4. THE PROPOSED FEATURE DETECTORS -

HORB Anxp ACORB

This chapter, first, introduces the ORB feature detector. It also gives a brief introduction

about the basic implementation of the ORB feature detector which will be used as a

benchmark for the result analysis and comparison throughout this work. The second and

third sections give an insight into the proposed feature detectors, the HORB and the

ACORB respectively with detailed result analysis of both the approaches.

4.1 THE ORB (ORIENTED FAST ROTATED BRIEF)
FEATURE DETECTOR

4.1.1 Introduction to the ORB

The digital image is a representation of the real world images into digits, Os, and 1s. In

earlier days, the images were stored in terms of only zeros and ones for monochrome

systems as a matrix. Today, for millions of colors available and to represent the pixels in

the images with specific color intensities, float-valued matrices are being used for more

precision of colors. Following image shows how digital images are represented in the

computers.

|—=—1

—n g
1

I

-

r— -

I

|||||
|||||

e il e o
S T Y TR e —

s T T T T
T T I flrr Yy

i i i il el il

- o

R

TEEEREREREE idid
I TEEEEEEEREEREEER] W
'TI AR EEE R BN L.
(L E R R RN NN SR
dddggapiaididi s i Eoa
(RS LT RS RS A AR N
IR A RS RSN ARERN R
L LI IR EERERRR Y
R TR IR RS R T
Il EEEEREEEE RN &
YL IIIAREE R AR REREET"
ExHEE RPN TR RN
[T E T ARl ERERE!
AEHEBAEHETA SELTNE
I I EEEEERERERT Y AER'
[IEEEERERERREREETRRE
L E-E-E A REEEEESEEE LN
(AR LN RREE R I L RN
STILIREREN] EEEITERE
(T X T AR N RN N REREEE
LI EEE RN E RN T]
TR I TR R R i
(B EER T T EREEEREEEN Y
AEEAERTIEARRAARHER N
1 I TS ERNREE T T ENEEN
..... YR EEEEEREEE
& I ICEEREEEN] W
a TTICLIAIEEERE
] EE T E SR R RN
L} (BT ERNENE RN L
5 EIEERREETIEY
L] EEEIEREEERE
] ERRETT SRS
L] dadbiaRvigad
L] TidIFETNERES

o

o A

m i A A

Figure 4.1. Squares showing pixels in image and corresponding matrix of Os and 1s

51

Feature detection in the image is the most crucial stage in image identification in
computer vision, which helps computer recognizing the image. In the context of images,
a feature is an interesting part of the image which may be used as a distinguishing
characteristic of the image. Feature detection is the starting point from where image
classification starts. A feature detector is an algorithm that chooses points from an image
based on some criterion. However, a feature descriptor is a vector of values, which
somehow describes the image patch around an interest point. Together an interest point
and its descriptor are referred to as a feature. These features are used for many computer
vision tasks, like image registration, 3D reconstruction, object detection, and object
recognition. As stated in literature study that there are many feature detectors like SIFT,
SURF, KAZE, AKAZE, ORB, etc. available. The feature detector that has been used in
this work is the ORB [61]. The ORB is a binary descriptor. A binary descriptor is

composed out of three parts:

i. A sampling pattern: It decides where to sample the points in the region

around the descriptor.

ii. Orientation compensation: It is a mechanism to measure the orientation of the

keypoints and rotate it to compensate for rotational changes.
iii. Sampling pairs: The pairs to compare when building the final descriptor.

ORB is a combination of FAST detector and BRIEF descriptor. It is similar to
BRIEF except,

i. The ORB uses an orientation compensation mechanism, making it rotation

invariant.

ii. The ORB learns the optimal sampling pairs, whereas BRIEF uses randomly

chosen sampling pairs.

