

41

Chapter 4

Literature Work: Analysis &

Comparison

In this section, literature study is divided into four parts: First, various distributed

file systems which are widely used for Big Data storage. Second, various scheduling

algorithms for heterogeneous distributed computing are discussed. Third, default

Hadoop schedulers with their implementation and results are discussed. Last,

alternative approaches adopted and designed by researchers and scientists to the

implementation and improvement of load balancing algorithms and performance in

Hadoop are discussed.

4.1 Study of Various Distributed File System

For Big Data storage there is a need of ideal Distributed File System (DFS) which can

provide a wide range of support for distributed file storage, parallel file access and

at the same time scalability for high performance. To achieve effective distributed

computing infrastructure DFS is a core component of it. Therefore, it must support

and fulfill the taxonomy of DFS described by Thanh et al., 2008. In the paper

(Satyanarayanan, 1989) the author discussed various issues of DFS. The various

distributed file systems have been surveyed in papers (Guan et al., 2000; Thanh et

al., 2008; Depardon et al., 2013) by researchers and scientists.

As it was discussed in section 2 that idyllic DFS should be fault-tolerant,

scalable and transparent, that apparently provides high availability and high

performance. When Distributed file systems was not on its peak for distributed

computing during 1980s-1990s, various DFS architectures such as NFS (Sandberg et

al., 1985), Andrew file system (AFS) (Howard et al., 1988), CODA, (Satyanarayanan,

1990), Frangipani (Thekkath et al., 1997), and many more were introduced. In paper

Guanet al., 2000 has reviewed these and many other old days’ well known

Chapter 4. Literature Work: Analysis & Comparison

42

distributed file systems and found that none of those file systems could achieve all

the characteristics of distributed computing.

Distributed computing has become an unquestionable choice in the age of

21st century when data and internet users are growing like anything. As data

becomes Big Data, there a rises a need of distributed file system which can leverage

over multiple storage devices, widely available and its performance does not get

degraded. As no previous 1990s distributed file system met the requirement of Big

Data storage and processing new file systems are devised.

Many distributed file systems are developed to overcome problems of old file

systems discussed above. As our focus in thesis is on Big Data processing, here we

have compared some well-known and most widely used distributed file system

which fulfills the need of Big Data storage and process. We surveyed five distributed

file systems, Google File System (GFS) (Ghemawat et al., 2003), Lustre (Braam and

Zahir, 2002; Schwan, 2003), Ceph (Weil et al., 2006), Hadoop Distributed File System

(HDFS) (Shvachko et al., 2010), and GlustreFS (Docs.gluster.org, 2018) which are

application independent and used for general purpose. Here table 4.1 illustrates

comparative study of various distributed file systems.

Google file system- also known as GoogleFS is designed by Google for

distributed cluster storage. It is implemented by its own cluster storage platform for

data-intensive applications. GFS uses commodity hardware machines named as

chunk servers for distributed storage. GFS meets most of the design constraints of

the distributed file system and efficiently utilizes low-cost machines.

Lustre is an open-source parallel file system (Lustre.org, 2018) that meets

the requirement of High-Performance Computing file system. Lustre uses diskless

workstation architecture rather than multiple storage units. Lustre maintains

metadata on a shared server called Metadata Target (MDT) and also keeps the copy

of those metadata for failover on Metadata Servers (MDS).

Ceph is a reliable, easy to manage, next-generation software based

distributed object store that provides storage of unstructured data for Big Data

Chapter 4. Literature Work: Analysis & Comparison

43

applications. Ceph is a Reliable, Autonomous, Distributed Object Store (RADOS)

comprised of high availability, scalability and intelligent storage nodes.

