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1. Introduction 

1.1 General 

This chapter describes the objectives of the present study and also give brief introduction of 

electromagnetic energy, remote sensing, geographic information system, digital elevation model, 

morphometric analysis and weighted overlay analysis.  

1.2 Introduction 

Remote sensing relies on the measurement of electromagnetic (EM) energy. EM energy can take 

several different forms. The most important source of EM energy at the Earth’s surface is the Sun, 

which provides us, for example, with (visible) light, heat (that we can feel) and UV-light, which can 

be harmful to our skin. Many sensors used in remote sensing measure reflected sunlight. Some 

sensors, however, detect energy emitted by the Earth itself or provide their own energy. A basic 

understanding of EM energy, its characteristics and its interactions is required to understand the 

principle of the remote sensor. This knowledge is also needed in order to interpret remote sensing 

data correctly. The most important source of energy is the Sun. Before the Sun’s energy reaches 

the Earth’s surface, three fundamental interactions in the atmosphere are possible absorption, 

transmission and scattering. The energy transmitted is reflected or absorbed by the surface 

material.  Electromagnetic energy travelling through the atmosphere is partly absorbed by various 

molecules. The most efficient absorbers of solar radiation in the atmosphere are ozone (O3), water 

vapour (H2O) and carbon dioxide (CO2).  

Geographic Information System (GIS) is a computer based information system used to digitally 

represent and analyze the geographic features present on the Earth's surface and the events (non-

spatial attributes linked to the geography under study) that are taking place on it. The meaning to 

represent digitally is to convert analog (smooth line) into a digital form. "Every object present on 

the Earth can be geo referenced", is the fundamental key of associating any database to GIS. Here, 

term 'database' is a collection of information about things and their relationship to each other and 

'geo-referencing' refers to the location of a layer or coverage in space defined by the co-ordinate 

referencing system. 

Land surfaces of the earth are continuous phenomena rather than discrete objects. To fully model 

the surface, it would need an infinite amount of points. Digital Elevation Model (DEM) or Digital 

Terrain Model (DTM) is one of the methodologies to represent the surface. The term Digital 

Elevation Model (DEM) is frequently used to refer to any digital representation of ground surface 

topography or terrain; however, most often it is used to refer specifically to a raster or regular grid 

of spot heights. In a DEM, each cell has a value corresponding to its elevation. 

Hydrologists and geomorphologists have recognized that certain relations are most important 

between runoff characteristics and geographic characteristics of drainage basin system. Various 

important hydrologic phenomena can be correlated with the physiographic characteristics of 

drainage basins such as size, shape, slope of drainage area, size and length of the contributories. 

Morphometry is the measurement and mathematical analysis of the configuration of the earth’s 

surface, shape and dimension of its landforms. The morphometric analysis of the drainage basin 

and channel network play an important role in understanding the geo-hydrological behaviour of 

drainage basin and expresses the prevailing climate, geology, geomorphology, structural 

antecedents of the catchment. 

Weighted Overlay is a technique for applying a common measurement scale of values to diverse 

and dissimilar inputs to create an integrated analysis. Geographic problems often require the 

analysis of many different factors. Weighted Overlay only accepts integer rasters as input, such as 

a raster of land use or soil types. 
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Objectives of the Present Study 

1. To demonstrate a comparative assessment of discrepancy in the hydrological behaviour of the 

DEMs in terms of terrain representation at the catchment scale. 

I. To compare Digital Elevation Models of satellites ASTER, SRTM and Cartosat of 30 

meter resolution for the selection of most appropriate DEM for Vishwamitri 

watershed. 

II. To delineate watershed and sub - watersheds of Vishwamitri river using remote 

sensing and GIS. 

Hydrological research on watersheds in developing countries is considered a relatively new 

field. Therefore, for the development of mathematical watershed models that can simulate 

and evaluate the existing and proposed management scenarios, the application of hydrologic 

data is considered necessary. Thus, the evaluation of the accuracy of watershed boundaries 

derived from different sources of elevation data becomes necessary. To evaluate the 

sensitivity of data sources and their vertical accuracies, two hydrologic applications, 

watershed boundary and river network extraction, were used along with various statistical 

measures. Hydrologic applications are selected because they heavily rely on DEM data. 

2. To develop an approach to analyze Sentinel–2 satellite images using traditional and principal 

component analysis based approaches to create land use and land cover map, which is a 

prerequisite for developing the curve number.  

I. To prepare Landuse map of entire watershed using spectral separability method 

from Landsat data. 

Instead of Landsat data, more recent and better resolution Sentinel-2 data has been used. 

Supported sources: USGS , Astola et al. (2019). 

In this study, PCA is used to condense the information of high dimensional Sentinel–2 

multispectral satellite data into fewer channels (represented by the higher-order components) 

and use the principal components as inputs to the classifiers, thus reducing the computational 

demands and possibly improving performance. The study will also show the performances of 

state-of-the-art classification methods, the Maximum Likelihood Estimation, Random Forest 

Tree, and Support Vector Machine tested on Sentinel–2 multispectral satellite data in order to 

observe if principal component analysis improves land use and land cover classification. 

3. To perform Morphometrical analysis of Vishwamitri watershed and prioritization of sub-

watersheds for assessing the flood influencing characteristics of the five sub-watersheds of 

the Vishwamitri watershed. 

 

4. To identify potential runoff storage zones based on the various physical characteristics of the 

Vishwamitri watershed using a GIS-based conceptual framework that combines through 

analytic hierarchy process using multi criteria decision-making method.  

The conceptual framework will help to identify potential runoff storage zones for water 

storage sites based on the various physical characteristics (rainfall, slope, land use/land cover, 

height above the nearest drainage, stream order, curve number, topographic wetness index) 

of the watershed. 
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5. To develop an approach for operational flood extent mapping using Synthetic Aperture Radar 

(SAR) and preparation of flood inundation map for data scarce region using 2D flow modelling 

using rain on grid model.  

Some most preferred speckle filters are assessed for the data from Sentinel-1 to map flood 

extent. The Sentinel-1 (VV-vertical transmit, vertical receive and VH- vertical transmit, 

horizontal receive) polarizing filter data were used. Moreover, flood inundation map for 

Vishwamitri River was prepared using 2D flow modelling using rain on grid model. 

 

6. To quantify the effects of urban land forms on land surface temperature and modeling the 

spatial variation using machine learning. The models can help to predict land surface 

temperature under temporary cloud cover spots, which are present in the data at the time of 

the acquisition, using neighboring biophysical (cloud-free) independent variables relationship 

with land surface temperature. 

The specific objectives of this study are:  

(1) To derive land surface temperature from the Landsat 8 thermal band 

(2) To examine the distributions of land surface temperature and land use/land cover types in 

the study area and also, to understand the overall relationship between the land surface 

temperature and urban landforms in summer and winter seasons in Vadodara city, India 

(3) To determine contribution indexes of land use/land cover classes to land surface 

temperature under different temperature conditions;  

(4) To examine the relationship between LST with Normalized Difference Vegetation 

Index (NDVI), Normalized Difference Water Index (NDWI) and Dry Bare-Soil Index (DBSI);  

(5) To evaluate the machine learning models' performances for K-Nearest Neighbor  (K-NN) 

regression, Neural Networks  (NN), Random Trees (RT) regression and Support Vector Machine 

(SVM) regression with the mean moving kernel (observation grid) of 2×2 and 5×5 for each 

explanatory variable (NDVI, NDWI and DBSI).  
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2. Literature Review 

2.1 General 

This chapter briefly shows the research papers studied for the individual objective. The chapter is 

divided into six sections, each section contains the literature reviewed for the specific objective.  

1. Objective: Comparative assessment of discrepancy in the hydrological behaviour of the DEMs in 

terms of terrain representation at the catchment scale. 

Hydrological research on watersheds in developing countries is considered a relatively new field. 

Therefore, for the development of mathematical watershed models that can simulate and evaluate 

the existing and proposed management scenarios, the application of hydrologic data is considered 

necessary. Thus, the evaluation of the accuracy of watershed boundaries derived from different 

sources of elevation data becomes necessary. To evaluate the sensitivity of data sources and their 

vertical accuracies, two hydrologic applications, watershed boundary and river network extraction, 

were used along with various statistical measures. Hydrologic applications are selected because 

they heavily rely on DEM data. For various hydrological and geomorphological models, the digital 

elevation model is applied as inputs. A set of morphometric parameters, which are used to 

construct relationships between hydrological features and morphometric properties, can be used 

to deterministically identify terrain features. The study of Sharma & Tiwari, (2014) shows 

noteworthy contrasts in hydrological properties of the two contemplated DEMs considering 

vertical accuracy assessment, hydrological simulation, empirical USLE model, and physical SWAT 

model. ArcSWAT simulation results uncover runoff predictions that are less sensitive to the 

selection of the DEMs. To delineate the drainage network that causes a significant effect on 

hydrological or hydraulic modeling and the comprehension of fluvial processes, Persendt & Gomez, 

(2016) selected different progressive flow accumulation threshold values. Ficklin et al., (2015) 

concluded that the DEM source and DEM resampling techniques (nearest neighbor, bilinear 

interpolation, cubic convolution, and majority) are less sensitive parameters as compared to DEM 

resolution in the SWAT model. Guth, (2010) compared the GDEM with SRTM 3 arcsecond data and 

computed the elevation, slope distributions, and geomorphometric parameters. Furthermore, they 

determined that the ASTER GDEM is essentially equivalent to SRTM 3 arcsecond data. In addition, 

they also reported that GDEM contains data anomalies or inconsistencies that corrupt its utilization 

for most applications. However, many studies have demonstrated that the outputs of hydrological 

models are influenced by DEM resolution  Chaplot, (2014); Wolock & Price, (1994), DEM source 

Wang, Yang, & Yao, (2012) and DEM resampling .  

The evaluation of lower resolution data such as the Shuttle Radar Topography Mission (SRTM) and 

Advanced Thermal Emission and Reflection Radiometer (ASTER) was carried out by Jarihani, Callow, 

Mcvicar, Niel, & Larsen, (2015)- using the hydrodynamic models by (i) assessing the point accuracy 

and geometric co-registration error of the original DEMs; (ii) quantifying the effects of DEM 

preparation methods (vegetation smoothed and hydrologically corrected) on hydrodynamic 

modeling relative accuracy; and (iii) quantifying the effect of the grid size (30–2000 m) of the digital 

elevation hydrodynamic model and the associated relative computational costs (run time) on 

relative accuracy in model outputs. The study highlights the important impact of the quality of the 

underlying DEM and, in particular, how sensitive hydrodynamic models are to preparation methods 

and how important vegetation smoothing and hydrological correction of the base topographic data 

are for modeling floods in low gradient and multichannel environments.  
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2. Objective: To develop an approach to analyze Sentinel–2 satellite images using traditional and 
principal component analysis based approaches to create land use and land cover map, which is a 
prerequisite for developing the curve number. 
Numerous effective methods and advanced classifiers have been applied to improve the 

performance of land use and land cover classification that is based on moderate resolution data. 

Researchers have used various methods to incorporate Landsat data into land-use change analyses 

Ozesmi & Bauer, (2002). The complexity of the landscape, the selected remote sensing data, image 

processing, and classification methods, make it difficult to obtain reliable and accurate land use 

and land cover information Manandhar, Odehi, & Ancevt, (2009). Researchers have tried to 

overcome this problem from many different perspectives, with the purpose of seeking an efficient 

method for mapping LULC patterns. These studies range from conventional statistical approaches 

to more powerful machine learning algorithms that have enhanced the quality of the solutions for 

this problem. Traditional remote sensing data classification methods include maximum-likelihood 

classifier, distance measure, clustering, or logistic regression. Over the last decade, more advanced 

methods such as decision trees, k-nearest-neighbors, random forest, neural networks and support 

vector machines have been used for LULC mapping Cheng et al., (2015); Han, Zhang, Cheng, Guo, 

& Ren, (2015). Recently, a study on the state of the art of supervised methods for land use and land 

cover classification was performed by Khatami et al., 2016. It was reported that Support Vector 

Machine, k-nearest-neighbors, and Random Forest Tree generally provide better performance than 

other traditional classifiers, SVM being the most efficient method. 

PCA is a statistical procedure that transforms the input bands (with correlated variables) 

orthogonally from an input multivariate attribute space to a new multivariate attribute space 

(having linearly uncorrelated variables) whose axes are rotated with respect to each 

other. Transformation or dimensionality reduction of the data in the analysis compresses data by 

eliminating noise, redundancy, and irrelevant information. The linearly uncorrelated variables in 

new multivariate attribute space are called principal components. The first principal component 

(PC1 derived from the first eigenvector) is the direction in space along which projections have the 

largest variance. The subsequent principal component (PC2) is the direction that maximizes 

variance among all directions orthogonal to the previous principal component. The variances of the 

remaining principal component images decrease in order, as denoted by the magnitudes of the 

corresponding eigenvalues.  

