Chapter 4
Literature Work: Analysis &

Comparison

In this section, literature study is divided into four parts: First, various distributed
file systems which are widely used for Big Data storage. Second, various scheduling
algorithms for heterogeneous distributed computing are discussed. Third, default
Hadoop schedulers with their implementation and results are discussed. Last,
alternative approaches adopted and designed by researchers and scientists to the
implementation and improvement of load balancing algorithms and performance in

Hadoop are discussed.

4.1 Study of Various Distributed File System

For Big Data storage there is a need of ideal Distributed File System (DFS) which can
provide a wide range of support for distributed file storage, parallel file access and
at the same time scalability for high performance. To achieve effective distributed
computing infrastructure DFS is a core component of it. Therefore, it must support
and fulfill the taxonomy of DFS described by Thanh et al, 2008. In the paper
(Satyanarayanan, 1989) the author discussed various issues of DFS. The various
distributed file systems have been surveyed in papers (Guan et al.,, 2000; Thanh et
al., 2008; Depardon et al.,, 2013) by researchers and scientists.

As it was discussed in section 2 that idyllic DFS should be fault-tolerant,
scalable and transparent, that apparently provides high availability and high
performance. When Distributed file systems was not on its peak for distributed
computing during 1980s-1990s, various DFS architectures such as NFS (Sandberg et
al,, 1985), Andrew file system (AFS) (Howard et al., 1988), CODA, (Satyanarayanan,
1990), Frangipani (Thekkath et al., 1997), and many more were introduced. In paper

Guanet al, 2000 has reviewed these and many other old days’ well known
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distributed file systems and found that none of those file systems could achieve all

the characteristics of distributed computing.

Distributed computing has become an unquestionable choice in the age of
21st century when data and internet users are growing like anything. As data
becomes Big Data, there a rises a need of distributed file system which can leverage
over multiple storage devices, widely available and its performance does not get
degraded. As no previous 1990s distributed file system met the requirement of Big

Data storage and processing new file systems are devised.

Many distributed file systems are developed to overcome problems of old file
systems discussed above. As our focus in thesis is on Big Data processing, here we
have compared some well-known and most widely used distributed file system
which fulfills the need of Big Data storage and process. We surveyed five distributed
file systems, Google File System (GFS) (Ghemawat et al., 2003), Lustre (Braam and
Zahir, 2002; Schwan, 2003), Ceph (Weil et al., 2006), Hadoop Distributed File System
(HDFS) (Shvachko et al., 2010), and GlustreFS (Docs.gluster.org, 2018) which are
application independent and used for general purpose. Here table 4.1 illustrates

comparative study of various distributed file systems.

Google file system- also known as GoogleFS is designed by Google for
distributed cluster storage. It is implemented by its own cluster storage platform for
data-intensive applications. GFS uses commodity hardware machines named as
chunk servers for distributed storage. GFS meets most of the design constraints of

the distributed file system and efficiently utilizes low-cost machines.

Lustre is an open-source parallel file system (Lustre.org, 2018) that meets
the requirement of High-Performance Computing file system. Lustre uses diskless
workstation architecture rather than multiple storage units. Lustre maintains
metadata on a shared server called Metadata Target (MDT) and also keeps the copy

of those metadata for failover on Metadata Servers (MDS).

Ceph is a reliable, easy to manage, next-generation software based

distributed object store that provides storage of unstructured data for Big Data
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applications. Ceph is a Reliable, Autonomous, Distributed Object Store (RADOS)

comprised of high availability, scalability and intelligent storage nodes.

GFS Lustre Ceph HDFS GlusterFS
Storage Object- Object- Object- Object- File-
Type based based based based based
Metadata Centralized | Centralized | Distributed | Centralized Decentraliz
storage ed
Naming Index Index CRUSH Index EHA
Service
Operatin Linux, OS X,
IS) stemg Linux Linux Linux, Cross- FreeBSD,
y Kernel Kernel FreeBSD platform NetBSD,
support .
OpenSolaris
Application] Stateful Stateful Stateful Stateful Stateful
TCP/IP,
InfiniBand
Communic- RPC, _ RPC,
ation TCP/IP InfiniBand TCP TCP/IP or Spckets
Direct
Protocol
Fault Yes Yes Yes Yes Yes
Tolerant
System . : : : .
availability No failover Failover High High High
Data Replication No Replication | Replication RAID-like
availability p p p
Placement Auto No Auto Auto Manual
strategy
Replication Asynchron RAID-like Synchrono | Asynchron | Synchronou
ous us ous S
Loa(! Auto No Manual Auto Manual
balancing
Securle No Yes Yes No No
mechanism

* EHA — Elastic Hash Algorithm

Table 4.1 Comparison of Various DFS

HDEFS is an open source distributed file system designed from GoogleFS.