For the measure of orientation, the ORB uses the intensity centroid. To calculate the
centroid, the moment of a patch is calculated. Following formula gives the moment of

order p+gq:
Mpq = Z xPyal(x,y)
X,y

Where X* yq basic function, /(x,y) is the image intensity and P,q = 1, 2, 3... 00,

52

In the two-dimensional case, based on the moment values, the centroid, or ‘center of

mass' is then given as:

mip Mpg
Mpy Mg

The vector from the corner’s center O to the centroid gives the orientation of the

patch. The orientation of the patch is calculated using the following formula:
0 = atan2(Mop1, Myp)

Where atan2 is a function that converts the moment's coordinates to polar. Once the
orientation of the patch is calculated, the patch can be rotated to a canonical rotation and
then the descriptor is computed obtaining some rotation invariance. The ORB tries to
take sampling pairs which are uncorrelated so that each new pair will bring new
information to the descriptor. Thereby, it maximizes the amount of information the
descriptor carries. For a feature to be more discriminative, the high variance is required
among the pairs. For this, samplings of pairs are obtained over keypoints in the standard
datasets. This is done through a greedy evaluation of all the pairs in order of distance
from mean until a specific number of desired pairs are obtained. This number of pairs is
the size of the descriptor. The descriptor is built using intensity comparisons of the pairs.
For each pair, if the first point has greater intensity than the second, then 1 is written else
0 is written to the corresponding bit of the descriptor. The following figure shows how

the angle is calculated in the ORB.

Figure 4.2. The ORB angle calculation

The limitation of the ORB is, it is faster in execution, but SIFT, SURF, KAZE, and
AKAZE outperform it in terms of number of feature detection and matching. In [107],
Oskar Andersson et al. experimentally proved that the ORB is giving least accuracy of
52.5%. In another attempt, Frazer Noble also showed that the ORB feature detector
detects the least number of features [109]. In the similar direction, Ebrahim et al. in [119]

also experimentally showed that the average accuracy of the ORB is 51.95%. So, to

53

improve the performance of the ORB, the following sections discuss the ORB based two

hybrid feature detectors with their performance analysis.
4.1.2 The basic implementation of the ORB

To compare the performance of the proposed approaches, the basic ORB has been
implemented, and these results will be used as a benchmark to compare the results of all
the proposed approaches to check if there is any improvement in the performance of the

ORB. Following table shows the performance of the basic ORB implementation.

#of | #of Test Cfr::‘c ¢ Execution Time | Classification
Denomination | Train | Images Classes (Seconds) Accuracy (%)
Images "¢ TP [F | P | F P F P

5 2| 130 | 80| 88 91 220.54 85.99 | 67.692 | 11.25

10 41 226| 80| 145 7| 297.41 99.88 | 64.159 8.75

20 21220| 80| 156 | 11 | 268.45 94.4170.909 | 13.75

50 41228 | 80| 158 | 12| 279.75 92.78 | 69.298 15

100 2268 | 80| 178 6| 312.68 88.42 | 66.418 7.5

200 20139 52| 101 | 13| 154.82 99.76 | 72.662 25

500 21160 | 78| 117 41 161.78 72.64 | 73.125 | 5.128

500 old 2|1 165] 80| 112 2| 161.98 92.31 | 67.879 2.5

1000 2| 83| 80| 62 8| 85.57 88.97 | 74.699 10

2000 21200 80| 152 | 11| 241.82 78.33 | 76.000 | 13.75

Average time taken for an image & Accuracy | 1.2011 | 1.1603 | 69.764 | 10.779
Overall Accuracy = 52.2209% Average Time = 1.1889 Seconds

Table 4.1 The Basic ORB Performance

The overall performance of the ORB comes out to be an average of 52.22% which is
almost similar to the average performance the ORB as stated above. To calculate the
average accuracy and time consumption, the following formulas are used throughout this

work:

Average Accuracy for a category Ac =

Y. Correctly recognized images in a category

Y. Test images in a category

Overall Accuracy of all categories At =

Y. Correctly recognized images in all category

Y. Test images in all category

54

Average Time per image in a category tc =

Y. Execution time in a category
Y. Test images in a category

Average Time per image of all categories tr =

Y. Execution time in all category

Y. Test images in all category

The next two sections discuss the proposed feature detectors — the HORB and the
ACORB.

4.2 THE HORB — A HISTOGRAM BASED ORB FEATURE
DETECTOR

4.2.1 Introduction to the HORB

An image histogram is a graphical representation of pixel distribution in the image. The
pixel distribution is a way to represent the color appearance in the RGB model and the
saturation of a color in the HSV model. Histograms are invariant to translation, and they
change slowly under different view angles, scales and in the presence of occlusions.
Histogram matching is one of the oldest techniques in image matching. It is a
transformation of the image into a histogram to match it with another histogram in
reference for image identification. This is one of the simplest image classification
methods. For histogram comparison, there are various methods like histogram

intersection, Pearson correlation, Chi-Square distance, Bhattacharya distance available.

