

A Comparative Study of Text Data Mining

Algorithms and its Applications

A Thesis submitted to

The Maharaja Sayajirao University of Baroda

for the award of the degree of

Doctor of Philosophy

in

Computer Science and Engineering

by

Ms. Anjali Ganesh Jivani

Research Guide

Prof. B. S. Parekh

Department of Computer Science and Engineering

Faculty of Technology and Engineering

The Maharaja Sayajirao University of Baroda

Vadodara 390 001

December 2011

i

Dedicated to

Kashmira

My friend from childhood – till the cruel hands

of nature took her away from me …

ii

Declaration

I, Anjali Ganesh Jivani, hereby declare that the work reported in this thesis

entitled ‗A Comparative Study of Text Data Mining Algorithms and its

Applications‘ submitted for the award of the degree of

Doctor of Philosophy

in

Computer Science and Engineering

is original and was carried out by me at the Department of Computer

Science and Engineering, Faculty of Technology and Engineering, The M. S.

University of Baroda, Vadodara. I further declare that this thesis is not

substantially the same as one which has already been submitted in part or in

full for the award of any degree or academic qualification of this University or

any other Institution or examining body in India or abroad. Due

acknowledgements have been made in the thesis for all other sources

referred.

Ms. Anjali Ganesh Jivani
Department of Computer Science and Engineering
Faculty of Technology and Engineering
The Maharaja Sayajirao University of Baroda
Vadodara 390001.

iii

Certificate

This is to certify that Ms. Anjali Ganesh Jivani has worked under

my guidance to prepare the thesis entitled ‗A Comparative Study

of Text Data Mining Algorithms and its Applications‘ which is being

submitted herewith towards the requirement for the degree of

Doctor of Philosophy in Computer Science and Engineering.

Prof. B. S. Parekh
Department of Computer Science and Engineering
Faculty of Technology and Engineering
The Maharaja Sayajirao University of Baroda
Vadodara 390 001.

Shri P. R. Bhavsar
Offg. Head
Department of Computer Science and
Engineering
Faculty of Technology and Engineering
The Maharaja Sayajirao University of
Baroda
Vadodara 390 001.

Prof. A. N. Mishra
Dean
Faculty of Technology and Engineering
The Maharaja Sayajirao University of
Baroda
Vadodara 390 001.

iv

Approval Sheet

This thesis entitled ‗A Comparative Study of Text Data Mining

Algorithms and its Applications‘ submitted by Ms. Anjali Ganesh

Jivani in Computer Science and Engineering is hereby approved

for the degree of Doctor of Philosophy in Computer Science and

Engineering.

EXAMINERS:

GUIDE:

(Prof. B. S. Parekh)

v

Acknowledgements

With a deep sense of gratitude I would like to acknowledge the support of all

those people who have directly or indirectly been an integral part of my work.

It is a matter of privilege and pleasure to express my appreciation towards my

guide Prof. B. S. Parekh for his motivation, technical guidance and constant

support throughout this work. His vision and direction helped me select this

subject of research and his critical comments and innovative suggestions

encouraged me to complete this work successfully.

I am highly indebted to Shri. P. R. Bhavsar, the Head of my department for his

sincere support and co-operation during this period. His silent and strong

assistance in providing me all the required facilities has made it possible for

me to complete this work in time.

My family has been the backbone for all that I have done till now in my life,

especially my two sets of parents – Aai-Baba and Ba-Bapuji. Their

unconditional love and moral support are the main reasons for all that has

kept me going. Absolutely nothing would have been possible without the

unvarying encouragement and consistent inspiration from my husband

Ganesh.

I take this opportunity to thank my friends and associates who have supported

me during this research – Amisha, Hetal, Neha and Toral.

My work place – Department of Computer Science and Engineering has been

a place of worship as well as a place of great joy and encouragement for me

because of all my colleagues as well as non-teaching staff members. I would

like to thank all of them for their cooperation and assistance during this work.

I would like to express my special gratitude and thanks to Dr. S. K. Vij for his

timely suggestions and interest in my work.