 GFS Lustre Ceph HDFS GlusterFS

Storage
Type

Object-
based

Object-
based

Object-
based

Object-
based

File-
based

Metadata
storage

Centralized Centralized Distributed Centralized
Decentraliz

ed
Naming
Service

Index Index CRUSH Index EHA

Operating
System
support

Linux
Kernel

Linux
Kernel

Linux,
FreeBSD

Cross-
platform

Linux, OS X,
FreeBSD,
NetBSD,

OpenSolaris
Application Stateful Stateful Stateful Stateful Stateful

Communic-
ation

RPC,
TCP/IP

InfiniBand TCP
RPC,

TCP/IP

TCP/IP,
InfiniBand
or Sockets

Direct
Protocol

Fault
Tolerant

Yes Yes Yes Yes Yes

System
availability

No failover Failover High High High

Data
availability

Replication No Replication Replication RAID-like

Placement
strategy

Auto No Auto Auto Manual

Replication
Asynchron

ous
RAID-like

Synchrono
us

Asynchron
ous

Synchronou
s

Load
balancing

Auto No Manual Auto Manual

Security
mechanism

No Yes Yes No No

* EHA – Elastic Hash Algorithm

Table 4.1 Comparison of Various DFS

 HDFS is an open source distributed file system designed from GoogleFS.

HDFS has achieved a great success compared to other file systems due to its

adaptability to run on any hardware machines and also cross-platform support.

HDFS maintains two namenode servers for providing high system availability.

GlustreFS is another open source software-based network file system for

data storage which leverages on commodity hardware just like GFS and HDFS.

Chapter 4. Literature Work: Analysis & Comparison

44

GlusterFS is specially designed for cloud storage and media streaming. Unlike other

DFS, GusterFS uses hardware RAID for replica management.

Distributed file systems are standard solutions for cloud storage, cluster

storage, and data centers. All five surveyed DFSs supports transparency and fault-

tolerance. But there are no DFSs which fit all, means all provide distributed storage

but all have their own differences lying in design and implementation. Therefore, the

choice of DFSs is important depending upon the need of application and availability

of resources. Furthermore, practical implementation and tests can justify the above

theoretical comparison. But from the above comparison, we come down to a

solution that for our research problem HDFS is a better approach as it supports

heterogeneity of OS and open-source Hadoop framework support.

4.2 Study of Scheduling Algorithms in HeDC

Scheduling always remains an area of research in any computing technique. It is

important to choose proper scheduling algorithms especially when you’re dealing

with heterogeneous environments. In heterogeneous environment resources are of

distinct configuration. Consequently if proper resources are not allocated for

execution of tasks, your task may get delayed and result in poor job scheduling.

For any scheduling primary objectives of algorithms are optimizing job

completion time as well as resource utilization. Based on scheduling objectives they

are categorized into two categories: Application Specific and System Specific. In case

of Application Specific scheduling the main objective is to consider the performance

of an application considering various parameters such as makespan, scheduling type

and cost. While in case of system specific scheduling the areas of concern are

resource utilization, resource multiplicity and load balancing to improve overall

system performance. Figure 4.1 shows the objective-based classification of

scheduling algorithms.

In application specific scheduling everything is monitored in terms of its

impact on the application. For application specific scheduling it is very much

important to consider heterogeneity hardware. For the performance essentiality the

Chapter 4. Literature Work: Analysis & Comparison

45

measure set is widely distributed under time and money. Most of the distributed

applications are concerned with time, like makespan, which is time taken to

complete the job and overall economic cost of running application.

Figure 4.1 Objective-based Classification of Scheduling Algorithms

In System specific objectives are usually related to resource utilization, which

resources are busy at what percentage of time. Types of resources and their effective

utilization have a direct impact on the performance of an individual application and

must be considered. System specific objectives are usually related to resource

utilization, resource multiplicity and load balancing.

4.2.1 Comparative Study

The scheduling algorithms discussed below are widely adopted for scheduling on

distributed environment. The table 4.2 shows comparative study of these algorithms

highlighting scheduling approach used by a specific technique and probable

enhancement to be considered for better performance.

Zheng and Sakellariou (2013) proposed Monte Carlo based Directed Acyclic

Graph scheduling approach with the objective to minimize the makespan for BNP.

This approach works well for any random distribution under heterogeneous

environment. This approach gives competitive advantage compared to other static-

heuristic techniques.

Munir et al. (2013) proposed standard deviation based algorithm for task

scheduling (SDBATS) to reduce schedule length and speed up the scheduling by

assigning task priority.

