

Synopsis for the title

“QoS in Health Care through IoT and Fog Computing”

submitted by

Mr. Kanani Pratik Bavchand Bhavna [FOTE/936]

as a partial fulfillment for

Ph.D in Computer Science and Engineering

at

The Maharaja Sayajirao University of Baroda

Research Guide

Dr. Mamta Chandraprakash Padole

Associate Professor

Department of Computer Science and Engineering

Faculty of Technology and Engineering

The Maharaja Sayajirao University of Baroda

Vadodara

Table of Contents

List of Figures………………………………………………………...….....……i

List of Tables………………………………………………………...……..….....i

Index Pg

No.

Chapter 1:

Introduction……………………………………………..………………..…..

1.1 Overview of Fog

Computing…………………..……………………………….

1.2 Fog Computing in Health Care

domain………………………………………...

01

02

03

 1.3 Research

Outcomes……………………………………………………………..

04

Chapter 2: Fog computing as a smart Gateway in Health Care………………............

2.1 Literature survey………………………………………………………………

2.2 Problem statement……………………………………………………………..

2.3 Research gap………………………………………………………………......

2.4 Aim and Objectives……………………………………………………………

2.5 Proposed methodology and System Architecture...……………………….......

2.6 QoS Parameters………………………………………………………………..

2.7 Defining Different time stamps to measure QoS parameters………..………...

2.8 Experimental Results………………………………………………………….

2.8.1 Transmission Delay………………………………………………….

2.8.2 Computation Delay………………………………………………….

2.8.3 Response Time………………………………………………………

05

05

06

07

07

07

08

09

10

10

11

11

Chapter 3: OptiFog: Optimization of Heterogeneous Fog Computing for QoS in

Health Care…………………………………………..……………………..…………….

3.1 Introduction…………………………………………………………….……...

3.2 Aim and Objectives……………………………………………………………

3.3 Focus of the chapter…………………………………………………………...

3.4 Raspberry Pi and R-pi cluster…………………………………………………

3.5 Literature Review………………………………………………………...........

3.6 Continuous Load on cluster nodes…………………………………….............

3.7 Processing Job Description and logic………………………………………....

3.8 Executing ECG waves using a dispy manner………………………………..

3.9 System symbols, functions and performance indicators and their

implications……………………………………………………………………………….

3.10 OptiFog Algorithm…………………………………………………………..

3.10.1 OptiFog Algorithm and its insights………………………………..

3.10.2 The OptiFog Algorithm is as follows………………………………

3.11 OptiFog Algorithm Testing…………………………………………………..

3.13.1 Test case 1…………………………………………………………..

13

13

13

13

14

15

16

17

17

18

19

19

20

22

22

3.13.2 Test case 2…………………………………………………..............

3.13.3 Test case 3…………………………………………………..............

23

23

Chapter 4: Lightweight Multi-level authentication scheme for Multi-level IoT-Fog

Context…………………………………………………………………………………….

25

Chapter 5: Other optimizations and developments made in Health Care domain......

5.1 Different enhancements to existing systems…………………………………

5.1.1 ECG Image Classification using Deep Learning Approach…………

5.1.2 Deep Learning to Detect Skin Cancer using Google Colab…………

5.1.3 ECG Heartbeat Arrhythmia Classification Using Time-Series

Augmented Signals and Deep Learning Approach……………………......

5.1.4 Improving Pattern matching performance in Genome sequences

using Run Length Encoding in Distributed Raspberry Pi Clustering

Environment………………………………………………………………..

5.1.5 Exploring and Optimizing the Fog Computing in Different

Dimensions…………………………………………………………………

5.2 Different system developments to facilitate Health care domain……………

5.2.1 Recognizing Real Time ECG Anomalies Using Arduino, AD8232

and Java…………………………………………………………………………….

5.2.2 Real-time Location tracker for critical health patient using Arduino,

GPS Neo6m and GSM Sim800L in Health Care……………………..........

5.2.3 IoT based Eye Movement Guided Wheelchair driving control using

AD8232 ECG Sensor………………………………………………………

5.2.4 Analyzing ECG waves in Fog Computing Environment using

Raspberry Pi Cluster……………………………………………………….

27

27

27

27

28

28

29

29

29

30

30

30

Chapter 6: Conclusion…………………….…...………………………………………… 32

Research Paper Publication…………………………………………………………… 33

References………………………………………………………………………………. 35

List of Figures

Fig. 1 Fog Computing Architecture……………………………………………………… 02

Fig. 2 The use case of daily monitoring for provisioning timely healthcare services with

low

latency………………………………………………………………………………...

03

Fig. 3 Cloud computing and Fog Computing based Health Care System………………... 08

Fig. 4 Transmission Delays of Fog and Cloud Computing……………………………….. 10

Fig. 5 Computation delay of Fog and Cloud computing………………………………….. 11

Fig. 6 Response time of Fog and Cloud Computing…………………………………….... 11

Fig. 7 ECG wave processing using two ECG waves in one sub job……………………… 17

Fig. 8 ECG wave processing using OptiFog Algorithm………………………………….. 22

Fig. 9 ECG wave processing by dispy system…………………………………………..... 23

Fig. 10 ECG wave processing by OptiFog Algorithm……………………………………. 23

Fig. 11 Percentage of improvement in the given test case………………………………... 23

Fig. 12 Running Deca wave using OptiFog Algorithm…………………………………... 24

Fig. 13 Time and Space complexity of Lightweight security algorithm…..……………… 26

List of Tables

Table 1. Future challenges/improvements in literature review………………………….. 05

Table 2. Different Time stamp calculations……………………………………………. 09

Table 3. QoS parameters and their values……………………………………………… 10

Table 4. Hardware configurations of cluster nodes……………………………………… 16

Table 5. Number of nodes and nodes selection………………………………………… 16

Table 6. Standard ECG Intervals for a healthy adult with standard bpm………………… 17

Table 7. System symbols and description……………………………………………….. 18

Table 8. System functions and description………………………………………………. 19

Table 9. Speedup factors for 5000 ECG waves for 4 nodes and 4* Nodes system……... 22

i

1

Chapter 1: Introduction

 Health care is the maintenance or improvement of health via

the prevention, diagnosis, treatment, recovery, or cure of disease, illness, injury, and

other physical and mental impairments in people. While computer engineering enables the

health care domain to record, process, convert and analyze the health care data. Other

supporting technologies like IoT, Fog computing and Cloud computing can facilitate remote

monitoring, remote medical assistance, local processing and in future storages of medical data.

Internet of Things (IoT) is the network of objects or things which use hardware, software and

communication protocols to support exchange of data with other entities over this network. IoT

sensors are context sensitive but if rightly used then they are of great use in health care. In this

report the IoT technology is used to record Real time ECG signals, Myography signals and

GPS signals of the patient. The work is published in paper [1], [4] and [8] from the publication

list.

IoT sensors can be used to remotely monitor a patient’s health but these sensors usually

generate large amounts of data which they are unable to process. In order to overcome this the

data is sent over the cloud where the decision making takes place. But this transportation of

data between the sensor and the cloud waste the network bandwidth and this is because in most

health care cases the data is redundant and the transmission delays are also higher. Thus, the

integration of IoT and cloud are not useful for making real time decisions. The solution to this

problem is using the IoT along with Fog Computing. Fog Computing is the processing on the

go computing, where the computation node is kept near the data source. It can be a local

gateway or a device in the network having processing, storing and communication power. It is

found that no standard Fog architecture and Quality of Service (QoS) parameters are mentioned

to implement and measure the Health care services. By implementing real time ECG signal

analysis using Raspberry Pi and windowing algorithm, we have proved that the Fog node is

capable to do decision making in the health care domain. This work is published in paper [1].

Published paper [10] shows that the different QoS parameters and Health care architecture is

defined for the fog computing to support health care domain.

The above implementations and experiments show that the fog computing node is able to

process the data on real-time basis but it lags in terms of computation power which leads to

delays and inaccuracies which are very undesirable in the healthcare field. In this report

different health care signals like ECG signals, Skin cancer data and the Genome data are

considered and their prediction accuracy is improved. In the ECG signal processing, the

accuracy is improved for time based and image-based ECG signals using different

augmentation techniques. In the Genome sequence, pattern matching is improved in terms of

time by using different hardware and software techniques. Skin cancer data is also considered

which is non real time data and the improvement is achieved in terms of prediction accuracy

using machine learning techniques. The work is published in [2], [3], [5] and [7] paper.

To improve the computation power of the Fog nodes, different optimization techniques are

used. The first technique used is called Operating System scheduling. This work is published

in [6] paper. Further to boost the Fog node capability the distributed computing approach is

introduced in the fog computing. To support this technique the raspberry pi cluster is used with

dispy framework. And the results in [publication 9] confirm that the distributed computing in

fog computing is efficient enough to provide faster executions to the real time data for real time

decision making.

https://en.wikipedia.org/wiki/Health
https://en.wikipedia.org/wiki/Preventive_healthcare
https://en.wikipedia.org/wiki/Diagnosis
https://en.wikipedia.org/wiki/Therapy
https://en.wikipedia.org/wiki/Cure
https://en.wikipedia.org/wiki/Disease
https://en.wikipedia.org/wiki/Illness
https://en.wikipedia.org/wiki/Injury
https://en.wikipedia.org/wiki/Disability

2

Further to make optimal use of available hardware different parameters are considered like

number of cores, CPU usage, Main Memory and Response time of each device in the cluster.

For every parameter the execution time is monitored and their weightage in the computation is

determined. By using this weightage and worst-case scenario of algorithm analysis, the

OptiFog algorithm is designed to get the optimization in the fog computing domain. The

OptiFog algorithm is published in paper [11]. Different lightweight security algorithms and

their background need is also studied. And based on that a Multi-level lightweight fog security

algorithm is designed to give good security with better time and space complexity. In this report

the major focus is given on Fog Computing, defining Fog computing and QoS parameters for

Health care w.r.t Cloud. The other important milestone is OptiFog Algorithm and the Fog

routing work. Chapter 2, chapter 3 and chapter 4 are discussing the same respectively. The

scope of the above work is in the field of designing smart fog gateway, Optimizing fog node

and in efficient fog routing.

Research Flow

1.1 Overview of Fog Computing
 Fog Computing, popularly known as Edge computing is the novel paradigm/architecture that

provides limited computing, storing and network services at the end user devices at user’s edge.

Simple fog computing architecture is shown in figure 1.

Fig. 1 Fog Computing Architecture

3

The implanted fog computing extends the cloud computing paradigm to the edge of end users

and it is able to perform storage, processing and data forwarding. In the given figure the fog

node/server is at layer-2. Whatever data gets forwarded by end devices will be first received

by fog node. This node keeps on processing the data and is able to take actions and also it

forwards the filtrated data to the cloud for future use and analysis. It has characteristics like

1) Adjacent Physical Location: Fog devices are near the user end, and hence they can

process the user data with less delay and can be made custom in user’s need context.

They can use protocols of WLAN too.

2) Support for on-line analytics: Due to limited capability of processing and storing,

Fog devices are connected to cloud servers where they can have on demand real time

analytics of live data streams.

3) Service is provided by smart but not powerful devices: As the fog node has limited

storing and processing power, it cannot do big data analytics because of its limited

processing power and storage, but it can have real time decision making on certain

conditions, when it occurs.

4) Supports for various communication networks: when different sensors connect to

internet different protocols are involved. Some of the supported protocols are

Bluetooth, Zigbee, WLAN, WiFi, 2g/3G/4G, WiMax and so on.

5) Distributed computing: Fog nodes can communicate to other fogs. And cloud sees the

environment as a collection of different fogs, i.e., the whole computation needed by

user is available via distributed fogs.

1.2 Fog Computing in Healthcare domain

 In recent years, the dramatic growth of Internet of Things (IoT) linearly increases the

unprecedented volume and variety of stream data. IoT [1] is a dynamic and global network

infrastructure interconnecting objects with unique identities for diverse advanced application

services. Despite offering the advanced services, IoT is incapable in processing and storing the

massive amount of data due to its limited storage and processing capacity. Cloud computing

technology has unlimited capabilities regarding processing and storage resources, resolving the

inconvenience of IoT by providing the virtual resources in pay-as-you-go manner [2].

Although, the vast availability of cloud computing resources, services and applications, but

several kinds of such resources are not completely attained due to the latency concerns.