Anjali Jivani

vi

Abstract

Text Data Mining, also known as Text Mining or Knowledge Discovery from

Textual Data, refers to the process of extracting interesting and non-trivial

patterns or knowledge from text documents. Regarded by many as the next

wave of knowledge discovery, Text Mining has very high commercial value.

Text Mining framework consists of two components: Text refining that

transforms unstructured text documents into an intermediate form; and

knowledge distillation that deduces patterns or knowledge from the

intermediate form.

The enormous amount of information stored in unstructured texts cannot

simply be used for further processing by computers, which typically handle

text as simple sequences of character strings. Therefore, specific pre-

processing methods and algorithms are required in order to extract useful

patterns.

There is more to Text Mining than just extracting information from single

documents. In fact Text Mining leaps from the old fashioned information

retrieval to information and knowledge discovery. The motivation behind this

study of Text Data Mining algorithms was to bring out the gold hidden in any

organization‘s data – be it a company or a university. Probably more than

90% of an organization‘s data are never being looked at: letters from

customers, email correspondence, patents, contracts, complaints, etc.

This thesis / research basically involves the study of the existing Text Mining

algorithms in different areas like Text Clustering, Text Categorization and Text

Summarization and their comparatives in terms of implementation and

applications. The initial Text Pre-processing and Text Transformation

techniques have also been discussed.

Some innovative algorithms have been developed which are either based on

the existing ones with some changes so as to have a better output or

represent a novel method of Text Mining. The developed algorithms have

been published in Conference Proceedings or International Journals and the

details of the publications are mentioned in the respective sections.

