List of Tables

Table	Title	Page
2.1	Roughness Coefficients for New Pipes (Rossman 2000)	19
2.2	Bulk chlorine decay kinetic models (Powell et al. 2000 b)	41
2.3	Kinetic decay model evaluated against experimental chlorine decay data	45
	(Helbling et al. 2009)	
2.4	First order decay constants (Powell et al., 2000 a)	51
2.5	Optimization methods used for optimal scheduling, operation and	72
	location of booster stations	
2.6	Objective functions used for the optimization methods	72
2.7	Major findings of various researchers by application of booster chlorination	74
3.1 3.2	Sample network node and link properties (Example 1) Results of hydraulic parameters (Example 1)	81 83
3.3	Concentration of residual chlorine at various nodes at the end of	93
	different travelling time for two cases	
3.4	Mass rate of chlorine applied at various locations (Example Network)	95
4.1	Reduction in chlorine mass rate for different scenario, cases and mode of	105
4.2	water supply (Example Problem) Consumer and Pump Demand Multipliers (Case Study 1)	110
4.3	Injection rates of chlorine for booster stations (A to F) for Case Study 1	111
4.4	Source and quantity of water supply (VMSS; https://vmc.gov.in)	116
4.5	Present and Future water demand (VMSS; https://vmc.gov.in)	117
4.6	Population forecasting and command area for each tank and Zone (VMSS; https://vmc.gov.in)	118
4.7	Determination of Chlorine Decay Coefficient (Case Study 2)	124
4.8	Variations in pressure, chlorine and THM (EPS of 10 days for last 24	127
	hours) for Case Study 2	
4.9	Distribution of residual chlorine at different nodes (Case Study 3).	136
4.10	Injection rates of chlorine for booster stations (Case Study 4)	139
4.11	Pressure at all nodes after 10 days extended period simulation(Case	141
	Study 4)	
4.12	Injection rates of chlorine for booster stations (Case Study 5)	147
5.1	Impulse response coefficients for the sample network (Fig 3.4)	158
5.2	Impulse response coefficients for the example network (Fig 3.5)	159

- 5.3 Value of Impulse response coefficients at critical nodes. (Case Study 6: 166 MJ-1H-LP)
- 5.4 Total mass rate of chlorine applied for combination of two booster 167 stations with source application(Case Study 6: MJ-1H-LP)
- 5.5 Optimization results for chlorine application (Case study: 6: MJ-1H-LP) 168
- 5.6 Sensitivity analysis for bulk decay coefficient (Case study: 6: MJ-1H- 171 LP)
- 5.7 Value of Impulse response coefficients at critical nodes (Case study 7: 173 MJ-2H-LP)
- 5.8 Total mass rate of chlorine applied for combination of two booster 174 stations with source application(Case study 7: MJ-2H-LP)
- 5.9 Optimization results for chlorine application(Case study 7: MJ-2H-LP) 175
- 5.10 Value of Impulse response coefficients at critical nodes (Case study 8 182 :NH-1H-LP)
- 5.11 Total mass rate of chlorine applied for combination of two booster 183 stations with source application(Case study 8 :NH-1H-LP)
- 5.12 Optimization results for chlorine application (Case study 8 :NH-1H-LP) 184
- 5.13 Value of Impulse response coefficients at critical nodes (Case study 9: 190 NH-2H-LP)
- 5.14 Total mass rate of chlorine applied for combination of two booster 192 stations with source application(Case study 9: NH-2H-LP)
- 5.15 Optimization results for chlorine application(Case study 9: NH-2H-LP) 192
- 5.16 Value of Impulse response coefficients at critical nodes for case II 195 (Case study 10: NH-2HD-LP)
- 5.17 Total mass rate of chlorine applied for combination of one booster 196 station with source application(Case study 10: NH-2HD-LP)
- 5.18 Total mass rate of chlorine applied for combination of two booster 197 stations with source application(Case study 10: NH-2HD-LP)
- 5.19 Optimization results for chlorine application(Case study 10: NH-2HD- 198 LP)
- 5.20 Summary Table for different flow conditions and water supply hours 203 (NH and MJ using LP Optimization Method)
- 5.21 Values of impulse response coefficients at critical nodes for case II and 211 III (Case Study 11: NH-2HD-PSO)

- 5.22 Fitness Function value for different Mass rate application of Chlorine 215 (Case Study 11: NH-2HD-PSO)
- 5.23 Sensitivity analysis for PSO parameters (Two decision variables) for 217 Case Study 11: NH-2HD-PSO)
- 5.24 Sensitivity analysis for three decision variables (Case Study 11: NH- 218 2HD-PSO)
- 5.25 Chlorine mass rate to be applied at various locations after using 219 Optimization (Case Study 11: NH-2HD-PSO)
- 5.26 Chlorine mass rate at optimum locations after using PSO Optimization 221 (Case Study 12: NH-2HD-PSO-OL)
- 5.27 Sensitivity analysis for the various parameters of PSO (Case Study 12: 221 NH-2HD-PSO-OL)
- 5.28 Chlorine mass rate at various locations after using PSO Optimization 223 (Case Study 13: NH-1H-PSO-OL)
- 5.29 Sensitivity analysis for various PSO parameters (Case Study 13: NH- 223 1H-PSO-OL)
- 5.30 Chlorine mass rate at various locations after using PSO Optimization 224 (Case Study 13: NH-2H-PSO-OL)
- 5.31 Chlorine mass rate at optimum locations after using PSO Optimization. 225 (Case Study 14: MJ-1H-PSO-OL)
- 5.32 Sensitivity analysis for PSO parameters (Case Study 14: MJ-1H-PSO- 226 OL)
- 5.33 Chlorine mass rate at optimum locations after using PSO Optimization 226 (Case Study 14: MJ-2H-PSO-OL)
- 5.34 Chlorine mass rate to be applied at optimum locations of booster stations 228 (MJ-1H-LP & MJ-1H-PSO-OL, Fig 5.3)
- 5.35 Chlorine mass rate to be applied at optimum locations of booster stations 229 (MJ-2H-LP & MJ-2H-PSO-OL, Fig 5.3)
- 5.36 Chlorine mass rate to be applied at optimum locations of booster stations 230 (NH-1H-LP & NH-1H-PSO-OL, Fig. 5.15)
- 5.37 Chlorine mass rate to be applied at optimum locations of booster stations 231 (NH-2H-LP & NH-2H-PSO-OL, Fig. 5.15)
- 5.38 Chlorine mass rate to be applied at various locations (NH-2HD-LP , 232 NH-2HD-PSO & NH-2HD-PSO-OL, Fig.5.24)

- 5.39 Impact Matrix for booster chlorination station (North Harni DWDS for 2 235 hour duration with deficit flow condition)
- 5.40 Impact Matrix for booster chlorination station (Manjalpur DWDS for 2 237 hour duration)
- 5.41 Cost analysis for the optimum solution of booster chlorination station 240 (NH-2HD)
- 5.42 Cost analysis for the optimum solution of booster chlorination station 240 (MJ-1H)