3. Objective: To perform Morphometrical analysis of Vishwamitri watershed and prioritization of sub-
watersheds for assessing the flood influencing characteristics of the five sub-watersheds of the 
Vishwamitri watershed 
Measurement and statistical study of the shape of the earth's surface, form and scale is called 

morphometry. Morphometric study of the watershed provides a detailed overview of the drainage 

system, which is an important part of the characterisation of the watershed. It’s an indicator of 

evolutionary phase that the basin landform is currently undergoing, as illustrated in different 

morphometric studies. Morphometric parameters such as stream order, basin area and perimeter, 

stream length, basin length, drainage density, stream frequency, bifurcation ratio, drainage 

texture, relief ratio, ruggedness number, form factor, circulatory ratio, compactness index, and 

lemniscate ratio have been used to establish a primary hydrological diagnosis and to prioritize sub-

watersheds according to their flood potential (Masoud,(2016) and Bhat et al., (2019) . Unguaged 

watersheds with scarce information on soil, geology, geomorphology and hydrology, 

morphometric analyses are an excellent alternative to understanding the underlying factors that 
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regulate the hydrological behaviour (Altaf et al., (2013) and  Romshoo et al., (2013)). Traditional 

methods have generally been used for the morphometric characterization of basins in the past 

(Magesh and Chandrasekar, (2014) and Ozdemir and Bird, (2009)). However, the assessment of 

basin morphometry has become more reliable, speedy and economically productive with the 

advancement of the geographic information system, high resolution digital elevation models 

(DEMs) and remote sensing techniques Ahmed et al., (2010). Bhat et al., (2019) evaluated the flood 

influencing factors in the upper Jhelum basin, they delineated the upper Jhelum basin into ten sub-

basins, followed by extraction of drainage network and morphometric parameters using ASTER 

DEM and topographic maps in Geographic Information System. The overall flood potential was 

determined on the basis of compound value obtained for all morphometric parameters of each 

sub-basin. 

4. Objective: To identify potential runoff storage zones based on the various physical characteristics 
of the Vishwamitri watershed using a GIS-based conceptual framework that combines through 
analytic hierarchy process using multi criteria decision-making method.  
In this study, a GIS-based conceptual framework is applied with multi criteria decision making 

(MCDM) technique using analytic hierarchy process (AHP) to produce suitability map of potential 

runoff storage zones within the watershed. The conceptual framework will help to identify 

potential runoff storage zones for water storage sites based on the various physical characteristics 

(Rainfall, Slope, Land use/land cover, Height above the nearest drainage, Stream order, Curve 

number, Topographic wetness index) of the Vishwamitri watershed. This will help concerned 

authorities in the proficient arranging and execution of water-related plans and schemes, improve 

water shortage, reduce dependability on ground water and  

A number of studies have been reported for site suitability using Multi Criteria Decision Making 

(MCDM) and Analytic Hierarchy Process (AHP) in GIS environment (Al-Adamat, (2008); Pauw, Oweis 

and Youssef, (2008); Kahinda et al., (2008); Mahmoud and Alazba, (2014)). AHP is a popular 

weighting method in the field of MCDM (Saaty, (1977); Rozos et al. 2011; Karimi and Zeinivand, 

(2019)). The AHP is a theory of measurement through a pairwise comparison matrix and relies on 

the judgments of experts to derive priority scales. It is used as higher cognitive process tool to 

determine the percentage importance of various criteria used in the determination of suitable sites. 

The AHP method consists of three main phases: construction of hierarchy, priority analysis of data 

and confirmation of consistency.  

5. Objective: To develop an approach for operational flood extent mapping using Synthetic Aperture 
Radar (SAR) and preparation of flood inundation map for data scarce region using 2D flow 
modelling using rain on grid model.  
In recent years, severe rainfall events have afflicted the state of Kerala in southern India causing 

damage to houses and infrastructures. Remotely sensed data can provide significant mapping 

capabilities during such severe rainfall events. However, obtaining remotely sensed data with an 

ideal combination of fine spatial and temporal resolution with the ability to see through clouds and 

discriminate flooding under forest cover is a difficult task. The extent of inundation, caused by river 

flooding and/or coastal storm surges, is required quickly to expedite relief and repair services. The 

precipitation over Kerala amid June, July and August (1–19 August 2018) were 15%, 18% and 164% 

above normal, respectively. Due to intense rainfall, all the major reservoirs were full by the end of 

July 2018 and had no buffer storage to accommodate the inflows from 10th of August 2018 (Central 

Water Commission, 2018). Serious spell of precipitation from the 14 August 2018 to 19 August 2018 
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brought appalling flood in 13 out of 14 districts. The perpetuated exceptional rainfall in August 

(170% above normal) in the catchment areas compelled the authorities to resort to hefty  

Synthetic Aperture Radar (SAR) imaging is an efficient remote sensing technique offering well-

developed, consistent, efficient, and reliable means of collecting information to extract earth's 

surface dielectric properties (Lee and Pottier 2009). The ability of SAR to penetrate clouds is 

extremely useful in flood-related studies. Synthetic aperture radar uses microwave radiation to 

illuminate the earth’s surface for recording the amplitude and phase of the back-scattered 

radiation, which makes the imaging process coherent. The active sensor of Sentinel-1 forms a SAR 

image by coherently processing the returning signals from successive radar pulses. Stronger or 

weaker final signals (output) are generated by the out-of-the-phase waves by constructively or 

destructively interfering with each other. These interferences produce a seemingly random pattern 

of brighter and darker pixels giving the radar images a distinctly grainy appearance known as 

‘Speckle’ (Goodman, 1976). Speckle noise changes the spatial statistics of the underlying scene 

backscatter making the classification of imageries a difficult task (Durand et al.,1987). A brief 

introduction of some well-known despeckling methods is presented below. 

6. Objective: To quantify the effects of urban land forms on land surface temperature and modeling 
the spatial variation using machine learning. The models can help to predict land surface 
temperature under temporary cloud cover spots, which are present in the data at the time of the 
acquisition, using neighboring biophysical (cloud-free) independent variables relationship with land 
surface temperature. 
The land surface temperature is defined as the temperature felt when long-wave radiation and 

turbulent heat fluxes are exchanged within the surface-atmosphere interface Tomlinson, (2011); 

Avdan and Jovanovska, (2016). It has been used in several fields, including hydrological cycles, 

urban climate, climate change and evapotranspiration. Studies show that urban growth is 

increasing with associated vegetation loss, leading to urban microclimate alterations. In Baltimore 

City, USA, Zhao et al., (2016) were keen to build correlations between the land surface temperature 

and land use/land cover indices. In the study carried out in Tehran City of Iran, Haashemi et al., 

(2016) noted a seasonal variation in the land surface temperature and land use/land cover 

relationship. Different simulation techniques are available to model future land cover changes in 

an area, as a result, future land surface temperature modeling of that area is equally possible. 

However, there is relatively limited work on the simulation of land surface temperature. Mallick et 

al., (2008) used linear regression for predicting surface temperature over land use/land cover 

classes using normalized difference vegetation index and fractional vegetation cover.  

Two or more satellite images from different timescales were used to analyze land surface 

temperature patterns because cloud-free images were not available for a large number of studies. 

However, any resulting land surface temperature configuration can be affected by different 

environmental factors (wind speed, Sun's radiation, surface moisture, and humidity) by differing 

acquisition time conditions. Zeng et al., (2014) tried to reconstruct MODIS land surface 

temperature based on multitemporal classification and robust regression. In a recent study, 

Shafizadeh-Moghadam et al, (2020) used machine learning models to simulate urban land surface 

temperature based on independent factors such as land use/land cover, solar radiation, altitude, 

appearance, distance to major roads, and Normalised Difference Vegetation Index (NDVI) models. 

Performance evaluation of the four models revealed a close performance in which their R2 and 

Root Mean Square Error (RMSE) were between 60.6–62.1% and 2.56–2.60 °C, respectively. 
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3. Study Area and Data Collection 

3.1 General 

In the present work, Vishwamitri watershed is selected as a site of the study. Due to the 

unavailability of SAR data for the Vadodara region, the applicability of the SAR for inundation 

mapping is shown over Kerala and Assam region. 

3.2 Study areas and data collection 

The study area is located in the Vadodara district of Gujarat State of India. In this work, the 

Viswamitri Watershed has been selected as the study area. The Vadodara district area, which is 

located south of the Tropic of Cancer and in the transition zone of heavy rainfall areas of South 

Gujarat and arid areas of North Gujarat plains, has a subtropical climate with moderate humidity. 

The Vadodara district forms a part of the great Gujarat plain. The eastern portion of the district is 

hilly terrain with several ridges, plateaus, and isolated relict hills that have an elevation in the range 

of 150–481 m above the mean sea level. The southeastern plateau has the highest peaks of the 

district—Amba Dungar and Mandai Dongar 637 m above the mean sea level. The Vishwamitri river, 

which falls in the Vadodara taluka, is considered as a major tributary of the Dhadhar river. The 

Vishwamitri river originates from the hills of Pavagadh, which is 43 km northeast of Vadodara. The 

Pavagadh hill is made of trappean rocks that emerge abruptly 830 m above the mean sea level. The 

Viswamitri river has a channel length of around 70 km and 58 km of this channel length flows 

through the Vadodara District. It meets the Dhadhar river at Pingalwada in the Vadodara district. 

Figure 1 shows the geographical location of the study area. 

 

Figure 2: Study area 

Cartosat-DEM: 

With the prime objective of delivering high-resolution satellite data of 2.5 m in-track stereo, Indian 

Space Research Organization (ISRO) launched Cartosat –1 on May 5, 2005. The quality verification 

process is performed by panning and draped visualization in order to demarcate distortions. The 

DEM is referenced to WGS84. 



9 
 

SRTM-DEM: 

The SRTM data are projected in a geographic (lat./long.) projection taking into consideration the 

WGS84 horizontal datum and the EGM96 vertical datum. It is considered global DEM with one-

arcsecond resolution (approximately 30 m at the equator). Two different C-band and X-band 

interferometric radar images of the same area are captured by two antennas that are about 60 m 

apart. C-RADAR Vertical reference and Polarization are EGM96 geoid and HH VV, respectively, 

whereas X-RADAR Vertical reference and Polarization are WGS84 ellipsoid and VV, respectively. 

Elevation data are obtained after processing interferograms. 

ASTER-GDEM: 

ASTER GDEM was generated by using the stereo-correlation of more than 1.5 million along-track 

stereo images of 15 m horizontal resolution, which are obtained by the visible and near-infrared 

(VNIR) sensor covering land surfaces between 83°N and 83°S. Initially, ASTER (GDEM-V1) with 30 

m horizontal resolution and absolute vertical accuracy of 20 m (95% confidence interval) were 

made open for public use. The data are referenced to WGS84 and EGM96 vertical datum. 

Sentinel–2: 

The European Space Agency's Sentinel–2 Multispectral Imager  measures the reflected solar 

spectral radiances in 13 spectral bands ranging from the visible to the shortwave infrared  bands. 

The primary purpose is to monitor vegetation, water bodies, cropland, urban areas, land use and 

land cover change at local, regional, national and global scales. Sentinel–2A and –2B can together 

revisit the same region every five days with data acquisitions available in Level 1C processing. The 

data characteristics of Cartosat DEM and Sentinel–2 data used in the study are given in Table 1. 

Bands 1, 9 and 10 at 60 m resolution are dedicated mainly to atmospheric corrections and cirrus-

cloud screening. As they do not contain surface information, those 3 bands were omitted after the 

pre-processing phase from the analysis. 

Kerala 

Kerala is a small, elongated coastal state in peninsular India's south-western tip. It is surrounded by 

the Western Ghats in the east and the Arabian Sea in the west. A part of the state of Kerala was 

considered in this study. The state faces severe and varied damages due to floods and heavy 

rainfall. Monsoon circulation dominates the climate of India and Kerala in particular. The wind 

blows from the oceans to the south of the Asian land masses during the half of the year, while a 

seasonal wind blows from the Asian land masses to the oceans in the south during the other half 

of the year causing a spectacular reversal of pressure and wind patterns between the two six-

month periods. South-west monsoon (June-September) and post-monsoon (October-November) 

are the main rainy seasons in Kerala. The state witnessed heavy floods in the year 1924 and 1961. 

The IMD recorded rainfalls for 15 to 17 August 2018 were found to be comparable to the rigorous 

storm that occurred in 1924 (Central Water Commission, 2018). Heavy rainfall resulted in high 

surface runoff in Kerala's major river basins, filling all dams and subsequent opening of these dams, 

causing widespread flooding in downstream areas, low-lying coastal areas, and Kerala's 

backwaters. Figure 2 shows the area covered under the study. 

The National Aeronautics and Space Administration Alaska Satellite Facility (NASA/ASF) houses a 

complete archive of Sentinel-1 SAR data processed by the European Space Agency (ESA). The 

Sentinel-1 Level-1 ground range detected (GRD) data acquired in interferometric wide swath (IW) 

mode, which is the predefined mode over land with VV and VH polarizations, were downloaded via 

the ASF application programming interface (API). Sentinel-1 and Sentinel-2 data that are available 

closest to event date were acquired on 21 August 2018 at 00:40:44 and 22 August 2018 at 05:06:49, 
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respectively. The specific parameters of the Sentinel-1 and Sentinel-2 products are given in Table 

2. 

Assam 

Assam is a state in northeast India, situated south of the eastern Himalayas along the Brahmaputra 

and Barak River valley. The state has recently witnessed heavy flood in July 2019. The Brahmaputra 

basin falls within the monsoon rainfall regime, getting an average rainfall of about 230 cm. The 

heavy floods in the Brahmaputra river in Assam owing to the increase in water concentrations of 

the Brahmaputra river and its related tributaries likely led from high continuous rainfall in the upper 

catchment regions of the Brahmaputra Basin. Figure 3 shows the area covered under the study. 

Sentinel-1 and Sentinel-2 data that are available closest to event date were acquired on 14 July 

2019 at 11:57:18 and 16 July 2019 at 04:27:09, respectively. The specific parameters of the 

Sentinel-1 and Sentinel-2 products are given in Table 3. 
Table 1: Data characteristics of Cartosat DEM and Sentinel–2 data used in the study 

 
Acquisition 
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Band5- Vegetation Red Edge 20 m 

Band6- Vegetation Red Edge 20 m 

Band7- Vegetation Red Edge 20 m 

Band8-NIR 10 m 

Band8A- Narrow NIR 20 m 

Band11-SWIR 20 m 

Band12-SWIR 20 m 
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Table 3: Specifications of Sentinel-1 and Sentinel-2 products 
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Figure 3: Study area Kerala 

 

Figure 4: Study area Asssam 
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4. Methodologies 

4.1 General 

This chapter briefly shows the methodology adopted for the individual objective. The chapter is 

divided into six sections, each section contains the specific methodology for the specific objective.  