vii

Contents

ACKNOWLEDGEMENTS ... V

ABSTRACT.. VI

LIST OF FIGURES .. X

LIST OF TABLES .. XI

CHAPTER 1: TEXT MINING OVERVIEW ... 1

1.1 INTRODUCTION .. 1

1.1 DATA MINING ... 2

1.2 TEXT MINING ... 5

1.3 TEXT MINING – A RESEARCH DOMAIN ... 7

1.4 LAYOUT OF THE THESIS .. 9

CHAPTER 2: TEXT PRE-PROCESSING .. 11

2.1 INTRODUCTION .. 11

2.2 MORPHOLOGICAL ANALYSIS ... 11

2.3 TOKENIZATION ... 12

2.4 FILTERING ... 12

2.5 STEMMING ... 13

2.5.1 Introduction .. 13

2.5.2 Truncating Methods ... 14

2.5.3 Statistical Methods .. 17

2.5.4 Inflectional and Derivational Methods .. 21

2.5.5 Corpus Based Method ... 23

2.5.6 Context Sensitive Method .. 24

2.6 STEMMING AND LEMMATIZING ... 26

2.7 COMPARISON BETWEEN STEMMING METHODS .. 27

2.8 SYNTACTICAL AND SEMANTICAL ANALYSIS .. 30

2.8.1 Syntactical Analysis ... 30

2.8.2 Semantical Analysis .. 30

2.9 CONCLUSION ... 30

2.10 FUTURE ENHANCEMENTS ... 31

CHAPTER 3: TEXT TRANSFORMATION .. 32

3.1 INTRODUCTION .. 32

3.2 THE VECTOR SPACE MODEL ... 32

3.2.1 Introduction to VSM ... 32

viii

3.2.2 The tf-idf score... 33

3.2.3 Similarity Measures ... 36

3.2.4 Analysis of the Vector Space Model .. 38

3.3 LATENT SEMANTIC ANALYSIS .. 39

3.3.1 Introduction to LSA .. 39

3.3.2 Singular Value Decomposition ... 40

3.3.3 Working of LSA .. 40

3.4 PRINCIPAL COMPONENTS ANALYSIS .. 41

3.5 ATTRIBUTE SELECTION ... 41

3.5.1 Introduction .. 41

3.5.2 Comparison of Attribute Selection Methods ... 42

CHAPTER 4: TEXT CLUSTERING ... 45

4.1 INTRODUCTION TO TEXT CLUSTERING ... 45

4.2 EVALUATION OF CLUSTER QUALITY ... 45

4.3 THE K-MEANS ALGORITHM ... 48

4.3.1 The simple K-Means .. 48

4.3.2 The Bisecting K-Means Algorithm .. 48

4.3.3 The similarity measures ... 49

4.4 THE DBSCAN ALGORITHM ... 50

4.5 THE SHARED NEAREST NEIGHBOR ALGORITHM ... 50

4.6 THE SHARED NEAREST NEIGHBOR ALGORITHM WITH ENCLOSURES 52

4.6.1 Complexity of the SNNAE Algorithm .. 57

4.6.2 The Dataset Description .. 57

4.6.3 Implementation and result ... 58

4.7 CONCLUSION AND COMPARISON OF ALGORITHMS ... 65

4.8 FUTURE ENHANCEMENT ... 66

CHAPTER 5: TEXT CATEGORIZATION .. 67

5.1 INTRODUCTION TO TEXT CATEGORIZATION .. 67

5.2 THE EVALUATION MEASURES ... 69

5.3 FEATURE SELECTION ... 72

5.4 NAÏVE BAYES CLASSIFICATION .. 73

5.4.1 The Multinomial Model: .. 74

5.4.2 The Bernoulli Model ... 76

5.4.3 Comparison of the Multinomial and Bernoulli Models............................... 77

5.5 K-NEAREST NEIGHBOR ... 77

5.6 THE NOVEL KNN .. 79

5.7 DECISION TREES ... 80

ix

5.8 SUPPORT VECTOR MACHINE .. 83

5.9 DATASET DESCRIPTION .. 84

5.10 IMPLEMENTATION AND RESULT .. 85

5.11 THE COMPARISON BETWEEN K-NN AND NOVEL K-NN 89

5.12 FUTURE ENHANCEMENT ... 90

CHAPTER 6: TEXT SUMMARIZATION .. 91

6.1 INTRODUCTION TO TEXT SUMMARIZATION .. 91

6.2 TOKENIZATION ... 93

6.2.1 Sentence Scoring .. 93

6.3 SINGLE DOCUMENT SUMMARIZATION ... 94

6.4 MULTI-DOCUMENT SUMMARIZATION ... 94

6.5 COMPARISON OF TEXT SUMMARIZATION METHODS .. 96

6.6 SAMPLE OUTPUT OF TEXT SUMMARIZER ... 99

6.7 TOPIC MODEL .. 103

6.7.1 Introduction to Topic Model.. 103

6.7.2 Latent Dirichlet Allocation .. 104

6.7.3 Gibbs Sampling ... 106

6.7.4 The Gibbs Algorithm for LDA ... 107

6.7.5 Analysis of Gibbs Algorithm ... 110

6.8 THE ENHANCED GIBBS SAMPLING ALGORITHM ... 111

6.8.1 Implementation of the Enhanced Gibbs Sampling Algorithm 113

6.8.2 Output and Comparison of the Enhanced Algorithm 114

6.8.3 Conclusion and future enhancements of Topic Model............................ 116

6.9 THE MULTI-LIAISON ALGORITHM ... 116

6.9.1 Introduction of the proposed algorithm ... 116

6.9.2 The Stanford Parser .. 117

6.9.3 The Parse Tree and Dependencies ... 117

6.9.4 The Multi-Liaison Algorithm details .. 118

6.9.5 Output of the Multi-Liaison Algorithm ... 121

6.9.6 Conclusion and future enhancements .. 126

CHAPTER 7: FUTURE ENHANCEMENTS ... 127

SUMMARY .. 129

APPENDIX A .. 131

APPENDIX B .. 133

PUBLICATIONS ... 134

BIBLIOGRAPHY ... 136

x

List of Figures

Figure 1.1 Steps of Knowledge Discovery in Databases .. 4

Figure 1.2 The Text Mining Process .. 7

Figure 2.1 Types of Stemming Algorithms ... 14

Figure 3.1 The Vector Space Model .. 33

Figure 3.2 The term and document frequencies .. 35

Figure 4.1 Three data clusters and enclosures .. 53

