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Chapter 4  

Literature Work: Analysis & 

Comparison 

In this section, literature study is divided into four parts: First, various distributed 

file systems which are widely used for Big Data storage. Second, various scheduling 

algorithms for heterogeneous distributed computing are discussed. Third, default 

Hadoop schedulers with their implementation and results are discussed. Last, 

alternative approaches adopted and designed by researchers and scientists to the 

implementation and improvement of load balancing algorithms and performance in 

Hadoop are discussed. 

4.1 Study of Various Distributed File System  

For Big Data storage there is a need of ideal Distributed File System (DFS) which can 

provide a wide range of support for distributed file storage, parallel file access and 

at the same time scalability for high performance. To achieve effective distributed 

computing infrastructure DFS is a core component of it. Therefore, it must support 

and fulfill the taxonomy of DFS described by Thanh et al., 2008. In the paper 

(Satyanarayanan, 1989) the author discussed various issues of DFS. The various 

distributed file systems have been surveyed in papers (Guan et al., 2000; Thanh et 

al., 2008; Depardon et al., 2013) by researchers and scientists.  

As it was discussed in section 2 that idyllic DFS should be fault-tolerant, 

scalable and transparent, that apparently provides high availability and high 

performance. When Distributed file systems was not on its peak for distributed 

computing during 1980s-1990s, various DFS architectures such as NFS (Sandberg et 

al., 1985), Andrew file system (AFS) (Howard et al., 1988), CODA, (Satyanarayanan, 

1990), Frangipani (Thekkath et al., 1997), and many more were introduced. In paper 

Guanet al., 2000 has reviewed these and many other old days’ well known 
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distributed file systems and found that none of those file systems could achieve all 

the characteristics of distributed computing.  

Distributed computing has become an unquestionable choice in the age of 

21st century when data and internet users are growing like anything. As data 

becomes Big Data, there a rises a need of distributed file system which can leverage 

over multiple storage devices, widely available and its performance does not get 

degraded. As no previous 1990s distributed file system met the requirement of Big 

Data storage and processing new file systems are devised. 

Many distributed file systems are developed to overcome problems of old file 

systems discussed above. As our focus in thesis is on Big Data processing, here we 

have compared some well-known and most widely used distributed file system 

which fulfills the need of Big Data storage and process. We surveyed five distributed 

file systems, Google File System (GFS) (Ghemawat et al., 2003), Lustre (Braam and 

Zahir, 2002; Schwan, 2003), Ceph (Weil et al., 2006), Hadoop Distributed File System 

(HDFS) (Shvachko et al., 2010), and GlustreFS (Docs.gluster.org, 2018) which are 

application independent and used for general purpose. Here table 4.1 illustrates 

comparative study of various distributed file systems. 

Google file system- also known as GoogleFS is designed by Google for 

distributed cluster storage. It is implemented by its own cluster storage platform for 

data-intensive applications. GFS uses commodity hardware machines named as 

chunk servers for distributed storage. GFS meets most of the design constraints of 

the distributed file system and efficiently utilizes low-cost machines.  

Lustre is an open-source parallel file system (Lustre.org, 2018) that meets 

the requirement of High-Performance Computing file system. Lustre uses diskless 

workstation architecture rather than multiple storage units. Lustre maintains 

metadata on a shared server called Metadata Target (MDT) and also keeps the copy 

of those metadata for failover on Metadata Servers (MDS).   

Ceph is a reliable, easy to manage, next-generation software based 

distributed object store that provides storage of unstructured data for Big Data 
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applications. Ceph is a Reliable, Autonomous, Distributed Object Store (RADOS) 

comprised of high availability, scalability and intelligent storage nodes.   