 Owing to the rapid increase in internet-connected smart devices and several service requests,

a heavy burden comes to the network bandwidth and degrades the Quality of Service (QoS).

Also, the high network latency between the smart devices and the cloud is infeasible for delay-

sensitive applications [3]. Fog computing [4] is the most promising paradigm that significantly

reduces the latency and provides the advantages of cloud computing by extending the cloud

resources to the network edge [5]. It offers distributed services and allows the knowledge

generation and data analytics of the streams generated by the smart IoT devices. The benefits

of fog computing are especially useful for pervasive healthcare monitoring applications [6].

The IoT plays a crucial role in constantly monitoring the physiological status of the hospitalized

patients without the need of actively engaging the caretaker [7]. Healthcare monitoring

applications [8] widely rely on the Wireless Body Area Networks (WBAN) which is the most

underlying technology in healthcare IoT. WBAN assists in ubiquitously acquiring the

physiological information involving Electrocardiography (ECG), Electromyography (EMG),

blood pressure, glucose level sensing, Blood Pressure monitoring, Oxygen sensing,

rehabilitation, medication and blood temperature in the efficient and unobtrusive way. To

effectively support the pervasive healthcare applications, the prior research work utilizes the

4

cloud computing technology for IoT devices [9]. The conventional fog computing methods

[10] present variety of solutions by focusing on the different application scenarios in mitigating

the service latency. However, these techniques are still in its infancy stage in attempting to

provide the services to pervasive healthcare computing in real-world. Thus, the proposed

approach focuses on introducing a smart fog gateway by applying the smart partitioning and

decision-making using the linear decision tree in fog environment and optimally utilizing the

cloud resources for the healthcare IoT requests. It intends to reduce the response latency and

increase the resource utilization, which is defined in SLAs while providing the service to

healthcare applications. Fog Computing Architecture [17] in health care domain is as follows:

Fig. 2 The use case of daily monitoring for provisioning timely healthcare services with low

latency

1.3 Research Outcomes

 To extend the cloud computing to the fog computing to support latency-sensitive

healthcare IoT applications

 To design the smart fog gateway with smart allocation to satisfy the Service Level

Agreements (SLAs) in terms of ensuring the optimal response time and resource

utilization

 To develop an algorithm to dynamically take a decision regarding IoT stream health

care data and decision-making in fog and cloud

 Interactive communication by fog layer even if connectivity to the cloud layer is not

present

 Low latency health care application for delay-sensitive real-time applications

 To develop an algorithm, to dynamically decide node capability, that enables to identify

the node that can be assigned the appropriate task for health care applications in Fog

Computing

 Improved QoS in terms of prediction accuracy and Computing Optimization in Fog

Computing

 Introduced Distributed computed in Fog Computing

 Efficient routing algorithm in vehicular fog computing infrastructure

5

Chapter 2: Fog computing as a smart Gateway in Health Care

 When IoT, Fog and Cloud Computing are combined, the resultant system’s performance is

far better than the performance of the individual systems. Hence, the combination results in a

very efficient Health Care system. Fog and Cloud Computing have their dimensions that not

only support each other but also explore many new application domains. In this paper, the real-

time ECG based Health Care system is considered and implemented with Cloud and Fog

Computing. Different QoS parameters like memory consumption, transmission delays,

computation delays, network delays, CO2 emission, data transferred and response time are

measured, analyzed and improved to make the system more efficient. And based on the Fog

computing characteristics and capabilities, the Raspberry Pi 3 B+ model is configured as a

Health Care serving gateway by using different installation and configuration steps. The

proposed system is subjected to multiple ECG streams for varying numbers of patients to find

its limitations. Every QoS parameter is explored in detail for decision-making time. In the end,

the Fog computing based proposed system is concluded for its pros and cons and future aspects

of the Fog node are discussed to make the system better.

2.1 Literature survey

Table 1 shows the reviewed references in tabular form. It highlights the goal of research,

technology used and the current challenges/future improvements.

Table 1. Future challenges/improvements in literature review

Reference Work goal and

technology used

Challenge/improvement in terms of

[1] Use of IoT in Health

care

QoS in Traffic

[2] Integrating IoT and

Cloud, using different

cloud computing

services

Pervasive Health care system generates

 Vast amount of data

 Needs Intelligence in IoT

[3] Using IoT and

developing wearable

Body area network

 Context aware cloud architecture

 Data privacy and visualization

[4] Studies advantages of

Fog computing in IoT

Resource management in Fog node

[5] Integrating edge and

Cloud computing

Needs application development strategies that is where to deploy

application instance, failure recovery, edge node security and

distributed bandwidth management

[6] Duties of Fog node in

Health care
 Local storing and computing implementation in fog

 Use of fog in Body area network (BAN)

[7] IoT Health care Standardization

 IoT health care platforms

 Cost

 Scalability

 QoS

 Data protection

[8] IoT in Health care Integration of runtime sensing information into health care records

[9] IoT and Cloud

computing in pervasive

Health care

Realization of Health care through mobile devices has challenges

like

 Storage and management of data

 Security and privacy of data

 Ubiquitous access

6

[10] Survey and analysis of

Fog Computing
 Reliability

 Networking

 Capacity

 Security

 Application aware provisioning

[11] Low latency support

communication in cloud

computing

 Enable communication through NAT, firewalls

 Finding and solving connectivity issues automatically

[12] IoT in Health care Security aspect

 PAMIoT with more devices (scalability)

[13] IoT and Cloud Resource allocation based on application context

 QoS model in IoT and Cloud environment

[14] An overview of Fog

computing and IoT
 Fog user interface

 Fog interface designing to manage IoT data and Cloud

[15] Fog micro datacenter

and data filtering
 Smart Fog gateway

 Extend model based on cloud service customers

[16] IoT and Ubiquitous

computing

Impact of this model on health care domain applications

[17] IoT and Fog Computing

In Health care

Upgrading fog nodes in terms of its capabilities to provide other

possible services

[18] Fog computing and IoT Providing QoS in Fog Computing with more

heterogeneous services

 Device mobility factor

[19] Cloud of things Effect on QoS after trimming and pre-processing the data for

heterogeneous applications

[20] IoT and Fog computing

in Health care
 Large number of hardware components are used

 Limitations are not tested

 In ECG wave analysis only P and T waves are used

[21] IoT and Local

processing

Not tried and tested on real time data to make decisions in health

care systems

[22] IoT and Fog computing Simulation based

 SLA-aware flow placements and resource scheduling

[23] IoT, Cloud computing

and Fog computing
 Can be considered for health care applications

 Simulation based

[24] Fog computing and IoT Complex hardware

 Cloud is not involved for future data reference

 Multiple protocols are used for communications

 Decision time in not compared with other

systems/benchmarks

[25] Fog computing in health

care
 Only idea is discussed

 Design and develop real time Fog based medical data

analysis

[26] Providing edge

intelligence in Fog

computing

 Mobile phones are used as edge devices

 Used multiple detectors

 Results are not compared with other systems

2.2 Problem statement

Nowadays, IoT-driven healthcare applications play a vital role in the distributed

environment. IoT constantly generates the massive amount of stream data, which leads the

complexity in handling this huge amount of data streams in the IoT devices itself. Since, the

IoT devices are resource-constrained devices with the limited storage and processing

capability, especially network resources. Moreover, the integrated cloud and IoT technology

also impose several challenges for the end-users, network, and the terminals associated with

the problem of high congestion, fast battery consumption, and low scalability. Since, long

distance between the smart IoT devices and the cloud server creates the gap in providing the

7

response, which leads to latency issue. Accordingly, the latency issue creates a greater negative

impact on the healthcare applications as healthcare applications are the delay-sensitive

applications in real-world. Even though fog computing paradigm provides the opportunities to

the end-users, Cloud-Fog interface encompasses several challenges such as context-based

resource allocation, workload imbalance, and service overhead. It consumes more time to

identify the available VMs from the distributed fog environment to centralized cloud

environment, which degrades the performance the service when dealing with the delay-

sensitive healthcare applications. Hence, there is an essential need of satisfying QoS, ensuring

quick response time and better resource utilization. Moreover, Fog computing does not have

the ability to perform the compute-intensive process, to provide the massive storage, and to

establish the wide area connectivity. Also, dividing the computing of the application in the fog

and sending the compute-intensive process to the centralized cloud is arduous task due to the

occurrence of high network latency. Thus, this work targets on providing the smart fog gateway

for delay-sensitive healthcare applications by smart partitioning and allocation. i.e, fog node

receives continuous stream of the healthcare data, first it needs to break the data stream into

the chunks of data. Further these data chunks are processed by Fog in order to take actions like

whether to forward this data to cloud or to process the data chunk by decision tree which will

take an action on real-time basis.

2.3 Research gap

Most of the formerly presented fog computing research work presents the different

architecture and framework for latency reduction in healthcare IoT systems. However, these

methods are not able to effectively utilize the fog as well as cloud environments with the

knowledge of application context and the resource availability. The resource management in

the distributed fog environment is the challenging task. Nonetheless, the prior fog gateway

architectures fail in manipulating the task orchestration and partitioning the IoT data streams

from the massive amount of stream data. Moreover, it lacks in optimally allocating the

application of the edge devices and storing the context-defined fog computing data in the

transient fog storage.

2.4 Aim and Objectives

• To extend the cloud computing to the fog computing to support latency-sensitive

healthcare IoT applications

• To design the smart fog gateway with smart allocation to satisfy the QoS in terms of

ensuring the optimal response time and resource utilization

• To develop an algorithm to dynamically take a decision regarding stream and process

execution of IoT application in fog and cloud.

2.5 Proposed methodology and system architecture

 In the proposed methodology, a real-time health care system is taken into consideration. The

system consists of a Data source, Fog Node, Gateway, Decision making, and messaging

service. The real-time ECG signal is acquired from the patient [30]. These signals are recorded

and sent to Cloud as well as the Fog Computing node. The windowing algorithm [31] is used

to find the reference points PQRST in the ECG Signal. Based on these points the ECG time

intervals are found out. Later decision making is done to find whether the given ECG signal is

normal or abnormal.

 In the proposed architecture shown in figure 3, the real-time ECG signals are sent to the

Cloud and Fog node simultaneously. The task of performing analysis is carried out on both the

8

systems on the same signal. The generated results are then compared in terms of different

parameters like computation time, transmission time, CO2 generated and the total response

time.

Fig. 3 Cloud computing and Fog Computing based Health Care System

Whenever an abnormality in the signal is found, at that very instant a text message consisting

of the timestamp, signal interval values, and the patient data, is sent to the doctor and based on

the timestamp the response efficiency is calculated.

2.6 QoS Parameters

 Different QoS parameters like memory [32-33], Transmission delay, Computation delay,

CO2 emission measurement [34-37], data transferred and Response time are as follows.

2.6.1) Memory: The amount of memory utilized by a programming module can be calculated

using Java methods. One can use the Runtime class functions for finding the memory utilized.

long usedMemory = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory();

2.6.2) Transmission Delay: Transmission delay is the total time taken by the network to send

the data from one point (source) to the second point (Destination).

2.6.3) Computation Delay: Computation Delay is the total time taken for the computation. In

the proposed system it is the time measure after the entire signal is received in the system until

it is processed and the output as normal or abnormal is produced. Based on the computation

time the Speed up in the Fog Computing can be calculated by

〖𝑆𝑝𝑒𝑒𝑑𝑢𝑝〗_𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 〖𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒〗_𝑐𝑙𝑜𝑢𝑑/〖𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒〗_𝑓𝑜𝑔

2.6.4) CO2 Measurement: Fog Computing uses far fewer resources than the Cloud Computing

infrastructures which reduce the CO2 generation. The amount of CO2 that can be saved from

Fog Computing is further explained below. In 2011, According to Cisco 1.8 ZB of data was

sent to the Cloud data centers. So, if 5.12 kWh of energy is required to send 1 GB data across

then the total energy required to send 1.8 trillion GB of data is 9.216 trillion kWh of energy.

To generate this much amount of energy, a total of 5.76 trillion kg of CO2 is emitted. Using the

above inferences, to transfer 1 Byte of data 2.98 x 10-3mgm of CO2 is emitted.