Application

Specific

System Specific

Makespan

Economic Cost

Resource Utilization

Load Balancing

Objective

Function

Multiplicity of

Resource

Scheduling Type

Chapter 4. Literature Work: Analysis & Comparison

46

Kwok and Ahmad (1999) proposed to optimize the makespan by considering

a wide range of techniques, genetic algorithm, randomized branch-and bound and

graph theory. Authors have proposed many useful static, heuristic algorithms (e.g.,

HEFT, MCP, ETF, and DLS) but that will not be effective in today’s era of big data.

Kanemitsu et al. (2016) proposed clustering based task scheduling algorithm

that minimizes the schedule length for heterogeneous processors. It is apt for data

intensive application and it has proven to be better than other list based and

clustering based task scheduling algorithms.

Abdelkader and Omara (2012) proposed dynamic task scheduling algorithm

for heterogeneous systems called Clustering Based HEFT with Duplication

(CBHD).This algorithm targets three important parameters for getting better

performance, minimize the makespan, load balancing and optimize the sleek time.

He et al. (2011) proposed Multi-queue Balancing (MQB) algorithm that

minimizes the makespan and maximizes the heterogeneous resource

utilization.MQB has multiple queues for online scheduling to achieve better

utilization and minimizing completion time.

Wang et al. (2016) proposed heterogeneous scheduling algorithm with

improved task priority (HSIP) for improvising schedule length ratio and task

priority. This algorithm performs two-step process. First it identifies task priority

and second it finds the best processor to execute the tasks.

Ahmad et al. (2012) proposed performance effective genetic algorithm

(PEGA) which operates through large search space and finds the best solution using

reproduction concept. Reproduction uses two operators namely crossover and

mutation to select a random task and performs fitness function on it to select the

best task to execute on the heterogeneous parallel multiprocessor system.

Ahmad et al. (2016) proposed hybrid genetic algorithm (HGA) is a hybrid

combination of HEFT heuristic and PEGA genetic algorithm. It provides optimum

makespan and load balancing over heterogeneous systems.

Chapter 4. Literature Work: Analysis & Comparison

47

Cardellini et al. (2015) proposed distributed QoS-aware scheduling with self-

adaptive capability in storm. By using this concept authors tried to overcome the

limitation of high latency, less availability and poor system utilization in distributed

data stream processing (DSP).

Arabnejad and Barbosa (2014) proposed Predict Early Finish Time (PEFT) to

speed up and optimize makespan. It has two phases: task prioritizing and a

processor selection which identifies task priority and allocates it to the best

processor accordingly.

Khaldi et al. (2015) proposed static-heuristic scheduler called bounded

dominant sequence clustering (BDSC) is an extension of DSC limiting memory

constraints and the bounded number of processors. It is suitable for signal

processing and image processing kind of application.

Li et al. (2015) proposed stochastic dynamic level scheduling (SDLS)

algorithm to minimize the makespan. This algorithm outperforms when tasks arrive

randomly.

Barbosa and Moreira (2011) proposed parallel heterogeneous earliest finish

time (P-HEFT) which is an extension of HEFT. P-HEFT supports parallel task DAG

which provides optimized makespan that makes it suitable for image processing

type of application.

Choudhury et al. (2012) proposed online scheduling of dynamic task graphs.

Algorithm provides dynamic path selection option by scheduling tasks at run time.

The proposed algorithm is assumed to be limited to homogeneous systems. But it

can be extended further to heterogeneous systems by taking the base of this

algorithm.

Tang et al. (2015) proposed self-adaptive reduce scheduling (SARS) for

Hadoop platform. During MapReduce phase, it reduces waiting time by selecting

adaptive time to schedule the reduce task. This method reduces turnaround time.

Chapter 4. Literature Work: Analysis & Comparison

48

Ta
b

le
 4

.2
 C

o
m

p
ar

is
o

n
 o

f
V

ar
io

u
s

Sc
h

ed
u

lin
g

A
lg

o
ri

th
m

s

Chapter 4. Literature Work: Analysis & Comparison

49

Chapter 4. Literature Work: Analysis & Comparison

50

Chapter 4. Literature Work: Analysis & Comparison

51

Chapter 4. Literature Work: Analysis & Comparison

52

*DAG- Directed Acyclic Graph, SD-Stand Deviation, HEFT- Heterogeneous Earliest Finish Time, MCP- Modified Critical

