
Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 43

Chapter 3
DmRT for Symmetric Multiprocessor

 In this chapter, a new dynamic memory allocator for the Real-time operating system is

proposed which has been designed and implemented for Symmetric multiprocessing (SMP)

architecture. It has been named as DmRT (Dynamic memory manager for Real-Time systems).

This allocator has been designed to achieve consistent and minimum execution time, low

fragmentation and satisfy a maximum number of memory block requests. The DmRT has also

been compared with the existing dynamic allocators of the real-time operating system. All the

design principals such as strategies, policies, and mechanisms will be explained first and then the

structure of DmRT with its results will be discussed in this chapter.

3.1 Design Principals

Figure 3.1: SMP Architecture

 As shown in Figure 3.1, Symmetric multiprocessing (SMP) system consists of a

multiprocessor computer hardware and software architecture in which more than one identical

processors are connected to a common or shared main memory. Each processor has full access to

all resources like input/output devices which are managed by a single operating system instance

treating all processors equally and reserving nothing for special purposes. Nowadays, the majority

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 44

of the multiprocessor systems use the SMP architecture. In the multi-core processors, the SMP

architecture applies to the cores and treats them as separate processors. There are different

strategies for different size of blocks in these allocators which will be explained in this section.

3.1.1 Multiple strategies for different sizes of blocks

As mentioned earlier, various strategies have been used for allocating the different size of

blocks to achieve advantages of all policies, strategies, and mechanisms.

I. A small block whose size of memory block < 512 bytes

II. A normal block whose size of memory block < threshold (Some predefined size, i.e. 2Mb)

III. A large block whose size for request exceeding the threshold or (Some predefined size)

3.1.2 Search Policies and Mechanisms

 After defining the strategies, the following policies and mechanisms will be used to

implement these strategies.

I. For Small blocks, the best-fit policy is used which has been implemented by exact-fit

mechanisms to reduce the fragmentation in small sizes of blocks generated by rounding up

the request size of memory block [41].

II. For Normal blocks, the good-fit policy is used which has been implemented by segregated

lists, which use an array of unallocated block lists.

III. For Large blocks, the worst-fit policy has been used.

3.1.3 Arrangement of blocks

 DmRT implements the exact-fit mechanism to increase the efficiency of small memory

block allocation and decrease the internal fragmentation. It also implements the segregated-fit

mechanisms to deploy a good-fit and first-fit policy for searching the nearest segregated size class.

Thus, it can ignore the requirement of a thorough search. Here, two types of bitmaps have been

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 45

used to keep track of unallocated blocks in the implementation of DmRT allocator. Furthermore,

this allocator has used a segregated list with bitmap policies and provides a consistent execution

time.

 Among the bitmaps, use of one bitmap is to keep the tracks of small memory blocks and is

implemented as a two-dimensional array for holding unallocated memory blocks as per the

memory blocks size. In DmRT, for effective memory allocation, the block size ranging from 4

bytes to 512 bytes are arranged with a difference of 4 bytes apart. Two different mechanisms have

been deployed to check whether a specific size of a memory block is unallocated or not. The first

mechanism is that it maintains two bitmaps of 64-bits and the second is maintaining a pointer array

to hold the unallocated blocks as shown in Figure 3.2.

 As shown in Figure 3.3, The second type of bitmap comprises of a two-dimensional bitmap

array pointing to the unallocated memory blocks. The primary bitmap, which is indexed by i,

specifies the unallocated memory blocks whose sizes available between 2i to 2i+1 − 1, and the

secondary bitmap, which is indexed by j, splits each primary level range in similar width of a

number of ranges. For the simplicity, the number of ranges in the secondary level is specified in

power of two: 2range. For this allocator, the default value of range is taken as 6. The variable range

splits the primary level ranges in an equal number of ranges. For example, if the value of range is

4 then there will be 16 segregated lists inside the provided size ranges. Similarly, if value of range

is 5 then there will be 32 segregated lists inside the provided size ranges. If the value of range is 1

then the allocator accomplishes unallocated blocks as powerfully as the binary buddy allocator.

 Here, the value of range is crucial to the performance of the allocator and hence, it is

important to decide the minimum size of the memory block. If the value of range is big, it would

cause more consumption of memory space to store the information like extra bits and pointers.