 GFS Lustre Ceph HDFS GlusterFS 

Storage  
Type 

Object-
based 

Object-
based 

Object-
based  

Object-
based 

File- 
based 

Metadata 
storage 

Centralized Centralized Distributed Centralized 
Decentraliz

ed 
Naming 
Service 

Index Index CRUSH Index EHA 

Operating 
System 
support 

Linux 
Kernel 

Linux 
Kernel 

Linux, 
FreeBSD 

Cross-
platform 

Linux, OS X, 
FreeBSD,  
NetBSD, 

OpenSolaris 
Application Stateful Stateful Stateful Stateful Stateful 

Communic-
ation 

RPC, 
TCP/IP 

InfiniBand TCP 
RPC, 

TCP/IP 

TCP/IP, 
InfiniBand 
or Sockets 

Direct 
Protocol 

Fault 
Tolerant 

Yes Yes Yes Yes Yes 

System 
availability 

No failover Failover High High High 

Data 
availability 

Replication No Replication Replication RAID-like 

Placement 
strategy 

Auto No Auto Auto Manual 

Replication 
Asynchron

ous 
RAID-like 

Synchrono
us 

Asynchron
ous 

Synchronou
s 

Load 
balancing 

Auto No Manual Auto Manual 

Security 
mechanism 

No Yes Yes No No 

* EHA – Elastic Hash Algorithm 

Table 4.1 Comparison of Various DFS 

     HDFS is an open source distributed file system designed from GoogleFS. 

HDFS has achieved a great success compared to other file systems due to its 

adaptability to run on any hardware machines and also cross-platform support. 

HDFS maintains two namenode servers for providing high system availability.  

GlustreFS is another open source software-based network file system for 

data storage which leverages on commodity hardware just like GFS and HDFS. 
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GlusterFS is specially designed for cloud storage and media streaming. Unlike other 

DFS, GusterFS uses hardware RAID for replica management.  

Distributed file systems are standard solutions for cloud storage, cluster 

storage, and data centers.  All five surveyed DFSs supports transparency and fault-

tolerance. But there are no DFSs which fit all, means all provide distributed storage 

but all have their own differences lying in design and implementation. Therefore, the 

choice of DFSs is important depending upon the need of application and availability 

of resources. Furthermore, practical implementation and tests can justify the above 

theoretical comparison. But from the above comparison, we come down to a 

solution that for our research problem HDFS is a better approach as it supports 

heterogeneity of OS and open-source Hadoop framework support. 

4.2 Study of Scheduling Algorithms in HeDC 

Scheduling always remains an area of research in any computing technique. It is 

important to choose proper scheduling algorithms especially when you’re dealing 

with heterogeneous environments. In heterogeneous environment resources are of 

distinct configuration. Consequently if proper resources are not allocated for 

execution of tasks, your task may get delayed and result in poor job scheduling.  

For any scheduling primary objectives of algorithms are optimizing job 

completion time as well as resource utilization. Based on scheduling objectives they 

are categorized into two categories: Application Specific and System Specific. In case 

of Application Specific scheduling the main objective is to consider the performance 

of an application considering various parameters such as makespan, scheduling type 

and cost. While in case of system specific scheduling the areas of concern are 

resource utilization, resource multiplicity and load balancing to improve overall 

system performance. Figure 4.1 shows the objective-based classification of 

scheduling algorithms. 

In application specific scheduling everything is monitored in terms of its 

impact on the application. For application specific scheduling it is very much 

important to consider heterogeneity hardware. For the performance essentiality the 
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measure set is widely distributed under time and money. Most of the distributed 

applications are concerned with time, like makespan, which is time taken to 

complete the job and overall economic cost of running application. 

 

Figure 4.1 Objective-based Classification of Scheduling Algorithms 

In System specific objectives are usually related to resource utilization, which 

resources are busy at what percentage of time. Types of resources and their effective 

utilization have a direct impact on the performance of an individual application and 

must be considered. System specific objectives are usually related to resource 

utilization, resource multiplicity and load balancing.  

4.2.1 Comparative Study 

The scheduling algorithms discussed below are widely adopted for scheduling on 

distributed environment. The table 4.2 shows comparative study of these algorithms 

highlighting scheduling approach used by a specific technique and probable 

enhancement to be considered for better performance. 

Zheng and Sakellariou (2013) proposed Monte Carlo based Directed Acyclic 

Graph scheduling approach with the objective to minimize the makespan for BNP. 

This approach works well for any random distribution under heterogeneous 

environment. This approach gives competitive advantage compared to other static-

heuristic techniques. 

Munir et al. (2013) proposed standard deviation based algorithm for task 

scheduling (SDBATS) to reduce schedule length and speed up the scheduling by 

assigning task priority. 

