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Chapter 1  

Introduction 

Prevailing variety of applications are generating a huge amount of data regularly, 

which is much beyond our imagination.  According to an IBM study, nearly 2.5 

quintillion bytes of data is created every year, so much that about 90% of the data in 

the world today has been created in the last two years itself (Ibm.com., 2019a). 

Directly or indirectly, each individual plays a big role in generating this tremendous 

amount of data, through Social Networking Sites by posting or creating self images 

or sending audio/video messages etc. This huge amount of data may be referred as 

“Big Data”. The term “Big Data” was coined for the data which is difficult to store, 

process, and analyze using conventional approaches. The Big Data can be 

characterised using four V’s (Laney, 2001; IBM Big Data & Analytics Hub, 2018): 

Volume, Velocity, Variety, and Veracity. The first two ‘V’s i.e. Volume and Velocity 

relate to the quantitative part of data while the remaining two ‘V’s i.e. Variety and 

Veracity relate to the qualitative part of the data. Conceptually, Volume refers to a 

massive size of data and Velocity refers to the pace with which data is generated. 

The Variety refers to diversity of data (i.e. unstructured, semi-structured, and 

structured data) and Veracity refers to trustworthiness of data source.  

Big Data storage, processing and its analytics, have played a major role in the 

growth of the industry, business, health care, research and many more areas.  These 

days, data that is generated is not available merely in structured format, but it is also 

available in unstructured and semi-structured format. Moreover, data these days is 

no more static in nature, but it is very dynamic as it is growing exponentially. 

Therefore, the challenge lies not just in storing Big Data but also in processing Big 

Data optimally. For data-intensive computational processing, we consider a highly 

reliable and invariably accepted distributed computing model.   

Distributed computing architecture allows scalability in a transparent way by 

bringing together many computing units via a high-speed network. Distributed 
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computing enables division of Big Data problems in context of processing, storage 

and analysis, into smaller sub-problems, so as to solve it in an optimum way (Gilbert 

and Lynch, 2002). In distributed computing one of the major challenges for 

managing Big Data is the latency, while measuring the performance parameters such 

as data access time, transmission time, and throughput etc. It is insignificant to 

implement Big Data processing platform in a high latency infrastructure, if 

performance is important. Therefore, it is important to leverage the distributed 

computing platform to reduce latency. Many researcher and scientists have 

proposed various tools and techniques, to reduce the latency of distributed 

computing infrastructure. Many distributed framework such as Hadoop, Spark, 

Flink, Storm, Samza etc support Big Data processing. Due to less expensive hardware 

requirement and wide adaptability compared to rest of the models (I2.wp.com, 

2018), we chose Apache Hadoop for our research implementation. 

Apache Hadoop (Hadoop.apache.org, 2018a) is an open source, scalable, and 

fault-tolerant framework with the immense potential of large-scale data processing. 

Hadoop has it all that we expect from the distributed computing environment. 

Firstly, for distributed file storage Hadoop uses the Hadoop Distributed File System 

(HDFS). Secondly, for multiple resource management and simultaneous processing 

on multiple nodes, Hadoop uses Yet Another Resource Negotiator (YARN) and 

MapReduce programming model respectively. All these three components are 

helpful in providing fully distributed infrastructure for Big Data processing. 

Hadoop distributed file system provides highly scalable, fault-tolerant, 

reliable and vastly available data storage. HDFS is effortlessly scalable across 

multiple low-cost commodity hardware machines and maintains replicas to achieve 

reliability, availability, and fault-tolerance. Hadoop uses HDFS block placement 

policy for data placement and replica management. YARN handles the resources of 

the cluster and schedules the Map-Reduce applications for effective utilization of 

cluster. YARN does that with the Resource Manager and Application Master 

respectively. YARN provides middle-level service between data storage (i.e. HDFS) 

and application processing (MapReduce) model. MapReduce support high-level 

concurrent processing to perform parallel computation across distributed data and 
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resources. In the MapReduce model, Map phase maps the data blocks from multiple 

resources and generates key-value pairs. Hereafter key-value pairs are processed in 

Reduce phase by a shuffle and sorting to produce output and store it on HDFS. In 

MapReduce job placement and scheduling is important to gain optimum 

performance. Therefore, node labeling and scheduling plays a vital role in job and 

task level assignment. 