Conversely, if the value of range is too small, then it would increase the internal fragmentation.

The index i denotes the existing maximum size of a memory block: 2i+1 − 1, whereas the

number of segregated lists in the provided sizes can be defined by the number of ranges: 2range.

Furthermore, a specific segregated list can be identified by the value of index I (i, j), which

specifies whether the list (i, j) encompasses any unallocated blocks or not. Hence, all bitmaps do

not comprise unallocated memory blocks, but they specify the probable availability of a particular

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 46

size of the memory block. All the pointers to the unallocated memory blocks are kept in a two-

dimensional pointer array which is known as matrix.

Figure 3.2: DmRT Structure for Small Block Allocation

Figure 3.3: DmRT Structure for Normal Block Allocation

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 47

 As discussed previously, for DmRT, the value of range is set to 6 by default. Every

component of the array points to a list which has unallocated memory blocks of sizes, in a range,

from 2i +2(i−range) × j to 2i + 2(i−range) × (j+1) −1.

 In the implementation of this allocator, it uses a two-dimensional bitmap array, which

needs a 64-bit variable for the primary bitmap and 64*64-bit variables for the secondary bitmaps.

Hence, total 66 variables of 64-bit are required to specify the unallocated block lists. Also, in each

secondary level range, all the available memory blocks are arranged in the AVL tree to balance

the tree structure.

ISL (PI, SI) = {

𝑃𝐼 = ⌊log2 𝑅𝐵⌋ 𝑤ℎ𝑒𝑟𝑒 𝑃𝐼 ∈ [9,31]

𝑆𝐼 = ⌊
(𝑅𝐵 − 2𝑃𝐼)

2𝑃𝐼−𝑟𝑎𝑛𝑔𝑒
⌋ 𝑤ℎ𝑒𝑟𝑒 𝑆𝐼 ∈ [0, 63]

 3.1

 The Primary Level is intended to accomplish the time of execution in a constant manner

for the allocation of the memory blocks. Each and every segregated list keeps the specific size of

unallocated memory blocks, and the DmRT can find an unallocated block by an index computed

using equation 3.1. The Primary Level is designed using bitmaps and singular linked lists which

contain small sizes of memory blocks. It has been designed using a bitmap, arrays of pointers to

unallocated blocks and doubly-linked lists for the normal sizes of memory blocks. Having a single

global heap between more than one thread may lead to the possibility of lock conflicts. To decrease

the lock conflicts, each and every thread of the application should have a private thread heap.

3.2 Pseudocode of Proposed Allocator for SMP: DmRT

 In this section pseudocode of proposed allocator DmRT has been shown. The first part

described the pseudocode of “Arrangement of Blocks” and then pseudocode of “Allocation of

different types of memory blocks.”

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 48

3.2.1 Arrangement of Blocks

BEGIN

IF Block Size <= 512 bytes THEN

Hashing data structure where each key is multiple of 4 up to 512 bytes

At each key, link list of 64 nodes of same Size

ELSE IF Block Size > 512 bytes AND Block Size <= 2 Mb THEN

Create Two level list

Primary Index which Stores range of 2PI to 2PI +1 -1 where PI∈ [9, 21]

Each primary index is divided in ranges by 2range, where range =6

ELSE IF Block Size > 2 Mb THEN

Block will be arranged in descending order of Size

ENDIF

END

3.2.2 Block Allocation

RB = Requested Block Size

PI = Primary Index

SI = Secondary Index

range = divides the Primary level ranges in a number of ranges linearly

ISL = Index of Segregated list which holds the Free block Tree

FR = Fragmentation

RS = Number of Request Satisfied (Initialize with 0)

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 49

RN = Root node of AVL Tree

BS = Block Size

MAB = Maximum Available Blocks

BEGIN

IF RB<= 512 bytes THEN

 PI = ⌊
𝑅𝐵−1

4
⌋

 WHILE true

 IF SI> -1 THEN

 CALL smallBlockAllocation(PI, SI, RB)

 BREAK

 ELSE

 INCREMENTPI

 IF PI EQUAL 9 AND SI EQUAL -1 THEN

 PRINT “Block Allocation Failed”