9

Now, if one can adapt to Fog Computing and assume that the data only travels to the data center

only for storage purposes, then one reduces the CO2 emission by 50%, and the CO2 emission

can be potentially reduced by 2.88 billion metric tons. That is almost 34 times more savings

when compared to Cloud Computing. The amount of CO2 can also be found out by finding the

power used by the devices and relating CO2 with power.

𝑃𝑜𝑤𝑒𝑟𝑠𝑡𝑎𝑡𝑖𝑐 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑠𝑡𝑎𝑡𝑖𝑐 ∗ 𝑉𝑜𝑙𝑡𝑎𝑔𝑒

𝑃𝑜𝑤𝑒𝑟𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =
1

2
∗ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑖𝑣𝑒 𝑙𝑜𝑎𝑑 ∗ 𝑉𝑜𝑙𝑡𝑎𝑔𝑒2 ∗ 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑠𝑤𝑖𝑡𝑐ℎ𝑒𝑑

2.6.5) Data Transferred: The data transferred is measured in bytes. Here, the ECG signals are

sent to the Cloud and the Fog node. The network distance is measured in terms of the number

of Hops. Usually, the Fog Computing node is at least 2 to 3 hops away from the data source.

2.6.6) Response Time: For the proposed system architecture, the Response time considered is

the overall response time of the ECG signal processing unit. Here it shows the total time span

starting from the ECG signal generation until the final response is generated and given to the

doctor. It includes the addition of other delay times like Processing Delay, Queuing Delay,

Transmission Delay, and the Propagation Delay.

𝑑𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑑𝑝𝑟𝑜𝑐 + 𝑑𝑞𝑢𝑒𝑢𝑒 + 𝑑𝑡𝑟𝑎𝑛𝑠 + 𝑑𝑝𝑟𝑜𝑝

For the current system, the timestamp value of the Java programming language counts as the

current system time in milliseconds which is noted by using the java method

System.currentTimeMillis(). Here, the final system improvement of the Fog computing is

shown by the difference of Response time taken by both the systems.

2.7 Defining different timestamps to measure the QoS

In this system, different parameters are defined to measure the QoS parameters, and arithmetic

relations among these parameters are used to calculate different delays. The timestamp

Parameters with their denotations are as follows.

Table 2. Different Time stamp calculations

Different Timestamp instants QoS Parameters

Ŧgen = ECG signal generation time

Ŧrf = Time at which ECG signal is reaching the Fog

Node

Ŧpf = Time at which ECG signal is processed at Fog

Node

Ŧrc = Time at which ECG signal reaches the Cloud

Computing

Ŧpc = Time at which ECG signal is processed by the

Cloud Computing

Overall Response Time improved by Fog = Ŧpc – Ŧpf

Transmission Delay (Fog) = Ŧrf - Ŧgen

Transmission Delay (Cloud) = Ŧrc - Ŧgen

Fog Computation Time = Ŧpf - Ŧrf

Cloud Computation Time = Ŧpc - Ŧrc

End to end Data Transferred = Data bytes x no. of Hops

CO2 generated = Data Transferred x emitted CO2/Byte

10

2.8 Experimental Results

The web interface is developed to understand the ECG signal processing and its analysis in

more detail. The same web interface is run on both Cloud and the Fog Computing node. The

interface shows the “Patient Name”, a red color label if signal Abnormality exists, the “.txt”

file name where the ECG signals are stored for processing, different QoS parameters, ECG

waveform, patient details, and different intervals for each ECG wave along with their

abnormality. If the signal is found abnormal then the system will send SMS to the Health Care

supporting staff.

Table 3. QoS parameters and their values

Parameters Cloud Computing Fog Computing Improvement

Transmission Delay (ms) 7677 117 7560

Computational Delay (ms) 55 670 -615

Data Transferred (bytes) 35982 11994 23888

CO2 Emitted (mgm) 107.22 35.74 71.48

Response Time in ms

(Time Format in Java)
1547121433052 1547121426107 6945

The Fog and Cloud computing system is first subjected only for 1 patient, and all resultant

parameters are measured and shown in Table 3. The system shows that Fog computing

surpasses overall response time performance than Cloud computing and performs better in

terms of Response time, data transferred and CO2 generated. But Fog computing is hanging

back in terms of computation power. Cloud computing takes only 55 ms to computer the given

job while the Fog processor takes 670 ms. System is tested against by varying the number of

patients to study the system behavior in depth. Each and every parameter value is taken and

shown as an average value for n patients to discuss further.

2.8.1) Transmission Delay: Transmission Delay depends on many factors like the number of

hops between the source and the destination, available network bandwidth, layer conversion,

VPN set up, wired-wireless configurations, congestions, tunneling, and the number of users,

etc. The proposed system is tested for a different number of patients from 1-5. And the average

transmission time is shown in figure 4.

Fig. 4 Transmission Delays of Fog and Cloud Computing

11

Figure 4 makes it clear that the transmission delay in terms of Cloud and Fog Computing

remains almost the same for the same source and destination for a different number of patients.

And it is also evident that the transmission delay in Cloud computing is very much higher than

the Fog computing.

2.8.2) Computation Delay: Computing power depends on the device capability in terms of its

hardware configuration. It depends on cache memory, processor, operating frequency,

scheduling algorithm, communication bus, memory and number of cores. The current Fog

device is configured to read and analyze more real-time ECG waves simultaneously on its

different ports. By varying the number of patients its average computational delay in fog node

is measured and shown in figure 5.

Fig. 5 Computation delay of Fog and Cloud computing

The computation delay is almost identical in terms of Cloud computing but it varies a lot in the

case of Fog computing. Fog computing shows the polynomial growth of the order of 3˚. The

computational delay also depends on how the system is made i.e. the GUI computation,

background computation, the refresh rate and the number of parallel tasks, etc. For four patients

the computational delays are 4523, 4662, 4487 and 4593 ms respectively, which comes out as

4567 as an average value shown in figure 5. So giving more load on the Fog system is not

suitable for the time-sensitive decision-making systems.

2.8.3) Response Time: The Response time is the overall performance time of the system. It

shows the time difference between the generation of the ECG signal and the generation of

response or decision in terms of normality and abnormality. Here, the average response time is

found by varying the number of patients as shown in figure 6.

Fig. 6 Response time of Fog and Cloud Computing

12

In the proposed system, the Fog node serves early responses than the cloud architecture, but

only when the number of users is lesser than four. It responds very early if the number of users

is less. While in case of Cloud computing the Response time is almost equal. If the number of

users is five or more than that then the proposed Fog computing architecture will underperform

than the cloud. Hence it is not suggested for more number of patients in real-time health care

analytics.

 Fog computing gives a better response when the number of patients is less and it is observed

that the Fog computing response time is directly proportional to the number of patients. After

a particular threshold value of the number of patients, fog computing will not perform better

than Cloud computing.

13

Chapter 3:

OptiFog: Optimization of Heterogeneous Fog Computing for QoS

in Health Care

3.1 Introduction

A patient’s life can be saved if it is possible to make quicker decisions based on faster

processing of real-time health care data, such as ECG processing. To achieve faster decision

making, contemporary health care applications use cloud computing for such data. When cloud

computing is used, data transmission deferrals may cause delays in the decision-making

process. To overcome this, Fog Computing is used. Fog computing saves energy, bandwidth

and prevents transmission latencies but, lacks in computing power as compared to Cloud

Computing. To enhance the computing power of the Fog node, a Cluster of Raspberry Pi having

heterogeneous configurations can be used. In Health Care applications the Fog Computing

performance can be assessed by measuring the time elapsed between the generation of the

health care data and decision-making. In this paper, ECG signal analysis is taken as a

processing job in Fog Computing. Dispy is used to facilitate the scalability and parallel data

processing on a Cluster of Raspberry Pi used for Fog Computing, to enable faster decision

making. Further, the performance of the Raspberry Pi cluster-systems using dispy are analyzed

and optimized step by step based on different parameters. The first parameter is data

transmission time which is improvised by minimizing network overheads. Other optimization

parameters like CPU usage, number of cores, response time and available memory space, these

parameters are considered and varied, to assess the performance of Heterogeneous Raspberry

Pi cluster. Based on the results obtained, a novel optimization approach “OptiFog” is proposed

to achieve faster computation in worst-case scenarios by varying and assigning jobs to the

nodes to measure performance parameters in Distributed Fog Computing. “OptiFog” assures

a minimum 10% improvement in the performance of the Fog Computing environment.

3.2 Aim and Objectives

 To extend the distributed computing in the fog computing to support latency-sensitive

healthcare IoT applications

 To design the smart fog computing cluster with smart job allocation to satisfy the SLAs

in terms of ensuring the optimal response time and resource utilization

 To develop an algorithm, to dynamically decide node health to assign the appropriate

task for health care applications in fog computing

 To develop an optimized performance model in the health care domain to serve the

community

3.3 Focus of the chapter

 Considering a Low latency health care application for delay-sensitive real-time

applications

 Analyzing dispy performance in fog-distributed computing

 Analyzing and understanding other processing factors and techniques to get the best

out of it

 Explaining different performing parameters and their impact on the computation

 Developing the algorithm best suited for health care applications and Raspberry pi

cluster in Fog computing

14

3.4 Literature Review

 The literature review studied is targeting the systems which have used or optimized system

related to Distributed computing in terms of performance. It also focuses on the usage and

improvements in the system due to memory, response time, CPU usage and the number of

cores. Later it is aiming at the work related to fog computing in context to performance

improvement.

Helen Karatza et al. [52] have addressed the issues faced while scheduling parallel jobs on a

cluster of distributed processors. Two types of routing schemes are considered. Also, 3 types

of scheduling techniques are considered. The objective of this paper is to analyze the

performance of these task scheduling algorithms in each case of routing. Various other system

parameters that need to be considered for job submission and task scheduling are also studied

and tabulated in this paper. This paper analyses the feasibility of each scheduling algorithm in

each routing scenario and the impact of the system parameters in task scheduling. Simulation

is used to analyze the performance of the algorithms in different system load conditions. By

analyzing the simulation we can understand the impact of the scheduling policies on the system

performance.

Abdou Guermouche et al. [53] have proposed a system that aims at improving the working of

a parallel multifrontal solver, MUMPS. This scheduling approach is memory-based. Memory

constraints are used to choose a processor’s slaves and/or associates. Slaves are chosen

according to their memory availability. It aims at reducing the used stack size at run time. Li

Xiao et al [54] have proposed a paper that tries to enhance the effective usage of global

memory. Job distribution strategies are also built accordingly. When a node has insufficient

memory to accept jobs, the extra load is then migrated to other associates with sufficient

memory availability. Unbalanced memory allocations for jobs cause page faults, so the motive

is to minimize the same thereby improving efficiency. The load sharing policy proposed

improves the performance of memory-bound jobs. Yuyan Sun et al. [55] have proposed a paper

in which they describe distributed systems. In distributed systems, it is essential to have a fair

load-sharing policy to ensure that the computational capacity is completely utilized. The load

sharing policy has a major impact on performance. The system memory has a major role in

system performance. Therefore available memory becomes the base of the load sharing

systems. In memory-bound jobs, memory-based load sharing system has higher performance.

The developed algorithm shows better performance than FCFS and Round Robin algorithm in

load sharing systems. The memory-based load sharing systems are more adaptive in terms of

performance and they are sensitive towards the memory variance. Kizhakkethil et al. [56]

present a memory-based hybrid Dragonfly algorithm for optimization.

Nawwaf Kharma et al. [57] have proposed H2GS which is a two-phase scheduling algorithm.

It works on distributed systems, while the main focus is on heterogeneous systems. A highly

efficient schedule is generated using a heuristic list-based algorithm that makes up phase one.

In phase two shorter schedules are evolved. Tasks to be scheduled are given priorities. The

ready task with the highest priority is selected for scheduling. The next phase is where the

processor is selected. Here a task is selected and submitted to the processor to minimize the

time of execution. In the paper presented by Haluk Topcuoglu et al. [58], an algorithm for

scheduling is implemented on processors whose numbers are predefined. The motive is to meet

efficient scheduling and enhanced performance simultaneously. The name of the algorithm is

Heterogeneous Earliest Finish Time (HEFT). At each step, the maximum upward rank value is

chosen and assigned to a processor. Based on an insertion-based approach, the earliest

completion time is minimized. HEFT algorithm is robust and performs well over a wide range

of graph structures.