 

Application  

Specific 

 

System Specific 

Makespan 

Economic Cost 

Resource Utilization 

Load Balancing 

 

Objective 

Function 

 

Multiplicity of  

Resource 

Scheduling Type 
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Kwok and Ahmad (1999) proposed to optimize the makespan by considering 

a wide range of techniques, genetic algorithm, randomized branch-and bound and 

graph theory. Authors have proposed many useful static, heuristic algorithms (e.g., 

HEFT, MCP, ETF, and DLS) but that will not be effective in today’s era of big data. 

Kanemitsu et al. (2016) proposed clustering based task scheduling algorithm 

that minimizes the schedule length for heterogeneous processors. It is apt for data 

intensive application and it has proven to be better than other list based and 

clustering based task scheduling algorithms. 

Abdelkader and Omara (2012) proposed dynamic task scheduling algorithm 

for heterogeneous systems called Clustering Based HEFT with Duplication 

(CBHD).This algorithm targets three important parameters for getting better 

performance, minimize the makespan, load balancing and optimize the sleek time. 

He et al. (2011) proposed Multi-queue Balancing (MQB) algorithm that 

minimizes the makespan and maximizes the heterogeneous resource 

utilization.MQB has multiple queues for online scheduling to achieve better 

utilization and minimizing completion time. 

Wang et al. (2016) proposed heterogeneous scheduling algorithm with 

improved task priority (HSIP) for improvising schedule length ratio and task 

priority. This algorithm performs two-step process. First it identifies task priority 

and second it finds the best processor to execute the tasks. 

Ahmad et al. (2012) proposed performance effective genetic algorithm 

(PEGA) which operates through large search space and finds the best solution using 

reproduction concept. Reproduction uses two operators namely crossover and 

mutation to select a random task and performs fitness function on it to select the 

best task to execute on the heterogeneous parallel multiprocessor system. 

Ahmad et al. (2016) proposed hybrid genetic algorithm (HGA) is a hybrid 

combination of HEFT heuristic and PEGA genetic algorithm. It provides optimum 

makespan and load balancing over heterogeneous systems.  
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Cardellini et al. (2015) proposed distributed QoS-aware scheduling with self-

adaptive capability in storm. By using this concept authors tried to overcome the 

limitation of high latency, less availability and poor system utilization in distributed 

data stream processing (DSP). 

Arabnejad and Barbosa (2014) proposed Predict Early Finish Time (PEFT) to 

speed up and optimize makespan. It has two phases: task prioritizing and a 

processor selection which identifies task priority and allocates it to the best 

processor accordingly. 

Khaldi et al. (2015) proposed static-heuristic scheduler called bounded 

dominant sequence clustering (BDSC) is an extension of DSC limiting memory 

constraints and the bounded number of processors. It is suitable for signal 

processing and image processing kind of application. 

Li et al. (2015) proposed stochastic dynamic level scheduling (SDLS) 

algorithm to minimize the makespan. This algorithm outperforms when tasks arrive 

randomly. 

Barbosa and Moreira (2011) proposed parallel heterogeneous earliest finish 

time (P-HEFT) which is an extension of HEFT. P-HEFT supports parallel task DAG 

which provides optimized makespan that makes it suitable for image processing 

type of application. 

Choudhury et al. (2012) proposed online scheduling of dynamic task graphs. 

Algorithm provides dynamic path selection option by scheduling tasks at run time. 

The proposed algorithm is assumed to be limited to homogeneous systems. But it 

can be extended further to heterogeneous systems by taking the base of this 

algorithm. 

Tang et al. (2015) proposed self-adaptive reduce scheduling (SARS) for 

Hadoop platform. During MapReduce phase, it reduces waiting time by selecting 

adaptive time to schedule the reduce task. This method reduces turnaround time. 
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*DAG- Directed Acyclic Graph, SD-Stand Deviation, HEFT- Heterogeneous Earliest Finish Time, MCP- Modified Critical 

Path, HLEFT-Highest Level First Estimate Time, DLS-Dynamic Level Scheduling, GA- Genetic Algorithm, ETF-Earliest 

Time First, ISH-Insertion Scheduling Heuristic, HCPT-Heterogeneous Critical Parent Trees, PETS-Performance Effective 