4.2 Methodolgy 

1. Objective: To demonstrate a comparative assessment of discrepancy in the hydrological behaviour 
of the DEMs in terms of terrain representation at the catchment scale. 
Datum Transformation: The ellipsoidal height of terrain (in meters), with WGS84 ellipsoid as a 

horizontal and a vertical datum, in Geographic Projection System (i.e., X and Y in terms of latitude 

and longitude) is provided by Cartosat DEM. The 27,4476 elevation values extracted from Cartosat 

DEM have been reprojected by using the Vdatum transformation tool provided by NOAA’s National 

Ocean Service in a Geographic (lat./long.) projection, with WGS84 as a horizontal datum and 

EGM96 as a vertical datum. SRTM and ASTER data are referenced to WGS84 and EGM96 vertical 

datum. 

Statistical Comparison: Several descriptive statistic measures were employed to describe and 

compare the elevation distributions in each DEM. The root-mean-square error (RMSE), a typical 

proportion of measuring vertical exactness in DEMs, was computed for DEMs. The elevation of each 

ASTER and SRTM DEM pixel was compared with that of the respective Cartosat DEM pixel. The 

RMSE was calculated directly from data. In addition, skewness and kurtosis were determined for 

DEMs. The degree of asymmetry of a distribution around its mean is measured by skewness. The 

range of skewness is considered to be from minus infinity (−∞) to positive infinity (+∞). A 

distribution with a tail extending out to the right is called positively skewed distribution, whereas 

a distribution with an asymmetric tail extending out to the left is called negatively skewed. The 

degree to which a distribution is more or less peaked than a normal distribution is measured by 

excess kurtosis. Kurtosis is a unitless measure that indicates how sharp the data peak is. A kurtosis 

value of >0 indicates a peaked distribution, whereas a kurtosis value of <0 indicates a flat 

distribution.  

Visual Comparison: The aim of visual comparison was to detect changes between the results, such 

as streams and watershed derived from the different DEMs by using the shaded relief map and the 

high-resolution satellite imagery. The Cartosat watershed was selected for comparison between 

the slope map generated by ASTER, SRTM, and Cartosat DEMs taking into consideration 

heterologous comparisons of the ridge line and stream. The maximum rate of change of the 

elevation of the plane (the angle that the plane makes with a horizontal surface) is called the slope 

gradient. A declivity map with a pixel size of 30 m was created for analyzing the influence of the 

terrain slope on the models. Based on the Brazilian Agricultural Research Corporation standards, 

the slope values were classified. The Brazilian Agricultural Research Corporation (Embrapa), which 

is a state-owned research corporation, is affiliated with the Brazilian Ministry of Agriculture. 

Watershed delineation was performed by GIS software by importing DEMs. A pixel or a set of 

spatially connected pixels whose flow direction cannot be assigned to one of the eight valid values 

in a raster of the flow direction is called a sink. In order to remove small imperfections in the data, 

the Fill Sink tool was used. Sinks must be filled to ensure a proper delineation of basins and streams. 

A derived drainage network may be discontinuous if the sinks are not filled. A raster of the flow 

direction from each pixel to its downslope neighbors is created by the flow-direction tool. The 

accumulated flow as the accumulated weight of all pixels flowing into each downslope pixel in the 
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output raster is calculated by the flow accumulation tool. Pixels with a high flow accumulation are 

termed as areas of concentrated flow, which may be used for identifying stream channels. Similarly, 

pixels with a flow accumulation of 0 are termed as local topographic highs, which may be used for 

identifying ridges. A stream network can be delineated by applying a threshold value to the flow 

accumulation raster. A user-defined and important parameter, which is known as the stream 

threshold, directly affects the drainage network and basin boundaries that would be obtained by 

hydrological analysis. In this study, the stream threshold has been considered as 1% of the 

maximum flow accumulation value. The point on the surface at which water flows out of an area is 

called the outlet or the pour point. The outlet is the lowest point along the boundary of a 

watershed. Figure 4 shows the methodology adopted for watershed delineation. Map algebra that 

determines where the Fill tool had filled the sinks was used to investigate the cause of the errors 

in the streams network.  

 
 

 

2. Objective: To develop an approach to analyze Sentinel–2 satellite images using traditional and 
principal component analysis based approaches to create land use and land cover map, which is a 
prerequisite for developing the curve number. 
The Sentinel–2 cloud-free Level 1C data product (L1C_T43QCE_A008039_20180920T054434) 

acquired on 20 September 2018 was downloaded from the Sentinel Hub developed by European 

Space Agency. Sentinel–2 Level 1C data were processed from Top-Of-Atmosphere  Level 1C to 

Bottom-Of-Atmosphere Level 2A. QGIS desktop 3.6.1 is a free and open-source cross-platform 

desktop geographic information system application that supports viewing, editing, and analysis of 

geospatial data. QGIS desktop 3.6.1 interface was used with Semi-Automatic Classification 

Plugin (SCP), to convert the Sentinel–2 MSI data to reflectance values and for dark object 

subtraction atmospheric correction (DOS1) of the data.  

After atmospheric correction, ten bands (2–8, 8A, 11 and 12) were composited and clipped to the 

study area. The processed data were georeferenced to the WGS 84 UTM 43N projected coordinate 

system. In order to test the effectiveness of PCA, two stacks were created for the classification in 

ESRI’s ArcGIS Desktop 10.5 software. Stack 1 contained atmospherically corrected bands (2–8, 8A, 

11 and 12) and Stack 2 contained 3 major PCA bands accounting for the 97.96% of eigenvalues. The 

PCA technique was used to reduce the number of bands or dimensions necessary for classification. 

Figure 5: Methodology adopted for watershed delineation 
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Dimension reduction leads to a reduction in the computation costs without compromising the 

desired variability in the data. The process of PCA can be divided into three steps. The first step is 

to calculate the covariance or correlation matrix of multiband images.  

The traditional approach and PCA based approach used Stack 1 and Stack 2, respectively, as inputs 

for land use and land cover classification. The training data were collected based on the manual 

interpretation of the original Sentinel–2 data and DigitalGlobe's WorldView-4 high-resolution 

imagery and was kept the same for all the three classifiers to avoid the optimistic bias in 

classification. The training sample size was kept below 1000 pixels per class to evaluate the 

influence of the training sample size, as well as the performance of classification algorithms. 

Training data for each land use and land cover class were collected as a group of pixels. The input 

data and corresponding ground truth data (training sample) were used to train the classifiers. The 

classifiers learn the complex relationships between the input and ground truth data (training 

sample). To determine the accuracy of each classification and class, thematic accuracy assessment 

was performed. For this purpose, firstly a reference data set including a total of 100 points was 

created. Stratified random sampling was used with 100 points to obtain the ground truth data from 

the manual interpretation of the original 10 m resolution Sentinel–2 data (Band 2, 3 and 4) and 

DigitalGlobe's WorldView-4 data (Product Id: 1ba34688-3ee0-41e4-9187-de68fdb075df-inv) 

acquired on 25-10-2018 at 5:30 am with 31 cm resolution.The results of the classifications were 

not post-processed (e.g., filtered). The classification maps were evaluated in terms of their overall 

accuracy (OA), producer’s accuracy (PA), user’s accuracy (UA) and the Kappa index of agreement 

(k) or Kappa coefficient and a Confusion matrix was created.  

3. Objective: To perform Morphometrical analysis of Vishwamitri watershed and prioritization of 
sub-watersheds for assessing the flood influencing characteristics of the five sub-watersheds of 
the Vishwamitri watershed. 
Five basic morphometric parameters such as: area, basin length, perimeter, stream order and 

stream length, were directly calculated from the Cartosat-1 30m DEM by using Arc-hydro tools. The 

derived parameters were calculated using formulas given in below table 4. The prioritization of the 

sub-watersheds was done assigning ranks to individual parameter based on their flood influencing 

characteristics.  

Table 4: linear, aerial, and relief morphometric parameters 

Morphometric 
parameters 

Formulae Units 

Basin length (Lb) Maximum length of the watershed measured 
parallel to the main drainage line 

Km 

Area (A) Area of watershed Km2 
Perimeter (P) Length of the watershed boundary Km  
Stream order (Su) Hierarchical rank (Strahler Scheme) Dimensionless 
Stream Length 
(Lu) 

Lu=L1+L2+…+Ln; Length of the stream Km 

Stream number 
(Nu) 

Nu=N1+N2+…+Nn; Dimensionless 

Bifurcation Ratio 
(Rb) 

Rb = Nu/Nu + 1; Rb was computed as the ratio 
between the number of streams of any given order 
to the number of streams in the next higher order 

Dimensionless 

Mean Bifurcation 
Ratio (Rbm) 

𝑅𝑏𝑚 = Average of bifurcation ratios of all orders Dimensionless 

Drainage density 
(Dd): 

Dd = ΣLu/A; The ratio between the total stream 
length of all orders to the area of the basin 

(km/km2 ) 
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Drainage 
frequency (Fs): 

Fs = ΣNu/A; The ratio between total number of 
streams and area of the basin 

(no./km2) 

Drainage Texture 
(Rt): 

T = ΣNu/P; Where, 𝑅𝑡 = Drainage texture; Σ𝑁𝑢 = 
Total no. of streams of all orders; 𝑃 = Perimeter 
(km) 

(no./km) 

Relief ratio (Rr): Rr  = 𝐻/L;  Where, 𝑅r = Relief ratio; H = Total relief 
of the basin in Kilometre; 𝐿𝑏 = Basin length 

Dimensionless 

Ruggedness 
number (Rn): 

Rn = Bh × Dd; Where,  Bh = Basin relief;  Dd = Drainage 
density 

Dimensionless 

Form factor (Ff): Fr = A/Lb
2; The ratio of the basin area to the square 

of the basin length 
Dimensionless 

Circularity ratio 
(Rc): 

𝑅𝑐 = 4 ∗𝜋 ∗ 𝐴/𝑝2; Where, 𝑅𝑒 = Circularity ratio; 𝜋 = 
“𝑃𝑖” value that is 3.14; A = Area of the basin (km2 
); P = Perimeter (km) 

Dimensionless 

Elongation ratio 
(Re): 

𝑅𝑒 = (2/𝐿𝑏) ∗ 𝑠𝑞𝑟𝑡 (𝐴/𝜋); Where, Re = Elongation 
ratio 𝐴 = Area of the basin (km2 ); 𝜋 = “𝑃𝑖” value 
that is 3.14; 𝐿𝑏 = Basin length 

Dimensionless 

Length of 
Overland Flow 
(Lg): 

𝐿𝑔 = 1/( Dd ∗ 2);  Where, 𝐿𝑔 = Length of overland 
flow; Dd = Drainage density 

Km  

 

4. Objective: To identify potential runoff storage zones based on the various physical characteristics 
of the Vishwamitri watershed using a GIS-based conceptual framework that combines through 
analytic hierarchy process using multi criteria decision-making method.  
To find the potential runoff storage zones, workflow was divided into 4 steps (Figure 5). Firstly, the 

rainfall analysis was carried out using SPI and annual rainfall. Secondly, processing of spatial data 

and creation of spatial data layers. Thirdly, criteria weights were determined using AHP. Lastly, 

executing weighted overlay process (WOP) within GIS. 

 

Figure 6: Multi criteria decision making (MCDM) technique workflow using AHP for identification of potential runoff 
storage zones for water storage. 
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Processing and creation of spatial data layers: 

Topographic Wetness Index (TWI): TWI is widely used topographically based soil wetness model that 

identifies wet areas. It is based on the assumption that local topography controls the movement of 

water in slopped terrain which quantifies the effect of the local topography on runoff generation. 

The index is represented as the natural logarithm of the ratio of upslope flow accumulation area 

and slope at the cell.  

TWI = Ln(flow accumulation +1) / (tan(((slope in degrees)3.14)/180)) 

Generation of slope map using Topography Position Index (TPI): The TPI is the difference of a cell 

elevation in a digital elevation model from the mean elevation (�̅�) of a user specified neighborhood 

surrounding. Local mean elevation is subtracted from the elevation value at centre of the local 

window. The range of TPI depends not only on elevation differences but also on the adopted local 

window. Large local window values mainly reveal major landscape units, while smaller values 

highlight smaller features, such as minor valleys and ridges. 

𝑇𝑃𝐼𝑖 = 𝑋0 − �̅� 

�̅� =
∑ 𝑋𝑖𝑖=𝑛

𝑛
 

Where, 

𝑋0 = elevation at the central point 
�̅� = average elevation around the central point within the local window 
𝑛 = total number of surrounding points employed in the evaluation 

Height above nearest drainage (HAND): HAND allows for the calculation of the elevation of each 

point in the catchment above the nearest stream it drains to, following the flow direction. HAND 

raster was prepared for the 4th and 5th order streams of Vishwamitri watershed as they are highly 

susceptible to flooding.  