In the case of Hadoop, by implementing Node Labelling, we can actually select 

the nodes for running specific applications. This feature is important as we can 

choose nodes based on application characteristics and requirement of resources. At 

the same time scheduling is equally important for effective use of available 

resources in Hadoop cluster. Various Hadoop schedulers and their performance 

comparison (Shah and Padole, 2018) are discussed in detail in section 3 and 4 

respectively. 

The rest of the sections, we discuss our motivation to carry out this study, the 

research objective and research methodology that was followed for our research 

work. Since our approach is based on block rearrangement policy, the reader can 

find a detailed overview of existing block placement strategy and proposed model in 

later part of the thesis. 

1.1 Motivation 

Distributed computing is inevitable to store and process Big Data. Distributed 

computing allows managing distributed data storage and processing on multiple 

machines. Hadoop framework provides a distributed computing infrastructure for 

Big Data storage and processing. Hadoop framework facilitates the distributed 

storage using the Hadoop Distributed File System (HDFS). HDFS is one of the core 

components of Hadoop, which is used for efficient distributed computing.  HDFS 

uses block placement policy for placing data blocks (i.e. large files split into blocks of 

smaller size) on multiple machines. 

In HDFS default block placement policy, we do not have control over block 

placement and cannot choose nodes for storage and processing which may result in 
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poor load distribution for heterogeneous cluster and may affect MapReduce 

performance. In MapReduce, load unbalancing may create two major problems: 

First, if MapReduce containers are running on the datanodes which have low 

processing capability, then the job will get delayed. Second, If MapReduce containers 

do not get data blocks where tasks are processing, then blocks will automatically 

transfer from the nodes of same rack or other racks to the running containers. In 

both the cases, overall execution time will increase due to high latency and less data 

locality respectively. 

HDFS block placement policy fails to achieve optimum performance 

specifically for the heterogeneous cluster. In today’s era of computing, one cannot 

envisage having cluster nodes made up of similar configuration called homogeneous 

cluster. Heterogeneous nodes are having different processing capability and few 

nodes can be slow due to lower CPU/memory, bad disk, and network congestion. 

There is a need for better block placement approach in Hadoop which leverages 

over the heterogeneous cluster and remove these slow nodes from processing to 

achieve better performance. Hence, Hadoop default HDFS block placement policy 

needs to be improvised, so as to consider node processing capability or 

heterogeneity of the system. If processing capability of nodes or heterogeneity of the 

system is taken into consideration for block placement, then better performance can 

be achieved, compared to the default policy. 

1.2 Research Objective 

The prime objective of this research work is to build an ecosystem for big data 

processing which can work efficiently for the Hadoop heterogeneous cluster. We 

strive towards making policy to improve Hadoop data locality and load balancing by 

implementing block rearrangement scheme to optimize the performance of Big Data 

processing using heterogeneous distributed computing. Our concern is to work on 

two aspects Hadoop, to improve performance for Big Data processing. Firstly, to 

improve file management in the HDFS and secondly, to improve process 

management for Big Data job processing. 



Chapter 1. Introduction 

5 
 

In order to optimize Big Data processing time, it is important to optimize 

Hadoop performance. More specifically, we focus on to optimize the performance of 

heterogeneous distributed cluster as, Hadoop by default, has limited performance 

outcome for data-intensive jobs. To accomplish our objective, we do not want to rely 

on results which are application dependent, but we focus on wide and generalised 

applicability and adaptability of existing cluster hardware and software 

configuration. Therefore, simply customizing Hadoop default parameters such as 

tuning number of reducers, combiners, compression algorithms, and JVM reuse to 

get better performance is not sufficient. Instead, we focus on, to design an approach 

which can use existing hardware support, computation capability and effectively use 

node labelling and scheduling schemes to  meet our prime goal. 

In order to achieve the objective, we define following sub goals for optimizing 

Hadoop performance for Big Data processing. 

 Improve data locality: Data locality refers to the concept, “Moving Computation 

is Cheaper than Moving Data” (Hadoop.apache.org, 2018f). In order to meet our 

objective, we find that data locality plays a vital role in optimizing Hadoop 

performance. We strive towards making a model, which can achieve more data 

locality than one that works by default.  

 Remove stragglers: It is important to note that the slower machine slows the 

entire job (Coursera, 2019). These slow nodes are called as stragglers. Nodes can 

be slow due to bad disk, network bandwidth, and slower CPU / memory. The 

performance of Hadoop also effects due to stragglers. Therefore, we present an 

approach to remove straggler from MapReduce processing.  

