic quantities such as Sm(r) and Hm(r) without which the theory cannot be said complete. In 

addition, instead of considering single element or compound, consideration of alloy system is 

more practical approach. In such systems problems of nano thermodynamic can be solved by 

nano phase diagrams [2.30]. Since they are meta-stable in nature, difficulty to solve these 

diagrams has resulted in the development of theoretical modelling of size dependent 

properties [2.4, 2.31, 2.32]. 

 In the following sections, we describe the theoretical model using mean amplitude of 

atomic thermal vibration for size dependent melting temperature in nanocrystals and other 

thermodynamic properties based on Shi’s model [2.33] extended from Lindemann’s theory of 

melting in bulk systems.  
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2.2.1 Melting point and Glass transition temperature  

 The average amplitude of thermal vibrations in atoms can be expressed as [2.33, 

2.34], 

σ2(r)=σva
2(r)+[σsa

2(r)-σva
2(r)]nsa/nva                     ...(15) 

where sa and va presents surface atoms and atoms reside in the volume of the particle, 

respectively. If r0 is the critical radius where all the atoms are located on surface, ratio of nsa 

to nva is given by r0/(r-r0). For a spherical particle critical radius can be related to atomic 

diameter (h) by r0=3h. Let σva
2(r)/ σsa

2(r)= σva
2(∞)/ σsa

2(∞)=α, then change in σ2 can be 

written as, 

σ2(χ+dχ)- σ2(χ)=(α-1) σ2(χ) dχ              ...(16) 

Here, α size independent and nsa/nva= χ [2.4,2.33]. By integrating eqn. (16) one can get, 

σ2(r)/σ2(∞)=exp[(α-1)χ]=exp{(α-1)/[(r/r0)-1]} ...(17) 

For different dimensions of nanostructure, relation of r0 and dimension (d) is given by,  

r0=c1(3-d)h                                                     ...(18) 

Here, value of d can be considered as d=0 and r0=3h since 4πr0
2h=4πr0

3/3 for nanospheres, 

d=1 and r0=2h since 2πr0h=πr0
2 for nanowires and d=2, r0=h since 2h=2r0 for thin films. 

Generally, r presents radius for nanospheres and nanowires and thickness for thin films. 

Magnitude of c1 depends upon surface and is taken equals to 1 for nanocrystals [2.35, 2.36]. 

Now let us consider a size dependent function, F(r,T)=σ2(r,T). Therefore, at any temperature 

T [2.33], 
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σ2(r,T)/ σ2(∞,T)=F(r)/F(∞)      ...(19) 

However, if h is assumed to be size independent then as per Lindemann’s criteria, at T=Tm, 

�(�)

�(�)
=

����,��(�)/���

��[�,��(�)/��]

��(�)

��(�)
=

��(�)

��(�)
             ...(20) 

The final expression yields to, 

��(�)

��(�)
=

��(�)

��(�)
= ��� �

�(���)

[�� ��� ���]
�                  ...(21) 

In eqn. (21) α can be derived from size dependency of vibrational entropy Svib(r) with the 

consideration of Mott’s expression of bulk vibrational entropy Svib(∞) as [2.37, 2.38], 

Svib(r)= Svib(∞)-(3R/2)(α-1)/[(r/r0)-1]        ...(22) 

For a free-standing nanocrystal Sm(2r0)= Svib(2r0) and it is assumed to be zero for the smallest 

nanocrystals which gives [2.4], 

α=2Svib(∞)/(3R)+1                                ...(23) 

As Lindemann suggested, when amplitude of thermal vibrations in atoms reaches to certain 

value of inter atomic distance, crystal will start to melt. At the same time viscosity of crystal 

will decrease rapidly, similar behaviour is also observed in the case of glass transition. If 

glasses and crystals are assumed to be solids, they have same structural features of short 

range order and should have same vibrational characteristics at their melting temperatures. 

Let us assume σg
2(∞)=σ2(∞) are substituted in eqn.(21) and together with the replacement of 

other quantities the expression for size dependent glass transition temperature in 

nanomaterials can be written as [2.4,2.39-2.41], 
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Tg(r)/Tg(∞)=σg
2(∞)/σg

2(r)=exp{-(α-1)/[(r/r0)-1]}...(24) 

In 1948, Kauzmann showed if liquid is super cooled below the glass transition temperature 

(Tg), the entropy decreases rapidly and extrapolates to unreasonable value at lower 

temperature.  At this temperature,  liquid and crystal entropies become equal which is known 

as “Kauzmann temperature (TK)”. In other words, entropy difference vanishes between super 

cooled liquid and glass and further by lowering temperature it would become negative. This 

condition is known as Kauzmann paradox or Entropy crisis [2.42-2.44]. In order to estimate, 

glass forming ability of an alloy one must have information about the parameter called 

change in Gibbs free energy (ΔG). The temperature dependence of ΔG can be studied if 

Kauzmann temperature (TK) is known. Kauzmann temperature cannot be measured 

experimentally thereby we have used relation between melting temperature and Kauzmann 

temperature to study the size dependency in TK [2.45,2.46] . At TK, liquid and their crystalline 

counterparts have same entropy.  