However, the image histogram represents the pixel weights or distribution, but it
doesn’t tell the pixel positions. Due to this, a histogram of, for example, a banana and a
grass-field could have a closer match and may lead to wrong identification. For this
reason, the only histogram-based image matching does not give guaranteed and accurate
results. In an attempt to improve the accuracy in histogram-based image matching, L Tu
et al. in [84] experimentally proved that the histogram based image feature matching
could improve the results in image recognition. They showed it using SIFT and ASIFT
with Histogram equalization. To address the same issue of the banana-grass field
mismatches, a fusion of histogram intersection and the ORB feature detector, HORB, is

proposed here. The HORB has been explained below:

55

Let us consider a histogram [for the input image and D for the dataset image. The

histogram intersection function is defined as follow:

n
ﬂ max (I, D;)
j=1

Where n is the number of images in the dataset.

This max function returns the image object D; for which histogram of D; matches
with significantly large numbers of pixels intersecting with a histogram of the input

image /.

In the algorithm, first, the captured image is converted into a histogram and matched
with the histogram of images in the dataset. In this stage, the histogram intersection
technique is being used for finding the closest match. As stated above, the histogram of a
banana and a grass-field could have more intersection value and may lead to wrong
identification. To filter-out any such Banana-Grass field combination, the images with
top k (k<n) histogram intersections are used, and corresponding feature subsets are sent
for feature matching using the ORB. By getting the top & images with high intersection
values, indirectly, the algorithm is reducing the number of feature subsets which will be
matched against the input image /. Thus, actually, it is reducing the possibilities of
mismatches by eliminating the majority of the images which are going to have fewer
matches with the input image /. After getting top k images, the best-matched feature
subset passing through a specific threshold value is selected from the top & images’

feature set and returned as output label.

The complexity of the algorithm can be given in the form of Big-O notation as
O;*D;*n)+O(k*F*Fp). Where, I; is the i pixel of the histogram of the input image /
and D; is an i pixel of image D from a dataset of »n images during histogram
intersection. After, histogram intersection, for feature matching of remaining k (k<n)
feature subsets, F; is the number of features of the input image / and F)p is a number of

features of each of the feature subset. The overall algorithm is given below:

56

. Initialize totalNoOflmages (N) in the dataset, the featureSet with distinguishable
features for all images, imageObject, in the dataset.
. Initialize featureThreshold, similarityDistanceThreshold
. Generate histograms of all N images, imageObject, in dataset and histogram of
inputlmage
. For each histogram of imageObject, perform histogram intersection with a histogram
of inputlmage
. Find top K histogram intersection values and corresponding imageObject into
topKlIntersects and topKImageObjects, where K < N.
. Create an ORB feature detector for inputimage
. For each imageObject in topKImageObjects with the corresponding featureSet,
Perform feature matching:

If imageObject passes featureThreshold and similarityDistanceThreshold then,

Add it to the LabellList.

. Use the best-matched imageObject from LabelList as an output image.

The HORB algorithm

4.2.2 The Testing and Performance Analysis of the HORB

Table 4.2 gives an overall view of the performance of the HORB.

of Execution Classification
of # of Test .
Denomination | Train Images %(l)rrect Time Accouracy
Images asses (Seconds) (%)

F P F | P F P F P
5 2 130 80| 114| 8| 351.8| 194.3 | 87.69 10
10 4 226 | 80| 198 | 6| 534.5| 204.2 | 87.61 7.5
20 2 220 80| 192| 9| 514.6| 187.5|87.27| 11.25
50 4| 228| 80| 197 | 13| 530.6| 189.6|86.40 | 16.25
100 2 268 | 80| 231| 6| 608.6| 183.8|86.19 7.5
200 2 139 | 52| 126 16| 322.1| 117.9]90.65| 30.77
500 2 160 | 78| 143 3| 366.9| 170.1 | 89.38 | 3.846
500 old 2 165| 80| 148 | 3| 375.5| 178.9 | 89.70 3.75
1000 2 83| 80 741 9| 187.4] 191.0|89.16 | 11.25
2000 2 200 80| 182 | 7| 452.2| 183.8|91.00 8.75
Average time taken for an image & Accuracy 2.3332 | 2.3393 | 88.23 | 10.389
Overall Accuracy = 65.083% Average Time = 2.335 Seconds

Table 4.2 The HORB Performance

57

Here, the number of correctly recognized images in case of the ORB is 1352 out of
2589 whereas the same number for the HORB is 1685 leading to an overall accuracy of
65.083% as compared to the ORB’s 52.220%. Here, the accuracy percentage for fully
visible images is 88.235% which is far better than 69.763% of ORB. But, for partially
visible images, the accuracy is not improved which is around 10.389% only! The total
number of correctly classified images and its accuracy are shown graphically in the

following figure 4.3 and figure 4.4 respectively.