 Load balancing: In order to achieve load balancing, it is important to tweak 

default HDFS block placement policy. Default HDFS block placement policy does 

not consider optimization of the heterogeneous cluster. Therefore, there is a 

need for better block placement policy, which can leverage the heterogeneity of 

nodes. We propose to design a block rearrangement scheme which can evenly 

balance the load amongst heterogeneous nodes. 
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 Application transparent: In case of data-intensive applications, it is important 

that the applied optimization technique should be adaptable to the application in 

consideration. It is always preferable that users take the advantage of newly 

designed optimization technique without rewrite or recompile the application. 

We try towards making our optimization model such a way that it should be 

application independent and leverages the existing application for wide 

applicability.   

 System independent: To achieve better performance in the heterogeneous 

cluster, it is important to design an optimization model which is system 

independent. Therefore, we strive towards making policy which does not change 

with the system and easily able to scale the optimization model as and when 

required.   

 Less client involvement: We firmly believe that Hadoop system tuning to 

achieve better performance require a lot of efforts and in-depth knowledge of 

Hadoop cluster and configuration.  In order to meet our goal, we propose a 

model which requires minimal client involvement, to make a decisions regarding 

node selection for processing, based on the available hardware capability of the 

cluster. 

1.3 Research Methodology 

To carry out this research, we followed an empirical approach. The analytical or 

mathematical model for optimization did not suit our approach. Our approach was 

based on improving the performance of Hadoop heterogeneous cluster for Big Data 

processing. Therefore, the only reliable performance measure was the practical 

implementation of our research problem. First, we conducted an in-depth research 

study about past work done in the areas of distributed scheduling algorithms, 

distributed filesystem, Hadoop schedulers, and performance optimization 

approaches in Hadoop. The outcome of this literature study helped us to establish a 

Hadoop heterogeneous cluster. It also gave us insight into performance bottlenecks 

in Hadoop and various strategies already established by researchers and scientists.  
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Once we studied HDFS block placement policy and performance issues in the 

heterogeneous cluster, we found an opportunity to design a block rearrangement 

policy which can leverage the heterogeneous cluster, without compromising with 

the performance of Hadoop. Next, as proposed, we implemented “Saksham” – a block 

rearrangement policy to eliminate the limitations of the default policy. While trying 

to get better data locality, we used, node labelling and scheduling along with the 

proposed “Saksham” algorithm, for block rearrangement. Finally, we tested the 

“Saksham” model by comparing the results with default Hadoop and default node 

labelling approach and saw significant improvement in Hadoop performance. We 

used data locality, job completion time, and latency as our performance measuring 

parameters, for data-intensive applications. 

For this research experiments, we implemented Hadoop cluster on 

commodity hardware as well as on highly configured system environment. We chose 

Hadoop benchmark applications for our experiment and publicly available datasets. 

We used Grid’5000 large-scale distributed infrastructure for our experiments.  

1.4 Thesis Organization 

The rest of the thesis is organized as follows. 

 Chapter-2 gives an overview of Big Data. It also discusses distributed 

computing and heterogeneous distributed computing. Distributed computing 

performance highly relies on a distributed file system (DFS) and scheduling 

algorithms. Therefore, we discuss it in detail in this chapter. 

 Chapter-3 gives in-depth information about Hadoop. First, we introduce 

Hadoop and three core components of its architecture. Second, we also describe an 

overview of two important aspects of model i.e. node label and scheduler. Finally, we 

discuss some of the challenges of Hadoop on which researchers can target upon. 

 Chapter-4 presents the literature review. This section briefs about various 

distributed scheduling algorithms, different types of distributed file systems, 

practical analysis of scheduling algorithms and various performance improvement 

strategies in Hadoop.  
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 Chapter-5 discusses about our research contribution and proposed algorithm 

called ‘Saksham’ for defining the block placement policy in Heterogeneous Cluster. 

The chapter also discusses, as proposed, the node labelling concept that considers 

the storage and processing capability of the node, before placing the file blocks in 

the given node. This helps in optimally scheduling the task on the given node, based 

on the availability of the data and the processing capability of the node. 

 Chapter-6 summarizes the test results of two Hadoop benchmark 

applications i.e. WordCount and TeraSort. We demonstrate the block rearrangement 

policy and present how we leverage node processing capability for enhancing the 

performance of Hadoop. Our results show that our proposed model can achieve high 

data locality, less job completion time, and load balancing while incurring negligible 

rearrangement time overhead. 

 Chapter-7 concludes the research carried out and discusses the future work. 