Task Scheduling, HPS-High Performance Task Scheduling. SHCP-Scheduling with Heterogeneity using Critical Path, 

HHS-Hybrid Heuristic Scheduling, RR-Round Robin, SJF, Shortest Job First, FCFS - First Come First Serve, BDSC- 

Bounded Dominant Sequence Clustering, MPQGA-Multiple Priority Queues Genetic Algorithm, HSCGS-Hybrid 

Successor Concerned Heuristic-Genetic Scheduling, cRR-Centralized Round-Robin, cOpt-Centralized Optimal 

scheduler, FIFO-First In First Out 

4.3 Study of Scheduling Algorithms in Hadoop 

Applications involving Big Data need enormous memory space to load the data and 

high processing power to execute them. Individually, the traditional computing 

systems are not sufficient to execute these big data applications but, cumulatively 

they can be used to meet the needs. This cumulative power for processing Big Data 

Applications can be achieved by using Distributed Systems with Map-Reduce model 

under the Apache Hadoop framework. Mere implementation of the application on 

Distributed Systems may not make optimal use of available resources. Hence, 

optimizing scheduling algorithms may further improvise the use of resources. In this 

study, we implement and test the results of the scheduling algorithms discussed in 

next sub section. Later we discuss how fine-tuning of scheduling policies can be used 

to achieve better performance of different applications, which have been 

implemented and tested in Apache Hadoop. The results represented here have been 

published in (Shah and Padole, 2018). 

4.3.1 Experimental Environment, Workload, Performance Measure & 

Queue Configuration 

In this paper, we evaluate the performance of two Hadoop schedulers by using three 

built-in scheduling policies (i.e., FIFO, Fair, and DRF) and test it in context to 

different queue settings. The performance metrics include six dimensions, which are 

data locality, latency, completion time, turnaround time, CPU and memory 

utilization. For our experiment, we implemented Hadoop-2.7.2 cluster (Refer to 

Appendix I). The cluster consisted of 1 master node and 11 slave nodes. The 

important information of the cluster configuration is shown in table 4.3. 
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Six big-data jobs were chosen for this experiment. Those were WordCount, 

WordMean, TeraSort, and PiEstimator. Here WordCount and WordMean were CPU-

intensive jobs while TeraSort and PiEstimator were more memory intensive job. 

WordCount calculates total number of words in a file while WordMean 

calculates average length of words in a given file. TeraSort performed on data 

generated by TeraGen and PiEstimator estimates the value of Pi. Our workload is a 

combination of CPU and memory intensive jobs to check the performance of Hadoop 

schedulers in an experimental environment in a very effective way. Details of each 

job are given in table 4.4. 

 
Table 4.3 Hadoop Cluster Configuration 

 
Table 4.4 Total Workload Distribution 

The performance of the Hadoop schedulers has been evaluated by considering 

following parameters:  

 Locality: HDFS maintains the copy of the data splits across the datanodes. 

When any job is executed, MapReduce divides the job among multiple tasks, 

which is submitted for execution on multiple datanodes. Each mapper 
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requires the copy of data to process, if the data is not available on the same 

datanode it will find and bring a copy of data from other datanodes over the 

network, to the node where it is required. So if the data is available on the 

same node, it is called data local, if it is available on the same rack, it is called 

rack local and if both scenarios fail then it will be copied from a different 

rack. So if a job finds most of the data locally then completion time of job 

would be better than rack local or different rack data. (The data found on 

another node but within the same cluster is known as data on same rack. If 

data is residing on a datanode in a different cluster, it is referred as a 

different rack)  

 Latency: It is the time that a job has to wait, until getting scheduled, after the 

job is submitted.  

 Completion Time: It is the difference of finish time and start time of a job. It 

is the sum of actual execution time of the job and the waiting time, if any.  

 Turnaround Time: It is the total amount of time elapsed between 

submission of the first job and till the completion of the last job, in the queue.  

 CPU & memory utilization: Hadoop counters provide the time spent by the 

job on CPU and total memory bytes utilized by the job.  

For the experiment purpose three types of job queues have been configured: a.) 