HORB Vs. ORB Recognition
250

200

—&—HORB-Fully Visible

150 Images

100

—fli—HORB-Paritally Visible

Images
50

ORB-Fully Visible
Images

100
200
500

== ORB-Paritally Visible
Images

of Correctly Recognized classes

1000
2000

500_old

Denominations

Figure 4.3. Number of correctly identified images using the HORB and the ORB

HORB Vs. ORB Recognition Accuracy (%)

100.00
> 90.00 -—W‘—.—H*—
© 80.00
3 7000 g e T ——HORB-Fully Visible
< 60.00 Images
S 50.00
Ig 40.00 == HORB-Paritally Visible
%D 30.00 Images
$ 20.00 -
e 10.00 -+ ORB-Fully Visible
0.00 Images
TS RBEE G EE —ORBParitly Visble
S - Images
n

Denominations

Figure 4.4. Recognition accuracy of the HORB and the ORB

58

In terms of time, the HORB takes an average 2.333 and 2.339 seconds per image, for
recognition of fully and partially visible images, which are almost, double than the ORB
consuming 1.201 and 1.160 seconds per image. But, for improvement in recognition
accuracy, this trade-off is necessary. For a set of 2589 images of all denominations, the
time consumption for each denomination and average time taken per image are shown in

figure 4.5 and 4.6.

HORB Vs. ORB Recognition Time (Seconds)

__ 700.0

B

€ 600.0

§ 500.0 —&— HORB-Fully Visible

o 400.0 Images

£

= 300.0 —fl—HORB-Partially Visible

,E 200.0 Images

o

< 100.0 === ORB-Fully Visible

é 0.0 Images

" 23888 %I 8 8 ——ORB-Paritally Visible

=] - A Images
n

Denominations

Figure 4.5. Recognition Time taken by the HORB and the ORB

Type of Image Vs. Average Recogniton Time per Image

o (Seconds)

g 2.50000 2.33322 2.33933

g 2.00000 -

[J]

E — 150000 -

-3

c c

S g 1.00000 -

g3 = HORB
WY i

§ 0.50000 = ORB
o 0.00000 -

&

© Fully Partially

5 Visible Visible

Type of Image

Figure 4.6. Average time taken per image by the HORB and the ORB

59

Figure 4.7 shows an overall improvement of around 12.862% in the ORB using the
proposed approach. It proves that the proposed approach, HORB, has the edge over the
ORB.

Algorithm Vs Overall Accuracy (%)

70 65.08304365

60 -

52.22093472
50 -

m HORB

30 -+ H ORB

Overall Accuracy
D
o
1

20 -~

Figure 4.7. The overall performance of the HORB and the ORB

43 THE ACORB — AN ANT COLONY OPTIMIZATION
BASED ORB FEATURE DETECTOR

4.3.1 Introduction to the ACORB

The ant colony algorithm is a probabilistic algorithm to find the optimal path which
depends on the behavior of ants searching for food. Initially, the ants roam around
randomly. Here, the ant is an agent that constructs the solution for the given problem.

The probability of k™ ant, of total m ants, moving from i place to j’h place is given by:
Tij * MNij
2T j* Nij

p(i,j) =

Where Tj; is the amount of pheromone on edge i/

1 is the amount of heuristic value associated with edge ij

When the ant gets the source of food, it goes back to her colony leaving some
identification, called pheromones, to remember the path of the food source. When the

other ants come to the point while roaming, they follow that path due to the pheromones.