Figure 4.2 Circular and rectangular area of data space ... 55

Figure 4.3 Implementation graph for minpts-3 and nnls-all 60

Figure 4.4 Implementation graph for minpts-3 and nnls-20. 61

Figure 4.5 Implementation graph for minpts-3 and nnls-25 63

Figure 4.6 Implementation Graph for all cases .. 64

Figure 5.1 Schematic of learning process .. 68

Figure 5.2 The training and testing datasets .. 69

Figure 5.3 Common evaluation metrics ... 71

Figure 5.4 Decision tree .. 81

Figure 5.5 The linear SVM ... 83

Figure 5.6 Comparison of the methods for all categories ... 87

Figure 5.7 Comparison of the methods for three categories combined 88

Figure 5.8 Comparison of Multinomial and Bernoulli models 88

Figure 5.9 Comparison of k-NN and Novel k-NN ... 89

Figure 6.1 A Summarization Machine .. 91

Figure 6.2 Screen shots of MEAD Summarizer ... 102

Figure 6.3 Graphical model representation of LDA .. 105

Figure 6.4 Graphical model representation of smoothed LDA 107

Figure 6.5 Gibbs Sampling Algorithm for LDA ... 110

Figure 6.6 The Enhanced Gibbs Sampling Algorithm .. 113

Figure 6.7 The Multi-Liaison Algorithm .. 119

Figure 6.8 The GET_TRIPLETS Function ... 120

Figure 6.9 The GET_RELATIONSHIP Function .. 121

Figure 6.10 The Stanford Parse Tree .. 122

Figure 6.11 Example 1 .. 123

Figure 6.12 Example 2 .. 124

Figure 6.13 Example 3 .. 125

xi

List of Tables

Table 2.1 Truncating (Affix Removal) Methods .. 28

Table 2.2 Statistical Methods ... 29

Table 2.3 Inflectional & Derivational Methods .. 29

Table 3.1 The tf-idf matrix example ... 36

Table 3.2 Main methods of feature reduction / selection .. 42

Table 4.1 Details of datasets used ... 58

Table 4.2 Attribute details of Abalone dataset.. 59

Table 4.3 Value of different parameters ... 59

Table 4.4 Implementation Result for minpts-3, nnls-all .. 59

Table 4.5 Points distribution in clusters with minpts-3, nnls-all 60

Table 4.6 Implementation Results for minpts-3, nnls-20 .. 61

Table 4.7 Points distribution in clusters with minpts-3, nnls-20 62

Table 4.8 Implementation Results for minpts-3, nnls-25 .. 62

Table 4.9 Points distribution in clusters with minpts-3, nnls-25 63

Table 4.10 Combined Results of all cases ... 64

Table 4.11 Comparison of clustering algorithms .. 66

Table 5.1 The F measures for Microaveraging and Macroaveraging 70

Table 5.2 Comparison between Multinomial model and Bernoulli model 77

Table 5.3 Dataset Description – Training and Testing ... 85

Table 5.4 The breakeven performance for all categories ... 86

Table 5.5 Comparative details for the algorithms (Breakeven points) 87

Table 5.6 Comparison of k-NN and Novel k-NN .. 89

Table 6.1 Comparison between Text Summarization methods 96

Table 6.2 Conceptual comparison of various topic models 103

Table 6.3 Terms and their meanings for equation 6.4 .. 108

Table 6.4 Dimensions required in Gibbs Algorithm .. 109

Table 6.5 Arrays used in Gibbs Algorithm .. 109

Table 6.6 Output after pre-processing ... 114

Table 6.7 Output and comparison of both algorithms ... 115

Table 6.8 Summary of comparison of both algorithms ... 115

1

Chapter 1: Text Mining Overview

1.1 Introduction

Text Mining is a flourishing and thriving field that attempts to find meaningful

information from textual or rather unstructured data. It may be loosely

characterized as the process of analyzing text to extract information that is

useful for particular purposes. Compared with the kind of data stored in

databases, text is unstructured, amorphous, and difficult to deal with

algorithmically. Nevertheless, in modern culture, text is the most common

vehicle for the formal exchange of information. The field of Text Mining

usually deals with texts whose function is the communication of factual

information or opinions, and the motivation for trying to extract

information from such text automatically is compelling - even if success is

only partial.

In 1999, Hearst wrote that the nascent field of ‗Text Data Mining‘ had a

name and a fair amount of hype, but as yet almost no practitioners. Hearst

defines Data Mining, information access, and corpus-based computational

linguistics and discusses the relationship of these to Text Data Mining. I

would be referring to Text Data Mining as Text Mining.