15

Bao Liu et al. [59] have presented several scheduling/co-scheduling techniques employed in

distributed systems. Predictive scheduling and Proportional-sharing scheduling are the types

of local scheduling introduced here. Predictive scheduling provides adaptivity, intelligence,

and proactivity to adopt new architectures and changes in the environment automatically. It

learns new architectures, algorithms, and methods that are embedded in the system. The

allocator aggregates previous inputs, in the form of a vector of performance information (CPU

usage), into sets. Each set corresponds to a scheduling decision. Sets are split or merged, to

keep a limited memory demand, by the allocator. Marjan Khosravi Talebi et al. [60] have

presented an algorithm that is used for scheduling in the cloud computing environment. In this

algorithm, parameters like processor status are used to obtain the node on which the job should

be scheduled. The goal is to obtain an efficient scheduling method that minimizes the overall

processing time of all the loads by distributing the loads amongst all the available processors.

The processor to which the current job has to be assigned is decided by a formula that takes

into account the history of scheduling along with the processing power and link time.

 Alfredo Goldman et al. [61] have presented a review article about the different scheduling

algorithms used in distributed computing in cloud computing. The prominent difference

between distributed computing and cloud-based computing is the incorporation of virtualized

systems. Virtual Machine (VM) allocation is performed to strengthen the server. Here, the

scheduler pool is denominated as the software being considered for scheduling. Hardware

requirements (number of cores in the system and their usage statistics, etc.) are used by the

scheduler for scheduling. Zafeirios Papazachos et al. [62] have studied various gang scheduling

algorithms and analyzed their efficiency for clusters consisting of multi-core systems. Gangs

are scheduled in multi-core cluster systems using the suggested migration structure. An

evaluation model provides results on the performance of the system. In gang scheduling,

fragmentation is caused when the size of the gangs prevents them from fitting in idle cores.

Flexible and adjustable schedules are made by dynamically migrating parallel jobs. Migrations

are given importance as it satisfies the requirement of load balancing.

 Salim Bitam et al. [63] have focused to develop a job scheduling task for mobile users in

Fog computing. They have used the Bees Swarm algorithm with CPU execution time and the

total amount of memory. One of the important aspects is to save the network bandwidth in

communication, Frank et al. [64] have suggested to compress the raw data and resend it, and

decompress it for processing on the receiver side. But, this compression and decompression

save the network bandwidth but increases response time in health care which is very critical.

3.5 Understanding the Working Environment

 To implement the distributed computing for Raspberry Pi cluster in fog computing “dispy”

is selected. Dispy is developed in python and python works very well with Raspbian operating

systems. The main problem faced in deployments of distributed computing is that each slave

node has to be configured for a particular application context. If more slaves add-up then it

needs more configuration. This makes scalability in distributed computing a bit difficult, but

in case of dispy only master node has to be configured and on all slave nodes, only dispy should

be installed. No need to configure every slave. This makes a distributed system more scalable

if we use dispy.

To perform the experimentation different hardware and software configurations are chosen.

Here, we will understand the need for different configurations with their specifications. Each

node in the system is preloaded by some computation and the processing job with its details

are discussed here.

16

3.5.1 The need for heterogeneous configuration

 In this system, two setups are used. In both the setups we are varying the number of nodes

in the cluster from 1 to 4. This is to understand the effect of computation-distribution by

techniques like memory, response time, CPU usage and the number of cores. And we have

taken two types of nodes in the system and maximum nodes are four in the cluster. In one setup

all 4 nodes are homogeneous in terms of its hardware. But, in another setup three homogeneous

and one heterogeneous node is taken. This is to see the effect of processing, load distribution,

overall performance effect and adaptiveness of the algorithm in a cluster, in different

configurations and parameters.

3.5.2 Hardware Configurations of the cluster nodes

For the projected system, Raspberry Pi 3 model b+ [67] and Raspberry Pi 4 [68] models are

used. The hardware configurations are as follows.

Table 4. Hardware configurations of cluster nodes

Hardware Module Raspberry Pi 3 Model b+ Raspberry Pi 4

Processor Broadcom BCM2837B0, Quad-core

Cortex-A53 (ARMv8) 64-bit SoC

Broadcom 2711, Quad-core Cortex-A72

64-bit SoC

Operating

Frequency

1.4 GHz 1.5 GHz

Bluetooth 4.2 5.0

Wi-Fi 2.4 GHZ / 5.0 GHZ IEEE

802.11.b/g/n/ac/wireless LAN

2.4 GHZ / 5.0 GHZ IEEE

802.11.b/g/n/ac/wireless LAN

Memory 1GB LPDDR2 SDRAM 4GB LPDDR4 SDRAM

SD Card Support Micro SD card Micro SD card

Operating voltage

and current

DC 5V/2.5A DC DC 5V/3A

The Raspberry Pi 4 node is having a higher hardware configuration than the Raspberry Pi 3 b+

model. The Pi 4 node is higher in terms of processing, communication, and memory. Purposely

the higher node is introduced in the system so that the system behavior can be studied over the

other parameters and a good algorithm can be designed accordingly. And in all varying nodes,

the dispy server node is always Raspberry Pi 3 b+. The details are given below in table 5.

Table 5. Number of nodes and nodes selection

Experimental Configuration Number of Raspberry Pi 3 Number of Raspberry Pi 4

1 node 1 -

2 nodes 2 -

3 nodes 3 -

4 nodes 4 -

4* nodes 3 1

3.6 Continuous Load on cluster nodes

 To design the best suitable algorithm to process health care data efficiently in the Fog

clustering environment. All cluster nodes are kept busy in some or the other computation work

apart from health care data processing. This computation keeps cluster node occupied till a

certain level of CPU usage and with that, the node is allowed to perform the health care data

processing task. To create the system load, the "stress" tool is used in the Raspbian operating

system environment. The “Stress” is a tool [69] used to test system performances when they

are loaded. System admin uses this tool to see the performance of I/O syncs, VM status, cache

thrashing, CPU usage, driver performance, and process creation and termination. This tool can

generate different sorts of load on the system as specified in the option field. And it can

17

continue generating that much stress on the system till the said time ends. Here, the following

command is used to generate the CPU load for the needed time.

The “sudo stress –cpu 1 –timeout 20000” command which keeps CPU busy for nearly 25%

for 20000 seconds, till we run and test all algorithms in the system.

3.7 Processing Job Description and logic
 ECG is a periodic wave [70], it repeats its cycles after a certain interval of time. It has P-Q-

R-S-T-U points as their reference points representing respective peaks. Now the important part

is to get PR, QRS and QT intervals out of these waves for each and every wave.

Table 6. Standard ECG Intervals for a healthy adult with standard bpm

Intervals Normal Value Normal Variation

QT Intervals 400 ms ±40ms

QRS Interval 100ms ±20ms

PR Interval 160 ms ±40ms

And based on the given table, one can find the time intervals in milliseconds and by comparing

it with table 6 [71-74] we can find whether ECG waves are normal or abnormal. The normal

beats per minute (bpm) is 60 to 100 bpm. Further, the windowing algorithm [75] is used to

detect different intervals. R peaks are prominent peaks in the ECG waves, and here they are

the highest values in the cycle. After detecting different intervals and comparing it with table

7, the wave is normal or abnormal is discovered.

 3.8 Executing ECG waves using a dispy manner

 The series of ECG waves are divided into a set of two waves to find the ECG intervals. From

these ECG intervals, the prediction for the wave is normal or abnormal is made. Here, each job

given by master dispy node to the slaves containing two ECG waves and the process continues

for a different number of waves. The time taken by different nodes for a different number of

waves is as shown below in figure 7.

Fig. 7 ECG wave processing using two ECG waves in one sub job

18

 For the system set up mentioned used to get figure 7, the dispy master node have to do so

many iterations to complete the job. So to reduce the number of iterations varying number of

waves are tried every time in the dispy job. And obtained results are taking lesser time than the

current two waves in the job. The Tetra, Octa and Deca waves are tried. The performance of

octa is higher than double and tetra waves. But the deca waves are not performing better than

the octa waves. Hence, octa wave is taken as a reference for further improvement.

3.9 System symbols, functions and performance indicators and their

implications

The different functions, terms, and symbols defined in the proposed system are listed below.

A. System parameters

Table 7. System symbols and description

Symbol Description

J Complete available job at the master node

Ji Sub job of J, Ji⊆ {J} : sub job with i ECG waves

M Master Node

S Slave Node

Si ith Slave Node

n Number of available slave nodes in the dispy system

Xi Xth factor for ith slave node

s Sub job in sending context

r Sub job in receiving context

Ts Sending time of a particular sub-job on the master node

Tr Receiving time of a particular sub-job on the master node

Tis Sub job sending time to ith node from master node

Tir Sub job receiving time of ith node on the master node

Tijk T is timestamp value, where i: is slave node number, j: is the sub-job number, k ϵ

{s,r}

N Total number of sub-jobs

Jci Result of completed sub-job by ith node

SelectNodei ith node is selected for the further set of sub-job processing

RT Response time

Ƞ Ƞ ϵ {normal, abnormal}, i.e., the characteristic of ECG wave

CU CPU usage

MU Memory usage

NC Number of cores in the cluster node

Ɐ For all

RTo sum of all RTi , iⱯ {1,2,…n}

MUo sum of all MUi , iⱯ {1,2,…n}

Oi string_object having values timestamp, MUi, CUi, and NCi

Oijr i: is slave number, j: is the sub-job number and r: is receiving context

Or Returning object by ith slave

₽ Priority factor

Ͼ Capacity factor

Ƚ Time factor

µ Memory factor

ψ Impact factor

𝜶 Number of jobs in one go, where each job has set of eight ECG waves

𝜶c Result of completed 𝜶 jobs

J𝜶 Sub jobs with 𝜶 number of jobs

* Multiplication

ms Milliseconds

PRT Performance time taken as Response time

PCU Performance time taken by CPU usage technique

19

PMU Performance time taken by memory usage technique

PNU Performance time taken by a number of cores technique

POptiFog Performance time taken by OptiFog algorithm

slave_id Number representing a slave

job_id Number representing a sub job

B. System Functions

Table 8. System functions and description

Functions Description

timestamp sendTask(sub job, slave_id); sends sub-job data to a particular slave bearing the mentioned

id and returns the timestamp of that event

timestamp receiveTask(result, slave_id); receive the result of the given task from the slave having the

id number and note the timestamp of that event

timestamp getTimestamp(); returns timestamp

CPUUsageQueryCU(slave_id); returns CPU usage of slave_id

MUsageQueryMU(slave_id); returns memory usage of slave_id

NC QueryNC(slave_id); returns number of free cores of slave_id

timestamp getFactors(subjob, slave_id); returns timestamp when giving sub job to slave_id

string_objectreceiveFactors(job_id, slave_id); returns string_object after processing job_id on slave_id

calculate(Ͼ, Ƚ, µ); calculates capacity, time and memory factor

C. Finding different Optimization parameters and using them in the system to

understand its effect on computation

To find different parameters and to introduce optimization in the system, different computation

parameters are studied. Every parameter have their significance in computing systems. These

parameters are Response time, CPU usage, number of cores and memory.

3.10 OptiFog Algorithm

 The proposed idea is intended to perform optimally in the heterogeneous scenario, by

exploiting the most available processing power present in the system. We have used four

techniques that are memory-based, Response-time-based, CPU-usage-based and number-of-

cores-based. Every technique is run when every node was busy in some other computation

work. This is just to find out which technique is more weighted and less weighted in

heterogeneous computing scenarios. And when the obtained graphs and results are analyzed

for greater jobs and higher nodes, it is found that the CPU usage results are the best and the

second is the number of cores. Response time gives the third greatest performance followed by

memory technique.

3.10.1 OptiFog Algorithm and its insights

OptiFog is a hybrid optimization algorithm that finds the impact factor based on all the above

four mentioned techniques. This impact factor is the value of every node and based on this

value, the number of jobs are allocated to each node in one go. Every node will submit the job

and its current status of CPU, Cores and memory to the master node. Master nodes compute

the Response time and impact factor for each node in every iteration and based on the impact

factor (ψ) value, it will assign the number of jobs.