60

These pheromones are assigned a specific probability value with some formula and
updated by the ants. As more and more ants started following that path, the probability
value becomes larger indicating that the path leads to a food source. The following

formula used to update pheromone value:
Tij = (1 —p) * 7 + Aty
Where Tj; is the amount of pheromone on edge i/
P is the rate of pheromone evaporation

At jj 1s the amount of pheromone deposited and is given by

1
ATij =Ly
0

Lyis the cost of the & ant’s tour (normally the distance between node i and ;)

But the algorithm does not stop here. Due to the pheromones dropping by the ants
whenever they find the food and come back to the colony, the shorter paths are more
likely to be stronger as the different ants may travel through different paths. This is how
the optimal path is found. In the meantime, some ants would still be roaming in the hunt
of nearest food sources. This approach has many applications in finding the optimal
solution. Traveling salesman problem is one of the approaches where ACO is being used.

The following figure shows how ACO works.

probability ?

pmbnbfﬁ{i?/m/

probability ?

~ L ()

Figure 4.8. Ant Colony, red dots show the pheromones dropped by ants

61

In his work, Kwang-Kyu Seo [66] used the ACO for content-based image retrieval
using HSV and RGB color model with Textures. He showed in his work that ant colony
optimization in case of image feature extraction converges quickly with a specific set of
features. To take advantage of this, an attempt has been made to use the ACO for feature
detection using the ORB, wherein along with colors and textures, specific feature vectors
of distinguishable features have also been used. This approach has been named as

ACORB. The ACORB is described below:

1. Initialize the numberOfAnts, pheromone, maximumlterations, distanceThreshold, and
foodQty

2. Assign any random Ant to the foodLocation. Evaluation criteria are the least distance
between the Ant and the foodLocation, i.e., distanceThreshold and the foodQty.

3. If'the Ant does not get food at the foodLocation in specific foodQty in

maximumlterations then,
Select another Ant to build the solution.
else
Evaluate the Ant’s food selection based on distanceThreshold.

4. 1If food selection passes the distanceThreshold, add it to AntList and update the
pheromone value

5. Select the best Ant from AntList for labeling.

The ACORB algorithm

The ACO has been used to explore the feature subsets of a given set. If the selected
feature subset is suitable or not is decided using the heuristic function. With the

collection of feature subsets found, the best is selected as output label. For this algorithm,

the distance between the ant and the food location L is taken as a parameter for T

calculation, and food quantity is taken as heuristic #]. The probability of ant reaching to a

source of food, pheromone updates and the amount of pheromone deposited are
calculated using the same formula stated above. According to the Big-O notations, the

complexity of this algorithm will be O(n*Fr*Fp*m) where n is the maximum number of

62

iterations, F7 is the number of features of the input image /, Fp is a number of features of

each of the feature subset ant and m are the number of ants.

4.3.2 The Testing and Performance of the ACORB

Table 4.3 gives an overall performance of the ACORB.

of Execution Classification
of # of Test .
Denomination | Train Images (é(l)rrect Time Accouracy
Images asses (Seconds) (%)

F P F P F P F P
5 2| 130 80 115] 9] 348.6| 162.9| 88.46| 11.25
10 41 226 80 197 6| 5224| 198.6| 87.17 7.5
20 2| 220 80 194 | 8| 509.5| 154.3| 88.18 10
50 4| 228 | 80 199 | 12| 531.9] 155.4 | 87.28 15
100 2| 268 | 80 234 | 6| 604.8| 149.8| 87.31 7.5
200 2| 139 52 127 | 15| 614.1 87.7| 91.37 | 28.85
500 2| 160 | 78 146 | 3| 346.2| 138.6| 91.25| 3.846
500 old 2| 165| 80 148 | 3| 3499 | 132.8| 89.70 | 3.75
1000 2 83| 80 751 9| 178.0| 148.5] 90.36| 11.25
2000 2| 200 | 80 182 7| 4394] 138.0] 91.00| 8.75
Average time taken for an image & Accuracy 2.4435 | 1.9046 | 88.89 | 10.12
Overall Accuracy = 65.4692% Average Time = 2.2832 Seconds

Table 4.3 The ACORB Performance

Referring to the benchmark table 4.1, the number of correctly recognized images in
case of the ORB is 1352 out of 2589, whereas the same number for the ACORB is 1695
(an increase of 10 images than the HORB’s 1685) leading to an overall accuracy of
65.469% as compared to the ORB’s 52.220%. Here, the accuracy percentage for fully
visible images is 88.895% which is also far better than 69.763% of the ORB and 0.659%
more than the HORB for fully visible images. But here also, for partially visible images,
the accuracy does not seem to be improved. The total number of correctly classified

images and its accuracy are shown in figure 4.9 and 4.10 respectively.