HDFS has achieved a great success compared to other file systems due to its

adaptability to run on any hardware machines and also cross-platform support.

HDFS maintains two namenode servers for providing high system availability.

GlustreFS is another open source software-based network file system for

data storage which leverages on commodity hardware just like GFS and HDFS.
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GlusterFsS is specially designed for cloud storage and media streaming. Unlike other

DFS, GusterFS uses hardware RAID for replica management.

Distributed file systems are standard solutions for cloud storage, cluster
storage; and data centers. All five surveyed DFSs supports transparency and fault-
tolerance. But there are no DFSs which fit all, means all provide distributed storage
but all have their own differences lying in design and implementation. Therefore, the
choice of DFSs is important depending upon the need of application and availability
of resources. Furthermore, practical implementation and tests can justify the above
theoretical comparison. But from the above comparison, we come down to a
solution that for our research problem HDFS is a better approach as it supports

heterogeneity of OS and open-source Hadoop framework support.

4.2 Study of Scheduling Algorithms in HeDC

Scheduling always remains an area of research in any computing technique. It is
important to choose proper scheduling algorithms especially when you're dealing
with heterogeneous environments. In heterogeneous environment resources are of
distinct configuration. Consequently if proper resources are not allocated for

execution of tasks, your task may get delayed and result in poor job scheduling.

For any scheduling primary objectives of algorithms are optimizing job
completion time as well as resource utilization. Based on scheduling objectives they
are categorized into two categories: Application Specific and System Specific. In case
of Application Specific scheduling the main objective is to consider the performance
of an application considering various parameters such as makespan, scheduling type
and cost. While in case of system specific scheduling the areas of concern are
resource utilization, resource multiplicity and load balancing to improve overall
system performance. Figure 4.1 shows the objective-based classification of

scheduling algorithms.

In application specific scheduling everything is monitored in terms of its
impact on the application. For application specific scheduling it is very much

important to consider heterogeneity hardware. For the performance essentiality the
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measure set is widely distributed under time and money. Most of the distributed
applications are concerned with time, like makespan, which is time taken to

complete the job and overall economic cost of running application.

—— Makespan

Application ———1—— Scheduling Type
— Specific

—— Economic Cost

Objective
Function

—  Resource Utilization

o Multiplicity of
System Specific ~ 1 Resource

Load Balancing

Figure 4.1 Objective-based Classification of Scheduling Algorithms

In System specific objectives are usually related to resource utilization, which
resources are busy at what percentage of time. Types of resources and their effective
utilization have a direct impact on the performance of an individual application and
must be considered. System specific objectives are usually related to resource

utilization, resource multiplicity and load balancing.
4.2.1 Comparative Study

The scheduling algorithms discussed below are widely adopted for scheduling on
distributed environment. The table 4.2 shows comparative study of these algorithms
highlighting scheduling approach used by a specific technique and probable

enhancement to be considered for better performance.

Zheng and Sakellariou (2013) proposed Monte Carlo based Directed Acyclic
Graph scheduling approach with the objective to minimize the makespan for BNP.
This approach works well for any random distribution under heterogeneous
environment. This approach gives competitive advantage compared to other static-

heuristic techniques.

Munir et al. (2013) proposed standard deviation based algorithm for task
scheduling (SDBATS) to reduce schedule length and speed up the scheduling by

assigning task priority.
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Kwok and Ahmad (1999) proposed to optimize the makespan by considering
a wide range of techniques, genetic algorithm, randomized branch-and bound and
graph theory. Authors have proposed many useful static, heuristic algorithms (e.g.,

HEFT, MCP, ETF, and DLS) but that will not be effective in today’s era of big data.