Determining criteria weights using AHP: Analytic Hierarchy Process (AHP) is one of Multi Criteria 

Decision Making (MCDM) method, it has been widely applied to solve decision-making problems 

related to water resources. The approach combines mathematics and psychology in dealing with 

complex decision and in turn converts it into a simpler system of hierarchy. The determination of 

the relative importance weight of each criterion (Slope, TWI, LULC, Curve Number, Stream Order 

and HAND) for potential runoff storage zones is calculated by using the pair-wise comparison matrix 

method. The number of comparison can be determined using: 

Number of comparison = 
𝑛(𝑛−1)

2
 

where, n = number of criterion 

The resulting pair-wise comparison matrix is used to obtain the Eigen value of each criterion, which 

represents its relative importance weight.  

5. Objective: To develop an approach for operational flood extent mapping using Synthetic Aperture 
Radar (SAR) and preparation of flood inundation map for data scarce region using 2D flow 
modelling using rain on grid model.  
Pre-processing: A schematic of the Sentinel-1-based processing chain is outlined in Figure 6. The 

downloaded Sentinel-1 Leve-1 GRD data acquired in IW with VV and VH polarizations were loaded 

onto Sentinel Application Platform (SNAP). SNAP offers a wide range of tools and features for 

Sentinel-1 imagery processing and analysis. Due to the large swath width of the Sentinel-1 data, 

the image was first divided into a subset for the study sites to reduce the processing time. Multi-
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looking was then performed to reduce the standard deviation of the noise. The number of Azimuth 

looks and the number range of looks (2×2) with mean GR mean pixel of 20 meters were applied to 

a 1 m × 5 m (single look). The multi-looked data were then calibrated to transform the pixel values 

from the digital values recorded by the sensor into backscatter coefficient values or Sigma0 (σ0). 

This was achieved using the following equation:  

σ0=
|𝐷𝑁𝑖|2

𝐴𝑖
2  

𝐷𝑁𝑖 = pixel’s digital number 

𝐴𝑖 = absolute calibration constant 

 

Figure 7: Methodology of SAR workflow 

Application of filters: Speckles inherently corrupt all radar images, degrading the image quality, 

and making it more difficult to interpret features. Thus, it is often necessary to enhance the image 

by filtering speckles before data can be used in different applications. All of the filters, namely, 

Boxcar, Median, Frost, Gamma map, Lee and Lee sigma with 3×3 and 5×5 kernel size, used in the 

study were available in SNAP and applied using default system parameters.  

Machine learning algorithms for classification 

The terrain corrected images were classified using the random forest and support vector machine 

algorithms as a next step. For both the classifiers, the same number of training samples was used. 

The training inundated pixels covered 5.2 Km2 and the rest of the training pixels covered 3.1 Km2 of 

the study area Kerala. Similarly, for the study area Assam, the training inundated pixels covered 11 

Km2 and the rest of the training pixels covered 54 Km2. 

During the southwest monsoon season, it is nearly impossible to obtain 100% cloud-free data, 

however, a small extent of the cloud-free data can be used for validation. The normalized difference 

water index (NDWI) is defined for Sentinel–2 data as ((B03) − (B08)/(B03) + (B08)), where B03 is a 

green band and B08 is the near-infrared band. When NDWI is applied over a multispectral image, 

the water feature has positive values, while soil and terrestrial vegetation features have zero or 

negative values. This is because NIR is absorbed strongly by water but reflected strongly by 

terrestrial vegetation and dry soil, while in a green light, water has high reflectance than terrestrial 
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vegetation and soil. Therefore, the NDWI was applied to extract water from the optical data. A 

cloud-free part of satellite optical image was collected by Sentinel-2 at 05:06:49 on 22 August 2018, 

28 h after the Sentinel-1 pass over the study area Kerala. Similarly, a cloud-free part of satellite 

optical image was collected by Sentinel-2 at 04:27:09 on 15 July 2019, 40 h after the Sentinel-1 pass 

over the study area Assam. Sentinel-2 data were converted to reflectance and dark object 

subtraction atmospheric correction (DOS1) was applied. The corrected Sentinel-2 image was used 

to validate the extent of the flood. The normalized difference water index (NDWI), established 

earlier to extract the water from the optical data, was calculated as: 

 

NDWI=
𝜌𝐺𝑟𝑒𝑒𝑛 − 𝜌𝑁𝐼𝑅

𝜌𝐺𝑟𝑒𝑒𝑛+𝜌𝑁𝐼𝑅
 

6. Objective: To quantify the effects of urban land forms on land surface temperature and modeling 
the spatial variation using machine learning. The models can help to predict land surface 
temperature under temporary cloud cover spots, which are present in the data at the time of the 
acquisition, using neighboring biophysical (cloud-free) independent variables relationship with land 
surface temperature. 
The methodology used in the study is presented in Figure 7. The workflow was divided into six 

steps. First, the satellite data were subjected to image pre-processing and atmospheric correction 

to remove the atmospheric effect and sensor defects for land surface temperature retrieval. 

Second, the classification of the heat zones. Third, derivation of land use/land cover and accuracy 

assessment. Fourth, derivation of NDVI, NDWI and DBSI. Fifth, calculate Land Contribution Index 

(CI) and Landscape index (LI). Sixth, model fitting and evaluation. Each step has been discussed in 

detail in the following sections. 

 

Figure 8: Flowchart of the methodology for LST. 
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Retrieval of Land Surface Temperature: The two cloud-free Landsat 8 level 1T data products (ID: 

LC08_L1TP_148045_20180423_20180502_01 and LC08_L1TP_148045_20181101_20181115_01) 

were acquired from the United States Geological Survey (USGS) Earth Resources Observation and 

Science (EROS) Center. Landsat 8 level 1T data products are orthorectified images of the thermal 

infrared radiance-at-the-sensor. The land surface temperature data in summer and winter were 

derived from the thermal infrared sensor (TIRS) Band 10 (10.30–11.30 μm) at a spatial resolution 

of 100 m, resampled to 30 m using a cubic convolution resampling method, which were respectively 

acquired at 11:02:51.19 AM local time for both summer (23 April) and winter (1 November) in 2018. 

TIRS data were converted to top of atmospheric spectral radiance using the radiance rescaling 

factors provided in the metadata file using Equation: 

 𝐿𝜆 = Μ𝐿 × 𝑄𝑐𝑎𝑙 + 𝐴𝐿 − 𝑂𝑖  

 

𝐿𝜆 = at-sensor spectral radiance (W/(m2.sr. μm)) 

Μ𝐿 = multiplicative rescaling factor 

𝑄𝑐𝑎𝑙  = quantized and calibrated standard product Digital Numbers (DNs) 

𝐴𝐿 = additive rescaling factor 

𝑂𝑖 = correction for Band 10 

At-sensor spectral radiance of Band 10 was converted into at-sensor brightness temperature (𝑇𝐵) 

using the thermal constants provided in the metadata file (Table 5). To obtain the results in Celsius 

from Kelvin, the radiant temperature is adjusted by adding the absolute zero (-273.15°C). 

 
𝑇𝐵 =

𝐾2

𝑙𝑛 [(
𝐾1
𝐿𝜆

) + 1]
− 273.15  

 

Table 5: Metadata of the satellite data 

Thermal constant, Band 10 K1 774.8853 

K2 1321.0789 

Rescaling factor, Band 10 Μ𝐿 3.3420E-04 

𝐴𝐿 0.1 

Correction, Band 10  𝑂𝑖 0.29 

Emissivity-corrected LST was based on Fractional Vegetation Cover (PV) and was calculated using 

Equation: 

 
𝑃𝑉  = [

𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
]

2

 
 

 

 
𝐿𝑆𝑇(℃) = 

𝑇𝐵

1 +  (𝜆 ×
𝑇𝐵
𝜌

) ln 𝜀
 

 
 

Where 𝑇𝐵is the Landsat-8 Band 10 at-sensor brightness temperature; 𝜆 is the wavelength of 

emitted radiance; 𝜌 = (
ℎ𝑐

𝜎
) = 1.438 × 10-2 m K (where, 𝜎 is the Boltzmann constant (1.38 × 10-23 

J/K); ℎ is Planck’s constant (6.626 × 10-34 Js); 𝑐 is the velocity of light (2.998 × 108 m/s); Emissivity 

(𝜀) is calculated using Equation (5) : 

 
𝜀 = 𝑚 𝑃𝑉 + 𝑛   

 
𝑚 = 𝜀𝑣 − 𝜀𝑠 − (1 − 𝜀𝑠)𝐹𝜀𝑣  
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𝑛 = 𝜀𝑠 + (1 − 𝜀𝑠)𝐹𝜀𝑣  

𝜀s and 𝜀v are soil and vegetation emissivity, respectively. The 𝜀s and 𝜀v values obtained for band 10 

from the ASTER spectral library are 0.97 and 0.99, respectively. The final expression for land 

surface emissivity is given by Equation 

 𝜀 = 0.004 𝑃𝑉 + 0.986   

Model fitting and evaluation: The land surface temperature is estimated and explored by four 
machine learning and statistical models, including K-NN regression, NN, RT regression and SVM 
regression. We hypothesized that the explanatory variables (NDVI, NDWI and DBSI) influence the 
spatial changes of land surface temperature significantly in the study area. Meanwhile, all these 
three explanatory variables were also calculated at the 2 levels of the observation grids unit. Since, 
apart from sunlight, the land surface temperature is also affected by the surrounding land cover. A 
mean moving kernel of 2×2 and 5×5 were used as the observation grids unit for each explanatory 
variable. A mean moving kernel calculates for each input pixel location a mean of the values within 
a specified neighborhood around it. To develop the models, the original dataset was divided into 
three parts, 70% of the whole dataset (124,578 pixels) were used as the training dataset, 20% 
(35,568 pixels) data were used as the testing dataset, and 10% (18,056 pixels) data were used as 
validation dataset. Three measures, namely, coefficient of determination (R2; Equation (24)), bias 
(Equation (25)), and root-mean-square error (RMSE; Equation (26)) were used to evaluate the 
performance of the models for training, testing and validation. In the equation below, R2 is the 
coefficient of determination between the original and predicted land surface temperatures. A high 
R2 indicates a satisfactory prediction. 

 
𝑅2 = 1 −  

∑(𝐿𝑆𝑇𝑝 − 𝐿𝑆𝑇𝑎)
2

∑(𝐿𝑆𝑇𝑝 − 𝐿𝑆𝑇̅̅ ̅̅
�̅�)

2  

Where 𝐿𝑆𝑇𝑝 is the predicted land surface temperature, 𝐿𝑆𝑇𝑎is the actual land surface temperature 

and 𝐿𝑆𝑇̅̅ ̅̅
�̅�is the average of actual land surface temperature. 

Bias and RMSE were used to test the errors between the predicted land surface temperature and 

the actual land surface temperature. The calculation formulas for bias and RMSE are as follows: 

 
Bias = 

 ∑ (𝐿𝑆𝑇𝑝 − 𝐿𝑆𝑇𝑎)𝑛
𝑖=1

𝑛
 

 

 

RMSE = √
1

𝑛
∑(𝐿𝑆𝑇𝑝 − 𝐿𝑆𝑇𝑎)

2
𝑛

𝑖=1

 

 

Where n represents the number of pixels of the data. 
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5. Results and analysis 

5.1 General 

This chapter briefly shows the results obtained for the individual objective. The chapter is divided 

into six sections, each section contains the obtained for the specific objective. 

5.2 Results and analysis 

1. Objective: To demonstrate a comparative assessment of discrepancy in the hydrological behaviour 
of the DEMs in terms of terrain representation at the catchment scale. 
Statistical Comparison: In order to provide evidence of the statistical significance of the results, 

the amount of data (274476 pixels) from all three DEMs was used. The absolute difference between 

the mean value of SRTM and Cartosat is 1.55 m and between the mean value of ASTER and Cartosat 

was found to be 5.38 m. The standard deviation showed that the Cartosat dataset was less spread 

out as compared to the other two datasets, which was also confirmed by the difference between 

the upper and lower quartiles (interquartile range). For the samples, the positive value of skewness 

showed that the distributions of the data were positively skewed or skewed right, i.e., the right tail 

of the distribution was longer as compared to the left tail of the distribution. For ASTER, the value 

of kurtosis was 0.02, which showed that the distribution is leptokurtic, i.e., its tails are longer and 

fatter. For SRTM and Cartosat, the negative value of kurtosis showed that the distribution is 

platykurtic, i.e., its tails are shorter and thinner. The normal quantile-quantile (Q–Q) plot and the 

detrended normal Q–Q plot were also drawn to support or refute the claim of normality. The 

quantile-quantile plot is shown in Figure 8 (d)–(f), which compares the observed quantiles of the 

data with those of the normally distributed data. The observed quantiles of the data are depicted 

as circles, whereas the quantiles of data that we would expect to see if the data were normally 

distributed are depicted as a solid line. The data are approximately normally distributed, if the 

points are on or close to the line. Similarly, the sample data are not normally distributed if the 

points are not clustered on the 45° line or they, in fact, follow a curve. Moreover, the detrended 

normal Q–Q plot provides the same information as the normal Q–Q plot, but in a different way. In 

the detrended plot, the horizontal line at the origin represents the quantiles if the data were 

normally distributed, whereas the dots represent the magnitude and direction of deviation in the 

observed quantiles. Each dot is calculated by subtracting the expected quantile from the observed 

quantile. Figure 8 (g)–(i) also shows the detrended normal Q–Q plot. In order to assess the level of 

correlation between the DEMs, the correlation scatter-plots were drawn as shown in Figure 9 (a) 

and (b). It was difficult to create a scatter plot from each pixel in a DEM as each DEM contains over 

a million pixels. However, a total of 274,476 pixels were used for the analysis. As shown in Table 6, 

the correlation coefficient of 0.83, 0.94, and 0.85 was obtained by Pearson's correlation analysis 

between the ASTER and Cartosat, SRTM and Cartosat, and ASTER and SRTM, respectively 

(correlation is found to be significant at the level of 0.01). For instance, the correlation value of 0.94 

indicates a strong positive linear correlation between SRTM and Cartosat. Similarly, the simple 

linear regression analysis is demonstrated by means of scatter-plots. In this case, the analysis of 

the determination coefficients (R2) of the regression line shows that the Cartosat DEM is 

considered adequate for describing the ASTER DEM in 68.9% and the SRTM DEM in 87.9%. 