 RETURN

 ENDIF

 ENDIF

 ENDWHILE

ELSE IF RB> 512 b AND RB<= 2 Mb THEN

𝑰𝑺𝑳 (𝑷𝑰, 𝑺𝑰) = {

𝑷𝑰 = ⌊log2 𝑹𝑩⌋ 𝑤ℎ𝑒𝑟𝑒 𝑷𝑰 ∈ [9, 21]

𝑺𝑰 = ⌊
(𝑹𝑩 − 2𝑷𝑰)

2𝑷𝑰−𝒓𝒂𝒏𝒈𝒆
⌋ 𝑤ℎ𝑒𝑟𝑒 𝑺𝑰 ∈ [0, 63]

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 50

CALL normalBlockAllocation(PI, SI, RB)

ELSE

 Blocks are arranged in descending order of Size

 PI index starts with 0 up to MAB.

 CALL largeBlockAllocation(PI, RB)

ENDIF

END

smallBlockAllocation (PI, SI, RB)

BEGIN

 PRINT “Small Block Allocated”

 Compute FR as (PI+1)*4 – RB

 DECREMENT SI

 INCREMENT RS

END

normalBlockAllocation (PI, SI, RB)

BEGIN

 WHILE true

 IF RN>= RB THEN

 Allocate RN;

 PRINT “Normal Block Allocated”

 BREAK

 ELSE

 SET RN as Right Child of RN

 IF RN reach to Leaf node AND RN<= RB THEN

 INCREMENT SI

 IF SI EQUAL 2range -1 THEN

 INCREMENT PI

IF PI EQUAL 21 AND SI EQUAL 2range -1 THEN

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 51

 PRINT “Block Allocation Failed”

 RETURN

 ENDIF

 ENDIF

ENDIF

 ENDIF

 ENDWHILE

 Balance AVL tree to maintain level -1, 0, +1

 Compute FR as RN –RB

 INCREMENT RS

END

largeBlockAllocation(PI, RB)

BEGIN

 IF RB<= BS at PIth index THEN

 Divide block intoRB and (BS at PIth index - RB)

 Compute BS at PIth index as BS at PIth index - RB

 ELSE

 INCEREMENT PI

 IF PI>MAB THEN

 PRINT “Block Allocation Failed”

 RETURN

 ENDIF

ENDIF

END

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 52

3.3 Results

Case 1: Existing allocators and DmRT allocate from Local Memory

 In a symmetric multiprocessor architecture, all processors will share the same memory

which is known as local memory for them. Whenever any request for the memory block is raised,

the memory manager will search and allocate memory block from the same local memory.

There are three different test categories have been selected.

1. Best case, i.e., the test has been taken for 100 memory blocks request.

2. Average case, i.e., the test has been taken for 1000 memory blocks request.

3. Worst case, i.e., the test has been taken for 2000 memory blocks request.

There are three main parameters considered for the results.

Parameter 1: The execution time should be consistent and minimum.

Parameter 2: Fragmentation should be as low as possible.

Parameter 3: Number of Requests Satisfied should be as high as possible.

Here, following four different memory management algorithms have been compared.

1. Dlmalloc

2. tcmalloc

3. TLSF

4. Proposed Memory Allocator

 All the tests have been taken on MemSimRT simulator - A Memory Management

Simulator for Real-Time operating system. The details about MemSimRT will be discussed in

Chapter 5.

 The results mentioned here is the average of 100 attempts. 100 attempts for each case have

been mentioned in Annexure I.

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 53

3.3.1 Existing Allocators and DmRT allocate from Local Memory

1. Average of 100 attempts (Best Case: for 100 memory block requests)

Table 3.1: Existing Allocators and DmRT allocate from Local Memory (Best Case)

Algorithms Dlmalloc tcmalloc TLSF DmRT

Parameters

Execution Time (ms) 287.8581 330.3003 268.598 234.6128

Fragmentation in (%) 43.6472 29.684 22.4791 17.5031

Request Satisfied in (%) 56.6156 62.5883 81.5737 87.6169

As shown in Figure 3.4, the

DmRT takes minimum

execution time as compared

to all other dynamic memory

allocators, and the tcmalloc

takes maximum execution

time.