Kanemitsu et al. (2016) proposed clustering based task scheduling algorithm
that minimizes the schedule length for heterogeneous processors. It is apt for data
intensive application and it has proven to be better than other list based and

clustering based task scheduling algorithms.

Abdelkader and Omara (2012) proposed dynamic task scheduling algorithm
for heterogeneous systems called Clustering Based HEFT with Duplication
(CBHD).This algorithm targets three important parameters for getting better

performance, minimize the makespan, load balancing and optimize the sleek time.

He et al. (2011) proposed Multi-queue Balancing (MQB) algorithm that
minimizes the makespan and maximizes the heterogeneous resource
utilization.MQB has multiple queues for online scheduling to achieve better

utilization and minimizing completion time.

Wang et al. (2016) proposed heterogeneous scheduling algorithm with
improved task priority (HSIP) for improvising schedule length ratio and task
priority. This algorithm performs two-step process. First it identifies task priority

and second it finds the best processor to execute the tasks.

Ahmad et al. (2012) proposed performance effective genetic algorithm
(PEGA) which operates through large search space and finds the best solution using
reproduction concept. Reproduction uses two operators namely crossover and
mutation to select a random task and performs fitness function on it to select the

best task to execute on the heterogeneous parallel multiprocessor system.

Ahmad et al. (2016) proposed hybrid genetic algorithm (HGA) is a hybrid
combination of HEFT heuristic and PEGA genetic algorithm. It provides optimum

makespan and load balancing over heterogeneous systems.
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Cardellini et al. (2015) proposed distributed QoS-aware scheduling with self-
adaptive capability in storm. By using this concept authors tried to overcome the
limitation of high latency, less availability and poor system utilization in distributed

data stream processing (DSP).

Arabnejad and Barbosa (2014) proposed Predict Early Finish Time (PEFT) to
speed up and optimize makespan. It has two phases: task prioritizing and a
processor selection which identifies task priority and allocates it to the best

processor accordingly.

Khaldi et al. (2015) proposed static-heuristic scheduler called bounded
dominant sequence clustering (BDSC) is an extension of DSC limiting memory
constraints and the bounded number of processors. It is suitable for signal

processing and image processing kind of application.

Li et al. (2015) proposed stochastic dynamic level scheduling (SDLS)
algorithm to minimize the makespan. This algorithm outperforms when tasks arrive

randomly.

Barbosa and Moreira (2011) proposed parallel heterogeneous earliest finish
time (P-HEFT) which is an extension of HEFT. P-HEFT supports parallel task DAG
which provides optimized makespan that makes it suitable for image processing

type of application.

Choudhury et al. (2012) proposed online scheduling of dynamic task graphs.
Algorithm provides dynamic path selection option by scheduling tasks at run time.
The proposed algorithm is assumed to be limited to homogeneous systems. But it
can be extended further to heterogeneous systems by taking the base of this

algorithm.

Tang et al. (2015) proposed self-adaptive reduce scheduling (SARS) for
Hadoop platform. During MapReduce phase, it reduces waiting time by selecting

adaptive time to schedule the reduce task. This method reduces turnaround time.
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*DAG- Directed Acyclic Graph, SD-Stand Deviation, HEFT- Heterogeneous Earliest Finish Time, MCP- Modified Critical
Path, HLEFT-Highest Level First Estimate Time, DLS-Dynamic Level Scheduling, GA- Genetic Algorithm, ETF-Earliest
Time First, ISH-Insertion Scheduling Heuristic, HCPT-Heterogeneous Critical Parent Trees, PETS-Performance Effective
Task Scheduling, HPS-High Performance Task Scheduling. SHCP-Scheduling with Heterogeneity using Critical Path,
HHS-Hybrid Heuristic Scheduling, RR-Round Robin, SJF, Shortest Job First, FCFS - First Come First Serve, BDSC-
Bounded Dominant Sequence Clustering, MPQGA-Multiple Priority Queues Genetic Algorithm, HSCGS-Hybrid
Successor Concerned Heuristic-Genetic Scheduling, cRR-Centralized Round-Robin, cOpt-Centralized Optimal