Considering Cartosat as the reference DEM, the RMSE calculated was used for evaluating the 

vertical accuracy of the ASTER DEM and the SRTM DEM. For ASTER the RMSE was calculated to be 

7.21 m, whereas for SRTM, the RMSE was calculated to be 3.24 m.   
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Slope Gradients Classes: Moreover, six classes of slope were established for a better understanding 

of terrain. As shown in Table 7, the slope values were classified according to the Brazilian 

Agricultural Research Corporation standards. According to the SRTM and Cartosat, the result 

showed that the maximum area in watershed belongs to flat relief with a declivity value (in %) 

between 0 and 2.99. According to the ASTER, however, the maximum area belongs to smooth relief 

with a declivity value (in %) between 3 and 7.99. 

Stream Comparison: When the delineated streams are overlaid over high-resolution imagery, the 

Cartosat-generated network is much closer to the actual river network followed by the SRTM-

derived drainage network as shown in Figure 10. It has been observed that the drainage network 

delineated by ASTER is highly misleading. Moreover, sinks around the actual river have considerably 

contributed to the deviation of ASTER DEM- and SRTM DEM-derived streams. 

Watershed Comparison: The area enclosed by the watershed generated by SRTM and ASTER is 

comparatively much larger than that generated by Cartosat as shown in Figures 11 and 12. The area 

of the watershed delineated by Cartosat is 1285.4 km2, whereas the area of the watershed 

delineated by ASTER is 1624.8 km2 (26.40% larger). Moreover, the SRTM-based watershed area is 

2026.3 km2, which is 56.63% larger than the Cartosat boundary. The perimeter of the watershed 

delineated by Cartosat is 209.9 km, whereas the perimeter of the watershed delineated by ASTER 

is 315.4 km (50.26% larger). Moreover, the SRTM-based watershed perimeter is 294.9 km, which is 

40.5% larger than the Cartosat watershed perimeter. 

Ridge Line Inspection: The cartographic relief depiction shows the shape of the terrain in a realistic 

fashion and also demonstrates the three-dimensional surface that is illuminated from a point light 

source. Moreover, the watersheds overlaid over the relief map and satellite imagery show that the 

watersheds delineated by ASTER and SRTM could not follow the ridgeline and hence they have 

encompassed the Dhadhar river in them. As shown in Figure 13, the highlighted yellow circles show 

the locations where the ASTER watershed and the SRTM watershed encompass the Dhadhar river. 

Clearly, it can also be observed that the Cartosat-derived boundary follows the actual ridgeline. In 

the flow-direction process, a depressionless DEM is considered to be the desired input. An 

erroneous flow-direction raster may be resulted in the presence of sinks. Moreover, there may be 

legitimate sinks in the data in some of the cases. By taking into consideration the flow networks 

associated with each type of elevation data, the cause of the difference in the watershed 

boundaries can be found. It has been observed that the flow networks generated from the ASTER- 

and SRTM-based DEM had several errors. Map algebra was used to find where the Fill tool had 

filled the sinks in order to determine the cause of the errors in the streams network. As shown in 

Figure 14, it was found that the errors in the stream network occurred where filling greater than 3 

m in ASTER and 5 m in SRTM along the actual river had occurred. Moreover, in the deviation of 

ASTER DEM- and SRTM DEM-derived streams from the actual stream, a large number of sinks 

around the actual river have considerably contributed. Such error indicates that there were 

probably residual and artifactual anomalies that most certainly degraded the overall accuracy of 

ASTER and SRTM DEMs. As a result of underestimating the elevation at certain points, pit, and 

depressions are considered false in the Fill method as mentioned above. Therefore, the depressions 

are filled, and thus raising the elevation until it reaches the lower neighbor. As a result, the larger 

the number of continuously affected pixels, the more the result of the flow-direction assignment is 

affected. Figure 14 (a)–(c) shows that ASTER data contain a large number of depressions or pits 

followed by the SRTM data, whereas the Cartosat data contain the least amount of depressions or 

pits. 
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Table 6: Correlation coefficients for ASTER, SRTM, and Cartosat derived elevation 

 ASTER SRTM Cartosat 
ASTER 1.00   
SRTM 0.85 1.00  

Cartosat 0.83 0.94 1.00 

 
Table 7: Slope classes 

Declivity (%) Relief classes 
ASTER 
AREA(Km2) 

Cartosat 
AREA(Km2) 

SRTM 
AREA(Km2) 

0 – 2.99 Flat 252.58 687.16 638.32 

3 –7.99 Smooth 677.55 481.20 600.01 

8 – 19.99 Corrugated 335.48 89.73 38.94 

20 – 44.99 Heavily Corrugated 16.07 20.05 5.15 

45 – 74.99 Mountainous 2.18 4.78 1.56 

< 75 Steepest 1.39 2.34 1.26 

 

 

Figure 9:(a) Histogram of ASTER data (b) Histogram of SRTM data (c) histogram of Cartosat data (d) Quantile-Quantile Plot of 
ASTER data (e) Quantile-Quantile Plot of SRTM data (f) Quantile-Quantile Plot of Cartosat data (g) Detrended Normal Q-Q Plot of 
ASTER data (h) Detrended Normal Q-Q Plot of SRTM data (I) Detrended Normal Q-Q Plot of Cartosat data 
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Figure 10: (a) Scatterplot showing linear regression of ASTER derived elevation vs Cartosat derived elevation (b) 
Scatterplot showing linear regression of SRTM derived elevation vs Cartosat derived elevation 

 

 
Figure 11: Map showing ASTER, SRTM, and Cartosat derived river deviation from the actual river 
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Figure 12: Delineated watershed boundaries from ASTER, SRTM and Cartosat data 

       

Figure 13: Area and perimeter of delineated watersheds 
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Figure 14: Visual Inspection of Watersheds derived from ASTER, SRTM, and Cartosat over the Shaded Relief map 
and Satellite imagery 

 

Figure 15: (a) Filled sinks in ASTER (b) Filled sinks in Cartosat (c) Filled sinks in SRTM 
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2. Objective: To develop an approach to analyze Sentinel–2 satellite images using traditional and 
principal component analysis based approaches to create land use and land cover map, which is a 
prerequisite for developing the curve number. 
Principal component analysis was used for data compression of Sentinel-2 multispectral data to 

statistically maximise the amount of information from the original data (bands) to a smaller number 

of components, called principal components. The first few principal components possess most of 

the variability of the data. The first principal component band derived from the first eigenvector 

had the maximum amount of the total variance of the Sentinel–2 data set containing bands 2–8, 

8A, 11 and 12. The first three principal component bands accounted for 97.92% of eigenvalues. The 

variances percentage of the remaining principal component bands decreased in order of the 

corresponding eigenvalues. The variance of the PCA bands 4 to 10 is small and mostly had noises; 

thus the bands were removed from the analysis. A loading plot shows how strongly each band 

influences a principal component. It ranges from -1 to 1. Loadings close to -1 or 1 indicate that the 

band strongly influences the component. Loadings close to 0 indicate that the band has a weak 

influence on the component. Figure 15 shows the loading plot of the bands. It can be seen that 

bands 6-8A have large positive loadings on component 1. While, bands 2-5 and 11-12 have large 

positive loadings on component 2. Factor loading shows how much each band has contributed to 

the factor. Bands 6-8A (Vegetation Red Edge and near infrared bands are highly correlated, (Table 

8) loaded highly in the first principal component, bands 2-5 and 11-12 (highly correlated), loaded 

highly (positively) in principal component 2 and Band 2-5 marginally loaded onto principal 

component 3. Principal component 4-10 can be termed as noise components since no factor 

loading is prominent. It has been observed that deciduous plants have a sharp order-of-magnitude 

increase in leaf reflectance between approximately 700 to 750 nm wavelength and healthy 

vegetation reflects highly in near infrared band. Principal component 1 can be called as healthy 

vegetation component as it has the highest factor loading of 0.99 from band 7 and band 8A. 

However, principal component 2 and principal component 3 can’t be generalised as loading is 

scattered across the spectrum. PCA transformed the correlated Sentinel–2 dataset into a 

substantially smaller set of uncorrelated variables representing most of the information present in 

the original dataset. Figure 16 (a-c) shows the PCA bands derived from the Sentinel–2 data and 

Figure 16 (d-f) show the frequency distribution of corresponding principal component bands. The 

total range (maximum value - minimum value) of PCA band 3 is greater than the PCA band 1 and 

PCA band 2. However, most of the pixels fall in a small range around the mean of 6486.13, which 

shows information loss in PCA band 3. The frequency distribution reveal that the variance of the 

first principal component is the highest, followed by the second and then by the third. The 

calculated values of variance for PCA bands 1, 2 and 3 were 395879.55, 284229.30, and 45254.05, 

respectively. The image produced from PCA band 1 data resembles original image and it contains 

most of the pertinent information inherent to the scene due to high variance. Adjacent bands in a 

multispectral remotely sensed image are often highly correlated and often convey almost the same 

information about the object. A high correlation meaning thereby that the bands are not 

statistically independent. A low degree of correlation was observed among the PCA bands 1, 2, and 

3. The correlation values between PCA bands 1 and 2, 1 and 3, and 3 and 2 were 0.01, –0.01, and 

0.25, respectively. Non-structured appearance of the scatter plots and low correlation values 

confirm that there is no relationship among the PCA bands. High Correlation in stack 1 shows (Table 

8) that there is redundancy of information and if this redundancy can be reduced, then information 

can be compressed. The correlation between the bands which exist in the original data has 
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disappeared in the principal components. So, the PCA was able to reduce correlation significantly. 

The principal components are new uncorrelated bands obtained by linear combination of original 

data, retaining as maximum as possible the information present on the original data. Prediction 

performances of the three classifier algorithms, MLE, RF, and SVM, were evaluated to reveal the 

efficiency of two different land use and land cover classification approaches with training data of 

less than 1000 pixels per class. Training data for each land use and land cover class were collected 

as a group of pixels. Stratified random sampling was used to obtain the testing data. The 

classification performed on the original Sentinel–2 bands led to an unacceptable outcome with a 

classification overall accuracy of 22% for MLE. However, 60% and 64% classification overall 

accuracy was achieved with RF and SVM classifiers, respectively. The classification results of RF and 

SVM are acceptable as the training data were limited to less than 1000 pixel per class. In the PCA-

based classification approach, the same training polygons were used to avoid the optimistic bias in 

classification. PCA based approach significantly improved the overall classification accuracy of all 

the three classifiers. The overall classification accuracy varied considerably among the classifiers. 

The overall classification accuracy of MLE classifier was increased from 22% to 41% (19% increase) 

in the PCA based approach. The overall accuracy RF classifier was increased by 10% reaching 70%, 

whereas SVM classifier outperformed both the classifiers with 76% overall accuracy (increased by 

12%). Hec-GeoHMS was used to create the Curve Number with the help of the SVM classified land 

use and land cover map using PCA based approach and soil map containing hydrological soil groups. 

The Curve Number value varied from 36 to 100 for the study area, lower numbers indicate low 

runoff potential while larger numbers indicate an increased runoff potential. The calculated Curve 

Number is also termed as CN II or AMC II (Antecedent Moisture Condition II). The calculated Curve 

Number can be adjusted to dry moisture conditions (called as AMC I) and high moisture conditions 

(called as AMC III) by using adjusting factors. Figure 17 shows the Curve Number maps, for the 

antecedent moisture condition II generated using traditional approach and PCA based approach. It 

is evident from the results that land use and land cover map influence the Curve Number Map 

significantly. 

