List of Figures

Figure	Title	Page
2.1	Drinking water distribution system network (Walski et al. 2003; USEPA	13
	2005).	
2.2	Distribution System interactions affecting water quality (USEPA 2005)	32
2.3	Local and global optimizers	59
3.1	Simple link-node representation of a water distribution system (Source:	79
	Rossman, 2000).	
3.2	Sample network for calculation of hydraulic parameters at each node	80
	(Example 1).	
3.3	Modelled sample network using EPANET simulation Model.	84
3.4	Sample network for calculation of chlorine concentration at each node	85
3.5	Computation of residual chlorine concentration at each node for Case II	95
	(Example network)	
3.6	Residual chlorine concentration at Node 4 for Case I	96
3.7	Residual chlorine concentration at Node 4 for Case II.	96
3.8	Residual chlorine concentration at Node 5 for Case I.	96
3.9	Residual chlorine concentration at Node 5 for Case II	96
4.1	Distribution network used for Study (Example Problem)	104
4.2 (a)	Minimum, average and maximum concentration of residual chlorine for	106
	case I, scenario I(Example Problem)	
4.2 (b)	Minimum, average and maximum concentration of residual chlorine for	106
	case I scenario II(Example Problem)	
4.3(a)	Minimum, average and maximum concentration of residual chlorine for	107
	case II, scenario I(Example Problem)	
4.3(b)	Minimum, average and maximum concentration of residual chlorine for	107
	case II, scenario II(Example Problem)	
4.4	Sample Network of the Cherry Hill-Brushy Plains. (Case Study 1;	110
	Source: Clark et al. 1994)	
4.5	Network Hydraulic Behaviour of Cases I & II (Case Study 1)	112
4.6	Tank concentration of residual chlorine (case I and II) for Case	112
	Study 1	
4.7(a)	Average residual chlorine concentration and standard deviation for all	113
	nodes (case I) for Case Study 1	

4.7(b)	Average residual chlorine concentration and standard deviation for all	113
	nodes (case II) for Case Study 1	
4.8	Study Area of Vadodara City DWDS	115
4.9	Drinking water distribution networks of Vadodara city selected for study.	120
4.10	Subhanpura Distribution Water Distribution System Network (Case Study 2)	122
4.11(a)	Determination of bulk chlorine decay coefficient for sample 1	123
	(Case Study 2)	
4.11(b)	Determination of bulk chlorine decay coefficient for sample 2	123
	(Case Study 2)	
4.11(c)	Determination of bulk chlorine decay coefficient for sample 3 (Case	123
	Study 2)	
4.12	Water head in tank (EPS of ten days for last 24 hours).for	124
	Case Study 2	
4.13	System flow balance (EPS of ten days for last 24 hours) for	125
	Case Study 2	
4.14	Tank concentration of residual chlorine (EPS of ten days for last 24	125
	hours) for Case Study 2	
4.15	Minimum, average and maximum concentration of residual chlorine for	126
	all nodes (EPS of ten days for last 24 hours) for Case Study 2	
4.16	Variation in demand for 24 X 7 continuous water supply	129
–	(Case Study 3)	1.00
4.17	Demand for Intermittent water supply of 4 hours in a day	130
4 10	(Case Study 3)	120
4.18	Channi Drinking Water Distribution Network (Case Study 3)	130
4.19	Water Head in tank for scenario 1 and 2 (Case Study 3)	131
4.20	System flow balance of scenario 1 for 24 X 7 water supply	132
4.21	(Case Study 3) System flow balance of scenario 2 for intermittent water supply of 4	132
4.21	System flow balance of scenario 2 for intermittent water supply of 4 hours (Case Study 3)	132
4.22(a)	Contour plot of pressure peak hour of 8 a.m. to 9 a.m. for scenario 1	133
1.22(a)	(Case Study 3)	100

4.22(b)	Contour plot of pressure peak hour of 8 a.m. to 9 a.m. for scenario 2	133
	(Case Study 3)	
4.23	Tank concentration of residual chlorine (Scenario 1 and 2) for Case	134
	Study 3	
4.24	Minimum, average and maximum concentration of residual chlorine	134
	(Scenario I) for Case Study 3.	
4.25	Minimum, average and maximum concentration of residual chlorine	135
	(Scenario II) for Case Study 3.	
4.26	Minimum residual chlorine concentration for selected nodes (6 a.m. to 7	135
	a.m. for scenario 1 and 2) for Case Study 3.	
4.27	North Harni Distribution Network (Case Study 4)	139
4.28	Tank concentration of residual chlorine (case I and II) for	140
	Case Study 4	
4.29	Minimum, average and maximum concentration of residual chlorine	142
	(Case I) for Case Study 4	
4.30	Minimum, average and maximum concentration of residual chlorine	142
	(Case II) Case Study 4	
4.31	Average residual chlorine concentration and standard deviation for all	143
	nodes (Case I) for Case Study 4	
4.32	Average residual chlorine concentration and standard deviation for all	143
	nodes (Case II) for Case Study 4	
4.33	Variation of residual chlorine concentration at each node (case I and	144
	case II) for Case Study 4	
4.34	Manjalpur Distribution Network (Case Study 5)	146
4.35	Tank concentration of residual chlorine (Case I and Case II) for Case	148
	Study 5	
4.36	Minimum, average and maximum concentration of residual chlorine	149
	(Case I)) for Case Study 5	
4.37	Minimum, average and maximum concentration of residual chlorine	149
	(Case II)) for Case Study 5	
4.38	Contour Plot of Residual Chlorine (Case I)) for Case Study 5	150
4.39	Contour Plot of Residual Chlorine (Case II)) for Case Study 5	150
5.1	Steps in the development of simulation-optimization model for water	154
	quality management in DWDS	