Single Queue b.) Multi-Queue c.) Mixed-Multi Queue  

Single Queue  

In a single queue, all the resources of a cluster will be used by one queue only. All 

jobs will be entered and scheduled according to the scheduling policy and 

availability of resources. Capacity Scheduler will be configured with FIFO while Fair 

Scheduler can be configured with FIFO, FAIR or DRF policy. These four schemes 

(Cap-FIFO, Fair-FIFO, Fair-FAIR, and Fair-DRF) will be evaluated based on discussed 

six variables using workload listed in table 4.5.  

Multi-Queue  
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Here for our experiment, we have considered three queues where each queue will 

be running a similar kind of application. Three queues named “A”, “B” and “C” is 

configured with 30%, 40% and 30% resources respectively of the total resources 

available. These queues have been kept soft so that each queue can use 2 times of its 

configured capacity for elasticity purpose. Jobs are allocated to the queues as per 

given table 4.5.  

Mixed-Multi Queue  

In this case, to test the performance variation we alter jobs to different queues. If we 

put different types of applications in the same queue, performance is measured as to 

how it affects the performance in such situation. For our experiment mixed-jobs are 

allocated to the queues as per table 4.5. 

4.3.2 Performance Evaluation 

For our experiment, each application has been executed 5 times to validate the 

results of the evaluated performance. Performance evaluation is carried out without 

changing its default settings except for the queue settings of the schedulers. 

 
Table 4.5 Workload Assignment to the Queue 

Single Queue  

All six big-data applications are entered into a single queue with normal 2 seconds of 

delay. By looking at the results in fig. 4.2 (a) it is quite evident that in Cap-FIFO 

scheduler job waiting time and completion time is comparatively quite high as 

compared to other three scheduling policies. Fair-FIFO has less waiting time as a job 
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gets scheduled by a fair policy but completion time is more compared to Fair-Fair 

and Fair-DRF policy. While Fair-Fair and Fair-DRF perform better, it has almost 

similar job waiting time and completion time. As shown in fig. 4.2 (b) in terms of 

turnaround time also Fair-Fair and Fair-DRF outperforms other scheduling policy. 

As shown in table 4.6 in terms of data locality, 74.40% tasks are data local in Fair-

DRF which means that Fair-DRF finds maximum data task as data local out of the 

total tasks launched. Moreover, Fair-DRF provides more resource efficiency as total 

task launched by Fair-DRF is less compared to others. In terms of CPU time & 

memory usage shown in fig. 4.3, Fair-Fair is better as it utilizes less CPU time and 

uses the physical memory effectively. 

 
(A)      (B) 

Figure 4.2 (A) Average Total Time (B) Average Turnaround Time (Single Queue) 

 
Table 4.6 Data Locality 

(Percentage shows how many % of data found data local out of the total task launched) 
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Figure 4.3 CPU & Memory Usage (Single Queue) 

Multi-Queue  

As illustrated by fig.4.4 (a), in Cap-FIFO scheduler job waiting time is less but 

completion time is comparatively quite higher than other three scheduling policies. 

Fair-FIFO performs better in terms of the job waiting time and completion time in 

comparison with Fair-Fair and Fair-DRF policy. Moreover, fig. 4.4 (b) depicts that 

Fair-FIFO is more efficient than Fair-Fair and Fair-DRF scheduling policy in terms of 

turnaround. 

In terms of data locality, as illustrated by table 4.6, 76.33% tasks are data 

local in Fair-Fair indicating that Fair-Fair finds maximum data task as data local out 

of the total tasks launched. Furthermore, Fair-Fair supplements more resource 

efficiency as total task launched by Fair-Fair is less compared to others. In terms of 

CPU time and memory usage shown in fig. 4.5, Fair-FIFO is better since it utilizes less 

CPU time and uses the physical memory constructively. 

Mixed-Multi Queue  

It is quite obvious from fig.4.6 (a) that in Cap-FIFO scheduler job waiting time is less 

but completion time is considerably very high as compared to other three 

scheduling policies. Fair-Fair and Fair-DRF perform quite alike in terms of the job 
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waiting time but if total time is considered, then Fair-DRF performs better than rest 

of all scheduling policies. Fig. 4.6 (b) suggests that Fair-DRF is more effective than 

Fair-Fair and Fair-DRF scheduling policy in terms of turnaround. 