The CPU and cores on every node have different capacities based on Operating Frequency,

processor specifications, cache size and the bus size. It represents the processing capabilities

of a node. That is the other main reason to give higher priority (₽) to this factor. Whereas the

memory and response time of a particular node can be compared with other nodes in terms of

20

size and unit like GB and ms. Therefore, these two units memory and response time are seen

as collective units in the distributed system.

Impact factor is the overall health status of a node in terms of memory, CPU, cores and response

time. But OptiFog uses three main factors to find the impact factor. That is Capacity (Ͼ),

Memory (µ) and Time (Ƚ).

a) Capacity Factor (Ͼ): this factor is based on the CPU usage and number of cores

technique. The CPU usage is related to the number of cores. And these both techniques

are giving a very good performance which is almost similar. So in this case, these two

values are combined and the factor is calculated as

Ͼ = 𝑁𝐶 ∗ (1 − CU), where CU ϵ[0,1]

b) Memory Factor (µ): In this factor, if 𝑀𝑈𝑖 is less than the node performs better. Thus,

every node 𝑀𝑈𝑖 is found out and scaled to 1.The factor is calculated as

µ =
(1 − 𝑀𝑈𝑖)

∑ 𝑀𝑈𝑖
𝑛
𝑖=1

c) Time Factor (Ƚ): The response time of a node is inversely proportional to its capacity.

By keeping this in mind the factor is designed in such a way that the node with high

response time will get low rank and the node with less response time will be treated

with high ranks.

Ƚ =
∑ 𝑅𝑇𝑖

𝑛
𝑖=1

𝑅𝑇𝑖

After finding Ͼ, µ and Ƚ. The final ψis calculated as

ψ = 3Ͼ + 2Ƚ + 1µ

where,numericals ϵ {₽}

3.10.2 The OptiFog Algorithm is as follows

Algorithm 1 OptiFog Algorithm to process the Job J

 Input: Complete job J having continuous ECG waves,

Output: Ƞ for each and every wave

1. procedure OptiFog

2. initialize RTo =0, MUo = 0

3. TsgetTimeStamp();

4. for i 1, 2, ……. n do

5. TijsgetFactors(Ji , Si);

6. OijrreceiveFactors(Jci , Si);

 Tijr get(Oijr);

 MUi get(Oijr);

 CUi get(Oijr);

 NCi get(Oijr);

7. RTiTijs - Tijr

8. RTo =RTo + RTi

9. MUo =MUo + MUi

10. end for

11. 𝜶i 1, Ɐ i ϵ [1,2,…n].

21

12. ψ𝑖 0, Ɐ i ϵ [1,2,…n].

13. j = n+1, i=1

14. while j<=N do
15. calculate(Ͼi, Ƚi, µi);

16. ψ𝑜𝑙𝑑ψ𝑖
17. ψ𝑖 = 3Ͼ𝑖 + 2Ƚ𝑖 + 1µ𝑖
18. if ψ𝑖>ψ𝑜𝑙𝑑 then

19. 𝜶i= 𝜶i +1;

20. assignTask(𝜶i, i);

21. end if
22. if ψ𝑖<ψ𝑜𝑙𝑑then

23. 𝜶i= 𝜶i -1;

24. assignTask(𝜶i, i);

25. end if

26. if 𝜶I >= 0 then

27. j = j + 𝜶i

28. end if

29. i = i + 1

30. if i > n then

31. i = 1

32. end if

33. end while

34. TrgetTimeStamp();

35. POptiFogTir - Tis

36. end procedure

37. Procedure assignTask(𝜶 , i)

38. if α𝑖> 0 then

39. TisgetFactors(J𝜶 , Si);

40.

41

42..

 OirreceiveFactors(J𝜶c , Si);

 Tir get(Oijr);

 MUi get(Oijr);

 CUi get(Oijr);

 NCi get(Oijr);

 RTiTir - Tis

 end if

end procedure

22

After running the OptiFog Algorithm, the obtained results are shown in figure 8 below.

Fig. 8 ECG wave processing using OptiFog Algorithm

Graph Interpretation

 Effect of increasing nodes can be seen

 4* nodes give very good performance results

 It takes less computation time than ECG octa wave and other techniques

3.11 OptiFog Algorithm Testing
 The OptiFog algorithm is tested in three ways to prove its rationality. In the first test case,

the speedup factor is considered. In the second test case, the algorithm is run for a higher

number of ECG waves to see its performance. And in the last test case the OptiFog algorithm

is run for dispy Deca wave case where dispy system which was not giving good performance

due to pre-loaded nodes in the cluster.

3.11.1 Test case 1: Speedup

Based on the above experiments done so far in the Raspberry Pi clustering environment, every

parameter or the technique is indicating the way to improvise the performance. These

improvements are reducing the job time J, which can be compared by using the Speedup factor

to see its impact.

𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑜𝑙𝑑

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑛𝑒𝑤

Here, the performance time of the dispy technique with double ECG waves is taken as a

benchmark time and other techniques are compared to it. Also, the step by step speedup

between other techniques is also shown in Table 9.

Table 9. Speedup factors for 5000 ECG waves for 4 nodes and 4* Nodes system

Technique used (q) Speedup w.r.t Benchmark Speedup w.r.t (q-1) technique

4 Nodes system 4* Nodes system 4 Nodes system 4* Nodes system

Double waves 1 1 - -

Tetra Waves 5.9118 5.8417 5.9118 5.8417

Octa Waves 11.256 12.5178 1.904 2.1428

OptiFog Algorithm 13.529 14.4536 1.2019 1.1546

23

Table 9, shows that the series of algorithms are considered are improving the performance. The

OptiFog gives the maximum speedup of 14.4536 in 4* Nodes system and it speeds up the

performance by 1.1546 with respect to Octa waves in 4* Nodes system.

3.11.2 Test Case 2

The proposed algorithm OptiFog is tested on a greater number of ECG waves. The system is

tested against the normal dispy system with octa waves and OptiFog algorithm. The system is

kept under a loaded scenario to see the performance of the OptiFog algorithm under the worst-

case scenario. The number of ECG waves are taken as 5000, 7500 and 10000. The results

obtained by the dispy system and OptiFog algorithm is shown in figure 9 and 10.

Fig. 9 ECG wave processing by dispy system, Fig. 10 ECG wave processing by OptiFog

Algo.

From Figures 9 and 10, it is observed that OptiFog outperforms the dispy system and other

algorithms in terms of computation. OptiFog shows better and better results for larger jobs. In

this test case, the effect of 4* nodes in terms of performance is very noticeable. For 4* Nodes

system OptiFog is showing a speedup of 1.183 for 10000 ECG waves. This factor was 1.1546

for 5000 waves. This confirms that the Speedup factor is improved for higher number of waves.

The overall percentage of improvement is shown in figure 11. As the health care processing

load increases the OptiFog performs better and its computational performance is increases

concerning dispy system.

Fig. 11 Percentage of improvement in the given test case

3.11.3 Test case 3

In this test case, the system where dispy was processing ECG waves using deca waves is

considered. And when doing this the performance was dropping. In this case, the network

overhead is observed lesser because a number of waves are deca, but the loaded nodes are not

24

able to handle the deca wave loads and they are taking more time than expected. But when the

same case is considered using OptiFog Algorithm which predicts the job size based on

individual node health status using impact ψ value. The result of test case 3 is shown below

where OptiFog algorithm is run using deca waves.

Fig. 12 Running Deca waves using OptiFog Algorithm

Graph Interpretation

 No improvement is seen for 1 node system in comparison to the dispy deca wave graph

because of job load and existing preload

 In 2 Nodes system, the performance is degrading because of the calculation overhead

of Ͼ, Ƚ, µ and ψ.

 For 3 Nodes system, the results are better than 1 Node and 2 Nodes system as now Job

assigning and job size variation starts for available nodes

 4 Nodes system performs better than 1 Node, 2 Nodes and 3 Nodes system

 Finally, 4* Nodes system outperforms because OptiFog is able to detect good impact

factors every time and able to assign more and more task in sub job for 4* system

OptiFog uses Distributed computing to strengthen itself, and it is real-time processing

algorithm expected in [76].

25

Chapter 4:

Lightweight Multi-level authentication scheme for Multi-level

IoT-Fog Context

A multitude of cryptographic algorithms can be used for IoT devices' security, but because it

provides limited resources like limited memory, insubstantial RAM, limited power, it becomes

difficult to use such cryptographic algorithms intensively [78]. Thus, there is a need for a

lightweight cryptography algorithm that can offer security efficiently to IoT devices without

taking up a significant load. Effective implementation of IoT demands low latency and small

chip area occupied on hardware or memory requirements for the software execution.

Lightweight encryption supports both these requirements, and thus it compliments IoT, making

it the best choice of security algorithm for IoT.

The proposed scenario illustrates the need for fog nodes at different levels and how they

communicate with one another with the help of horizontal and vertical communication. Real-

life scenarios are shown to demonstrate how lightweight encryption algorithms could be used

at different layers to ensure that the security is preserved. Having multiple security algorithms

make it more difficult to deploy any application, while the high complexity because of the

multiple security schemes makes the system more vulnerable. So here, one unique lightweight

security scheme is suggested which can single-handedly satisfy all the levels of security with

different security levels. The scheme is based on Logical operations and it is multi-keyed logic.

The proposed scheme makes sure that it has a lower time and space complexity to support IoT

devices. In addition to that, the scheme has varied key-length feature which makes it capable

to secure higher-level data at higher-level devices like servers. In designing, different HMACs,

Op_codes, and chaining logics are used. The proposed algorithm is also compared with other

existing algorithms and it is discovered to be superior to the others. Furthermore, it is tested

against various attacks to prevent any vulnerabilities from the exploitations. The given security

scheme is lightweight and it provides security assurance in data transmission in the IoT-Fog,

Fog to multi Fog, and Fog to Cloud end.

Further experiments are carried out to find the time and space requirement of the proposed

algorithm with other existing algorithms. Few existing algorithms are chosen and they are

executed on Apple MacBook Air devices. The time taken in ms by different algorithms are as

shown in figure 13.

In terms of memory requirement, the Lightweight proposed scheme is taking the minimum

time. The other algorithms are executed for a 256-bit key length whereas the proposed scheme

is executed for 1024 bit key lengths. The time taken by the proposed scheme is very less

because it uses logical operation to get avalanche effects in the ciphertext whereas most other

algorithms are using multiple rounds of permutations and combinations with bit shifting

mechanism.

The memory requirements of different algorithms are found. The comparison is as shown in

figure 13. The memory requirement of the proposed scheme is higher than the TEA and

BlowFish algorithm. It is because the existing scheme generates multiple keys to use the

chaining mechanism and to assure the role of key serializability in the encryption and

decryption process. The total memory taken by the proposed algorithm for 1024 bit key length

is around 4 MB, which is very much feasible in the lower-level devices. To get it more feasible

in much lower level devices the key length can be reduced further.

26

Fig. 13 Time and space complexity of Lightweig ht security algorithm

The time and memory taken by the suggested algorithm shows that the current scheme is more

efficient than the existing algorithms. The initial key sharing in the proposed algorithm is

designed in such a way that the initial handshaking in the communication process always

remains secure. It also satisfies all three principles of security that is confidentiality by

encryption, integrity by using hash functions, and availability by using Op_codes and sequence

of ordered keys. Hence the proposed scheme is light-weighted and more secured, and is

applicable in IoT-Fog-Cloud communication scenarios.

27

Chapter 5:

Other optimizations and developments made in Health Care

domain

 To upkeep Health Care domain, different existing systems are chosen and optimized in terms

of performance. Also, different systems are developed based on real time signal analysis. The

work done is classified as enhancements and developments. It is described in section 5.1 and

5.2.

5.1 Different enhancements to existing systems
Different existing health care related systems are studied and improvements are done to achieve

higher accuracies. These systems are as follows.