To understand Text Mining it was necessary to understand the concepts,

theory and model of Data Mining first. Since the literature on Data Mining is

far more extensive, and also more focused: there are numerous textbooks

and critical reviews that trace its development from roots in machine learning

and statistics. The book ‗Data Mining Concepts‘ by Han and Kamber served

as a platform to comprehend the various aspects of Data Mining, its

applications and methodologies. This book however contains only a few

pages on the concept of Text Mining. There are many other good books which

have a very extensive coverage of different Data Mining techniques. They

have been mentioned in the bibliography.

There are a number good academic journals on Data Mining – some which

are free and some are payable. The ‗Data Mining and Knowledge Discovery‘

Chapter 1: Text Mining Overview

2

journal of SpringerLink allows abstracts to be accessed by guest. This journal

has many latest research papers on Data Mining. Apart from this other

journals like ‗Knowledge and Information Systems‘, ‗Machine Learning‘, ‘IEEE

Transactions on Knowledge and Data Engineering‘ etc. are other sources of

Data Mining related material.

Text Mining emerged at an unfortunate time in history. Data Mining was able

to ride the back of the high technology extravaganza throughout the 1990s,

and became firmly established as a widely-used practical technology—though

the dot com crash may have hit it harder than other areas. Text Mining, in

contrast, emerged just before the market crash—the first workshops were

held at the International Machine Learning Conference in July 1999 and

the International Joint Conference on Artificial Intelligence in August

1999—and missed the opportunity to gain a solid foothold during the boom

years.

1.1 Data Mining

Since Data Mining is the superset of Text Mining, it is important to understand

Data Mining first. Data is increasing at an unimaginable rate every year. The

area of Data Mining has arisen over the last decade to address this problem.

Progress in digital data acquisition and storage technology has resulted in the

growth of huge databases. This has occurred in all areas starting from simple

applications like supermarket transactions, railway reservations to the more

complex and complicated ones like space research, molecular databases,

images and astronomical bodies etc. Using this data to discover hidden

knowledge, unexpected patterns and unknown information is Data Mining.

Data Mining research and practice is in a state similar to that of databases in

the 1960s. At that time the concept of databases was new and in the

development stage where programmers were still trying to come out of the

third generation of languages. Slowly the concept of relational databases was

being developed, implemented and improvised upon. Presently we can say

that databases are fully implemented and working efficiently all over the world.

Chapter 1: Text Mining Overview

3

The evolution of data warehouses from databases is slowly taking shape. The

evolution of Data Mining techniques may take a similar path over the next few

decades, making Data Mining techniques easier to use and develop.

Data Mining can be defined as follows:

“Data Mining is the non-trivial extraction of implicit, previously unknown

and potentially useful information from data.”

Most organizations have large databases that contain a wealth of potentially

accessible information. However, it is usually very difficult to access this

information. This uncontrolled growth of data will inevitably lead to a situation

in which it becomes extremely difficult to access the desired information. In

fact it would be like looking for a needle in a haystack.

The sudden rise of interest in Data Mining could be because of the following

reasons:

 Most of the organizations have stored gigabytes of data about their

products, customers, suppliers, competitors, etc. This database forms

a potential gold or rather a diamond mine that can be explored to find

hidden and extremely useful information. This information can be

traced using simple queries. Data Mining algorithms typically zoom in

on interesting sub-parts of the database and dig out the information.

 Since networks have developed extensively, it becomes easy to

connect databases situated at remote places. Thus connecting a

client‘s file to a file with demographic data may lead to unexpected

views on the spending patterns of certain population groups.

 In the past few years, machine-learning techniques have expanded

enormously. Neural networks, genetic algorithms and other techniques

often make it easier to find connections in databases.

 The client-server revolution gives the individual access to central

information systems. Marketing specialists and policy makers also want

to avail themselves of these newly acquired technical possibilities that

would help them in making their strategies.

The terms Knowledge Discovery in Database (KDD) and Data Mining are

often used interchangeably. In fact there are other names like knowledge

extraction, information discovery, exploratory data analysis, etc. also given to

Data Mining. However KDD is the most popular name.

