

63

Chapter 4

Distributed Computing in Fog
Computing

IoT and Cloud Computing based health care applications suffer from slower

decision-making due to network delays, less availability of bandwidth,

transmission delays, processing delays, and data de-noising. To avoid this, Fog

Computing can be applied as a middle layer between the IoT and Cloud layers. Fog

Computing greatly reduces transmission delays, but Fog devices lag in computing

capabilities due to their limited processing power. This can be solved by deploying

multiple devices and synchronizing their computation to enable parallel execution.

In this chapter, a single Raspberry Pi is used as a Fog Node and multiple such

Raspberry Pis are deployed in the cluster form. The Dispy Python framework is

used to allow parallel processing. Scalability is easy to achieve with Dispy, and also

it provides different features like automated node discovery, job distribution,

processing function distribution, remote access, and enhanced security. The system

is proposed and implemented to test the hypothesis that it improves the real-time

computation in health care applications. The final results are compared with a

traditional processing system and it is found that the Raspberry PI cluster, and

Dispy can enhance the computation performance in Health Care.

4.1 Distributed Computing and Dispy

Distributed Systems are a group of independent computers that connect to offer

various services. They share and store data without physically sharing memory or

processor with other computers. These machines have a shared state, operate

concurrently and can fail independently without affecting the whole system’s

uptime. A distributed computer system comprises multiple software components

that run on multiple computers but act as a single machine. A distributed system

allows reduced computational time over massive datasets [93]. Distributed

systems are classified into two major categories: centralized (client-server) and

Chapter 4. Distributed Computing in Fog Computing

64

decentralized (peer to peer) system. To facilitate Distributed Computing, dispy is

a very good tool. The dispy tool is developed in python and it is available for

different needs and greed. The dispy tool [94], is available for different Distributed

Computing tasks.

4.1.1 Why dispy?

 To implement the Distributed Computing for Raspberry Pi cluster in Fog

Computing “dispy” is selected. Dispy is developed in python and python works very

well with Raspbian operating systems. The main problem faced in deployments of

Distributed Computing is that each slave node has to be configured for a particular

application context. If more slaves add-up then it needs more configuration. This

makes scalability in Distributed Computing a bit difficult, but in case of dispy only

master node has to be configured and on all slave nodes, only dispy should be

installed. No need to configure every slave. This makes a distributed system more

scalable if we use dispy. In Fog Computing, Distributed Computing is achieved by

using the cluster of Raspberry-Pi nodes.

4.2 Raspberry Pi and R-Pi cluster

Raspberry Pi was introduced by the Raspberry Pi Foundation and is a series of

small single-board computers [95]. Although they were intended to be used for

teaching the basics of computer science, now they have surpassed it. Today it can

be used for everything from Home Entertainment System to Cryptocurrency

Mining [96-97]. A Raspberry Pi cluster is a collection of Raspberry Pi, all running

as a single computer using parallel computing [98]. Raspberry Pi Clusters use an

architecture involving a Master node and Slave node, the master node is

responsible for giving instructions for the tasks that need to be performed [99-

100].

Chapter 4. Distributed Computing in Fog Computing

65

Figure 4.1 Raspberry Pi Cluster used in the system

Experiment and research conducted in the field of Cloud Computing have shown

that it is possible to run edge computing on these Raspberry Pi clusters [99, 101].

These clusters can have a variety of different applications from running as MQTT

Broker [100], Fog Computing framework for Wearable IoT Devices [102] to

teaching Distributed Computing [103]. The presence of multiple Raspberry Pi

nodes in the system improves the reliability of the system.

4.3 Computing Job description in dispy

 The ECG wave is made up of different intervals like PR, ST, QRS, and QT, shown

below. The real-time signal is detected and digitized using the methods specified in

so that it can be processed in the computers. After digitizing, different intervals are

found using the windowing algorithm [74]. After these intervals are calculated,

these are compared with standard chart, which allows us to decide whether the

given ECG signal is normal or abnormal in nature.

Chapter 4. Distributed Computing in Fog Computing

66

Figure 4.2 ECG wave with PQRSTU reference points and different intervals

Here, the ECG waveform R-R is considered as one wave. Datasets of 1000, 2000,

3000, 4000, and 5000 waves are passed on for processing. These data streams also

contain abnormal waves. The set of waves are processed until the last wave to find

the normality and abnormality. The total time is measured as “Job Starting time to

Job ending time” in milliseconds.

4.4 Implementing and Analyzing ECG waves in dispy

We have implemented the ECG analyzing system with Dispy, with the head node

dividing the data into multiple jobs. The jobs are given to the slave nodes one by

one. The Dispy system working flowchart is given below. The Dispy master node

will first find the available nodes and make the connection. While doing the setup

as a Dispy slave node, the encryption keys need to be given to ensure secure

communication. Once the Dispy clients and servers are ready, then the function to

analyze the ECG signal is to be given along with ECG waves. Dispy server node will

send the data and the function to the slave nodes to perform the analyzing task.

Chapter 4. Distributed Computing in Fog Computing

67

Figure 4.3 Dispy: working mechanism

4.4.1 Analysis of ECG Waves using Dispy API

The series of ECG waves are given to Dispy to process each wave in terms of its

normality and abnormality. The figure 4.4, shows the Dispy system output where

it indicates the total number of waves present, the nature of each wave detected as

normal or abnormal, number of nodes present, number of cores present in each

node, number of jobs processed by each node, data size sent and received, and time

is taken or the wall time to process the job.