5.1.1 ECG Image Classification using Deep Learning Approach

Cardiovascular Diseases are a major cause of death worldwide. Cardiologists detect

Arrhythmias i.e. Abnormal Heart Beat with the help of an ECG graph which serves as an

important tool to recognize and detect any erratic heart activity along with important insights

like skipping a beat, a flutter in a wave and a fast beat. The proposed methodology does ECG

Arrhythmias Classification by CNN, trained on grayscale images of R-R interval of ECG

signals. Outputs are strictly in the terms of a label that classify the beat as normal or abnormal

with which abnormality. For training purpose, around one lakh ECG signals are plotted for

different categories and out of these signal images, noisy signal images are removed, then Deep

Learning Model is trained. An image-based classification is done which makes the ECG

Arrhythmia system independent of recording device types and sampling frequency. A novel

idea is proposed that helps cardiologists worldwide, although a lot of improvements can be

done which would foster a "wearable ECG Arrhythmia Detection device" and can be used by

a common man. Proposed system aims to help cardiologists worldwide and with the

developments of AI in the health care sector, our study will add value in this domain. This work

proposes to help refine the vast clinical data, find patterns amongst them and to improve the

accuracy parameter which is of paramount importance to serve a patient well. By implementing

classification using Deep Learning, certain Machine Learning tasks like feature extraction and

noise filtering have been avoided. Using the intense computational power to learn from data,

workable accuracy has been achieved. The proposed model is achieving the accuracy level of

97.78 %. This chapter does not wish to supplant the brilliance of cardiologists and their

expertise but through our tool wish to add value to their work. So, this chapter is to bridge the

gap between technology and expertise in a health monitoring system in our case-Cardiology.

5.1.2 Deep Learning to Detect Skin Cancer using Google Colab

Deep Learning can detect features through self-training models and is able to give better

results compared to using Artificial Intelligence or Machine Learning. It uses different

functions like ReLU, Gradient Descend and Optimizers, which makes it the best thing available

so far. To efficiently apply such optimizers, one should have the knowledge of mathematical

computations and convolutions running behind the layers. It also uses different pooling layers

to get the features. But these Modern Approaches need high level of computation which

requires CPU and GPUs. In case, if, such high computational power, if hardware is not

available then one can use Google Colaboratory framework. The Deep Learning Approach is

proven to improve the skin cancer detection as demonstrated in this paper. The model also

aims to provide the circumstantial knowledge to the reader of various practices mentioned

28

above. The model is trained for 100 epochs and the model achieves 77.98% test accuracy and

77.31% validation accuracy and approximately 82% training accuracy. Which is better as

compared to the results depicted in the existing model which has an accuracy of 77.03%.

5.1.3 ECG Heartbeat Arrhythmia Classification Using Time-Series Augmented Signals

and Deep Learning Approach

Electrocardiogram (ECG) signals are the best way to monitor the functionality and health of

the cardiovascular system and also identify ailments related to it. Abnormal heartbeats are

reflected in the ECG pattern and such abnormal signals are called as Arrhythmias. Automated

classification and identification of the ECG arrhythmia signal that provides faster and more

accurate result is increasingly becoming the need of the moment. Various machine learning

skills have been applied to advance the accuracy of results and increase the speed and

robustness of the models. A lot of focus has been given to the architectures and datasets

employed but preprocessing of the data being equally important. In this, a preprocessing

technique that significantly improves the accuracy of the deep learning models used for ECG

classification is proposed with a modified deep learning architecture that adds to the training

stability. With this preprocessing technique and deep learning model, the system is able to

attain accuracy levels of more than 99% without overfitting the model. Applying

augmentations to the dataset can not only make the model training more accurate but also

stabilize it at higher accuracies. The proposed model consists of 6 residual blocks which means

there is scope of overfitting the data but the augmented dataset also prevents overfitting by

making classification difficult in the testing phase. The proposed model still displays high

accuracy in such conditions. Thereby depicting its caliber to make highly accurate predictions

with an accuracy rate of 99.12%.

5.1.4 Improving Pattern matching performance in Genome sequences using Run Length

Encoding in Distributed Raspberry Pi Clustering Environment

Genomics and bioinformatics have grown as an independent field and are an area of active

research currently. In this work, we first discuss the idea of the genome, its importance and

wide-ranging applications in healthcare and medicine. We then give a brief overview of the

various file formats used presently to store and manipulate genomic data along with their

benefits and shortcomings. Moving on, we analyze and elaborate on how parallel and

distributed computing can help in processing large files with genomic data and more

importantly address the problem of pattern matching. In particular, we introduce the raspberry-

pi and discuss in detail how a Raspberry Pi can accomplish the pattern matching task and how

a Raspberry-Pi cluster can enable parallel computing to improvise the performance. This work

also includes a brief account of various high-level application programming interfaces and

libraries that can be used to parse genomic data like BioPython and Fuzzywuzzy. We conclude

this work by summarizing some techniques that can be used for encoding and compressing

files with genomic data like Run-Length encoding and genome differential compression

respectively among other methods. The proposed work improvises the Genome pattern

matching time by more than 50% in a distributed Raspberry Pi Computing environment. This

system is useful to detect a particular genome-based abnormality where different pieces of

Genome records are present on the different nodes in distributed computing and the input is

given to find the disease. It can detect the abnormality within a short time. Also the different

approach used here is to use Raspberry Pi based clustering to save cost and the energy. Due to

the vast data size of even a single genome and its DNA information, there was an implicit need

to find various ways in which the formats of these genome data file is easily accessible, like

VCF, FASTQ, etc. This research is a stepping stone, for the usage of various techniques and

29

utilization of different available resources like Raspberry Pi in some highly extensive

programming languages and their algorithms to help facilitate the problems faced for Genome

Pattern Matching and its sequencing. In this section, only three Raspberry Pi are used and the

increase in performance is very high. To increase it furthermore R-PI can be deployed. This

concludes that by using compression techniques and distributed computing approach, the

Genome pattern matching efficiency can be increased. In future, such systems can be used

where each node is having the entire cancer genome sub files and the master node sends the

pattern to each node, to detect the cancer.

5.1.5 Exploring and Optimizing the Fog Computing in Different Dimensions

Fog Computing facilitates very fast and secured response by saving network transmission to

cloud and hence delays. In this paper, Fog Computing is explored in terms of its architecture,

characteristics, functioning and purpose. Several fog nodes which are available in the market

are studied and represented which can be used for Fog Computing developments. Existing

applications and different Fog based applications are discussed along with the pros and cons of

Fog Computing. Different optimization techniques to improve the Fog computing are discussed

in detail with their impact on performance time. Such optimization techniques help to make

health care application more efficient in terms of response time. Here, Fog Computing domain

is explored in possible dimensions and relevant enhancements are discussed. Fog computing

finds its application in various time sensitive and network saving applications by providing

high mobility and security. Fog node can work in more than one context in the given scenario.

Its performance can be optimized by using various optimization techniques. The technique

using higher priority compare to other top five processes performs better than other mentioned

techniques. It gives good optimization in terms of time complexity. Thus, fog computing is the

noble choice for delay sensitive decision-making applications.

5.2 Different system developments to facilitate Health care domain
Sensors help to record real time signals and IoT sends this signal to the processing node. If

internetworking is not available then a dedicated node can also process the data to make

decisions. Here different systems are developed using sensors and different hardware to make

time sensitive decision makings. They are as follows.

5.2.1 Recognizing Real Time ECG Anomalies Using Arduino, AD8232 and Java

The functioning of Heart can be checked by continuous monitoring of heartbeats through

Electrocardiogram (ECG). Irregularity in the rhythm of the heartbeat results in arrhythmia.

Arrhythmia can be classified based on the origins that cause it. ECG signal comprises of

PQRST wave. Analysis of PQRST wave helps identifying the type of arrhythmia. Thus, real-

time analysis of ECG is of utmost priority, to acquire immediate medical aid and to avoid

fatality. The paper discusses the use of the AD8232 sensor to capture ECG signals and its

interfacing with Arduino Nano. Arduino is used as a Sampler and Analog to Digital Converter

(ADC). The intervals of PQRST wave is analyzed using Java APIs and windowing algorithm.

The results are compared with standard ECG signals to detect abnormalities and further

analysis. The paper aids the reader to understand and develop a hand and low cost ECG analysis

system, thus, reducing the treatment costs. In this section, authors have successfully proposed

and implemented a system in Java that detects real-time anomalies in heartbeat. This system

can be used by medical practitioners in both real-time and as well as in static modes. While

both the modes require sampling frequencies, the real-time mode also makes use of a port

connected to Arduino, a highly effective IoT unit. The AD8232 senor is then interfaced with

Arduino. The final result displays the ECG signal on a Voltage-Time graph and also gives the

30

R-R, P-R, Q-R-S and Q-T intervals. The practitioners can easily and very accurately detect

anomalies from the output.

5.2.2 Real-time Location tracker for critical health patient using Arduino, GPS Neo6m

and GSM Sim800L in Health Care

In the health care sector, in case of an emergency, it is very crucial to know the exact location

of the patient so that different critical health care services can be made available at the right

time and place. This problem can be solved by using GPS coordinates. In this, an IoT device

is made which locates the exact GPS coordinates of the patients to the server. Moreover, using

the web interface on the server and Google Maps, doctors and hospital staff can track the exact

location of the patient and serve him. IoT is the technology that can have control over any

system present at remote locations via the internet. IoT devices are smaller, portable and

available in different shapes, sizes, and capabilities. Multiple versions of Arduino can be used

for different applications. For smaller and compact designing applications, Arduino nano is the

best choice. The GPS Neo 6m gives accurate GPS coordinates and the refresh rate is also

reasonable to update the changing locations. GSM Sim800L serves the purpose of gateway for

the internet. It should have the working SIM card in it with active data plans. The ThingSpeak

cloud is used which is freely available for IoT developers. It takes up dynamic readings and

the same is updated in the database too. To use the google API, one has to pay the nominal

amount as per the usage. Different functions available in libraries like SoftwareSerial,

TinyGPS++, and AltSoftSerial.h are used for implementing the GPS. Thus, by using all

available sensors and technology the live GPS tracker system is built with minimum cost.

5.2.3 IoT based Eye Movement Guided Wheelchair driving control using AD8232 ECG

Sensor

Each and every muscular movement in the body is induced by electrical signals. These electrical

signals are in mV and they are very sensitive to noise factors like electrical gadgets placed

nearby, different movements, earthing, etc. If such signals are traced carefully, they can be used

to accomplish multiple tasks. Such signals are called Myographs. This paper proposes a new

method for eye-movement tracking, using Arduino Nano along with AD8232, i.e. the ECG

Sensor. Most of the devices for Eye Tracking need to be placed right on the eye which

sometimes use Infrared Radiations which may be harmful to eyes. This proposed method

captures the gaze direction by muscular contraction, also called myography. This is done by

placing the electrode pads on the forehead and the ECG line graphs demonstrate the direction

of gaze which can be understood using the convolution method. After the movement direction

is decided based on convolution method, the values are sent and received from the IoT cloud.

Thus, the wheelchair movement can be controlled by online and offline modes, making it more

opportune to the patient. The goal of the system is to avail low-cost solutions to the needer.

5.2.4 Analyzing ECG waves in Fog Computing Environment using Raspberry Pi Cluster

IoT and Cloud computing technologies are together serving different Health Care applications.

These applications suffer from slower decision making due to network delays, less availability

of bandwidth, transmission delays, processing delays and data de-noising. To avoid this, Fog

computing can be applied as a middle layer between the IoT and Cloud layers. Here, we

understand Fog computing, its characteristics applications along with its advantages and

disadvantages. Fog computing greatly reduces transmission delays, but Fog devices lag in

computing capabilities due to their limited processing power. This can be solved by deploying

multiple devices and synchronizing their computation to enable parallel execution. In this

paper, a single Raspberry Pi is used as a Fog node and multiple such Raspberry Pis are deployed

31

in the cluster form. The Dispy Python framework is used to allow parallel processing.

Scalability is easy to achieve with Dispy, and also it provides different features like automated

node discovery, job distribution, processing function distribution, remote access and enhanced

security. The system is proposed and implemented to test the hypothesis that it improves the

real time computation in health care applications. The final results are compared with a

traditional processing system and it is found that the Raspberry PI cluster and Dispy can

enhance the computation performance in Health Care

32

Chapter 6: Conclusion

 This work introduced a cloud-assisted smart fog gateway for delay-sensitive IoT-driven

healthcare applications. It ensures the tolerable delay while providing the service to the

healthcare applications, by applying the smart partitioning and allocation using a decision

tree. The decision rules are based on the application context and resource availability in fog

and cloud infrastructure. In the smart fog gateway, the proposed approach intelligently

takes the decision to determine the corresponding data stream based on the application

context. The proposed approach provides the service to the end-user promptly. Cloud

Computing Based IoT architecture is delay-sensitive for Critical Health Care applications.