 
(A)      (B) 

Figure 4.4 (A) Average Total Time (B) Average Turnaround Time (Multi-Queue) 

 
Figure 4.5 CPU & Memory Usage (Multi-Queue) 

Table 4.6 elucidates that in terms of data locality, 72.29 % and 72.19 % tasks are 

data local in Fair-DRF and Fair-Fair respectively. It indicates that Fair-Fair and Fair-

DRF find maximum data task as data local out of the total tasks launched. Moreover, 

Fair-DRF gives more resource efficiency as total tasks launched by Fair-DRF is less 

compared to others. In terms of CPU time and memory usage shown in fig. 4.7, Fair-

Fair & Fair-DRF performs similarly. 
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(A)      (B) 

Figure 4.6 (A) Average Total Time (B) Average Turnaround Time (Mixed-Multi Queue) 

 
Figure 4.7 CPU & Memory Usage (Mixed-Multi Queue) 

Concluding Remarks 

In this experiment, various Hadoop scheduling algorithms have been evaluated 

based upon latency time, completion time and data locality. For the experiment 

purpose, six big data applications have been implemented using three different 

scheduling queue configurations such as Single-Queue, Multiple-Queue and Mix-

Multiple Queue. Various experiments were conducted by fine-tuning scheduling 

policy for Hadoop environment. The results of the experiments are presented here 

which may be useful in selecting a scheduler and scheduling policy depending upon 

application that one wants to run. Based on the results, following conclusions can be 

drawn: 
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1. In single queue, Fair-DRF outperforms with reference to execution time and 

effective resource usage capacity as compared to other three. Its only flaw is that 

CPU usage time is a bit higher than Fair-Fair scheduler.  

2. In multi-queue, Fair-FIFO is the best option if we consider workload waiting 

time, completion time, turnaround time and CPU usage. Fair-Fair is better only 

when resource utilization is important.  

3. In mixed-multi queue, Fair-DRF is the most appropriate choice with respect to 

resource utilization and workload execution performance.  

The results which are drawn here can be application dependent and future 

researcher can test the same with different application types. The future 

enhancements can include testing the impact of delay scheduler on capacity and fair 

scheduler. It is presumed that delay scheduling may make a significant impact on the 

performance of the scheduler. 

4.4 Study of Hadoop Performance Improvement Techniques 

To improve the performance of Hadoop many researchers have worked with diverse 

approaches. In distributed computing, load balancing is the key area which affects 

overall performance significantly, since the system may consist of thousands of 

computers in the cluster. Many researchers have worked on performance 

improvement through effective load balancing using various custom-designed 

algorithms and programming models. In paper authors (Shah and Padole, 2018), 

have summarized notable research contribution for load balancing by scheduling 

(Zaharia et al., 2008; 2010), load balancing during job processing (Liu et al., 2016; 

2017) and load balancing using custom block placement (Dharanipragada et al., 

2017; Anon, 2018; Xie et al., 2010; Hsiao, 2013). In this section, we have summarized 

some of the noteworthy work done to achieve better performance in Hadoop using 

load balancing and custom block placement strategy.  

In the paper (Muthukkaruppan et al., 2016) authors proposed the approach 

which places the blocks based on a region placement policy. Data is stored into the 

plurality of regions rather than the plurality of nodes. Therefore, the complete 
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replica of the region can be stored into a contiguous portion of data. This policy 

achieves fault tolerance and data locality for region based cluster storage.  

Authors of paper (Qureshi et al., 2016) presented heterogeneous storage 

media aware strategy which collects storage media, processing capacity and stores 

them on different storage media types (i.e. HDD, SSD, RAM) according to workload 

balance. The experiment proves that it reduces imbalance of the cluster.  

In the paper (Qu et al., 2016) authors come up with a dynamic replica 

placement which works on Markov probability model and places replica 

homogeneously across the racks. Results show better job completion time compared 

to HDFS and CDRM apart from a uniform distribution of replicas across all the 

nodes.  

In the paper (Meng et al., 2015) authors proposed a strategy which considers 

network load and disk utilization for placing data blocks. Proposed strategy 

outperforms default and real-time block placement policy and achieves better 

performance in relevance to throughput and storage space utilization.  