Chapter 4. Distributed Computing in Fog Computing

68

Figure 4.4 The output of dispy system

4.4.2 Test Bed Configurations

To perform the ECG analytics in normal computing and Fog Computing scenarios,

a different set of systems are used. One of the systems is a cluster of four Ubuntu

machines called “Ubuntu Cluster” (dual boot) and the other set is a Raspberry Pi

cluster, consisting of 4 Raspberry Pis of Model 3 B+. The detailed hardware

configurations of these systems are given below in Table 6.

Table 6: Test Bed configuration

Parameters Ubuntu
System
Cluster

Raspberry Pi Cluster

Operating Systems Ubuntu Raspbian
Processor I3 –

Forth
Gene.

Broadcom BCM2837B0,
Cortex-A53 (ARMv8) 64-
bit SoC

RAM 4 GB 1 GB
Operating
Frequency

2.90
GHz

1.4 GHz

Number of Cores 4 4

Chapter 4. Distributed Computing in Fog Computing

69

4.4.3 Results

A set of ECG waves are given to the Head node in the cluster. Where it has divided

the ECG waves into individual waves and these waves are given to each and every

node to process it. The overall decision time is measured as computation time. In

Dispy it is called wall time, which is starting to end processing of each wave of a

particular set of 1000, 2000, 3000, 4000, and 5000. The measuring time in ms is

noted and presented below in Table 7.

 System Performance in terms of Graph is shown below. Here, the X-axis shows

the number of ECG waves and the Y-axis shows the time taken in milliseconds.

Table 7: Dispy System Experimental Results

No. of ECG
waves

Ubuntu system
cluster

Raspberry Pi
cluster

1000 448 155
2000 512 391
3000 945 757
4000 1378 1029
5000 1963 1407

To understand the computing nature of both the systems at different data sets, the

trend line is drawn. The trend line shows that as the number of waves is increasing

the Raspberry Pi performance is increasing with respect to the Ubuntu cluster.

Figure 4.5 Dispy System Analogy

Chapter 4. Distributed Computing in Fog Computing

70

4.5 Improving Pattern matching performance in Genome

sequences using Run Length Encoding in Distributed Raspberry Pi

Clustering Environment

A genome is the complete set of genetic information in an organism. The genome

essentially is an encoded representation of a human body. It is stored in long

molecules of DNA called chromosomes [104]. Chromosomes are made up of

genome sequences which are nothing but a list of nucleotides - A, C, G, T (T for DNA

genomes). In a nutshell, a human can be represented or encoded by its genome

sequence as a continuous stream of letters. Genome has found its great applications

in the medical areas like Genetic Testing, Tumour Profiling and Pharmacogenomics.

4.5.1 Problems with the traditional Genome Pattern matching

There are numerous researches and experiments on genomes and DNA. Due to

which the availability of genomic data of various creatures and living organisms,

are naturally very large in sizes and exhaustive pattern matching algorithms are

needed to process such large chunks of data. Not to forget the heavy processing and

analyses will require good processing power as well. Many algorithms, traditional

as well as new ones have been used for pattern matching and several programming

languages and their packages exist that can achieve precise string matching in the

biological patterns. However, they are bounded to exploring for specific and

predefined strings in a series or sequence.

4.5.2 Results and Implementation discussions

To prove the usefulness of Fog Computing and the impact of Distributed Computing

in Fog Computing, in the field of medical data processing, here the Genome

sequences are analyzed using Raspberry Pi. The implementation has been done in

two fashions. One is using a single node and the second one is using the distributed

approach of Raspberry Pi clustering.

Chapter 4. Distributed Computing in Fog Computing

71

All results are considered here in terms of time complexity and the percentage of

time improvement [114] is shown in table 8 w.r.t the time taken by pattern

matching on a single R-Pi node and on the R-Pi cluster.

Table 8: Complete Time Complexity measures and percentage of improvements

Result.
No

No. of Nodes RLE
Applied?

Time is
taken

In Seconds

Improvement
in %

w.r.t to
Result.No.1

 Master
Node

Slave
Node

1 1 - - No 267.209179 -
2 1 - - Yes 97.185996 63.62924494
3 3 1 2 No 50.422721 81.12986942
4 3 1 2 Yes 33.618577 87.41862943

The results found out are confirming the good effect of Run Length encoding and

Distributed Computing on the Genome pattern matching process. In this, only three

Raspberry Pi with Model 3 b+ configurations are used and the improvement is

noticeable. This shows that the Fog Node is suitable to process the medical field

data and for larger data to handle, one can use cluster of devices with Distributed

Computing.

Concluding Remark

Health care data is time receptive in nature, and it should be processed in real-time

to obtain the results as early as possible. Delay in such decision making affects the

QoS in health care. The real-time ECG analysis system using Cloud Computing

suffers from transmission delays. To overcome this, Fog Computing can be used to

reduce energy consumption in the total decision-making process and also saves

network bandwidth. Raspberry Pi is a good and efficient Fog Computing node.

However, a single Raspberry Pi does not have sufficient computational capacity, so

a Raspberry Pi cluster is used for distributed and parallel computing purposes. To

avoid issues in scalability in the Pi cluster, the Dispy tool is used to provide

encryption, remote node connectivity, processing sharing, and data distribution

with processing function. Finally, different sets of ECG waves are given to different

systems for processing the job. It is found that the Raspberry PI cluster is capable

of processing real-time ECG signals faster than the existing Ubuntu-based cluster

Chapter 4. Distributed Computing in Fog Computing

72

systems. Hence, the Raspberry Pi cluster can be used as a Fog Computing node to

boost the computational power and to provide real-time decision making in the Fog

Computing scenarios for varying number of ECG channels, each channel

representing a patient. Raspberry Pi cluster provides scalability, and dispy serves

secured and faster processing. This cluster can also be in other medical or real-time

processing systems like heavy computations of Genome sequencing, big data

analytics on Fog, or in real time road traffic monitoring systems.