Chapter 1: Text Mining Overview

4

KDD is a process that involves many different steps. The input to this process

is the data and the output is the useful information desired by the users. To

ensure the usefulness and accuracy of the results of the process, interaction

throughout the process by domain experts and technical experts might be

needed. Of the many steps in KDD, one of the steps is Data Mining. However,

if Data Mining is considered separately, to perform Data Mining all these steps

are required. So in a way both mean the same thing.

The different steps of KDD are as follows:

 Initial Selected Pre-processed Transformed Data Knowledge
 Data Data Data Data Mining

Figure 1.1 Steps of Knowledge Discovery in Databases

Brief description of the steps:

Selection:

 The data obtained from heterogeneous data sources

 The data selected depends on objective of Data Mining

 The data are of different types like active, supplementary, shelf life etc.

 This step is also called the identification and extraction stage

Preprocessing:

 Erroneous data is removed i.e. data that is skewed and invalid

 Missing data is supplied i.e. usually by predicting the values

Transformation:

 The data from different sources is converted to a common format

 If required data is encoded

 Some data conversion is also done i.e. from simple format to more

complex one

 If statistics is to be used, several variables may be grouped into one

 If neural networks is used values are changed to 1s and 0s

Chapter 1: Text Mining Overview

5

Data Mining:

 Applying algorithms to the transformed data

 Selection of the correct set of algorithms

 Each set could result in a different type of output

Knowledge:

 This step consists of interpretation and evaluation of results obtained

 This is a heuristic i.e. a self-learning approach

 The result, which is in the form of graphs and charts, is analyzed by

experts giving knowledge

The steps shown above are those of Data Mining. When applied to textual

data there is a slight change in the steps and the kind of work to be done on

the textual data.

1.2 Text Mining

Marti Hearst was one of the first researchers who talked about Text Mining

and presented a paper on it in 19991. According to him, Text Mining is the

discovery by computer of new, previously unknown information, by

automatically extracting information from different written resources. A key

element is the linking together of the extracted information together to form

new facts or new hypotheses to be explored further by more conventional

means of experimentation.

Text Mining is different from what we're familiar with in web search. In search,

the user is typically looking for something that is already known and has been

written by someone else. The problem is pushing aside all the material that

currently isn't relevant to your needs in order to find the relevant information.

In Text Mining, the goal is to discover unknown but useful information from

documents or rather unstructured data.

To the uninitiated, it may seem that Google and other Web search engines do

something similar, since they also pore through reams of documents in split-

second intervals. But, as experts note, search engines are merely retrieving

information, displaying lists of documents that contain certain keywords.

1
 Hearst, M. Untangling Text Data Mining .In the Proceedings of ACL 1999

Chapter 1: Text Mining Overview

6

Text-mining programs go further, categorizing information, making links

between otherwise unconnected documents and providing visual maps (some

look like tree branches or spokes on a wheel) to lead users down new

pathways that they might not have been aware of.

Thus, Text Mining can be defined as:

„The discovery by computer of new, previously unknown information, by

automatically extracting information from a usually large amount of

unstructured textual resources.‟

Text Mining can be compared in a simple form to different concepts like Data

Mining, web mining, Natural Language Processing (NLP) etc. as follows:

Data Mining

 In Data Mining the data is structured and generally located in

databases and in Text Mining, patterns are extracted from

unstructured data in documents and text files

 In Data Mining the information is implicit in the input – data i.e.

unknown and not possible to extract without automatic

techniques. In Text Mining the information is clearly stated in the

input text but it not implied in a manner that is open to automatic

processing. Text Mining strives to bring out the text in a form

that is suitable for computer processing directly without human

intervention

Web Mining

 The source of data is the Web – the largest source of data in the

world where in Text Mining, the input is not necessarily the web

– it could be textual data from any source (local or otherwise)

 Data on the web is dynamic and rich in features and patterns

and the data is text, audio, video, graphics, hyperlinks, tags etc.

Information Retrieval (IR)

 No genuinely new information is found.

 The desired information merely coexists with other valid pieces

of information.

