LIST OF FIGURES

Figure	Title	Pg No.
2.1	Indian potato production for the year 2012-13	10
2.2	Trends in sugar and sugarcane production in India	12
2.3	Trends in sugar and molasses production in India	13
2.4	Structure of sophorolipids produced by C.bombicola	15
2.5	Structure of mannosylerythritol lipid	16
2.6	Structure of rhamnolipid as produced by Pseudomonas aeruginosa	16
2.7	Structure of surfactin	17
2.8	Core pathways to microbial secondary metabolites including the postulated pathway for lipopeptide production	23
3.1	Black strap molasses from sugar industry	43
3.2	Rice bran collected from rice mill	44
3.3	Petri dish with <i>B.subtilis</i> MTCC 2423 culture grown on nutrient agar	46
3.4	Substrates utilized for biosurfactant production (a) – Molasses, (b) - Potato process effluent and (c) - Rice bran	47
3.5	Schematic diagram of the biosurfactant production process	48
3.6	Foam fractionation column	49
3.7	Colony forming units in each sector of different serial dilution of the sample grown in nutrient agar medium	50
3.8	Glass vials prepared for hydrolysis with (a) rice bran (b) molasses fermented sample and (c) crude biosurfactant	52
4.1	Drop collapse test. (a) drop of cell free supernatant on oil surface, (b) drop of distilled water on oil surface	56
4.2	Decline in surface tension with time of fermentation	57
4.3	Effect of starch concentration on surface tension reduction	58

4.4	Effect of nutrients on Growth for <i>B.subtilis</i>	59
4.5	Reduction in total sugar with time	60
4.6	Carbohydrate utilization, cell growth and surface tension reduction pattern observed using <i>B.subtilis</i> with potato process effluent	61
4.7	Effect of nutrients on surface tension reduction	62
4.8	Carbohydrate utilization, cell growth and surface tension reduction pattern observed using <i>B.subtilis</i> with molasses as substrate	64
4.9	Carbohydrate utilization, cell growth and surface tension reduction pattern observed using <i>B.subtilis</i> with rice bran as substrate	66
4.10	Surface Tension reduction for undiluted and diluted samples of different substrates	68
4.11	Data fit by Logistic and Gompertz model	71
4.12	Schematic diagram of biosurfactant production and subsequent recovery	73
4.13	Structure of Surfactin	76
4.14	TLC identification of Lipopeptide: Spot visible on the plates at height 4.2 cm. (A) Plate observed under UV lamp at 254 nm, (B) Plate observed after development with iodine vapours for rice bran, (C) Plate observed after development with iodine vapors for molasses.	78
4.15	IR spectra of crude and concentrated biosurfactant obtained from molasses	79
4.16	IR spectra of crude and concentrated biosurfactant obtained from rice bran	80
4.17 a	¹ H NMR spectra for surfactin produced by <i>B. subtilis</i> from molasses (after acid hydrolysis)	81
4.17b	¹ H NMR spectra for surfactin produced by <i>B. subtilis</i> from rice bran (after acid hydrolysis)	82
4.18	¹ H NMR spectra for surfactin produced by <i>B. subtilis</i> from rice bran (without acid hydrolysis)	83
4.19 a	HPLC plots indicting purification and concentration of surfactin (Rice bran)	84
4.19b	HPLC plots indicting purification and concentration of surfactin (molasses)	85
4.20	ESI-MS of the surfactin obtained from rice bran showing $[M+H]^+$ peaks	86
4.21	ESI MS ² showing the fragmentation of m/z 1023 and 1075.8	87

4.22a	Sequence of cleavage of surfactin molecule during ESI MS (a) opening of the ester ring.(b) cleavage after ring opening (c) fragment with m/z 685 with peptide sequence from AA ₂ to AA ₇	88
4.23	ESI-MS of the surfactin obtained from molasses showing $[M+H]^+$ peaks	89
4.24	Micelle size distribution of surfactin (a) Concentration 38.3 μ M/L, (b) concentration 57.4 μ M/L	91
4.25	Effect of \mathbf{K}^+ ions on micelle size distribution of surfactin	92
4.26	Effect of Ca ²⁺ ions on micelle size distribution of surfactin	93
4.27	Process flow diagram of surfactin production and recovery	94
4.28	Overlapping Gantt chart for surfactin production	95

Table Title Pg No. 3 1.1 Major chemicals synthesized using agro residues 1.2 Major classes of biosurfactants and their applications 4 1.3 Commercial scale products incorporating biosurfactants 5 2.1 Wastage in food and dairy produce 9 2.2 Analysis of effluent from potato chips processing industry 11 2.3 Types and microbial origin of biosurfactants 21 Recombinant and mutant strains of microorganisms resulting in 2.4 22 enhanced yield of biosurfactants Productivity of surfactin in various media and type of fermentation 32 2.5 Downstream processing techniques used for recovery of 2.6 34 biosurfactants 2.7 **Industrial applications of biosurfactants** 37 4.1 Lipopeptide type biosurfactant yields from agrowastes 54 4.2 Composition and nutrients present in rice bran and molasses 67 4.3 **Parameters of Logistic and Gompertz model** 70 4.4 **Biological parameters from Logistic and Gompertz model** 72 4.5 Volume of foamate obtained in the three stage foam fractionation 73 4.6 Yield of biosurfactant produced on precipitation from foamate 74 Retention peaks in HPLC spectrogram of surfactin obtained from rice 4.7a 85 bran compared with commercial surfactin (Sigma) reported by Wei and Chu (1998) Retention peaks in HPLC spectrogram of surfactin obtained from **4.7b** 86 molasses compared with commercial surfactin (Sigma) reported by Wei and Chu (1998) Effect of scale up on the total yield of surfactin obtained from rice 4.8 94 bran 4.9 Tentative time required in process steps 95

LIST OF TABLES