Path, HLEFT-Highest Level First Estimate Time, DLS-Dynamic Level Scheduling, GA- Genetic Algorithm, ETF-Earliest

Time First, ISH-Insertion Scheduling Heuristic, HCPT-Heterogeneous Critical Parent Trees, PETS-Performance Effective

Task Scheduling, HPS-High Performance Task Scheduling. SHCP-Scheduling with Heterogeneity using Critical Path,

HHS-Hybrid Heuristic Scheduling, RR-Round Robin, SJF, Shortest Job First, FCFS - First Come First Serve, BDSC-

Bounded Dominant Sequence Clustering, MPQGA-Multiple Priority Queues Genetic Algorithm, HSCGS-Hybrid

Successor Concerned Heuristic-Genetic Scheduling, cRR-Centralized Round-Robin, cOpt-Centralized Optimal

scheduler, FIFO-First In First Out

4.3 Study of Scheduling Algorithms in Hadoop

Applications involving Big Data need enormous memory space to load the data and

high processing power to execute them. Individually, the traditional computing

systems are not sufficient to execute these big data applications but, cumulatively

they can be used to meet the needs. This cumulative power for processing Big Data

Applications can be achieved by using Distributed Systems with Map-Reduce model

under the Apache Hadoop framework. Mere implementation of the application on

Distributed Systems may not make optimal use of available resources. Hence,

optimizing scheduling algorithms may further improvise the use of resources. In this

study, we implement and test the results of the scheduling algorithms discussed in

next sub section. Later we discuss how fine-tuning of scheduling policies can be used

to achieve better performance of different applications, which have been

implemented and tested in Apache Hadoop. The results represented here have been

published in (Shah and Padole, 2018).

4.3.1 Experimental Environment, Workload, Performance Measure &

Queue Configuration

In this paper, we evaluate the performance of two Hadoop schedulers by using three

built-in scheduling policies (i.e., FIFO, Fair, and DRF) and test it in context to

different queue settings. The performance metrics include six dimensions, which are

data locality, latency, completion time, turnaround time, CPU and memory

utilization. For our experiment, we implemented Hadoop-2.7.2 cluster (Refer to

Appendix I). The cluster consisted of 1 master node and 11 slave nodes. The

important information of the cluster configuration is shown in table 4.3.

Chapter 4. Literature Work: Analysis & Comparison

53

Six big-data jobs were chosen for this experiment. Those were WordCount,

WordMean, TeraSort, and PiEstimator. Here WordCount and WordMean were CPU-

intensive jobs while TeraSort and PiEstimator were more memory intensive job.

WordCount calculates total number of words in a file while WordMean

calculates average length of words in a given file. TeraSort performed on data

generated by TeraGen and PiEstimator estimates the value of Pi. Our workload is a

combination of CPU and memory intensive jobs to check the performance of Hadoop

schedulers in an experimental environment in a very effective way. Details of each

job are given in table 4.4.

Table 4.3 Hadoop Cluster Configuration

Table 4.4 Total Workload Distribution

The performance of the Hadoop schedulers has been evaluated by considering

following parameters:

 Locality: HDFS maintains the copy of the data splits across the datanodes.

When any job is executed, MapReduce divides the job among multiple tasks,

which is submitted for execution on multiple datanodes. Each mapper

Chapter 4. Literature Work: Analysis & Comparison

54

requires the copy of data to process, if the data is not available on the same

datanode it will find and bring a copy of data from other datanodes over the

network, to the node where it is required. So if the data is available on the

same node, it is called data local, if it is available on the same rack, it is called

rack local and if both scenarios fail then it will be copied from a different

rack. So if a job finds most of the data locally then completion time of job

would be better than rack local or different rack data. (The data found on

another node but within the same cluster is known as data on same rack. If

data is residing on a datanode in a different cluster, it is referred as a

different rack)

 Latency: It is the time that a job has to wait, until getting scheduled, after the

job is submitted.

 Completion Time: It is the difference of finish time and start time of a job. It

is the sum of actual execution time of the job and the waiting time, if any.

 Turnaround Time: It is the total amount of time elapsed between

submission of the first job and till the completion of the last job, in the queue.