scheduler, FIFO-First In First Out

4.3 Study of Scheduling Algorithms in Hadoop

Applications involving Big Data need enormous memory space to load the data and
high processing power to execute them. Individually, the traditional computing
systems are not sufficient to execute these big data applications but, cumulatively
they can be used to meet the needs. This cumulative power for processing Big Data
Applications can be achieved by using Distributed Systems with Map-Reduce model
under the Apache Hadoop framework. Mere implementation of the application on
Distributed Systems may not make optimal use of available resources. Hence,
optimizing scheduling algorithms may further improvise the use of resources. In this
study, we implement and test the results of the scheduling algorithms discussed in
next sub section. Later we discuss how fine-tuning of scheduling policies can be used
to achieve better performance of different applications, which have been
implemented and tested in Apache Hadoop. The results represented here have been

published in (Shah and Padole, 2018).

4.3.1 Experimental Environment, Workload, Performance Measure &

Queue Configuration

In this paper, we evaluate the performance of two Hadoop schedulers by using three
built-in scheduling policies (i.e., FIFO, Fair; and DRF) and test it in context to
different queue settings. The performance metrics include six dimensions, which are
data locality, latency, completion time, turnaround time, CPU and memory
utilization. For our experiment, we implemented Hadoop-2.7.2 cluster (Refer to
Appendix I). The cluster consisted of 1 master node and 11 slave nodes. The

important information of the cluster configuration is shown in table 4.3.
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Six big-data jobs were chosen for this experiment. Those were WordCount,
WordMean, TeraSort, and PiEstimator. Here WordCount and WordMean were CPU-

intensive jobs while TeraSort and PiEstimator were more memory intensive job.

WordCount calculates total number of words in a file while WordMean
calculates average length of words in a given file. TeraSort performed on data
generated by TeraGen and PiEstimator estimates the value of Pi. Our workload is a
combination of CPU and memory intensive jobs to check the performance of Hadoop
schedulers in an experimental environment in a very effective way. Details of each

job are given in table 4.4.

Nodes (In Cluster) 1 (NameNode) 11 (DataNode)

Network 1 Ghps 1 Ghps

CPU Pentium Dual-Core CPU Pentinm Dual-Core CPU
' @ 3.06 GHZ * 2 @ 3.06 GHZ * 2

Cache L1- 64 KBL2- 2 B L1- &4 KBL2- 2 MB

RAM 4GB 22 GB (11 Nodes * 2 GB

per node )

Disk 300 GB SATA 500 GB SATA

Block size 128 MB 128 MB

CPU Cores 2 22 (11 Nodes)

05 Ubuntu 14.04 LTS Ubuntu 14.04 LTS

Table 4.3 Hadoop Cluster Configuration

WordCount 24 10 2 GB
WordMean 24 1 2GB
TeraSort-1 15 10 2GB
TeraSort-2 25 10 3 GB
Pi-1 20 1 1.00.000 Samples
Pi-2 30 1 1.00.000 Samples

Table 4.4 Total Workload Distribution

The performance of the Hadoop schedulers has been evaluated by considering

following parameters:

e Locality: HDFS maintains the copy of the data splits across the datanodes.
When any job is executed, MapReduce divides the job among multiple tasks,

which is submitted for execution on multiple datanodes. Each mapper
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requires the copy of data to process, if the data is not available on the same
datanode it will find and bring a copy of data from other datanodes over the
network, to the node where it is required. So if the data is available on the
same node, it is called data local, if it is available on the same rack, it is called
rack local and if both scenarios fail then it will be copied from a different
rack. So if a job finds most of the data locally then completion time of job
would be better than rack local or different rack data. (The data found on
another node but within the same cluster is known as data on same rack. If
data is residing on a datanode in a different cluster, it is referred as a

different rack)

Latency: It is the time that a job has to wait, until getting scheduled, after the

job is submitted.

Completion Time: It is the difference of finish time and start time of a job. It

is the sum of actual execution time of the job and the waiting time, if any.

Turnaround Time: It is the total amount of time elapsed between

submission of the first job and till the completion of the last job, in the queue.

CPU & memory utilization: Hadoop counters provide the time spent by the

job on CPU and total memory bytes utilized by the job.

