List of Figures

Figure 1.1 "Internet of Things" paradigms as a result of the convergence of differ	
visions	
Figure 1.2 IoT based Health monitoring Architecture	
Figure 1.3 Cloud computing as on demand service	
Figure 1.4 Fog Computing Architecture	
Figure 1.5 The use case of daily monitoring for provisioning timely healthc	
services with low latency	
Figure 1.6 The process of Smart allocation from fog to cloud environment	
Figure 1.7 Scope of the Research work	
Figure 3.1 Einthoven's Triangle	
Figure 3.2 ECG signal with noise	
Figure 3.3 Denoised ECG signal after applying Savitzky-Golay Filtering	
Figure 3.4 AD8232 Functional Block diagram	
Figure 3.5 Complete ECG Wave with intervals	43
Figure 3.6 ECG wave as discrete signal recorded with AD8232 and after ADC	
Arduino	
Figure 3.7 Final Output window showing ECG interval and its normality	
Figure 3.8 ECG signals from all five categories	
Figure 3.9 System architecture of ECG image classification using Deep Learn	
Approach	
Figure 3.10 Cloud computing and Fog Computing based Health Care System	
Figure 3.11 ECG Analyzing System interface on Cloud Computing	
Figure 3.12 ECG Analyzing system interface on Raspberry Pi as a Fog Comput	
Node	
Figure 3.13 SMS responses for the Fog Computing and the Cloud Computing	
Figure 3.14 Transmission Delays of Fog and Cloud Computing	
Figure 3.15 Computation delay of Fog and Cloud computing	
Figure 3.16 Response time of Fog and Cloud Computing	
Figure 3.17 Standard Deviation of different Parameters	
Figure 4.1 Raspberry Pi Cluster used in the system	
Figure 4.2 ECG wave with PQRSTU reference points and different intervals	
Figure 4.4 The output of diany system	
Figure 4.4 The output of dispy system	
Figure 4.5 Dispy System Analogy	70
Figure 5.1 ECG signal processing using two ECG waves in one sub job	
Figure 5.2 ECG signal processing using four ECG waves in one sub job	
Figure 5.3 ECG signal processing using eight ECG waves in one subjob	
Figure 5.4 ECG signal processing using ten ECG waves in one sub job	
Figure 5.5 ECG signal processing using response time criteria	
Figure 5.6 ECG signal processing using CPU usage criteria	
Figure 5.7 ECG signal processing using available main Memory criteria	
Figure 5.8 ECG signal processing using a number of Cores criteria	
Figure 5.9 ECG signal processing using OptiFog Algorithm	
Figure 5.10 ECG signal processing by dispy system	
Figure 5.11 ECG signal processing by OptiFog Algorithm	.98

Figure 5.12 Percentage of improvement in the given test case	98
Figure 5.13 Running Deca waves using OptiFog Algorithm	99
Figure 6.1 Multilevel Fog Nodes scenario with IoT and Cloud Servers	108
Figure 6.2 Security algorithm for H2, V2, and higher levels	117
Figure 6.3 RSA Public-Private Key-pair Generation time	119
Figure 6.4 Comparing conversion times of different devices for different	ent data
lengths	120
Figure 6.5 comparing time complexities of various algorithms	120
Figure 6.6 Comparing space complexities of different algorithms	121