5.2	Manjalpur and North Harni Drinking Water Distribution System	160
5.3	Network, Vadodara, Gujarat, India. Manjalpur DWDS network	162
5.5 5.4	Tank concentration for residual chlorine (Case I and Case II) for Case	162
5.4	Study 6	100
5.5	Minimum, average and maximum concentration of residual chlorine for	169
	all nodes.(Case I) for Case Study 6	
5.6	Minimum, average and maximum concentration of residual chlorine for	169
	all nodes. (Case II) for Case Study 6	
5.7	Average concentration and standard deviation for all nodes. (Case I) for	170
	Case Study 6	
5.8	Average concentration and standard deviation for all nodes. (Case II) for	170
	Case Study 6	
5.9	Percentage variation in total chlorine mass rate for % variation in bulk	171
	decay coefficient (Case Study 6).	
5.10	Tank concentration for residual chlorine (Case I and Case II) for Case	175
	Study 7	
5.11	Minimum, average and maximum concentration of residual chlorine for	176
	all nodes.(Case I) for Case Study 7	
5.12	Minimum, average and maximum concentration of residual chlorine for	176
	all nodes. (Case I) for Case Study 7	
5.13	Average residual chlorine concentration and standard deviation for all	177
	nodes. (Case I) for Case Study 7	
5.14	Average residual chlorine concentration and standard deviation for all	177
5 1 5	nodes. (Case II) for Case Study 7	100
5.15	North Harni DWDS network	180
5.16	Tank concentration for residual chlorine (Case I, Case II and Case III)	184
	for Case Study 8	
5.17	Minimum, average and maximum concentration of residual chlorine for	185
	all nodes (Case I) for Case Study 8	
5.18	Minimum, average and maximum concentration of residual chlorine for	185
E 10	all nodes (Case II) for Case Study 8	105
5.19	Average residual chlorine concentration and standard deviation for all	185
	nodes. (Case I) for Case Study 8	

5.20	Average residual chlorine concentration and standard deviation for all	186
	nodes. (Case II) for Case Study 8	
5.21	Contour Plot of residual chlorine for Conventional Chlorination	187
	(Case I) for Case Study 8	
5.22	Contour Plot of residual chlorine for Conventional Chlorination	187
	(Case II) for Case Study 8	
5.23	Contour Plot of residual chlorine for Conventional Chlorination	188
	(Case III) for Case Study 8	
5.24	North Harni Distribution network (Deficit flow conditions)	194
5.25	Tank concentration of residual chlorine (Case I and Case II) for	198
	Case Study 10	
5.26	Minimum, average and maximum concentration of residual chlorine for	199
	all nodes (Case I) for Case Study 10	
5.27	Minimum, average and maximum concentration of residual chlorine for	199
	all nodes (Case II) for Case Study 10	
5.28	Average residual chlorine concentration and standard deviation for all	200
	nodes (Case I) for Case Study 10	
5.29	Average residual chlorine concentration and standard deviation for all	200
	nodes (Case II) for Case Study 10	
5.30	Variation of residual chlorine concentration at each node after 240 hours	200
	for EPS for Case Study 10	
5.31	Concept of modification of a searching point by PSO	206
5.32	Flow Chart for PSO Model	209
5.33	Simulation Model for coupling with optimization Model.	213
5.34	Coupled Simulation-Optimization Model installed in MATLAB	213
5.35	Variation in fitness function after each iteration for two decision	215
	variables (Case Study 11)	
5.36	Variation in fitness function after each iteration for three decision	215
	variables (Case Study 11)	
5.37	Particle's position for two decision variables after different iteration	217
	(Case Study 11).	
5.38	Variation in fitness functions at different Iteration (Case Study 13: NH-	224
	1H-PSO-OL)	
5.39	Decision Support Model (DSM) for management of chlorine	241
	disinfection in DWDS	

xix