For the experiment purpose three types of job queues have been configured: a.)

Single Queue b.) Multi-Queue c.) Mixed-Multi Queue

Single Queue

In a single queue, all the resources of a cluster will be used by one queue only. All

jobs will be entered and scheduled according to the scheduling policy and

availability of resources. Capacity Scheduler will be configured with FIFO while Fair

Scheduler can be configured with FIFO, FAIR or DRF policy. These four schemes
(Cap-FIFO, Fair-FIFO, Fair-FAIR, and Fair-DRF) will be evaluated based on discussed

six variables using workload listed in table 4.5.

Multi-Queue
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Here for our experiment, we have considered three queues where each queue will
be running a similar kind of application. Three queues named “A”, “B” and “C” is
configured with 30%, 40% and 30% resources respectively of the total resources
available. These queues have been kept soft so that each queue can use 2 times of its
configured capacity for elasticity purpose. Jobs are allocated to the queues as per

given table 4.5.
Mixed-Multi Queue

In this case, to test the performance variation we alter jobs to different queues. If we
put different types of applications in the same queue, performance is measured as to
how it affects the performance in such situation. For our experiment mixed-jobs are

allocated to the queues as per table 4.5.

4.3.2 Performance Evaluation

For our experiment, each application has been executed 5 times to validate the
results of the evaluated performance. Performance evaluation is carried out without

changing its default settings except for the queue settings of the schedulers.

A WordCount A WordCount
A WordMean A TeraSort-1

B TeraSort-1 B Pi-1

B TeraSort-2 B TeraSort-2

C Pi-1 C WordMean
C Pi-2 C Pi-2

Table 4.5 Workload Assignment to the Queue
Single Queue

All six big-data applications are entered into a single queue with normal 2 seconds of
delay. By looking at the results in fig. 4.2 (a) it is quite evident that in Cap-FIFO
scheduler job waiting time and completion time is comparatively quite high as

compared to other three scheduling policies. Fair-FIFO has less waiting time as a job
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gets scheduled by a fair policy but completion time is more compared to Fair-Fair

and Fair-DRF policy. While Fair-Fair and Fair-DRF perform better, it has almost

similar job waiting time and completion time. As shown in fig. 4.2 (b) in terms of

turnaround time also Fair-Fair and Fair-DRF outperforms other scheduling policy.

As shown in table 4.6 in terms of data locality, 74.40% tasks are data local in Fair-

DRF which means that Fair-DRF finds maximum data task as data local out of the

total tasks launched. Moreover, Fair-DRF provides more resource efficiency as total

task launched by Fair-DRF is less compared to others. In terms of CPU time &

memory usage shown in fig. 4.3, Fair-Fair is better as it utilizes less CPU time and

uses the physical memory effectively.
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Figure 4.2 (A) Average Total Time (B) Average Turnaround Time (Single Queue)

Capacity | Fair- Fair- Fair-
FIFO Fair DEF
Single Queue Locality
Average Total Launched 201 179 176 168
Average Data Local 126 112 114 125
Percentage 652.69% 62.57% 64.77% 74 40%
Multi-Quene Locality
Average Total Launched 211 178 169 172
Average Data Local 93 121 129 119
Percentage 44 08% 67.98% 76.33% 69.19%
Mixed-Multi Quene Locality
Average Total Launched 196 173 169 166
Average Data Local 85 122 122 120
Percentage 43 37% 70.52% 72.19% 72 29%

Table 4.6 Data Locality

(Percentage shows how many % of data found data local out of the total task launched)

56



Chapter 4. Literature Work: Analysis & Comparison

Average CPU & Memory Usage
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Figure 4.3 CPU & Memory Usage (Single Queue)
Multi-Queue

As illustrated by fig.4.4 (a), in Cap-FIFO scheduler job waiting time is less but
completion time is comparatively quite higher than other three scheduling policies.
Fair-FIFO performs better in terms of the job waiting time and completion time in
comparison with Fair-Fair and Fair-DRF policy. Moreover, fig. 4.4 (b) depicts that
Fair-FIFO is more efficient than Fair-Fair and Fair-DRF scheduling policy in terms of

turnaround.