Table 8: Covariance (Correlation) matrix of sentinel–2 bands 

 

Sentinel-2 

Bands 

Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 Band 8A Band 11 Band 12 

Band 2 40426.8 

(1.00) 

43694.4 

(0.98) 

63465.1 

(0.95) 

45236.1 

(0.88) 

6071.1 

(0.08) 

-8485.5 (-

0.08) 

-9932.3 (-

0.10) 

-14377.9 

(-0.12) 

42030.1 

(0.53) 

55946.5 

(0.68) 
Band 3 43694.4 

(0.98) 

49362.7 

(1.00) 

70250.5 

(0.95) 

52331.9 

(0.92) 

15490.6 

(0.19) 

1389.2 

(0.01) 

360.7 

(0.00) 

-3597.5 (-

0.03) 

52797.9 

(0.60) 

63910.7 

(0.71) 
Band 4 63465.1 

(0.95) 

70250.5 

(0.95) 

111007.2 

(1.00) 

78097.1 

(0.92) 

-1973.4 (-

0.01) 

-32521.7 

(-0.19) 

-35057.0 

(-0.20) 

-42296.8 

(-0.22) 

84124.7 

(0.64) 

111431.2 

(0.82) 
Band 5 45236.1 

(0.88) 

52331.9 

(0.92) 

78097.1 

(0.92) 

65216.5 

(1.00) 

23153.8 

(0.24) 

6455.0 

(0.05) 

3933.8 

(0.03) 

3102.1 

(0.02) 

77195.9 

(0.76) 

86156.7 

(0.83) 
Band 6 6071.1 

(0.08) 

15490.6 

(0.19) 

-1973.4 (-

0.01) 

23153.8 

(0.24) 

141140.0 

(1.00) 

189019.7 

(0.97) 

179641.9 

(0.93) 

209046.3 

(0.96) 

55332.7 

(0.37) 

-1619.9 (-

0.01) 
Band 7 -8485.5 

(-0.08) 

1389.2 

(0.01) 

-32521.7 

(-0.19) 

6455.0 

(0.05) 

189019.7 

(0.97) 

270417.6 

(1.00) 

256318.7 

(0.96) 

298626.5 

(0.99) 

47352.7 

(0.23) 

-34947.6 

(-0.16) 
Band 8 -9932.3 

(-0.09) 

360.7 

(0.01) 

-35057.0 

(-0.20) 

3933.8 (-

0.20) 

179641.9 

(0.93) 

256318.7 

(0.96) 

265932.9 

(1.00) 

286099.6 

(0.96) 

47354.6 

(0.23) 

-33365.4 

(-0.16) 
Band 8A -14377.9 

(-0.12) 

--3597.5 

(-0.03) 

-42296.8 

(-0.22) 

3102.1 (-

0.22) 

209046.3 

(0.96) 

298626.5 

(0.99) 

286099.6 

(0.96) 

336385.7 

(1.00) 

58667.2 

(0.26) 

-37889.3 

(-0.16) 
Band 11 42030.1 

(0.53) 

52797.9 

(0.60) 

84124.7 

(0.64) 

77195.9 

(0.64) 

55332.7 

(0.37) 

47352.7 

(0.23) 

47354.6 

(0.23) 

58667.2 

(0.25) 

157985.6 

(1.00) 

142013.0 

(0.88) 
Band 12 55946.5 

(0.69) 

63910.7 

(0.71) 

111431.2 

(0.83) 

86156.7 

(0.83) 

-1619.9 (-

0.01) 

-34947.6 

(-0.16) 

-33365.4 

(-0.16) 

-37889.3 

(-0.16) 

142013.0 

(0.88) 

166130.1 

(1.00) 
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Figure 16: Loading plot of component 1, 2 and 3;Figure 17: Visual comparison of the principal component bands 

derived from the Sentinel–2 data (a) PCA band 1 (b) PCA band 2 (c) PCA band 3 and (d) Frequency distribution of 

principal component band 1 (e) Frequency distribution of principal component band 2 (f) Frequency distribution of 

principal component band 3; Figure 187: Curve number for antecedent moisture condition II generated from 

traditional approach (a) MLE (b) RF (c) SVM classifiers and PCA based approach in (d) MLE (e) RF (f) SVM classifiers 
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3. Objective: To perform Morphometrical analysis of Vishwamitri watershed and prioritization of sub-
watersheds for assessing the flood influencing characteristics of the five sub-watersheds of the 
Vishwamitri watershed 
Basin length (Lb): The basin length (Lb) is the longest length of the basin from the head waters to 

the point of confluence. The basin length determines the shape of the basin. High basin length 

indicates elongated basin. The computed Lb for the basin using Arc-hydro tool is 66.232 km. 

Area of watershed (A): Another significant parameter, such as the length of stream drainage, is the 

area of the river basin. An interesting relationship between the total basin areas and the total 

stream lengths, which are supported by the contributing areas. The Vishwamitri watershed area is 

1289.39 km2, computed with the help of GIS software. 

Perimeter of watershed (P): It is the outer boundary of the watershed that enclosed its area and 

used as an indicator of watershed size and shape. The computed perimeter for the Vishwamitri 

watershed using GIS software is 279.44 km. 
Stream order (Su): Stream ordering is a method of assigning a numeric order to links in a stream 

network. Stream ordering is defined as a measure of the position of a stream in the hierarchy of 

tributaries. There are different systems available for ordering streams. In the present investigation, 

maximum frequency is observed in the first-order streams (Table 9). More number of first-order 

streams is observed in the hilly region of the study area, which point towards terrain density and 

compacted nature of the bedrock lithology. 

Stream Length (Lu): The total length of individual stream segments of each order is the stream 

length of that order. Generally, the total length of stream segments is the maximum in first-order 

streams and decreases with an increase in the stream order. Streams with relatively short lengths 

are representative of areas with steep slopes and finer texture, whereas longer lengths of stream 

are generally indicative of low gradients. The mean and total stream length of each stream order is 

tabulated in Table 9. 

Bifurcation Ratio (Rb): The bifurcation ratio is the ratio of the number of the stream segments of 

given order Nu to the number of streams in the next higher order (Nu+1). Rb is an important 

parameter to affect peak of the runoff hydrograph). High Rb values indicate instantaneous 

discharge and possibility of flash flooding during extended rainy hours. However, Rb does not 

precisely remain constant between stream orders because of variations in basin geometry, 

lithology, and tectonics. The flat terrains have low Rb values, whereas mountainous or highly 

dissected terrains have values from 3 to 5. In the present study, mean bifurcation ratio (Rbm) for 

overall watershed is 2.12. The low Rb value for Vishwamitri watershed suggest delayed hydrograph 

peak. The lower values of Rb are characteristics of the watersheds, which have suffered less 

structural disturbances and the drainage pattern has not been distorted because of the structural 

disturbances. The higher value of Rb indicates highly dissected terrain, mature topography with a 

higher degree of drainage integration, and higher discharge potential. In particular, high Rb value 

of sub-watershed SW I suggests the early hydrograph peak with high potential for flash flooding 

during the storm events among all the sub-watersheds. It is usual to use the weighted mean Rb 

value to characterize a watershed using more representative value in situation when the values of 

Rb differs for sequential stream orders. For this reason, the weighted mean Rb of the study 

watershed was calculated as follow. 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑚𝑒𝑎𝑛 𝑏𝑖𝑓𝑢𝑟𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 (𝑊𝑅𝐵)      =
𝑅𝑏1𝑁(𝑢1) + 𝑅𝑏2𝑁(𝑢2) + 𝑅𝑏3𝑁(𝑢3) + 𝑅𝑏1𝑁(𝑢4)

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑟𝑒𝑎𝑚 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠
 

The weighted mean bifurcation ratio (WRB) for the watershed of Vishwamitri is 3 indicates that 

geological structures (tectonic activity) exert very low influence on the pattern of streams. 
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Drainage density (Dd): The measurement of drainage density provides a numerical measurement 

of landscape dissection and runoff potential. The Dd of Vishwamitri watershed is 0.43 km/km2. The 

Dd of sub-watersheds range from 0.35-0.5. There are five classes of drainage density with the 

following value ranges (km/km2), i.e., very coarse (<2), coarse (2-4), moderate (4-6), fine (6-8), and 

very fine (>8). A high value of Dd indicates a relatively high density of streams, high runoff, a quick 

stream response, and consequently, a low infiltration rate. By contrast, low drainage density of a 

watershed implies low runoff and takes longer time to peak. Low class of Dd shows a poorly drained 

basin with a slow hydrologic response. Besides, low class of Dd has a resistant permeable subsurface 

material, dense vegetation cover and low relief. 

Drainage frequency (Fs): Stream frequency is the total number of streams of all orders per unit 

area. The analysis of the results  show that Fs is maximum in sub-watershed SW III (0.19/km2 ), 

followed by SW II and SW V (0.15/km2 ), SW IV (0.14/km2 ) and SW I (0.10/km2 ). Overall, the results 

of Fs reflect early peak discharge for sub-watersheds in order of their decreasing Fs resulting in flash 

floods, while the discharge from SW I takes longer time to peak because of low runoff rates due to 

lesser number of streams. Fs for Vishwamitri watershed is 0.13/km2. 

Drainage Texture (Rt): Drainage texture is the total number of stream segments of all order in a 

river basin to the perimeter of the basin. Unit of drainage texture is km-1. There are five different 

texture classes: very coarse (<2), coarse (2–4), moderate (4–6), fine (6–8), and very fine (>8). 

According to this classification, Vishwamitri watershed has very coarse drainage texture (0.6 km-1). 

The Rr value for sub-watersheds range from 0.14-0.35. Hydrologically very coarse texture 

watersheds have large basin lag time periods.  

Relief ratio (Rr): The high Rr implies on shorter lag time and attains higher peak discharge and flow 

velocities. With increasing relief, steeper hill slopes and higher stream gradients, time of 

concentration of runoff decreases, thereby increasing flood peaks. The Rr for Vishwamitri 

watershed is 0.01, indicating overall nearly flat terrain or lower slope values. The Rr values for sub-

watersheds range between 0.00-0.02. The SW III, SW IV and SW V having 0 Rr indicating a flat 

terrain with longer basin length and their influence on flood is very less. While, sub-watersheds SW 

I and SW II have relatively high values of Rr and contribute more water in a short period of time and 

cause floods in the lower region of the basin. 

Ruggedness number (Rn): The ruggedness number is expressed as the product of basin relief and 

drainage density. High Rn occur in those basins which have steep and long slopes and fine texture, 

thus, is highly susceptible to erosion and increased peak discharge. Slope is another important 

indicator of runoff, which provides general representation of relief ruggedness within the drainage 

basin. The calculated Rn value of Vishwamitri watershed is 0.32. The low Rn value of vishwamitri 

watershed due to low relief and lesser degree of terrain complexity, causing less water flow. In the 

upper Vishwamitri watershed, SW I and SW II have relatively high Rn values, indicating that they 

have high relief, fine texture, and possibilities of high surface flow. Moreover, these sub-basins are 

susceptible to erosion and producing increased peak discharge. The SW III, SW IV and SW V have 

the lowest Rn values because of low relief and lesser degree of terrain complexity causing less water 

flow. 

Form factor (Ff): High Ff values occur in the basins having potential to produce high peak flows in 

short duration and low Ff values are vice versa. The value of form factor would always be greater 

than 0.78 for perfectly circular basin. Smaller the value of form factor, more elongated will be the 

basin. The low Ff value of 0.29 of Vishwamitri watershed reveals that the shape of the study 

watershed is elongated, it has less side flow for shorter duration and high main flow for longer 

duration. The Ff values for sub-watersheds range between 0.1-0.3, indicate elongated shape of sub-

watersheds. 
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Circularity ratio (Rc): The Rc values can attain a maximum of 1.0 where the outline of the watershed 

is approaching near circularity. A numerically low Rc indicates an elongated shape, while higher 

values are expression of approach to near circularity. Elongated drainage basins are characterised 

by longer lag times and lower peak discharge. In study area, the overall Rc value of Vishwamitri 

watershed is 0.21 and, for sub-watersheds it range from 0.07-0.2. The Rc values suggest the 

elongated shape of the Vishwamitri watershed and its sub watersheds. 

Elongation ratio (Re): It is defined as the ratio of diameter of a circle with the same area as that of 
the basin to the maximum basin length. The Re values vary from 1 for circular basins and 0 for 
elongate basins. High Re values occur for circular basins, considered as highly hazardous, because 
they yield peak flow in short period of time compared to low Re in elongated basins. These values 
can be grouped into three categories, namely, circular (>0.9), oval (0.9–0.8), less elongated 0.8–
0.7) and elongated (<0.7). The overall Re value of Vishwamitri watershed is 0.61 and, for sub-
watersheds it ranges from 0.37-0.62.  
Length of Overland Flow (Lg): Length of overland flow is a length of water over the ground before 
it gets concentrated into certain stream channels. There are three classes of Lg i.e., low value (< 
0.2), moderate value (0.2 – 0.3), and high value (>0.3). Low value of Lg indicates high relief and 
short flow paths.which leads to more vulnerable to the flash flooding. Meanwhile, a high value of 
Lg means gentle slopes and long flow paths. Lg value for overall watershed is 1.43 and, for sub-
watersheds it ranges from 1-1.43. 
Hypsometry Analysis 

The relative area is obtained as a ratio of the area above a particular contour to the total area of 

the watershed encompassing the outlet. Considering the watershed area to be bounded by vertical 

sides and a horizontal base plane passing through the outlet, the relative elevation is calculated as 

the ratio of the height of a given contour (h) from the base plane to the maximum basin elevation 

(H) (up to the remote point of the watershed from the outlet. This provided a measure of the 

distribution of landmass volume remaining beneath or above a basal reference plane. The area 

under the hypsometric curve (Hypsometric integral (HI)) indicates the erosion process dynamics in 

a watershed. Actually, the shape of the hypsometry curve shows the evolutionary stage of a basin.  

Hypsometric Integral (HI): 

𝐻𝐼 =
[𝐸𝑙𝑒𝑣mean − 𝐸𝑙𝑒𝑣min]

[𝐸𝑙𝑒𝑣𝑚𝑎𝑥 − 𝐸𝑙𝑒𝑣min]
 

=
[(−8.2) − (−40.0)]

[(738) − (−40.0)]
 

= 0.04 

Where, Elevmean is the average elevation of the catchment; Elevmin and Elevmax are the minimum and 

maximum elevations within the catchment. 

The hypsometry and the HI are used in classical conceptual geomorphometric models of landscape 

evolution as follows: i) for HI above 0.60 the area is considered young; ii) for HI ranging between 

0.35 - 0.60 the area is in a steady state balance or mature phase and iii) HI below 0.35 characterizes 

a Monadnock phase in landscape evolution. Vishwamitri watershed is certainly indicative of a 

marked old stage in the basin’s evolution Figure 18, meaning   that   the   watershed   has   reached   

the equilibrium in the longitudinal profiles of the river. This is further attested by very low 

hypsometric integral (HI = 0.04). Low value of HI occurs in terrains characterized by isolated relief 

feature standing above extensive level surfaces. 

Compound value and weightage: Single or limited parameters cannot present the comprehensive 

picture of the flood hazard potential of any sub-watershed, and hence, each of the linear, aerial, 

and relief morphometric parameters along with CN is taken into consideration for assessing the 
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flood influencing characteristics of the five sub-watersheds (Figure 19) of the Vishwamitri 

watershed, as these parameters have a direct but variable relationship with flood runoff. 