So, the LAN based Fog computing Processing approach can be used to reduce the delay.

Also, this technique helps to reduce the data burden on the Cloud. Moreover, Fog

Computing should have memory, processing and computation capabilities and Fog nodes

can be placed in either LAN or as a Gateway. Since Raspberry Pi has networking, memory,

storage and computation abilities, it becomes a suitable option to use as a Fog node. We

also discuss different Raspberry Pi based Fog installations. Furthermore, fog based health

care systems are better than the Cloud-based health care system in terms of network

bandwidth and response time, but it lags behind in computation power. The overall

response by fog to find any abnormality in the ECG signal is given way before the Cloud

does - which is very vital in health care scenarios to save patient's lives. Fog computing

gives a better response when the number of patients is less and it is observed that the Fog

computing response time is directly proportional to the number of patients. After a

particular threshold value of the number of patients, fog computing will not perform better

than Cloud computing. The transmission delay and the computation delay plays a major

role in the Fog computing domain.

 Fog computing is able to do this with reduced transmission delays but to get reduce

computational delay Raspberry Pi cluster is suggested. Dispy is a good tool to use in Pi

cluster to facilitate ease of deployment and scalability in distributed computing. To get

good performance from the dispy system, the assigned sub-job size should be optimal. The

master node iterations and overheads depend on the sub-job size, which can affect the

system performance at greater levels. Every hardware and software parameter matters a lot

in terms of computation. In this system, four parameters namely response time, CPU usage,

number of cores and memory is used. Each parameter has its effect on computation. For

the current system, the CPU usage and number of cores were having a good impact while

response time and memory had less impact on system performance. By considering these

effects and their level of impact, OptiFog algorithm is designed with respect to different

priorities and factors. The impact factor is a good measure to determine the processing

health of any node. OptiFog algorithm performs fairly well for the ECG health care data

using a Raspberry Pi cluster. OptiFog algorithm is designed for the worst-case scenarios so

that it always performs better for average and worst case. OptiFog algorithm will show its

computation variations in a heterogeneous environment where it is able to decide and assign

the job size for different nodes. Shown test cases are justifying the performance of the

OptiFog algorithm as, if the number of nodes and job increases, then the algorithm

performance will also gradually increase in comparison to dispy systems. Hence OptiFog

algorithm is able to achieve better computations in the Heterogeneous Raspberry Pi

clustering environment in Fog computing. The suggested lightweight security algorithm is

capable to achieve good level of security across any devices in the IoT-Fog scenario with

very less time and space complexity.

33

Research Publication

[1] Kanani P., Padole M. (2018) Recognizing Real Time ECG Anomalies Using Arduino,

AD8232 and Java. In: Singh M., Gupta P., Tyagi V., Flusser J., Ören T. (eds) Advances in

Computing and Data Sciences. ICACDS 2018. Communications in Computer and

Information Science, vol 905. Springer, Singapore. [Scopus indexed]

[2] Pratik Kanani and Mamta Padole, “ECG Image Classification using Deep Learning

Approach”, Handbook of Research on Disease Prediction Through Data Analytics and

Machine Learning, IGI Global, pp.- 343-357. DOI: 10.4018/978-1-7998-2742-9.ch016 [NLM

indexed]

[3] Pratik Kanani and Mamta Padole, "Deep Learning to Detect Skin Cancer using Google

Colab", International Journal of Engineering and Advanced Technology (IJEAT), Vol. 8,

Isuue. 6, pp. 2176-2183. [Scopus indexed, UGC Care Journal]

[4] Pratik Kanani and Mamta Padole, “IoT based Eye Movement Guided Wheelchair driving

control using AD8232 ECG Sensor”, International Journal of Recent Technology and

Engineering, Vol. 8, Issue. 4, pp. 5013-5017. [Scopus indexed, UGC Care Journal]

[5] Pratik Kanani and Mamta Padole, “ECG Heartbeat Arrhythmia Classification Using Time-

Series Augmented Signals and Deep Learning Approach”, Third International Conference on

Computing and Network Communications (CoCoNet’19). Procedia Computer Science journal,

vol. 171(2020), pp. 524-531. [Scopus, Web of Science and Ei Compendex indexed]

[6] Pratik Kanani and Mamta Padole, “Exploring and Optimizing the Fog Computing in

Different Dimensions”, Third International Conference on Computing and Network

Communications (CoCoNet’19). Procedia Computer Science journal, vol. 171(2020), pp.

2694-2703. [Scopus, Web of Science and Ei Compendex indexed]

[7] Pratik Kanani and Mamta Padole, “Improving Pattern Matching performance in Genome

sequences using Run Length Encoding in Distributed Raspberry Pi Clustering Environment”,

Third International Conference on Computing and Network Communications (CoCoNet’19).

Procedia Computer Science journal, vol. 171(2020), pp. 1670-1679. [Scopus, Web of Science

and Ei Compendex indexed]

[8] Pratik Kanani and Dr. Mamta Padole, "Real-time Location Tracker for Critical Health

Patient using Arduino, GPS Neo6m and GSM Sim800L in Health Care," 2020 4th

International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai,

India, 2020, pp. 242-249, doi: 10.1109/ICICCS48265.2020.9121128. [Scopus indexed]

 [9] P. Kanani and M. Padole, "Analyzing ECG waves in Fog Computing Environment using

Raspberry Pi Cluster," 2020 Fourth International Conference on I-SMAC (IoT in Social,

Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 2020, pp. 1165-1172, doi:

10.1109/I-SMAC49090.2020.9243398. [Scopus Indexed]

[10] Pratik Kanani and Mamta Padole, “Implementing and Analyzing Health as a Service in

Fog and Cloud Computing”, The International Journal of Intelligent Engineering and Systems,

Vol. 13, No. 6, 2020. DOI: 10.22266/ijies2020.1213.13. [Scopus Indexed and UGC Care

Journal]

[11] Pratik Kanani and Mamta Padole, “OptiFog: Optimization of Heterogeneous Fog

Computing for QoS in Health Care”, Journal of Theoretical and Applied Information

34

Technology, Vol. 98, No. 22, pp-3625-3642, November 2020. [Scopus Indexed and UGC

Care Journal]

[12] Pratik Kanani and Dr. Mamta Padole, “An Effort to reduce the CO2 emission in

Computation for Green Computation”, International Conference on Computing Technologies

for transforming the Automated World-2020. (In Process of Publication) (UGC Approved

Journal)

[13] International Patent: Mamta Padole and Pratik Kanani, “A SYSTEM FOR REAL-TIME

HEART HEALTH MONITORING”, Patent Number: 2020101730. [Patent Granted]

[14] Indian Copyright: “FOG OPTIMIZATION TECHNIQUE FOR QOS IN

HETEROGENEOUS CLUSTERING ENVIRONMENT”. [Copyright Granted]

[15] Pratik Kannai and Dr. Mamta Padole, “Light weight Multi-Level authentication scheme

for secured Data transmission in Fog-IoT context”, [Copyright filed]

35

References

[1] Atzori, L., Iera, A., and Morabito G, “The internet of things: A survey”, Elsevier Computer networks, Vol.54,

No.15, pp.2787-2805, 2010

[2] Botta, A., De Donato, W., Persico, V., and Pescapé, A, “Integration of cloud computing and internet of things:

a survey”, Elsevier Future Generation Computer Systems, Vol.56, pp.684-700, 2016

[3] Hassanalieragh, M., Page, A., Soyata, T., Sharma, G., Aktas, M., Mateos, G., and Andreescu S, “Health

monitoring and management using Internet-of-Things (IoT) sensing with cloud-based processing: Opportunities

and challenges”, IEEE International Conference on Services Computing (SCC), pp.285-292, 2015

[4] Bonomi, F., Milito, R., Zhu, J., and Addepalli S, “Fog computing and its role in the internet of things”, ACM

Proceedings of the first edition of the MCC workshop on Mobile cloud computing, pp.13-16, 2012

[5] Chang, H., Hari, A., Mukherjee, S., and Lakshman, T. V, “Bringing the cloud to the edge”, IEEE Conference

on Computer Communications Workshops (INFOCOM WKSHPS), pp.346-351, 2014

[6] Shi, Y., Ding, G., Wang, H., Roman, H. E., and Lu, S, “The fog computing service for healthcare”, IEEE 2nd

International Symposium on Future Information and Communication Technologies for Ubiquitous HealthCare

(Ubi-HealthTech), pp.1-5, 2015

[7] Islam, S. R., Kwak, D., Kabir, M. H., Hossain, M., and Kwak, K. S, “The internet of things for health care: a

comprehensive survey”, IEEE Access, Vol.3, pp.678-708, 2015

[8] Bui, N., and Zorzi M, “Health care applications: a solution based on the internet of things”, ACM Proceedings

of the 4th International Symposium on Applied Sciences in Biomedical and Communication Technologies, p.131,

2011

[9] Doukas, C., and Maglogiannis I, “Bringing IoT and cloud computing towards pervasive healthcare”, IEEE

Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS),

pp.922-926, 2012

[10] Yi, S., Li, C., and Li, Q, “A survey of fog computing: concepts, applications and issues”, ACM Proceedings

of the Workshop on Mobile Big Data, pp.37-42, 2015

[11] Malik, S., Huet, F., and Caromel D, “Latency based group discovery algorithm for network aware cloud

scheduling”, Elsevier Future Generation Computer Systems, Vol.31, pp.28-39, 2014

[12] Ray, P. P, “Internet of things based physical activity monitoring (PAMIoT): an architectural framework to

monitor human physical activity”, IEEE Proceeding of CALCON, pp.32-34, 2014

[13] Li, F., Vögler, M., Claeßens, M., and Dustdar, S, “Efficient and scalable IoT service delivery on cloud”,

IEEE Sixth International Conference on Cloud Computing (CLOUD), pp.740-747, 2013

[14] Chiang, M., and Zhang T, “Fog and IoT: An overview of research opportunities”, IEEE Internet of Things

Journal, Vol.3, No.6, pp.854-864, 2016

[15] M. Aazam, and E. N. Huh, “Dynamiac resource provisioning through fog micro datacenter”, In Proceedings

of the 12th IEEE International Workshop on Managing Ubiquitous Communication and Services (MUCS ’15),

pp.105–110, 2015

[16] Xu, B., Da Xu, L., Cai, H., Xie, C., Hu, J., and Bu F, “Ubiquitous data accessing method in IoT-based

information system for emergency medical services”, IEEE Transactions on Industrial Informatics, Vol.10, No.2,

pp.1578-1586, 2014

[17] Andriopoulou, F., Dagiuklas, T., and Orphanoudakis T, “Integrating IoT and Fog Computing for Healthcare

Service Delivery”, Springer Components and Services for IoT Platforms, pp.213-232, 2017

[18] Aazam, M., and Huh E. N, “Fog computing micro datacenter based dynamic resource estimation and pricing

model for IoT”, IEEE 29th International Conference on Advanced Information Networking and Applications

(AINA), pp.687-694, 2015

[19] Aazam, M., and Huh, E. N, “Fog computing and smart gateway based communication for cloud of things”,

IEEE International Conference on Future Internet of Things and Cloud (FiCloud), pp.464-470, 2014

[20] Gia, T. N., Jiang, M., Rahmani, A. M., Westerlund, T., Liljeberg, P., and Tenhunen, H, “Fog computing in

healthcare internet of things: A case study on ecg feature extraction”, IEEE International Conference on Computer

and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure

Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM), pp.356-363, 2015

[21] Rahmani, A. M., Thanigaivelan, N. K., Gia, T. N., Granados, J., Negash, B., Liljeberg, P., and Tenhunen H,

“Smart e-health gateway: Bringing intelligence to internet-of-things based ubiquitous healthcare systems”, 12th

Annual IEEEConsumer Communications and Networking Conference (CCNC), pp.826-834, 2015

[22] Gupta, H., Dastjerdi, A. V., Ghosh, S. K., and Buyya, R, “iFogSim: A Toolkit for Modeling and Simulation

of Resource Management Techniques in Internet of Things”, Edge and Fog Computing Environments, arXiv

preprint arXiv:1606.02007, 2016

36

[23] Alsaffar, A. A., Pham, H. P., Hong, C. S., Huh, E. N., and Aazam, M, “An Architecture of IoT Service

Delegation and Resource Allocation Based on Collaboration between Fog and Cloud Computing”, Hindawi

Mobile Information Systems, pp.1-15, 2016

[24] Rahmani, A. M., Gia, T. N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M., and Liljeberg, P, “Exploiting

smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach”, Elsevier Future

Generation Computer Systems, 2017

[25] Chakraborty, S., Bhowmick, S., Talaga, P., and Agrawal, D. P, “Fog Networks in Healthcare Application”,

IEEE 13th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), pp.386-387, 2016

[26] Cao, Y., Hou, P., Brown, D., Wang, J., and Chen S, “Distributed analytics and edge intelligence: Pervasive

health monitoring at the era of fog computing”, ACM Proceedings of the Workshop on Mobile Big Data, pp.43-

48, 2015

[27] Dr Ibrahim samaha (2017, May 09). Simple Cardiology [Online]. Available: http://simple-

cardio.blogspot.in/2013/01/importance-of-ecg-ekg.html

[28] Healthline. (2017, May 09). Meningitis [Online]. Available:

http://www.healthline.com/health/meningitis#types2

[29] Msdmanuals. (2017, May 09). Meningitis [Online]. Available: http://www.msdmanuals.com/home/brain,-

spinal-cord,-and-nerve-disorders/meningitis/acute-bacterial-meningitis

[30] Kanani P., Padole M. (2018) Recognizing Real Time ECG Anomalies Using Arduino, AD8232 and Java. In:

Singh M., Gupta P., Tyagi V., Flusser J., Ören T. (eds) Advances in Computing and Data Sciences. ICACDS

2018. Communications in Computer and Information Science, vol 905. Springer, Singapore

[31] Muhammadd U. Bilal Ahmed B et al., “ Electrogram Feature Extraction and Pattern Recognition Using a

Novel windowing Algorithm”, Advances in Bioscience and Biotechnology, 5, 886-894, October 2014.