In the paper (Dai et al., 2017) authors proposed improved slot replica 

placement policy which considers the heterogeneity of nodes and partitions of all 

nodes in 4 sections to store data blocks. Section wise partition scheme achieves 

greater load balancing and eliminates the use of HDFS balancer.  

In the paper (Fahmy et al., 2016) authors presented a strategy which tracks 

spatial characteristics of data to co-locate them. If data blocks are geographically 

distributed across multiple data centers irrespective of the location where a job 

runs, then it degrades the performance tremendously. Here authors have achieved 

better query execution time by adding spatial data awareness which effectively 

reduces the job execution time.  

In paper (Park et al., 2016) authors proposed probability based DLMT (Data 

Local Map Task Slot) approach which adjusts data placement rate along with replica 

eviction policy to improve Hadoop performance and cluster space utilization 

respectively.  
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In paper (Herodotou et al., 2011) authors presented a model called “Starfish” 

which dynamically adjusts the Hadoop parameter according to the workload of the 

job. Starfish works with each phase of Hadoop, starting with job level tuning, real-

time parameter adjustment and finishing with process scheduling. It achieves great 

performance compared to default Hadoop set up, placement policy and scheduling 

scheme. Table 4.7 summarizes the work done by the researchers. 

 Performance 

Improvisation 

Factors 

Research 

Contribution 

Remarks 

A region-

based 

placement 

policy 

Fault tolerance 

and data locality 

Designed region 

based cluster storage 

system which stores 

one complete replica 

of the region on a 

single node 

This scheme is helpful 

when plurality of region 

servers is required. 

Robust Data 

Placement 

Scheme 

(RDP) 

Load balancing 

and optimal 

network 

congestion 

Proposed RDP 

scheme considers 

the storage type (i.e. 

SSD, HDD and RAM) 

and processing 

speed of a node for 

balancing. 

Authors have 

successfully 

demonstrated how 

storage type and 

computing capacity 

prediction can achieve 

better load balancing 

and reduce network 

overhead. 

Pre-processing for RDP 

scheme takes significant 

amount of time when 

multiple clusters with 

variety of nodes are 

there. 

Dynamic 

Replication 

Strategy 

(DRS) 

Job scheduling 

time and disk 

utilization rate 

Proposed dynamic 

replica placement 

based on Markov 

model. 

Authors have 

successfully tested 

model on homogeneous 

cluster.  

Authors have not 

considered the time for 

replication adjustment 

which is an important 

justification. 
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Network 

sensitive 

strategy 

Strong fault 

tolerant block 

placement and 

high throughput 

Designed scheme 

which considers 

network load for 

data placement. Try 

to place replica on 

low network loaded 

group of nodes. 

Proposed strategy 

reduces the inter-rack 

transfers which 

eventually increase the 

performance also works 

with heterogeneous 

cluster. 

Authors have not 

considered the load 

imbalance issue in 

Hadoop. 

Improved 

replica 

placement 

policy  

Load balancing Designed policy 

which evenly 

distributes the 

replicas into section. 

Proposed policy 

achieves even load 

balancing across nodes 

which eliminates the 

use of HDFS balancer. 

Policy only proposed 

for homogeneous 

cluster. 

CoS*-HDFS Reduces total 

execution time 

and network 

bandwidth.  

Proposed algorithm 

which is aware of 

geospatial data 

blocks. 

Proposed algorithm 

improves performance 

of MapReduce query 

execution and reduces 

network traffic. 

Data 

Replication 

Method 

Data locality and 

replication 

method 

Proposed LRFA* 

policy effectively 

uses storage space of 

cluster to achieve 

better data locality. 

Effectiveness and 

performance is not 

evaluated which they 

have claimed. 

Starfish Self-tuning 

approach 

Proposed self-tuning 

Hadoop model to 

achieve better 

performance. 

Improved block 

placement policy 

significantly improves 

job running time. 

Dynamic tuning also 

tested successfully.  
*CoS- Co-Locating Geo-Distributed Spatial Data, LRFA- Least Recently Frequently Access 

Table 4.7 Various Hadoop Performance Improvement Techniques 