Therefore, influencing value or rank (highest weightage 5 and least 1) is given to each sub-

watershed based on the nature of the selected parameter (Table 10).The prioritization was carried 

out by assigning ranks to the individual indicators contributing to flood runoff and a compound 

value (Cv) was calculated for final prioritization. Cv is derived by calculating the average of ranks 

assigned to the individual parameters. The sub-watershed with highest Cv is contributing most to 

flood runoff as a result needs highest priority for flood mitigation measures, whereas sub-

watershed with lowest Cv is contributing least to flood runoff thereby in low priority. Thus an index 

of high, medium and low priority was produced. 
Table 9: Calculated bifurcation ratio, stream length, stream number and stream order 

Stream order (Su) Stream number (Nu)  Stream Length (Lu) Bifurcation Ratio 

1 85 294.5 2.1 

2 39 124.7 1.3 

3 30 88.1 3 

4 10 33.0 2 

5 5 16.7  

Total 169 557.1 Mean 2.1 

Table 10: Computed compound value 

Sub-watershed 
ID 

Ff Rc Re Dd Rt Rr Rn WRB Lg Fs CN sum Cv 

I 3 4 3 5 2 4 5 5 5 1 3 40 3.64 
II 2 3 2 2 4 5 4 1 2 3 4 32 2.91 
III 1 1 1 4 1 2 2 2 4 5 1 24 2.18 
IV 5 5 5 3 5 3 3 4 3 2 2 40 3.64 
V 4 2 4 1 3 1 1 3 1 4 5 29 2.64 

 

 
Figure 19: Hypsometric curve of Vishwamitri watershed;Figure 19: Sub watersheds of Vishwamitri watershed 



34 
 

4. Objective: To identify potential runoff storage zones based on the various physical characteristics 
of the Vishwamitri watershed using a GIS-based conceptual framework that combines through 
analytic hierarchy process using multi criteria decision-making method.  
Weighted Overlay Process (WOP) within GIS: Potential runoff storage zones of the study area 

(Figure 20) was generated by integrating the thematic layers of slope, LULC, curve number, HAND, 

stream order and TWI using weighted overlay process (WOP) within GIS. Resulted raster was 

classified into four classes namely (a) Not suitable (b) Marginally Suitable (c) Moderately Suitable 

(d) Optimally Suitable. Result shows that 17 % of the area is optimally suitable, 33.2% of the area 

is moderately suitable, 33.1 % of the area is marginally suitable and 18.7% of the area is not suitable 

for water storage zones/structures. Sixteen suitable sites on such zones (optimally suitable class) 

have also been identified for water storage structures, as shown in Figure 21. Criteria of selection 

of these sites are: first, proximity of the sites to the agricultural fields. Second, sites should be on 

unused or barren land. Third, narrow cross-section of the valley with high shoulders to minimise 

the amount of construction material needed for building the small dams or check dams, nala bunds, 

gully plug and bundhis. Results are also confirmed by the already built water storage structures in 

derived potential runoff storage zones which are in optimally suitable class (Figure 22).  
 

 

Figure 20: Potential runoff storage zones of the study area 
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Figure 21: Identified sites for water storage structures on potential runoff storage zones. 

 

Figure 22: Already built water storage structures on the derived potential runoff storage zones. 
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5. Objective: To develop an approach for operational flood extent mapping using Synthetic Aperture 
Radar (SAR) and preparation of flood inundation map for data scarce region using 2D flow 
modelling using rain on grid model.  
Multi-looked, calibrated, filtered (Lee) SAR data were not projected on the map coordinates of each 

pixel. The pixel was in the original coordinate position of data (rows/columns) in the field of ground 

range. In the orthorectified imageries, each of the pixels that were corrected and projected using 

the Range-Doppler terrain correction appeared at the actual position. Table 9 and 10, and Figure 

23 and 24 show the comparison of classification results of random forest classifier and support 

vector machine classifier for VV and VH polarization. The training data were kept the same for both 

the classifiers to avoid optimistic bias in the classification. For the study area Kerala, the random 

forest classifier exhibited maximum overall accuracy of 88.80% with the kappa coefficient value of 

0.72. Both the classifiers obtained better accuracy results in VV polarization compared to the VH 

polarization. The least overall accuracy of 82.60% and a kappa coefficient value of 0.63 were 

observed with random forest in VH polarization, which was followed by the support vector machine 

in VV polarization. RF achieved higher classification accuracy than SVM by about 5% in VV 

polarization. However, both the classifiers produced comparable overall accuracies in VH 

polarization (SVM achieved higher classification accuracy than RF by about 1%). The NDWI 

calculated for the cloud-free extent is shown in Figure 25 (d). The inundated area in the calculated 

NDWI over the cloud-free extent is 73.88%, which is 41.78 km2. However, it has also been observed 

(Table 11) that the inundated area using random forest classification on filtered VV data over the 

cloud-free extent is 71.18%, which is 40.25 Km2. For the study area Assam, the SVM classifier 

exhibited maximum overall accuracy of 92% with the kappa coefficient value of 0.81. Both the 

classifiers obtained better accuracy results in VH polarization compared to the VV polarization. The 

least overall accuracy of 83.60% and a kappa coefficient value of 0.65 were observed with random 

forest in VV polarization, which was followed by the RF in VH polarization. SVM achieved higher 

classification accuracy than RF by about 5.38% in VH polarization. The NDWI calculated for the 

cloud-free extent is shown in Figure 26 (d). The inundated area in the calculated NDWI over the 

cloud-free extent is 74.09%, which is 491.47 km2. However, it has also been observed (Table 12) 

that the inundated area using SVM classification on filtered VH data over the cloud-free extent is 

62.76%, which is 416.99Km2.  

Table 9: Comparison of user's accuracy (UA), producer's accuracy (PA), overall accuracy (%), and kappa coefficient 
using random forest tree and support vector machine algorithms for VV and VH polarization over Kerala region 

 
VV Polarization VH Polarization 

 RF SVM RF SVM 

 PA UA PA UA PA UA PA UA 

Inundation 0.89 0.96 0.79 0.99 0.78 0.99 0.79 0.99 
Rest 0.88 0.72 0.98 0.60 0.98 0.58 0.98 0.60 

Kappa coefficient 0.72 0.64 0.61 0.63 
Overall Accuracy (%) 88.80% 83.80% 82.60% 83.60% 

Note: UA - User's accuracy, PA - Producer's accuracy VV - Vertical-Vertical, VH - Vertical-Horizontal, RF - Random Forest, SVM -Support Vector 

Machine 
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Table 10: Inundated area statistics of RF and SVM over cloud-free optical data for Kerala region 

 
VV Polarization VH Polarization NDWI 

 RF SVM RF SVM - 

Inundated area (Km2) 40.25 34.82 34.17 35.19 41.78 
Rest (Km2) 16.29 21.72 22.38 21.36 14.77 

Table 11: Comparison of user's accuracy (UA), producer's accuracy (PA), overall accuracy (%), and kappa coefficient 
using random forest tree and support vector machine algorithms for VV and VH polarization over Assam region 

 
VV Polarization VH Polarization 

 RF SVM RF SVM 

 PA UA PA UA PA UA PA UA 

Inundation 0.77 1.0 0.82 1.0 0.81 0.99 0.89 0.99 
Rest 1.0 0.62 1 0.69 0.99 0.67 0.99 0.77 

Kappa coefficient 0.65 0.72 0.70 0.81 
Overall Accuracy (%) 83.60% 87.60% 86.60% 92.00% 

Note: UA - User's accuracy, PA - Producer's accuracy VV - Vertical-Vertical, VH - Vertical-Horizontal, RF - Random Forest, SVM -Support Vector 

Machine 
Table 12: Inundated area statistics of RF and SVM over cloud-free optical data for Assam region 

 VV Polarization VH Polarization NDWI 

 RF SVM RF SVM - 

Inundated area (Km2) 363.92 389.21 387.62 416.99 491.47 
Rest (Km2) 300.41 275.12 276.70 247.34 171.86 

 

 

Figure 23: Kerala (a) Random forest tree classification on filtered VH; (b) Support vector machine classification on VH; (c) Random forest 
tree classification on filtered VV; (d) Support vector machine classification on VV; Figure 24: Assam (a) Random forest tree classification 
on filtered VH; (b) Support vector machine classification on VH; (c) Random forest tree classification on filtered VV; (d) Support vector 
machine classification on VV 
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Figure 25: (a) Natural colour composite R-B04 G-B03 B-B02, (b) Green band (c) Near-infrared (d) Calculated NDWI over 
cloud-free extent for Kerala region; Figure 26: (a) Natural colour composite R-B04 G-B03 B-B02, (b) Green band (c) Near-
infrared (d) Calculated NDWI over cloud-free extent for Assam region 

2D hydraulic modelling for inundation: 

Thiessen polygon method for calculating the average precipitation over Vishwamitri watershed for 

storm event (30-07-2019 to 03-08-2019). 

For M stations, the average precipitation �̅� is calculated as 

 �̅� =  ∑ 𝑃𝑖

𝐴𝑖

𝐴

𝑀

𝑖=1

 

The ratio 
𝐴𝑖

𝐴
 is called weightage factor for each station. 

Calculation for runoff estimation: 

The potential maximum soil retention is calculated using following formula: 

𝑆 =
25400

𝐶𝑁
− 254 

where S is in mm, and CN is the curve number (dimensionless). 

The assumption of SCS-CN is that, for a single storm event, potential maximum soil retention is 

equal to the ratio of direct run-off to available rainfall. This relationship, after algebraic 

manipulation and inclusion of simplifying assumptions, results the following expression: 

Daily Runoff (mm) Q =
(𝑃 − 𝐼𝑎)2

(𝑃 + 𝑆 − 𝐼𝑎)
=

(𝑃 − 𝜆𝑆)2

𝑃 + (1 − 𝜆)𝑆
 𝑓𝑜𝑟 𝑃 > 𝜆𝑆 
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Q = direct run-off depth 

P = total rainfall 

𝐼𝑎 = initial abstraction 

 

𝐼𝑎  and S can be related using the following equation: 

𝐼𝑎   = λ S 

λ = 0.2 was assumed in original SCS-CN model 

Calculated weighted curve number of AMC I, AMC II and AMC III are 68.99, 84.04 and 92.50 for the 

Vishwamitri watershed. 

Empirical equations of daily runoff for Vishwamitri watershed for AMC I, AMC II and AMC III 

conditions: 

𝑄(mm) =  
(𝑃 − 22.83)2

(𝑃 + 114.16 − 22.83)
 for AMC I 

 

𝑄(mm) =  
(𝑃 − 9.64)2

(𝑃 + 48.23 − 9.64)
 for AMC II 

𝑄(mm) =  
(𝑃 − 4.11)2

(𝑃 + 20.59 − 4.11)
 for AMC III 

 

Table 13: Estimated Daily runoff for the period 30-07-2019 to 03-08-2019 using weighted CN 

Date 
Cumulative 
time in Hrs 

Δt in 
Hrs 

Incremental 
rainfall (mm) 

Maximum 
potential 
retention 
(S) in mm 

Initial 
abstraction 
𝐼𝑎 = 𝜆𝑆 
(0.2S) 

Daily 
runoff 
(Q) in 
mm 

30-07-2019 24 24 20.06 48.24 9.65 1.85 

31-07-2019 48 24 256.46 48.24 9.65 206.46 

01-08-2019 72 24 28.97 20.60 4.12 13.59 

02-08-2019 96 24 23.93 20.60 4.12 9.71 

03-08-2019 120 24 79.59 20.60 4.12 59.29 
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Figure 27: Inundation map of Vadodara city using 2D modelling 



41 
 

 