Sm(T)=Sl(T)-Ss(T)                                       ...(25) 

where Sm(T) denotes temperature-dependent melting entropy, and the subscripts m, l, and s 

represent the melting, liquid, and crystal transitions, respectively. Eqn. (25) can be realized 

using temperature-dependent Gibbs free energy difference between liquid and the crystal in 

bulk [2.47,2.48]. It can be obtained experimentally as follows [2.46], 

��(�,∞ ) =
����(�)[��(�)��]

��(�)[��(�)���]
                                ...(26) 

where Hm(∞) is bulk melting enthalpy. This indicates Gm(T,∞) reaches its maximum at TK. 

Therefore,  dGm(T,∞)/dT=TK=0 [2.46] and eqn. (26) provides, 
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��(�) = �
√���

�
� ��(�)                                                   ...(27) 

2.2.2 Diffusion co-efficient 

 The size dependency of kinetic parameters like diffusion activation energy Ea(r) and 

diffusion coefficient D(r) can also be obtained from nano thermodynamics. Since surface 

plays vital role in nanomaterials, it is obvious that Ea(r)<Ea(∞) and therefore D(r)>D(∞). An 

understanding of this phenomena can be applied to microelectronic and pharmacy industries 

[2.4, 2.49-2.51].  The size and dimension dependences of diffusion coefficient have been 

calculated using simple theoretical model based on Arrhenius’s equation. For any reaction, 

temperature dependent rate constant can be given by [2.52], 

�(�) = ����� �
��(�)

��
�                                       ...(28) 

Where D0 denotes a pre-exponential factor, E(∞) is thermal activation energy for bulk crystal, 

R is the ideal gas constant and T is temperature. D is the diffusion coefficient that defines 

number of atoms diffused from unit area per unit time. Thermal activation energy is different 

for different diffusion process and can be written as,  

E(∞)=CTm(∞)                                                          ...(29) 

The coefficient C depends upon class of material and type of diffusion process. The size 

dependent thermal activation energy at nano scale can be expressed as [2.52,2.53], 

E(r)=CTm(r)                                                              ...(30) 

For the nano structured materials, diffusion activation energy is lower than bulk system 

which results in more activated diffusion. Therefore we can write eqn. (28) as [2.4], 
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�(�,�) = ����� �−�(�) �
��(�)

��(�)
� /���               ...(31) 

As per Lindemann’s criteria [2.4], 

��(�)

��(�)
= ��� �−2����(∞ )/3�(

�

��
− 1)�                           ...(32) 

Here Svib(∞) is bulk melting entropy and r0=C1(3-d)h. d is extended for different dimension, 

C1 is equal to unity in the case of nanocrystal and h is an atomic diameter [2.4]. By 

substituting eqn.(32) in eqn. (31), we find expression for diffusion coefficient as, 

�(�,�) = ����� �
��(�)

��
��� �

������(�)

��

�
�

��
��
��  ...(33) 

Eqn. (33) can be used to calculate the size dependent diffusion coefficients in nanoparticles. 

2.2.3 Surface energy and Tolman length 

 There exist many formulations to calculate the size dependent surface energy but our 

formulation very closely follows the procedure given in references [2.54,2.55]. In this 

section, the brief description of the formulation used for the computation of size dependent 

surface energy is given. Nanoparticles show different thermodynamic behaviour relative to 

corresponding bulk system because of an additional energy term γA, due to the surface excess 

energy (γ) of area A. This excess energy term plays a dominating role in the case of 

nanomaterials. Surface tension or excess surface energy measures the reversible work needed 

to create a unit surface area of a material and determines the stability and reactivity of the 

nanomaterials [2.56]. By assuming that the nanocrystals have the same structure of 

corresponding bulk, solid–vapour interface energy for a nanocrystal can be written as [2.57], 
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γsv(D)=kE(D)                                                ...(34) 

where D is the diameter of nanoparticles representing the size dependency and k is the 

parameter which is a function of coordination number and size of the nanoparticles. 