 CPU & memory utilization: Hadoop counters provide the time spent by the

job on CPU and total memory bytes utilized by the job.

For the experiment purpose three types of job queues have been configured: a.)

Single Queue b.) Multi-Queue c.) Mixed-Multi Queue

Single Queue

In a single queue, all the resources of a cluster will be used by one queue only. All

jobs will be entered and scheduled according to the scheduling policy and

availability of resources. Capacity Scheduler will be configured with FIFO while Fair

Scheduler can be configured with FIFO, FAIR or DRF policy. These four schemes

(Cap-FIFO, Fair-FIFO, Fair-FAIR, and Fair-DRF) will be evaluated based on discussed

six variables using workload listed in table 4.5.

Multi-Queue

Chapter 4. Literature Work: Analysis & Comparison

55

Here for our experiment, we have considered three queues where each queue will

be running a similar kind of application. Three queues named “A”, “B” and “C” is

configured with 30%, 40% and 30% resources respectively of the total resources

available. These queues have been kept soft so that each queue can use 2 times of its

configured capacity for elasticity purpose. Jobs are allocated to the queues as per

given table 4.5.

Mixed-Multi Queue

In this case, to test the performance variation we alter jobs to different queues. If we

put different types of applications in the same queue, performance is measured as to

how it affects the performance in such situation. For our experiment mixed-jobs are

allocated to the queues as per table 4.5.

4.3.2 Performance Evaluation

For our experiment, each application has been executed 5 times to validate the

results of the evaluated performance. Performance evaluation is carried out without

changing its default settings except for the queue settings of the schedulers.

Table 4.5 Workload Assignment to the Queue

Single Queue

All six big-data applications are entered into a single queue with normal 2 seconds of

delay. By looking at the results in fig. 4.2 (a) it is quite evident that in Cap-FIFO

scheduler job waiting time and completion time is comparatively quite high as

compared to other three scheduling policies. Fair-FIFO has less waiting time as a job

Chapter 4. Literature Work: Analysis & Comparison

56

gets scheduled by a fair policy but completion time is more compared to Fair-Fair

and Fair-DRF policy. While Fair-Fair and Fair-DRF perform better, it has almost

similar job waiting time and completion time. As shown in fig. 4.2 (b) in terms of

turnaround time also Fair-Fair and Fair-DRF outperforms other scheduling policy.

As shown in table 4.6 in terms of data locality, 74.40% tasks are data local in Fair-

DRF which means that Fair-DRF finds maximum data task as data local out of the

total tasks launched. Moreover, Fair-DRF provides more resource efficiency as total

task launched by Fair-DRF is less compared to others. In terms of CPU time &

memory usage shown in fig. 4.3, Fair-Fair is better as it utilizes less CPU time and

uses the physical memory effectively.

(A) (B)

Figure 4.2 (A) Average Total Time (B) Average Turnaround Time (Single Queue)

Table 4.6 Data Locality

(Percentage shows how many % of data found data local out of the total task launched)

Chapter 4. Literature Work: Analysis & Comparison

57

Figure 4.3 CPU & Memory Usage (Single Queue)

Multi-Queue

As illustrated by fig.4.4 (a), in Cap-FIFO scheduler job waiting time is less but

completion time is comparatively quite higher than other three scheduling policies.

Fair-FIFO performs better in terms of the job waiting time and completion time in

comparison with Fair-Fair and Fair-DRF policy. Moreover, fig. 4.4 (b) depicts that

Fair-FIFO is more efficient than Fair-Fair and Fair-DRF scheduling policy in terms of

turnaround.

In terms of data locality, as illustrated by table 4.6, 76.33% tasks are data

local in Fair-Fair indicating that Fair-Fair finds maximum data task as data local out

of the total tasks launched. Furthermore, Fair-Fair supplements more resource

efficiency as total task launched by Fair-Fair is less compared to others. In terms of

CPU time and memory usage shown in fig. 4.5, Fair-FIFO is better since it utilizes less

CPU time and uses the physical memory constructively.