In terms of data locality, as illustrated by table 4.6, 76.33% tasks are data
local in Fair-Fair indicating that Fair-Fair finds maximum data task as data local out
of the total tasks launched. Furthermore, Fair-Fair supplements more resource
efficiency as total task launched by Fair-Fair is less compared to others. In terms of
CPU time and memory usage shown in fig. 4.5, Fair-FIFO is better since it utilizes less

CPU time and uses the physical memory constructively.

Mixed-Multi Queue

It is quite obvious from fig.4.6 (a) that in Cap-FIFO scheduler job waiting time is less
but completion time is considerably very high as compared to other three

scheduling policies. Fair-Fair and Fair-DRF perform quite alike in terms of the job
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waiting time but if total time is considered, then Fair-DRF performs better than rest
of all scheduling policies. Fig. 4.6 (b) suggests that Fair-DRF is more effective than
Fair-Fair and Fair-DRF scheduling policy in terms of turnaround.
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Figure 4.4 (A) Average Total Time (B) Average Turnaround Time (Multi-Queue)
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Figure 4.5 CPU & Memory Usage (Multi-Queue)

Table 4.6 elucidates that in terms of data locality, 72.29 % and 72.19 % tasks are
data local in Fair-DRF and Fair-Fair respectively. It indicates that Fair-Fair and Fair-
DRF find maximum data task as data local out of the total tasks launched. Moreover,
Fair-DRF gives more resource efficiency as total tasks launched by Fair-DRF is less
compared to others. In terms of CPU time and memory usage shown in fig. 4.7, Fair-

Fair & Fair-DRF performs similarly.
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Figure 4.6 (A) Average Total Time (B) Average Turnaround Time (Mixed-Multi Queue)
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Figure 4.7 CPU & Memory Usage (Mixed-Multi Queue)

Concluding Remarks

In this experiment, various Hadoop scheduling algorithms have been evaluated
based upon latency time, completion time and data locality. For the experiment
purpose, six big data applications have been implemented using three different
scheduling queue configurations such as Single-Queue, Multiple-Queue and Mix-
Multiple Queue. Various experiments were conducted by fine-tuning scheduling
policy for Hadoop environment. The results of the experiments are presented here
which may be useful in selecting a scheduler and scheduling policy depending upon
application that one wants to run. Based on the results, following conclusions can be

drawn:
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1. In single queue, Fair-DRF outperforms with reference to execution time and
effective resource usage capacity as compared to other three. Its only flaw is that
CPU usage time is a bit higher than Fair-Fair scheduler.

2. In multi-queue, Fair-FIFO is the best option if we consider workload waiting
time, completion time, turnaround time and CPU usage. Fair-Fair is better only
when resource utilization is important.

3. In mixed-multi queue, Fair-DRF is the most appropriate choice with respect to

resource utilization and workload execution performance.

The results which are drawn here can be application dependent and future
researcher can test the same with different application types. The future
enhancements can include testing the impact of delay scheduler on capacity and fair
scheduler. It is presumed that delay scheduling may make a significant impact on the

performance of the scheduler.

4.4 Study of Hadoop Performance Improvement Techniques

To improve the performance of Hadoop many researchers have worked with diverse
approaches. In distributed computing, load balancing is the key area which affects
overall performance significantly, since the system may consist of thousands of
computers in the cluster. Many researchers have worked on performance
improvement through effective load balancing using various custom-designed
algorithms and programming models. In paper authors (Shah and Padole, 2018),
have summarized notable research contribution for load balancing by scheduling
(Zaharia et al., 2008; 2010), load balancing during job processing (Liu et al., 2016;
2017) and load balancing using custom block placement (Dharanipragada et al.,
2017; Anon, 2018; Xie et al., 2010; Hsiao, 2013). In this section, we have summarized
some of the noteworthy work done to achieve better performance in Hadoop using

load balancing and custom block placement strategy.

In the paper (Muthukkaruppan et al., 2016) authors proposed the approach
which places the blocks based on a region placement policy. Data is stored into the

plurality of regions rather than the plurality of nodes. Therefore, the complete
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replica of the region can be stored into a contiguous portion of data. This policy

achieves fault tolerance and data locality for region based cluster storage.