[32] Computer - Memory, https://www.tutorialspoint.com/computer_fundamentals/computer_memory

[33] How to calculate a memory usage of a java program?,https://stackoverflow.com/questions/37916136/how-

to-calculate-memory-usage-of-a-java-program

[34] Cloud Computing Saves Energy and CO2 Emissions, http://www.energydigital.com/sustainability/cloud-

computing-saves-energy-and-co2-emissions

[35] How is cloud influencing world data traffic?,https://www.ibm.com/blogs/cloud-computing/2013/04/how-is-

cloud-influencing-world-data-traffic/

[36] The Megawatts behind Your Megabytes: Going from Data-Center to Desktop,

http://aceee.org/files/proceedings/2012/data/papers/0193-000409.pdf

[37] With Internet Of Things And Big Data, 92% Of Everything We Do Will Be In The Cloud,

https://www.forbes.com/sites/joemckendrick/2016/11/13/with-internet-of-things-and-big-data-92-of-everything-

we-do-will-be-in-the-cloud/#553568ed4ed5

[38] Current Millis, https://currentmillis.com/

[39] D. Comer and D.L. Stevens. Internetworking with TCP/IP: Principles, protocols, and architecture.

Internetworking with TCP/IP. Pearson Prentice Hall, 2006. ISBN: 9780131876712. url:

https://books.google.co.in/books?id=jonyuTASbWAC.

[40] WHAT CAUSES THE INTERNET TO SLOW DOWN? https://www.colocationamerica.com/data-center-

connectivity/speed-test.htm

[41] A. Faggiani, E. Gregori, A. Improta, L. Lenzini, V. Luconi and L. Sani, "A study on traceroute potentiality

in revealing the Internet AS-level topology," 2014 IFIP Networking Conference, Trondheim, 2014, pp. 1-9.

[42] S. Branigan, H. Burch, B. Cheswick and F. Wojcik, "What can you do with Traceroute?," in IEEE Internet

Computing, vol. 5, no. 5, pp. 96-, Sept.-Oct. 2001.

[43] Gareth Mitchell. “The Raspberry Pi single-board computer will revolutionise computer science teaching [For

& Against]”. In: Engineering & Technology 7.3 (2012), pp. 26-26.

[44] Andrew K Dennis. Raspberry Pi home automation with Arduino. Packt Publishing Ltd, 2015.

[45] CG Raji et al. “Implementation of Bitcoin Mining using Raspberry Pi”. In: 2019 International Conference on

Smart Systems and Inventive Technology (ICSSIT). IEEE. 2019, pp. 1087-1092.

[46] Suzanne J Matthews et al. “Portable parallel computing with the raspberry pi”. In: Proceedings of the 49th

ACM Technical Symposium on Computer Science Education. 2018, pp. 92-97.

[47] C. Pahl et al. “A Container-Based Edge Cloud PaaS Architecture Based on Raspberry Pi Clusters”. In: 2016

IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (Fi-CloudW). 2016, pp.

117-124.

[48] P. Jutadhamakorn et al. “A scalable and low-cost MQTT broker clustering system”. In: 2017 2nd International

Conference on Information Technology (INCIT). 2017, pp. 1-5.

[49] Pekka Abrahamsson et al. “Affordable and energy-efficient cloud computing clusters: The bolzano raspberry

pi cloud cluster experiment”. In: 2013 IEEE 5th International Conference on Cloud Computing Technology and

Science. Vol. 2. IEEE. 2013, pp. 170-175.

http://www.msdmanuals.com/home/brain,-spinal-cord,-and-nerve-disorders/meningitis/acute-bacterial-meningitis
http://www.msdmanuals.com/home/brain,-spinal-cord,-and-nerve-disorders/meningitis/acute-bacterial-meningitis
https://currentmillis.com/
https://books.google.co.in/books?id=jonyuTASbWAC
https://www.colocationamerica.com/data-center-connectivity/speed-test.htm
https://www.colocationamerica.com/data-center-connectivity/speed-test.htm

37

[50] D. Borthakur et al. “Smart fog: Fog computing framework for unsupervised clustering analytics in wearable

Internet of Things”. In: 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP). 2017,

pp. 472-476.

[51] Richard Brown et al. “Teaching Parallel and Distributed Computing with MPI on Raspberry Pi Clusters:

(Abstract Only)”. In: Proceedings of the 49th ACM Technical Symposium on Computer Science Education.

SIGCSE '18. Baltimore, Maryland, USA: Association for Computing Machinery, 2018, p. 1054. ISBN:

9781450351034. doi:10.1145/3159450.3162369. url: https://doi.org/10.1145/ 3159450.3162369.

[52] G. L. Stavrinides and H. D. Karatza, "Task Group Scheduling in Distributed Systems," 2018 International

Conference on Computer, Information and Telecommunication Systems (CITS), Colmar, 2018, pp. 1-5.

[53] A. Guermouche and J. - L'Excellent, "Memory-based scheduling for a parallel multifrontal solver," 18th

International Parallel and Distributed Processing Symposium, 2004. Proceedings, Santa Fe, NM, USA, 2004, pp.

71

[54] Xiaodong Zhang, Yanxia Qu and Li Xiao, "Improving distributed workload performance by sharing both

CPU and memory resources," Proceedings 20th IEEE International Conference on Distributed Computing

Systems, Taipei, Taiwan, 2000, pp. 233-241.

[55] L. Shi, Y. Sun and L. Wei, "Effect of Scheduling Discipline on CPU-MEM Load Sharing System," Sixth

International Conference on Grid and Cooperative Computing (GCC 2007), Los Alamitos, CA, 2007, pp. 242-

249.

[56] Kizhakkethil, Sree and S., Murugan. (2017). Memory based Hybrid Dragonfly Algorithm for Numerical

Optimization Problems. Expert Systems with Applications. 83. 10.1016/j.eswa.2017.04.033.

[57] Mohammad I. Daoud and Nawwaf Kharma, " A hybrid heuristic–genetic algorithm for task scheduling in

heterogeneous processor networks", Journal of Parallel and Distributed Computing, Volume 71, Issue 11,

November 2011, Pages 1518-1531.

[58] H. Topcuoglu, S. Hariri and Min-You Wu, "Performance-effective and low-complexity task scheduling for

heterogeneous computing," in IEEE Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp. 260-274,

March 2002.

[59] Dongning Liang, Pei-Jung Ho, Bao Liu. Scheduling in Distributed Systems.

https://cseweb.ucsd.edu/classes/sp99/cse221/projects/Scheduling.pdf

[60] Arash Ghorbannia Delavar,Mahdi Javanmard , Mehrdad Barzegar Shabestari and Marjan Khosravi Talebi,

“RSDC (RELIABLE SCHEDULING DISTRIBUTED IN CLOUD COMPUTING)”, International Journal of

Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.3, June 2012.

[61] Luiz F. Bittencourt, Alfredo Goldman, Edmundo R.M. Madeira, Nelson L.S. da Fonseca, Rizos Sakellariou,

"Scheduling in distributed systems: A cloud computing perspective", Computer Science Review 30 (2018) 31–

54.

[62] Zafeirios C Papazachos, Helen D Karatza, "Gang scheduling in multi-core clusters implementing

migrations", Future Generation Computer SystemsVol. 27, No. 8.

[63] Salim Bitam, SheraliZeadally and AbdelhamidMellouk (2018) Fog computing job scheduling optimization

based on bees swarm, Enterprise Information Systems, 12:4, 373-397, DOI: 10.1080/17517575.2017.1304579

[64] F. A. Kraemer, A. E. Braten, N. Tamkittikhun and D. Palma, "Fog Computing in Healthcare–A Review and

Discussion," in IEEE Access, vol. 5, pp. 9206-9222, 2017.

[65] D. R. Ries and G. C. Smith, "Nested Transactions in Distributed Systems," in IEEE Transactions on Software

Engineering, vol. SE-8, no. 3, pp. 167-172, May 1982.

[66] dispy: Distributed and Parallel Computing with/for Python by GiridharPemmasani,

https://pgiri.github.io/dispy/

[67] Raspberry Pi 3 Model B+, https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

[68] Raspberry Pi 4 Model-B with 4 GB RAM, https://robu.in/product/raspberry-pi-4-model-b-with-4-gb-ram/

[69] How to Impose High CPU Load and Stress Test on Linux Using ‘Stress-ng’ Tool,

https://www.tecmint.com/linux-cpu-load-stress-test-with-stress-ng-tool/

[70] Kanani P., Padole M. (2018) Recognizing Real Time ECG Anomalies Using Arduino, AD8232 and Java. In:

Singh M., Gupta P., Tyagi V., Flusser J., Ören T. (eds) Advances in Computing and Data Sciences. ICACDS

2018. Communications in Computer and Information Science, vol 905. Springer, Singapore

[71] Cardiology Teaching Package. http://www.nottingham.ac.uk/nursing/practice/resources/

cardiology/function/normal_duration.php

[72] Standard range of intervals, June 2017. E MEDICINE. http://emedicine.medscape.com/ article/2172196-

overview

[73] Normal ECG. https://meds.queensu.ca/central/assets/modules/ECG/normal_ecg.html

[74] Eduardo Jose da S. Luz et al., "ECG-based heartbeat classification for arrhythmia detection: A survey",

Computer Methods and Programs in Biomedicine, Volume 127, April 2016, Pages 144-164.

38

[75] Umer, Muhammad & Bhatti, Bilal & Tariq, Muhammad & Zia-ul-Hassan, Muhammad & Khan, Muhammad

& Zaidi, Tahir. (2014). Electrocardiogram Feature Extraction and Pattern Recognition Using a Novel Windowing

Algorithm. Advances in Bioscience and Biotechnology. 05. 886-894. 10.4236/abb.2014.511103.

[76] S. Sarkar, S. Chatterjee and S. Misra, "Assessment of the Suitability of Fog Computing in the Context of

Internet of Things," in IEEE Transactions on Cloud Computing, vol. 6, no. 1, pp. 46-59, Jan.-March 2018.

[77] Muhammad Iqbal et al.,"Evaluating TCP performance of routing protocols for traffic exchange in street-

parked vehicles based fog computing infrastructure", Journal of Cloud Computing: Advances, Systems and

Applications (2020) 9:18 https://doi.org/10.1186/s13677-020-00159-w

[78] Sumit Singh Dhanda, Brahmjit Singh, Poonam Jindal, Lightweight Cryptography: A Solution to Secure

IoT, Springer, 2020, Wireless Personal Communications, 112(4):1-34, June 2020