Computation Linguistics (CPL) & Natural Language Processing

 An extrapolation from Data Mining on numerical data to Data

Mining from textual collections

Chapter 1: Text Mining Overview

7

 CPL computes statistics over large text collections in order to

discover useful patterns which are used to inform algorithms for

various sub-problems within NLP, e.g. Parts Of Speech tagging,

and Word Sense Disambiguation

Figure 1.2 The Text Mining Process

1.3 Text Mining – A Research Domain

Although a lot of work has been done on Text Mining, it is still a field of pure

delight for researchers like me. As observed from the material – books,

papers, online articles, journals, periodicals etc. there is a lot of scope for text

miners to compare and contrast the different Text Mining methods and put

forth the comparatives in a well organized form. This type of work would be

useful to researchers, students and people involved in the Decision Support

System of their organizers to mine the large amount of textual information that

is available with them.

Researchers and students would find this work very useful for the

understanding and detailed study of Text Mining algorithms and methods.

Chapter 1: Text Mining Overview

8

Though a number of books are available, the topics covered are so vast and

in some cases too detailed to grasp the real hub and core of Text Mining.

Along with the literature survey I searched and gathered datasets to study and

implement the algorithms. There are a number of datasets available on the

internet and I have used them for my research after downloading them on my

system. Some of the datasets used are as mentioned below:

1. http://www.inf.ed.ac.uk/teaching/courses/dme/html/datasets0405.html

2. http://www.datawrangling.com/some-datasets-available-on-the-web

3. http://www.infochimps.com/tags/textmining

4. http://archive.ics.uci.edu/ml/

5. http://www.cs.umb.edu/~smimarog/textmining/datasets/index.html

6. http://repository.seasr.org/Datasets/UCI (UCI Machine Learning

Repository)

7. TREC

8. REUTERS Collection

9. Times Magazine:

http://www.ifs.tuwien.ac.at/~andi/somlib/experiments_time60.html

10. Tehelka Magazine: http://www.tehelka.com/archive_main.asp

11. http://www.cs.toronto.edu/~roweis/data.html

12. Citeseer Abstracts: http: //www.citeseerx.ist.psu.edu

13. The M. S. University of Baroda - Faculty of Tech. & Engg.- results of

past years

14. Customer complaints dataset of Matrix Comsec Pvt. Ltd.

The datasets contain structured as well as unstructured data. I initially worked

on some of the algorithms with structured data and then implemented them on

unstructured data. It was important to understand the Data Mining concepts

before actually working on the Text Mining methods. As part of the literature

survey and preliminary study I published/presented a number of study and

survey papers related to databases, Data Mining and Text Mining. The details

are given in the publications chapter at the end. Some brief descriptions of the

datasets are as follows:

 The Reuters collection (Reuters-21578)

It is currently the most widely used test collection for text categorization

research. The data was originally collected and labeled by Carnegie

Chapter 1: Text Mining Overview

9

Group, Inc. and Reuters, Ltd. in the course of developing the

CONSTRUE text categorization system. This corpus was used by me

in many of my algorithms. It is a standard text dataset used by

researchers all over the world.

 The SOMLib Digital Library

This site contains the Time Magazine Article Collection. It is a

collection of 420 articles from the 1960's covering news from politics to

social gossip.

 Data for Matlab

This site contains text data which can be directly used in a Matlab

program. The site address is given in the list above no. 11.

 UCI Machine Learning Repository

This repository contains data in the .csv and .arff formats. Many

datasets are available in this repository. The site address is as given in

no. 6.

1.4 Layout of the Thesis

Broadly there are five steps involved in Text Data Mining. They are:

1. Text Gathering

2. Text Pre-processing

3. Data Analysis (Attribute generation & selection)

4. Visualization (Applying Text Mining algorithms)

5. Evaluation

The steps are quite similar to those of Data Mining. The most important issue

over here was representing the textual data in order to apply the algorithms.

The gathered data is pre-processed depending on whether the algorithm was

statistical or some other. The text gathering was not a very difficult task as

textual corpus for research is available on different sites with all the necessary

metadata information regarding the layout of the data sets. The corpus details

are mentioned above as well as along with the algorithms where they have

been used.

