3. A BrIEF INTRODUCTION TO THE WORK

AND THE PROPOSED ¢Grab-Cur

This chapter briefly introduces the work that has been carried out. Next, it discusses the
dataset that has been created in this work for the testing purpose and also introduces the
environment under which the implementation and testing have been carried out. Lastly, it
introduces the cGrab-Cut, a proposed preprocessing algorithm, for the background

removal for Android-based devices.
3.1 A BRIEF ABOUT THE PROPOSED WORK

To achieve the goal and as stated in 1.4.3, the overall work has been divided into four
phases, named, preprocessing, feature detection, classification, and text-to-speech

conversion. The following figure shows the outline of the work.

TEE D @, ;

1001? % l t 4 Image Processing to check
counterfeit currency and

\ 'D'D mé“"‘ Speech Conversion In Oenemination

Image Capture by bullt-in Camera

Regional Languages J

100 3 —

Figure 3.1. An overall view of the proposed system

Here, the fourth phase, the Text-to-Speech conversion is simply a technology which
is being used to convert the output into speech so that the blind people can listen to it.
The text-to-speech conversion has been carried out using Google’s API where research
point of view there is no contribution. Research point of view, preprocessing, feature
detection and classification are the major phases on which the work has been carried out.
Firstly, a compromised GrabCut, ¢Grab-Cut, has been developed to reduce the time
consumption of GrabCut for Android-based devices. Apart from cGrab-Cut, two hybrid
feature detectors, the HORB — A Histogram based ORB and the ACORB — Ant Colony
Optimization based ORB have been created and tested. In addition to this, through this

45

work, two different classifiers which are based on the HORB and the ACORB feature
detectors and a bag of visual features: a three-stage hybrid classifier - HORBoVF and a
two-stage hybrid classifier — ACORBoVF have also been proposed and tested. Finally,
this research work ends up by implementing one more classifier, Te<3ency, which is
based on CNN and TensorFlow. In any research work, testing is the most crucial phase
to check the effectiveness of the proposed approach. The next section briefly tells about
the dataset that has been created for the testing purpose of the proposed work and the

development as well as the testing environment.
3.2 THE DATASET AND ENVIRONMENT

Since this work is intended for currency recognition, the dataset has been created with all
kinds of existing Indian currency notes. The dataset contains the images captured with
different orientations, lighting conditions, and image resolutions. For the accurate
measurement and to check if the proposed approaches work for all type of images, the
dataset has been created using two categories of images: fully visible (F) currencies and
partially visible (P) currencies. The following table shows details about the dataset on

which the testing has been carried out:

L. # of Train Images | # of Test Images
Denomination Small Set | Large Set F* p**

5 400 1530 130 80

10 620 1570 226 334

20 580 1567 220 340

50 540 1565 228 331

100 660 1587 268 292

200 422 1408 139 52

500 400 1512 160 78

500 _old 360 1530 165 327

1000 84 1176 83 354

2000 486 1597 200 96

Table 3.1 The dataset description
*F — Fully Visible Images

**P — Partially Visible Images

The development and testing of this work have been carried out in two different
environments, an Android-based mobile device and a Laptop-PC for python based
implementation. The following table shows the configuration of the development and

testing environment:

46

Specifications Mobile Device Laptop-PC

Model RedMi 1S Dell INSPIRON N5110

Processor Max 1.6 GHz Quad- Intel® Core-i3-2310M CPU with 2.10 GHz
Core

RAM 1 GB 6 GB

Operating Android Kitkat 4.4 Windows10 Enterprise

System

System Type 4.4.4KTU84P 64-bit Operating System with the x64-based
3.4.0-g%ada2c2 processor

Table 3.2 The Development & Testing Environment

3.3 The c¢Grab-Cut — A COMPROMISED YET OPTIMIZED
GRABCUT FOR ANDROID DEVICES

3.3.1 Introduction to the cGrab-Cut

The GrabCut is an iterative and interactive background removal algorithm based on the
graph cut theory which was designed to solve the Min-Cut/Max-Flow problem and K-
Gaussian model [30]. However, in [123], Liu et al. noted that the time complexity of the
GrabCut is too much when there is a background clutter. They proposed a superpixel
based GrabCut to improve the time performance of the algorithm. In this, they first
extract the blocks of superpixels and then split the picture. They experimentally showed
that the algorithm has improved in terms of time complexity. In another similar work,
Suriya et al. [87] used the GrabCut for the foreground detection, i.e., segmentation. But
the implementation of their algorithm in Java on Android device was not found as

efficient as it is in C++. The steps of their algorithms are given below:

1. Initial resizing of the image

2. Dynamic calculation of Threshold value based on the resized image (number of rows
and columns)

3. Initialize the rectangle and counter

4. Repeat masking and GrabCut iterations until the counter reaches to Threshold

5. Resize the image

The GrabCut implementation of Suriya et. al.

The problems which were found, through the experiments, with their algorithm are:

1. Twice resizing of the image.

47

2. Dynamic calculation of Threshold value based on the resized image. The higher
the number of rows and columns in terms of pixels, the larger the threshold value
would be.

3. Repeated masking and the GrabCut iterations which are dependent on the
threshold value. If the threshold value is larger than the number of iterations will
be large.

4. The larger size of the initial rectangle

These factors were consuming more time and memory both. Even if only one
GrabCut execution with one iteration is considered, which is not in the case, the
complexity of the algorithm becomes O(?), where ¢ is the threshold value calculated
dynamically based on the size of the image. To address these issues, the attempts are
made, experimentally to optimize the GrabCut in terms of time and memory both.

Following are the steps of the algorithm:

1. Initialize the rectangle from center region of the image
Perform GrabCut on inputimage

Perform masking of inputimage

Convert inputlmage into grayscale

Perform inverse binary thresholding on inputimage to create segmentedImage

A i

Display segmentedImage

The ¢Grab-Cut algorithm

Here, instead of resizing the image, it starts with a fixed sized rectangle and applied
the GrabCut with inverse binary thresholding and masking. The result which was
obtained is remarkable. Due to the calling of the GrabCut and masking only once along
with inverse binary thresholding, the time and memory consumption by the algorithm
was considerably low. Considering only GrabCut execution, it leads to complexity of
algorithm as O(1). The time consumption has been reduced by 57% of the original time
taken by the implementation of Suriya et. al. While testing, it was found that many times
the output image the proposed algorithm implementation was not a perfect cut but the
output can be used for further processing as majority of the background part gets
removed by the cGrab-Cut. The meaning of a perfect cut and a rough cut is shown in the

figure given below.

48

Figure 3.2. A Perfect GrabCut output for the image shown in rectangle Figure 3.3. A ¢Grab-Cut Output

As it can be seen figure 3.3 that a perfect cut is not obtained yet the majority of the
unnecessary part is being removed here. Hence, the output is acceptable for further
processing. This is a trade-off that is being carried out with a little compromise in output
to improve the performance in terms of time and memory, both. Due to this compromise,

it has been named as cGrab-Cut.
3.3.2 Performance testing of the cGrab-Cut

The following graph shows the average time, per image, taken by the GrabCut, 18.983

seconds, and cGrab-Cut, 8.219 seconds, for a set of 100 images.

Time Consumption by Grab-Cut Vs cGrab-Cut (Seconds)
20 18.983

18 A
16 -
14 -
12 ~
10 A

[d
N
(RN
(o]

Time taken (Seconds)

OoON B O ®
1

GrabCut (Suriya et. al.) cGrab-Cut

Algorithm

Figure 3.4. Time reduction in the GrabCut by the cGrab-Cut

As stated above, the cGrab-Cut is a trade-off based java implementation of the
GrabCut wherein; some quality is being compromised to achieve the faster performance.

There were around 100 images tested (100X2, for the GrabCut and ¢Grab-Cut) to check

49

the performance in terms of time. It can be observed from the figure that the average
time of the GrabCut implementation of Suriya et al. [87] had been reduced by 57% in
cGrab-Cut.

SUMMARY

In the beginning, this chapter discussed the proposed approaches briefly. The second
section showed the details about the testing dataset and the environment under which the
development and testing are carried out. Finally, the third section explained the proposed
cGrab-Cut algorithm for preprocessing in details along with the results. The next chapter

discusses the two proposed feature detectors in detail with the result analysis.

50