Mixed-Multi Queue

It is quite obvious from fig.4.6 (a) that in Cap-FIFO scheduler job waiting time is less

but completion time is considerably very high as compared to other three

scheduling policies. Fair-Fair and Fair-DRF perform quite alike in terms of the job

Chapter 4. Literature Work: Analysis & Comparison

58

waiting time but if total time is considered, then Fair-DRF performs better than rest

of all scheduling policies. Fig. 4.6 (b) suggests that Fair-DRF is more effective than

Fair-Fair and Fair-DRF scheduling policy in terms of turnaround.

(A) (B)

Figure 4.4 (A) Average Total Time (B) Average Turnaround Time (Multi-Queue)

Figure 4.5 CPU & Memory Usage (Multi-Queue)

Table 4.6 elucidates that in terms of data locality, 72.29 % and 72.19 % tasks are

data local in Fair-DRF and Fair-Fair respectively. It indicates that Fair-Fair and Fair-

DRF find maximum data task as data local out of the total tasks launched. Moreover,

Fair-DRF gives more resource efficiency as total tasks launched by Fair-DRF is less

compared to others. In terms of CPU time and memory usage shown in fig. 4.7, Fair-

Fair & Fair-DRF performs similarly.

Chapter 4. Literature Work: Analysis & Comparison

59

(A) (B)

Figure 4.6 (A) Average Total Time (B) Average Turnaround Time (Mixed-Multi Queue)

Figure 4.7 CPU & Memory Usage (Mixed-Multi Queue)

Concluding Remarks

In this experiment, various Hadoop scheduling algorithms have been evaluated

based upon latency time, completion time and data locality. For the experiment

purpose, six big data applications have been implemented using three different

scheduling queue configurations such as Single-Queue, Multiple-Queue and Mix-

Multiple Queue. Various experiments were conducted by fine-tuning scheduling

policy for Hadoop environment. The results of the experiments are presented here

which may be useful in selecting a scheduler and scheduling policy depending upon

application that one wants to run. Based on the results, following conclusions can be

drawn:

Chapter 4. Literature Work: Analysis & Comparison

60

1. In single queue, Fair-DRF outperforms with reference to execution time and

effective resource usage capacity as compared to other three. Its only flaw is that

CPU usage time is a bit higher than Fair-Fair scheduler.

2. In multi-queue, Fair-FIFO is the best option if we consider workload waiting

time, completion time, turnaround time and CPU usage. Fair-Fair is better only

when resource utilization is important.

3. In mixed-multi queue, Fair-DRF is the most appropriate choice with respect to

resource utilization and workload execution performance.

The results which are drawn here can be application dependent and future

researcher can test the same with different application types. The future

enhancements can include testing the impact of delay scheduler on capacity and fair

scheduler. It is presumed that delay scheduling may make a significant impact on the

performance of the scheduler.

4.4 Study of Hadoop Performance Improvement Techniques

To improve the performance of Hadoop many researchers have worked with diverse

approaches. In distributed computing, load balancing is the key area which affects

overall performance significantly, since the system may consist of thousands of

computers in the cluster. Many researchers have worked on performance

improvement through effective load balancing using various custom-designed

algorithms and programming models. In paper authors (Shah and Padole, 2018),

have summarized notable research contribution for load balancing by scheduling

(Zaharia et al., 2008; 2010), load balancing during job processing (Liu et al., 2016;

2017) and load balancing using custom block placement (Dharanipragada et al.,

2017; Anon, 2018; Xie et al., 2010; Hsiao, 2013). In this section, we have summarized

some of the noteworthy work done to achieve better performance in Hadoop using

load balancing and custom block placement strategy.

In the paper (Muthukkaruppan et al., 2016) authors proposed the approach

which places the blocks based on a region placement policy. Data is stored into the

plurality of regions rather than the plurality of nodes. Therefore, the complete

Chapter 4. Literature Work: Analysis & Comparison

61

replica of the region can be stored into a contiguous portion of data. This policy

achieves fault tolerance and data locality for region based cluster storage.

Authors of paper (Qureshi et al., 2016) presented heterogeneous storage

media aware strategy which collects storage media, processing capacity and stores

them on different storage media types (i.e. HDD, SSD, RAM) according to workload

balance. The experiment proves that it reduces imbalance of the cluster.