63

ACORB Vs. ORB Recognition
250

200
—&— ACORB-Fully Visible

150 Images

100

—— == ACORB-Paritally Visible
Images

50
ORB-Fully Visible

0 _M Images

=>¢=ORB-Paritally Visible
Images

100
200
500
1000
2000

of Correctly Recognized classes

500_old

Denominations

Figure 4.9. Number of correctly identified images using the ACORB and the ORB

ACORB Vs. ORB Recognition Accuracy (%)

100.00
z 90.00 -—WM*—H—
© 80.00
3 7000 g e T —e—ACORB-Fully Visible
< gggg Images
S .
Ig 40.00 —{— ACORB-Partially Visible
& 30.00 Images
S 20.00 A
€ 10.00 W ORB-Fully Visible
0.00 Images

= N wmn g 9 Q5 g g —ORB-Partially Visible
I'a &
(=]
=] Images
wn

Denominations

Figure 4.10. Recognition accuracy of the ACORB and the ORB

In terms of time, the ACORB takes an average 2.443 and 1.904 seconds per image,
for recognition of fully and partially visible images, higher than the ORB, consuming
1.201 and 1.160 seconds per image. The time consumption is almost as nearby as the
HORB. The average time taken by the ACORB is 2.283 seconds, which is a bit less than
HORB’s 2.335 seconds. These results prove that the heuristic-based approaches like
ACO can be applied and works fine for image feature detection. The total time
consumption for each denomination and average time taken per image are shown in

figure 4.11 and 4.12.

64

ACORB Vs. ORB Recognition Time (Seconds)

__ 7000

B 600.0

§ .

;3_ 500.0 \ > —&— ACORB-Fully Visible
o 400.0 Images

£ 4 e

i= 300.0 - / —fll—ACORB-Partially Visible
E 200.0 ~ Images

% AV

< 100.0 = =< == ORB-Fully Visible

é 0.0 Images

100
200
500
1000
2000

== ORB-Partially Visible
Images

500_old

Denominations

Figure 4.11. Recognition Time taken by the ACORB and the ORB

Type of Image Vs. Average Recogniton Time per Image

o (Seconds)

&

£ 3

< - 2.443507422

[.

e 1.904662338

E_ ?

F g 15 -

55

£¢ 1 m ACORB
T2

S 0.5 - mORB
& 0

[J]

?ﬂ_!o Fully Partially

g Visible Visible

Type of Image

Figure 4.12. Average time taken per image by the A CORB and the ORB

The figure 4.13 shows an overall improvement of around 13.248% in the ORB
through the heuristic based approach ACORB. It is also 0.386% higher than the HORB.

65

Algorithm Vs Overall Accuracy (%)

70 ol ol Wale e Yo to X Wal
05.40323510

60 -

52.22093472

m ACORB

30 A m ORB

Overall Accuracy
N
o
1

20 A

10 A

Figure 4.13. The Overall performance of the ACORB and the ORB

The following figures summarize the performance comparison of the ORB, the

HORB, and the ACORB in terms of accuracy and time taken for recognition both.

Classification Accuracy (%) of Proposed Approaches Vs

ORB
70 65.083 65.4692
>
8 60 52.2209
g 50 -
c 40 -
o
E 30 -
3‘2 20 -
S 10 -
0 .
ORB HORB ACORB
Algorithms

Figure 4.14. The Accuracy performance of the ORB, the HORB, and the ACORB

Overall, it can be observed that there is no significant increase in the accuracy in,
both, HORB and ACORB. This indicates that only feature based identification using

ORB does not improve the accuracy in image identification.

66

Image Recognition time (Seconds) of Proposed
Approaches Vs ORB
25 2.335
[J]
[
©
£ 2
S
&5 1O 1.1889
o T
o C 1
x O
o o
pagCa)
€= 05 -
==
d
: 0
E ORB HORB ACORB
Algorithms

Figure 4.15. The time performance of the ORB, the HORB and the ACORB
SUMMARY

This chapter introduced the ORB feature detector in the beginning. Then, it discussed the
two novel feature detectors based on Histogram and ACO in fusion with ORB, the
HORB, and the ACORB respectively with their performance analysis. Finally, it
summarized the performance of the proposed approaches with reference to the ORB in
terms of time and accuracy both. The next chapter discusses two proposed classifiers

which are based on the HORB and the ACORB with a bag of visual words.

67

68