Figure 3.4: Execution time of Memory allocators in

Best case

As shown in figure 3.5, the

DmRT satisfies the

maximum requests and has

lowest fragmentation as

compared to all other

dynamic memory allocators,

for the same, the Dlmalloc is

exactly opposite to it.

Figure 3.5: Fragmentation & Request Satisfied of Memory

allocators in Best case

0

100

200

300

400

Dlmalloc tcmalloc TLSF DmRT

E
X

E
C

U
T

IO
N

 T
IM

E

MEMORY ALLOCATORS

Execution Time (ms)

0 20 40 60 80 100

Dlmalloc

tcmalloc

TLSF

DmRT

FRAGMENTATION & REQUEST SATISFIED

M
E

M
O

R
Y

 A
L

L
O

C
A

T
O

R
S

Request Satisfied in (%) Fragmentation in (%)

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 54

2. Average of 100 attempts (Average Case: for 1000 memory block requests)

Table 3.2: Existing Allocators and DmRT allocate from Local Memory (Average Case)

Algorithms Dlmalloc tcmalloc TLSF DmRT

Parameters

Execution Time (ms) 1904.826 2890.503 1461.272 1067.995

Fragmentation in (%) 52.3926 35.157 27.0205 22.0902

Request Satisfied in (%) 45.458 57.4617 74.9894 83.109

Figure 3.6 shows that the DmRT

takes the minimum execution

time as compared to all other

dynamic memory allocators,

whereas the tcmalloc takes the

maximum execution time.

Figure 3.6: Execution time of Memory allocators in

Average case

As shown in figure 3.7, the

DmRT satisfies the maximum

requests and has the lowest

fragmentation as compared to

all other dynamic memory

allocators. Here also, the

Dlmalloc is performing exactly

opposite to it with more

fragmentation and a non-

acceptable number of requests

being satisfied.

Figure 3.7: Fragmentation & Request Satisfied of

Memory allocators in Average case

0

500

1000

1500

2000

2500

3000

Dlmalloc tcmalloc TLSF DmRT

E
X

E
C

U
T

IO
N

 T
IM

E

MEMORY ALLOCATORS

Execution Time (ms)

0 20 40 60 80 100

Dlmalloc

tcmalloc

TLSF

DmRT

FRAGMENTATION & REQUEST SATISFIED

M
E

M
O

R
Y

 A
L

L
O

C
A

T
O

R
S

Request Satisfied in (%) Fragmentation in (%)

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 55

3. Average of 100 attempts (Worst Case: for 2000 memory block requests)

Table 3.1: Existing Allocators and DmRT allocate from Local Memory (Worst Case)

Algorithms Dlmalloc tcmalloc TLSF DmRT

Parameters

Execution Time (ms) 3204.577 4352.133 2153.912 1847.152

Fragmentation in (%) 60.4389 43.6719 32.0433 26.9948

Request Satisfied in (%) 35.0845 52.5575 70.5685 77.47

In the worst-case, the DmRT

takes minimum execution time

with reference to all other

dynamic memory allocators,

while tcmalloc takes maximum

execution time. This scenario

is shown in Figure 3.8

Figure 3.8: Execution time of Memory allocators in

Worst case

Figure 3.9: Fragmentation & Request Satisfied of

Memory allocators in Worst case

Figure 3.9 shows that the DmRT

satisfies the maximum

requests and causes the lowest

fragmentation among all other

dynamic memory allocators.

The notable thing here is that the

difference among them is more

than 50% i.e. even in the worst-

case, the DmRT provides the

best results and Dlmalloc

performs exactly opposite to it.

0

1000

2000

3000

4000

5000

Dlmalloc tcmalloc TLSF DmRT

E
X

E
C

U
T

IO
N

 T
IM

E

MEMORY ALLOCATORS

Execution Time (ms)

0 20 40 60 80

Dlmalloc

tcmalloc

TLSF

DmRT

FRAGMENTATION & REQUEST SATISFIED

M
E

M
O

R
Y

 A
L

L
O

C
A

T
O

R
S

Request Satisfied in (%) Fragmentation in (%)

	0-Dec-Ack-Abstract-ToC-LoT-LoF.pdf