In the paper (Qu et al., 2016) authors come up with a dynamic replica

placement which works on Markov probability model and places replica

homogeneously across the racks. Results show better job completion time compared

to HDFS and CDRM apart from a uniform distribution of replicas across all the

nodes.

In the paper (Meng et al., 2015) authors proposed a strategy which considers

network load and disk utilization for placing data blocks. Proposed strategy

outperforms default and real-time block placement policy and achieves better

performance in relevance to throughput and storage space utilization.

In the paper (Dai et al., 2017) authors proposed improved slot replica

placement policy which considers the heterogeneity of nodes and partitions of all

nodes in 4 sections to store data blocks. Section wise partition scheme achieves

greater load balancing and eliminates the use of HDFS balancer.

In the paper (Fahmy et al., 2016) authors presented a strategy which tracks

spatial characteristics of data to co-locate them. If data blocks are geographically

distributed across multiple data centers irrespective of the location where a job

runs, then it degrades the performance tremendously. Here authors have achieved

better query execution time by adding spatial data awareness which effectively

reduces the job execution time.

In paper (Park et al., 2016) authors proposed probability based DLMT (Data

Local Map Task Slot) approach which adjusts data placement rate along with replica

eviction policy to improve Hadoop performance and cluster space utilization

respectively.

Chapter 4. Literature Work: Analysis & Comparison

62

In paper (Herodotou et al., 2011) authors presented a model called “Starfish”

which dynamically adjusts the Hadoop parameter according to the workload of the

job. Starfish works with each phase of Hadoop, starting with job level tuning, real-

time parameter adjustment and finishing with process scheduling. It achieves great

performance compared to default Hadoop set up, placement policy and scheduling

scheme. Table 4.7 summarizes the work done by the researchers.

 Performance

Improvisation

Factors

Research

Contribution

Remarks

A region-

based

placement

policy

Fault tolerance

and data locality

Designed region

based cluster storage

system which stores

one complete replica

of the region on a

single node

This scheme is helpful

when plurality of region

servers is required.

Robust Data

Placement

Scheme

(RDP)

Load balancing

and optimal

network

congestion

Proposed RDP

scheme considers

the storage type (i.e.

SSD, HDD and RAM)

and processing

speed of a node for

balancing.

Authors have

successfully

demonstrated how

storage type and

computing capacity

prediction can achieve

better load balancing

and reduce network

overhead.

Pre-processing for RDP

scheme takes significant

amount of time when

multiple clusters with

variety of nodes are

there.

Dynamic

Replication

Strategy

(DRS)

Job scheduling

time and disk

utilization rate

Proposed dynamic

replica placement

based on Markov

model.

Authors have

successfully tested

model on homogeneous

cluster.

Authors have not

considered the time for

replication adjustment

which is an important

justification.

Chapter 4. Literature Work: Analysis & Comparison

63

Network

sensitive

strategy

Strong fault

tolerant block

placement and

high throughput

Designed scheme

which considers

network load for

data placement. Try

to place replica on

low network loaded

group of nodes.

Proposed strategy

reduces the inter-rack

transfers which

eventually increase the

performance also works

with heterogeneous

cluster.

Authors have not

considered the load

imbalance issue in

Hadoop.

Improved

replica

placement

policy

Load balancing Designed policy

which evenly

distributes the

replicas into section.

Proposed policy

achieves even load

balancing across nodes

which eliminates the

use of HDFS balancer.

Policy only proposed

for homogeneous

cluster.

CoS*-HDFS Reduces total

execution time

and network

bandwidth.

Proposed algorithm

which is aware of

geospatial data

blocks.

Proposed algorithm

improves performance

of MapReduce query

execution and reduces

network traffic.

Data

Replication

Method

Data locality and

replication

method

Proposed LRFA*

policy effectively

uses storage space of

cluster to achieve

better data locality.

Effectiveness and

performance is not

evaluated which they

have claimed.

Starfish Self-tuning

approach

Proposed self-tuning

Hadoop model to

achieve better

performance.

Improved block

placement policy

significantly improves

job running time.

Dynamic tuning also

tested successfully.
*CoS- Co-Locating Geo-Distributed Spatial Data, LRFA- Least Recently Frequently Access

Table 4.7 Various Hadoop Performance Improvement Techniques