Authors of paper (Qureshi et al, 2016) presented heterogeneous storage
media aware strategy which collects storage media, processing capacity and stores
them on different storage media types (i.e. HDD, SSD, RAM) according to workload

balance. The experiment proves that it reduces imbalance of the cluster.

In the paper (Qu et al, 2016) authors come up with a dynamic replica
placement which works on Markov probability model and places replica
homogeneously across the racks. Results show better job completion time compared
to HDFS and CDRM apart from a uniform distribution of replicas across all the

nodes.

In the paper (Meng et al., 2015) authors proposed a strategy which considers
network load and disk utilization for placing data blocks. Proposed strategy
outperforms default and real-time block placement policy and achieves better

performance in relevance to throughput and storage space utilization.

In the paper (Dai et al, 2017) authors proposed improved slot replica
placement policy which considers the heterogeneity of nodes and partitions of all
nodes in 4 sections to store data blocks. Section wise partition scheme achieves

greater load balancing and eliminates the use of HDFS balancer.

In the paper (Fahmy et al,, 2016) authors presented a strategy which tracks
spatial characteristics of data to co-locate them. If data blocks are geographically
distributed across multiple data centers irrespective of the location where a job
runs, then it degrades the performance tremendously. Here authors have achieved
better query execution time by adding spatial data awareness which effectively

reduces the job execution time.

In paper (Park et al., 2016) authors proposed probability based DLMT (Data
Local Map Task Slot) approach which adjusts data placement rate along with replica
eviction policy to improve Hadoop performance and cluster space utilization

respectively.
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In paper (Herodotou et al., 2011) authors presented a model called “Starfish”
which dynamically adjusts the Hadoop parameter according to the workload of the
job. Starfish works with each phase of Hadoop, starting with job level tuning, real-
time parameter adjustment and finishing with process scheduling. It achieves great
performance compared to default Hadoop set up, placement policy and scheduling

scheme. Table 4.7 summarizes the work done by the researchers.

Performance Research Remarks
Improvisation Contribution
Factors
Aregion- Fault tolerance Designed region This scheme is helpful
based and data locality | based cluster storage | when plurality of region
placement system which stores | servers is required.
policy one complete replica
of the region on a
single node
Robust Data | Load balancing Proposed RDP Authors have
Placement and optimal scheme considers successfully
Scheme network the storage type (i.e. | demonstrated how
(RDP) congestion SSD, HDD and RAM) | storage type and
and processing computing capacity
speed of a node for prediction can achieve
balancing. better load balancing
and reduce network
overhead.
Pre-processing for RDP
scheme takes significant
amount of time when
multiple clusters with
variety of nodes are
there.
Dynamic Job scheduling Proposed dynamic Authors have
Replication | time and disk replica placement successfully tested
Strategy utilization rate based on Markov model on homogeneous
(DRS) model. cluster.
Authors have not
considered the time for
replication adjustment
which is an important
justification.
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Network Strong fault Designed scheme Proposed strategy
sensitive tolerant block which considers reduces the inter-rack
strategy placement and network load for transfers which
high throughput | data placement. Try | eventually increase the
to place replica on performance also works
low network loaded | with heterogeneous
group of nodes. cluster.
Authors have not
considered the load
imbalance issue in
Hadoop.

Improved Load balancing Designed policy Proposed policy

replica which evenly achieves even load

placement distributes the balancing across nodes

policy replicas into section. | which eliminates the
use of HDFS balancer.
Policy only proposed
for homogeneous
cluster.

CoS*-HDFS | Reduces total Proposed algorithm | Proposed algorithm
execution time which is aware of improves performance
and network geospatial data of MapReduce query
bandwidth. blocks. execution and reduces

network traffic.

Data Data locality and | Proposed LRFA* Effectiveness and

Replication | replication policy effectively performance is not

Method method uses storage space of | evaluated which they

cluster to achieve have claimed.
better data locality.

Starfish Self-tuning Proposed self-tuning | Improved block
approach Hadoop model to placement policy

achieve better
performance.

significantly improves
job running time.
Dynamic tuning also
tested successfully.

*Co0S- Co-Locating Geo-Distributed Spatial Data, LRFA- Least Recently Frequently Access

Table 4.7 Various Hadoop Performance Improvement Techniques
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