LIST OF FIGURES

Figure	Title	Page
No.		No.
2.1	Treatment techniques for heavy metal recovery	12
2.2	Constituents of organic phase	18
2.3	Metal extraction mechanism	19
3.1	Metal bearing aqueous streams	43
3.2	Processing steps for metal recovery	48
4.1	Constituents of brass	52
4.2	Structure of hydrated copper cation	57
4.3	Speciation diagram of copper and zinc in pickle liquor as a function of chloride concentration	68
4.4	Structure of copper-LIX 84-IC complex	70
4.5	Effect of LIX 84-IC concentration on copper extraction (O:A=1)	71
4.6	Maximum loading capacity of LIX 84-IC (O:A=1)	71
4.7	Effect of equilibrium pH on copper extraction at varying extractant concentrations (O:A=1)	72
4.8	Log D vs Equilibrium pH at varying extractant concentrations (O:A=1)	72
4.9	FTIR spectra of LIX 84-IC in kerosene and copper loaded organic phase at varying LIX 84-IC concentrations	74
4.10	Zinc extraction isotherm (D2EHPA 15% (v/v), O:A=1) and log D vs Equilibrium pH	75
4.11	FTIR spectra of 15% (v/v) D2EHPA in kerosene and zinc loaded organic phase at varying D2EHPA concentrations	77
4.12	Interactions between the phosphoryl groups and zinc atom in the Zn/D2EHPA complex	78
4.13	Distribution of oxalic acid species	79
4.14	(a) Solubility diagram: Copper-oxalic acid system	82

	(b) Distribution curves of soluble copper species	82
4.15	(a) Solubility diagram: Zinc-oxalic acid system	84
	(b) Distribution curves of soluble zinc species	84
4.16	XRD spectra of copper oxalate and zinc oxalate	86
4.17	FTIR spectra of copper oxalate and zinc oxalate	87
4.18	EDX of copper oxalate and zinc oxalate	88
4.19	XRD spectra of copper oxide and zinc oxide	89
4.20	FTIR spectra of copper oxide and zinc oxide	89
4.21	EDX of copper oxide and zinc oxide	90
4.22	FESEM images of (a) Copper oxalate (b) Zinc oxalate (c) Copper oxide (d) Zinc oxide	91
4.23	Reusability potential of extractant	92
4.24	EDX analysis of residual sludge after removal of copper and zinc	93
4.25	Process scheme for the recovery of copper and zinc from pickle liqour	94
5.1	PCB (%w) in consumer products and copper content in PCB	107
5.2	Metal components in PCB and their functions	108
5.3	Speciation diagram of copper species present in PCB etch solution as a function of pH	119
5.4	Effect of equilibrium pH on percentage extraction (LIX 84-I=20% (v/v), O/A= 1)	121
5.5	Effect of LIX 84-I concentration on % extraction (pH=8.9, O/A=1)	122
5.6	McCabe –Thiele plot for copper extraction using LIX 84-I at varying extractant concentrations	123
5.7a	Counter-current simulation for copper extraction using LIX 84-I=20% (v/v), O/A =4.5:1	123
5.7b	Counter-current simulation for copper extraction using LIX 84-I=50% (v/v), O/A =1.5:1	124

5.8	(a) Effect of stripping time on percentage stripping of copper	125
	(b) Copper oxalate solubility curve.	125
5.9	Copper oxalate solubility in ethanolic oxalic acid solutions	127
5.10	Dispersion formed during agitation	129
5.11	Soluble specie distribution curves for copper- ethanolic oxalic acid solutions	129
5.12	Copper oxalate precipitate obtained from different stripping solutions	130
5.13	XRD of copper oxalate	131
5.14	FTIR spectra of copper oxalate	132
5.15	Particle size distribution of copper oxalate	133
5.16	FESEM of copper oxalate at varying PS times	136
5.17	FESEM of copper oxalate	137
5.18	TGA of copper oxalate	138
5.19	XRD of copper oxalate calcined at 350 ° C	139
5.20	XRD of copper oxide	140
5.21	EDX of copper oxide	141
5.22	FTIR spectra copper oxide	141
5.23	FESEM of copper oxide	142
5.24	Process scheme for copper recovery from spent PCB etch solutions	143
5.25	Effect of parametric variations on percentage conversion	146
5.26	Reusability of catalyst	147
5.27	Reaction mechanism	148
6.1	Ways to recover metal from aqueous stream	159
6.2	Speciation diagram of copper and zinc in brass rinse liquor as a function of chloride concentration	164
6.3a	Effect of RPM on copper stripping (Cu- 4.365 g/L, oxalic acid 1M)	166

6.3b	Effect of RPM on zinc stripping (Zn- 2.73 g/L, oxalic acid 1M)	166
6.4	PSD of copper oxalate: Effect of RPM (a) 15 min (b) 1hr (c) 3 hr, (d) 150 rpm	168
6.5	PSD of zinc oxalate: Effect of RPM (a) 15 Min (b) 1hr (c) 3 hr (d) 150 rpm	170
6.6	Effect of oxalic acid concentration on yield of copper oxalate and zinc oxalate	172
6.7	Solubility curves of copper oxalate and zinc oxalate at varying oxalic acid concentrations	173
6.8	Effect of oxalic acid concentration on copper oxalate (Cu= 4.365 g/L, t=3 hr)	174
6.9	Effect of oxalic acid concentration on zinc oxalate (Zn= 2.73 g/L, t=3 hr)	175
6.10a	PSD of copper oxalate: effect of metal loading (t=3 hr, oxalic acid =1M)	177
6.10b	PSD of Zinc oxalate: effect of metal loading (t=3 hr, oxalic acid =1M)	177
6.11	XRD data of copper oxalate, zinc oxalate, copper oxide, zinc oxide	177
6.12	FTIR spectra of copper oxalate, zinc oxalate, copper oxide, zinc oxide	178
6.13	EDX of Copper oxide	179
6.14	EDX of Zinc oxide	179
6.15	FESEM images of copper oxalate: Effect of oxalic acid concentration (Cu=4.365 g/L, t=3hr)	180
6.16	FESEM image of copper oxide (oxalic acid concentration=0.156M, Cu=4.365 g/L)	181
6.17	FESEM image of zinc oxalate (Zn=2.73 g/L, t=15 min, oxalic acid concentration=1M)	182
6.18	FESEM image of zinc oxalate (Zn=2.73 g/L, t=3 hr, oxalic acid concentration=1M)	182
6.19	FESEM image of zinc oxalate (Zn=2.73 g/L, t=3 hr, oxalic acid concentration=0.114M)	183

6.20	FESEM of zinc oxalate (Zn=9.72g/L, t=3 hr, oxalic acid concentration =1M)	183
6.21	FESEM of zinc oxide (Zn=2.73 g/L, t=3 hr, oxalic acid concentration= 0.114M)	184
6.22	Recyclability of extractants	185
6.23	Bactericidal activity of CuO on Escherichia coli, Pseudomonas aeruginosa, Shigella flexneri Salmonella typhimurium and Staphylococcus aureus	187
6.24	Bactericidal activity of ZnO on Escherichia coli, Pseudomonas aeruginosa, Shigella flexneri Salmonella typhimurium and Staphylococcus aureus	187