Therefore, the size dependent cohesive energy of nanocrystals, E(D) can be expressed as 

[2.58],  

�(�)

�(�)
= �1 −

�
��

�
��
� ��� �

����

��

�

(
��

�
��)

�                                                   ...(35) 

where h represents atomic diameter, Sb=Eb/Tb is the bulk coherent entropy of crystals with Tb 

being the bulk solid–vapour transition temperature and R, the ideal gas constant. Due to 

instability in semiconductor compounds, to have an exact value of Sb is difficult and hence 

the value of Sb is normally taken equal to 13R, which is the mean value of coherent entropy 

of all elements in periodic table [2.59]. The substitution of eqn. (35) in eqn. (34) results as, 

���(�)

���(�)
= �1 −

�
��

�
��
� ��� �

����

��

�

(
��

�
��)

�                                        ...(36) 

where, γSV(∞) is the solid–vapour interface energy for corresponding bulk system. Since 

structural difference between solid and liquid phases is very small in comparison to that 

between solid and gas phases or liquid and gas phases, eqn. (36) can also be applied to find 

the liquid–vapour interface energy. Therefore, 

���(�)

���(�)
= �1 −

�
��

�
��
� ��� �

����

��

�

(
��

�
��)

�                                                        ...(37)  
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Eqn. (37) is the final expression to calculate the size dependent liquid–vapour interface 

energy. It should be noted that the solid–vapour interface energy and liquid–vapour interface 

energy are called surface energy and surface tension, respectively [2.60]. 

 According to Tolman the expression for liquid–vapour interface energy is related to 

the Tolman length (δ) in the following manner [2.61]: 

���(�)

���(�)
=

�

����/�
                                                         ...(38) 

By comparing above expression with eqn. (37), one can obtain the size dependent Tolman 

length δ(D) as, 

�(�) =
�

�
�

��� (�
���
��

��
�

��
�
��
�)

��(
�

��
�
��
)

− 1�                                              ...(39) 

 

2.2.4 Catalytic activation energy 

 Catalytic activation energy (EC) is one of the important kinetic parameters, which 

measures the chemical activity of the catalyst to catalyze different reactions [2.62]. The 

catalytic activation energy in the present section is determined using a theoretical model 

based on an analytical approach which includes the shape factor [2.63]. The size and 

temperature dependent rate constant of any chemical reaction as per Arrhenius equation is 

expressed as, 

�(�,�) = ��(�)��� �
���

��
�                                                             ...(40) 
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Where, K is a rate constant of the reaction, K0 is the pre-exponential factor, Ea is activation 

energy (here considered as catalytic activation energy), R is a universal gas constant and T is 

the temperature. At the melting temperature (Tm), if rate constant (K) is independent of 

melting temperature and size of the particle, the rate constant will be the same for all the 

nanoparticles of a given system. Therefore, 

���,��(�)� = �(∞ ,��(∞ ))                                     ...(41) 

Where, Tm(D) and Tm(∞) are the melting temperatures for size dependent (i.e., nanostructure) 

and bulk system, respectively. By rewriting eqns. (40) and (41), the following expression can 

be obtained, 

��(�)��� �
���(�)

���(�)
� = ��(∞ )��� �

���(�)

���(�)
�                     ...(42) 

The effect of pre-exponential factor K0(D) on K(D,T) is negligible in comparison to the exp[-

Ea(D)/(RT)] hence using first order approximation, we can assume K0(D)≈[K0(∞)]. This leads 

to the expression, 

��(�)

��(�)
=

��(�)

��(�)
                                                                                      ...(43) 

The liquid-drop model and bond-order-length-strength (BOLS) mechanism suggest that both 

melting temperature Tm and cohesive energy EC, are related to the bond energy of crystalline 

atoms hence Tm(∞) α EC(∞) [2.64,2.65]. If the nature of the chemical bonds remains the 

same, this relationship can be written for nano scaled region as below. 

��(�)

��(�)
≈

��(�)

��(�)
                                                                                    ...(44) 
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Lu and Meng [2.63], modified the thermodynamic model proposed by Yang et al., [2.66] and 

have included the shape factor (λ) to calculate size and shape dependent catalytic activation 

energy. From that consideration, one can get EC as a function of size and shape, 

��(�,�)

��(�)
= �1 −

�

��� ��
� ��

� ��� �
�����

��

�

��� ��
� ��

�                         ...(45) 

Here, Sb=Eb/Tb is the bulk coherent entropy of crystals with Tb being the bulk solid-vapor 

transition temperature and R is the ideal gas constant. Due to the instability in semiconductor 

compounds, it is difficult to find the value of Sb value therefore we have used the value of Sb 

equal to the 13R in our calculations [2.59]. The shape factor, λ depends on the ratio of surface 

atoms to total atoms. For the different shapes, the value of the shape factor (λ) is used from 

reference [2.63]. In addition to the shape effect, the dimension dependence of EC for the 

different size of nanostructures can also be calculated. In eqn. (45), D denotes the diameter of 

nanoparticles while D0 is the diameter at which all atoms are located on surface. D0 can be 

expressed as, 

D0=2(3-d)h                                                                                  ...(46) 

Where h and d denote the value of atomic diameter and different dimensions of nanoparticles, 

i.e. d=0 for spherical nanoparticles, d=1 for nanowires and d=2 for thin films [2.67]. 
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