Figure 28: Map validation using sites visit 
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6. Objective: To quantify the effects of urban land forms on land surface temperature and modeling 
the spatial variation using machine learning. The models can help to predict land surface 
temperature under temporary cloud cover spots, which are present in the data at the time of the 
acquisition, using neighboring biophysical (cloud-free) independent variables relationship with land 
surface temperature. 
LST distribution over the study area: The estimated land surface temperatures for the summer and 
winter seasons are shown in Figure 29. The urban heat in Vadodara city in the summer and winter 
is significant because the high temperature zones are generally consistent with the urban built-up 
areas near the ward numbers 3, 9 and northeast of ward number 12, and the densely built-up areas 
in the ward numbers 3, 5, 6 and 12. However, the intensity of land surface temperature in winter 
is relatively low. In summer, the high temperature zone and the extremely high temperature zone 
occupy approximately 13.41% and 16.16% (Table 14) of the total study area, respectively. 
Furthermore, in winter, areas with high and extremely high temperatures are approximately 
13.39% and 15.68% of the total study area, respectively. These two temperature classes show a 
0.5% increase in area from winter to summer. 
Temperature Variations for Different Land Cover Types: To understand the relationship between 
land surface temperature and land use/land cover, the investigation of the thermal signature of 
each land use/land cover form is important. A comparison was therefore carried out between land 
use/land cover and land surface temperature.  The mean temperature of each landform category 
was calculated by averaging all consistent pixels of a given landform category. The average LST at 
11:02:51.19 AM in summer reached up to 41.00 °C, whereas in winter it was 30.97 °C. Figure 5 
shows the spatial distribution of land surface temperature in both summer and winter. In addition, 
LST in summer had an almost similar coefficient of variation (CV) than in winter, which indicated 
that temperature fluctuation in winter and summer are not dramatic. The average land surface 
temperature values of four land use/land cover types from high to low are baresoil > builtup > 
vegetation > water. The results indicated the highest land surface temperature was recorded for 
baresoil while the lowest was recorded for water bodies for both the seasons. In the study period, 
the city of Vadodara showed lower surface temperatures in residential urban areas as compared 
to the outskirts of the city. It is caused by heat from the sun in the surrounding areas that is directly 
absorbed into the ground, causing it to heat up faster than other ground cover ranges. This could 
be because of the different values of the surface albedo and land surface temperature on 
residential urban areas and baresoil. The residential areas in the city are generally painted with 
light colors which increases the albedo value than the baresoil land.  In contrast, asphalt roads, 
pavements, buildings, concrete and other features that make up the urban surfaces tend to slowly 
release the heat absorbed. A high albedo means the surface reflects the majority of the radiation 
that hits it and absorbs the rest. However, black asphalt or roads in the urban areas tend to have 
high land surface temperature and low albedo value due to its thermal characteristic. Black asphalt 
or roads have a high tendency to absorb solar radiation. In other words, builtup areas tend to retain 
heat longer than other classes, such as barren land in the city areas, which does not retain heat for 
as long. The results of this study suggest that the wastelands / barren lands have higher 
temperatures than residential urban areas. To investigate the connection of LST with biophysical 
variables, indices such as NDVI, NDWI and DBSI were derived from Landsat 8. The NDVI has been 
used extensively to define the overall vegetation and green area conditions. A higher NDVI shows 
a higher vegetation likelihood. The DBSI can reveal the builtup and barren land of urban areas. High 
DBSI values generally signify areas with baresoil while mid-range values signify intensive urban 
development. Based on reflected near-infrared radiation and visible green light, NDWI enhances 
the open water features. A higher NDWI shows a higher water body likelihood. The relationship 
between land surface temperature and urban surface characteristics was examined using the 
Pearson correlation coefficient. The overall results indicated a statistically significant correlation 
(significant at the 0.01 level (2-tailed)). The NDVI map of Vadodara city is illustrated in Figure 30-A. 
The value of the NDVI ranged between −0.169 and 0.519, the areas with high NDVI values can be 
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identified with dark green color. The strong negative correlation (r=-0.650) with LST and NDVI, 
shows that high areas of vegetation are the most likely to regulate the surface heating effect. 
Results describe the high temperature in less dense vegetative areas and low temperature in highly 
vegetated areas. Lower temperatures in vegetation areas are due to processes like transpiration 
and evapotranspiration. DBSI values ranged between −0.052 and 0.255, the DBSI value over 
baresoil and builtup classes showed a positive correlation with LST. It was found that the baresoil 
and builtup areas have a noticeable effect on the surface urban heat. Water bodies have a little 
thermal response and are known to be an efficient absorbent of radiation. The result presented in 

Figure 30-B indicates the NDWI spatial distribution of water, the NDWI values ranged from -0.458 
to −0.166. A negative correlation was observed between LST and NDWI over water bodies. Surface 
water characteristics reflect the pattern of heat flow and can be used to minimize the impact of 
urban heat. 
Land Contribution Index (CI) and Landscape index (LI): To accurately identify the connection 

between the surface parameters and the trajectory of the land surface temperature in the area 

under study, a contribution index for each type of land cover was calculated for the summer and 

winter seasons. Here each of the selected land use/land cover type’s impact on the land surface 

temperature of the study area was analyzed. The results of the calculated contribution indexes of 

the land use/land cover types show the dominance of the baresoil surface in relation to the impact 

on the overall land surface temperature regime of the study area. This development may result 

from the baresoil land cover type being one of the two classes with a positive net contribution 

index. Secondly, this contribution index is higher than all the others combined for both the seasons, 

indicating that the area covered by the baresoil contributes to more surface heating than any other 

form of land use/land cover in the study area or has the highest heat generation capacity on the 

surface. Among the four types, vegetation provided maximum heat mitigating impact in the study 

area. The contribution index value of water remained the same for both the seasons, indicating 

that temperature variation over water tends to be less variable due to its high thermal capacity. As 

expected, baresoil and builtup land had high contribution index in summer, which was significantly 

lower in winter due to lower solar radiation. Apart from baresoil and builtup land, the other types 

also provided less heat contribution in winter. These observations can be explained by the rainfall 

season prior to winter season which leads to more vibrant urban green space and therefore more 

heat sinking. To identify administrative wards with green spaces requirements (such as woodlands, 

parks, street trees, green roofs and facades), values were assigned on the scale of 1 (low 

temperature zone) to 6 (extremely high temperature zone) on land surface temperature rasters of 

both the seasons. A combined score value was later used to divide the administrative wards into 

low, medium and high green spaces requirement wards. Figure 31 and Table 15 show that ward 

numbers 2, 9 and 12 belong to high green spaces requirement wards. Strategically planting 

vegetation in such heat-exposed areas will be more effective than merely selecting a large 

percentage of the green cover. This strategy will moderate the city climate because shading and 

evapotranspiration reduce the thermal load outdoors during hot weather conditions. 

Model fitting and evaluation: To evaluate the machine learning models' performances for K-

Nearest Neighbor (K-NN) regression, Neural Networks  (NN), Random Trees (RT) regression and 

Support Vector Machine (SVM) regression with the mean moving kernel (observation grid) of 2×2 

and 5×5 for each explanatory variable (NDVI, NDWI and DBSI). Three measures, namely, coefficient 

of determination, bias and RMSE were used. When considering both the scenarios (2×2 and 5×5), 

more than 60% of the land surface temperature variation was explained by explanatory variables 

in each model except RT (2×2 and 5×5), which was nearly about 20% only. Maximum land surface 

temperature variation was explained in NN 5×5 (about 64.1%), followed by, KNN 5×5 (62.6%), SVM 
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5×5 (62.1%), KNN 2×2 (61.7%). While, variation was explained equally in NN 5×5 and SVM 2×2 

(61.3%). For KNN 2×2, KNN 5×5, RT 2×2, SVM 2×2 and SVM 5×5 the land surface temperature 

absolute error map (|predicted LST–  actual LST|) are shown in Figure 32-A1,E1,C1,D1 and H1, 

the mean value of error map (predicted LST–  actual LST) or Bias (◦C) and standard deviation 

were found to be -0.0076 ◦C, -0.0097 ◦C, -0.0006 ◦C, -0.0622 ◦C and -0.0642 ◦C, and 0.561 ◦C, 0.549 

◦C, 0.889 ◦C, 0.621 ◦C and 0.612 ◦C, respectively (Table 16). The corresponding frequency 

histograms of error (Figure 32-A2, E2, C2, D2 and H2) indicate that the above mentioned models 

underestimated the predicted LST. For NN 2×2, NN 5×5 and RT 5×5 the land surface temperature 

absolute error maps are shown in Figure 32-B1, F1, and G1, the mean value of error map or Bias 

(◦C) and standard deviation were found to be 0.0047 ◦C, 0.0011 ◦C and 0.0034 ◦C, and 0.617 ◦C, 

0.595 ◦C and 0.890 ◦C, respectively (Table 16). The corresponding frequency histograms of error 

(Figure 32-B2, F2, and G2) indicate that the models slightly overestimated the predicted LST. The 

comparative results revealed that the K-NN algorithm outperformed the other models. The lowest 

overall RMSE was calculated at a value of 0.549 ◦C for KNN 5×5, followed by, KNN 2×2 (0.561◦C). 

The worst performances were observed by RT models (2×2 and 5×5) (Figure 33-E and F). However, 

NN 2×2, NN 5×5, SVM 2×2 and SVM 5×5  models performed moderately good with overall RMSE of 

0.617, 0.594,0.623 and 0.615, respectively. 
Table 14:Calculated area and percentage of each temperature class for summer and winter. 

Temperature classes  Summer 
Area km2 (%) 

Winter 
Area km2 (%) 

Low temperature zone  20.03 (12.49) 21.42 (13.35) 
Secondary low temperature zone  29.10 (18.14) 26.77 (16.69) 
Medium temperature zone  34.29 (21.38) 34.82 (21.71) 
Secondary high temperature zone  29.55 (18.42) 30.74 (19.17) 
High temperature zone  21.51 (13.41) 21.48 (13.39) 
Extremely high temperature zone  25.92 (16.16) 25.15 (15.68) 

 

Table 15: Administrative wards with green spaces requirement. 

 Summer Winter   

Ward 
no. 

Majority class Individual 
score 

Majority class Individual 
score 

Combined 
score 

Green spaces 
requirement 

1 
Secondary high 

temperature zone 
4 

Secondary high 
temperature zone 

4 8 Medium 

2 
Extremely high 

temperature zone 
6 

Extremely high 
temperature zone 

6 12 High 

3 
Medium temperature 

zone 
3 

Secondary high 
temperature zone 

4 7 Medium 

4 
Medium temperature 

zone 
3 

Medium temperature 
zone 

3 6 Medium 

5 
Medium temperature 

zone 
3 Low temperature zone 1 4 low 

6 
Secondary high 

temperature zone 
4 

Medium temperature 
zone 

3 7 Medium 

7 
Medium temperature 

zone 
3 

Medium temperature 
zone 

3 6 Medium 

8 
Medium temperature 

zone 
3 

Medium temperature 
zone 

3 6 Medium 

9 
Medium temperature 

zone 
3 

Extremely high 
temperature zone 

6 9 High 

10 
Secondary low 

temperature zone 
2 

Medium temperature 
zone 

3 5 Medium 

11 
Secondary low 

temperature zone 
2 

Medium temperature 
zone 

3 5 Medium 

12 
Extremely high 

temperature zone 
6 

Extremely high 
temperature zone 

6 12 High 
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Table 16: Calculated bias and RMSE of the predictive models. 

 Bias(◦C) RMSE(◦C) 

 2X2 5X5 2X2 5X5 

KNN  -0.0076 -0.0097 0.561 0.549 
NN 0.0047 0.0011 0.617 0.594 
RT -0.0006 0.0034 0.888 0.890 
SVM -0.0622 -0.0642 0.623 0.615 

 

 

Figure 29: Estimated land surface temperatures for the summer and winter seasons using Landsat 8 data; Figure 
30: Spatial distribution of (A) NDVI, (B) NDWI, (C) DBSI and (D) Land use/land cover over Vadodara city; Figure 
31:Classification of heat zones into UHI and non-UHI zones, and contribution index of land use/land cover classes 
in summer and winter seasons. 
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Figure 32: Maps A,B, C, D,E,F,G and H show the predicted LST using the K-NN (2×2), K-NN (5×5), NN (2×2), NN(5×5) 
,RT (2×2), RT (5×5), SVM (2×2) and SVM (5×5) models, respectively. Map I shows the observed LST estimated using 
Landsat 8. 

 

Figure 33: Absolute error maps A1-H1 and corresponding frequency histogram of error A2-H2 of predictive models 
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6. Conclusions and Recommendations 

6.1 General 

This chapter briefly shows the conclusions obtained for the individual objective.  Based on the 

conclusion few recommendations have been given. 

6.2 Conclusions 

1. All the DEMs have imperfections for the delineation of the small river like Vishwamitri. Moreover, 

a comparison shows that SRTM 30 m and ASTER 30 m failed to delineate proper main drainage for 

the Vishwamitri river. However, Cartosat 30 m DEM exhibited better results. 

2. It can be concluded that for hydrological studies the Cartosat DEM should be given first preference 

followed by the SRTM DEM for the areas where the relief class belongs to a flat relief. 

3. PCA based approach is far superior to the traditional approach. Highest classification accuracy was 

achieved with SVM classifier. 

4. SVM outperformed the MLE and RF classifiers in both traditional as well as PCA based approach 

even with a small training dataset. The uncorrelated principal component bands enhanced the 

classification accuracy as compared to the use of Sentinel–2 original bands. This confirms the 

feasibility of PCA in remote sensing to extract land use and land cover information and enhance 

the classification. 

5. Proposed suitability map for potential water storage zones developed by the GIS technique for the 

study area may be implemented in the future to overcome growing water scarcity due to 

global/regional climate change. Since the approach and the analysis showed in this research have 

non-exclusive relevance, they are exceptionally valuable for other parts of the world, especially for 

developing countries, despite hydrological and agro-climatic variations. 

6. The proposed approaches for flood inundation mapping show the potential for monitoring 

damages caused by floods, providing basic information that can help local communities manage 

water-related risk, planning land and water management as well as other flood control programs. 

7. Spatial distribution of land surface temperature provides critical information for the understanding 

of local climatic conditions in the cities and can be used as a potential measure to introduce 

necessary steps to minimize the adverse effects of high land surface temperature. The results 

indicated the highest land surface temperature was recorded for baresoil while the lowest was 

recorded for water bodies. Based on research results, this study suggested that a new urban heat 

mitigation strategy is an important element in the spatial arrangement of impermeable surfaces 

and green areas as well as water bodies that manage urban heating and cooling. 

8. The evaluation of the prediction models shows that the K-NN, NN and SVM models, are the 

optimum models for predicting the land surface temperature in Vadodara city using neighboring 

biophysical independent variables relationship with land surface temperature. In addition, it is 

shown that the K-NN (5×5 observation grid) model exhibits good performance with RMSE of 0.549 

◦C. The model can help to predict land surface temperature under temporary cloud cover spots, 

which are present in the data at the time of the acquisition using neighboring biophysical (cloud 

free) independent variables relationship with land surface temperature. 

6.3 Recommendations 

1. High spatial resolution DEM data must be used. 

2. The sub-watersheds I and IV having more flood influencing characteristics as a result needs highest 

priority for flood mitigation measures. 

3. To overcome growing water scarcity due to global/regional climate change, water storage 

structures must be made on potential water storage zones. 

4. To reduce floods, we suggest that there is dire need to construct flood spill channel.  
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