Chapter 2 and Chapter 3 are related to the process of text pre-processing and

text transformation. The steps related to pre-processing are discussed along

Chapter 1: Text Mining Overview

10

with the details of the models, measures and concepts used in pre-

processing. The text transformation is related to transforming the text into a

format which can be used for implementing the algorithms and creating the

similarity matrices. The Vector Space Model, the Latent Semantic Analysis

etc. is discussed in this chapter.

The different Text Mining methods and the study related to the existing work,

their drawbacks or limitations and the proposed new algorithms with the

implementation details and results has been covered in subsequent chapters.

Chapters 4, 5 and 6 are related to Text Clustering, Text Categorization and

Text Summarization. In each chapter the perceptions and notions of the

related area, different models as well as a comparative between the different

methods available are given. The proposed algorithms and their

implementation details are also shown and the related publication if any is

mentioned at the appropriate places. The conclusions, results and future

enhancements are mentioned towards the end of each chapter.

Chapter 7 briefly describes the future enhancements possible in this field of

Text Mining.

The chapters are followed by the Summary of the work, the Appendices,

Publication Details and Bibliography.

The Appendix – A contains the list of stop words and Appendix – B contains a

list of Text Mining tools available.

11

Chapter 2: Text Pre-processing

2.1 Introduction

Though this is considered to be the preliminary step to be conducted before

actually applying Text Mining algorithms/methods, it is a very important

process and this routine itself is divided into a number of sub-methods which

again have optional algorithms with their own set of advantages and

disadvantages. The text data on which I have executed the algorithm have

been first converted to text format if it was not so. In fact the majority of the

datasets were already in text format.

Most of the Text Mining approaches are based on the idea that a text

document can be described on the set of words contained in it i.e. bag-of-

words representation. The pre-processing itself is made up of a sequence of

steps. The steps are explained in detail.

2.2 Morphological Analysis

The first step in text-preprocessing is the morphological analyses. It is divided

into three subcategories: tokenization, filtering and stemming. Morphology is a

part of linguistics which is dealing with words. Therefore, it deals with the

smallest, useful unit of a document. One could say that characters are the

smallest unit. Nonetheless, characters do not carry any valuable information

for information retrieval. Firstly, Text Mining requires the words and the

endings of a document. Finding words and separating them is known as

tokenization.

The next step is filtering of important and relevant words from our list of words

which were the output of tokenization. This is also called stop words removal.

The third step is stemming. Stemming is very important and a lot of research

work has already been done on it. Stemming reduces words variants to its

root form. Stemming of words increases the recall and precision of the

information retrieval in Text Mining. The term recall describes the proportion

of all relevant documents in a data set that are retrieved by the information

Chapter 2: Text Pre-processing

12

retrieval system. The term precision describes the proportion of relevant

documents in the data set returned to the user. Precision and recall are two

very important measures for text categorization, clustering as well as

summarization. The details are discussed further as and when they are

applied.

2.3 Tokenization

Over here the input document is split into a set of words by removing all

punctuation marks, tabs and other non-text characters and replacing them

with white spaces. The part-of-speech (POS) tagging is also applied in some

cases where words are tagged according to the grammatical context of the

word in the sentence, hence dividing up the words into nouns, verbs, etc. This

is important for the exact analysis of relations between words.

Another approach was to ignore the order in which the words occurred and

instead focus on their statistical distributions (the bag-of-words approach). In

this case it is necessary to index the text into data vectors. I have used the

bag-of-words approach in implementing the algorithms. The POS becomes

important if the research is related to NLP. In one algorithm as part of

extension work POS has been implemented.

Tokenization has been done using Visual Basic (using strip () function) as well

as Matlab (using strtok () function). The Matlab function was found to be much

more efficient and fast.

2.4 Filtering

This step is related to removing words which are of no importance for our Text

Mining process like articles, prepositions, conjunctions, etc. This is also

known as ‗Stop Words Filtering‘. It is controlled by human input and not

automated. There is not one definite list of stop words which all tools use, if

even used. The stop words list is available on the site of the Onix Text

Retrievel Tookit and the site is:

http://www.lextek.com/manuals/onix/stopwords1.html.

Chapter 2: Text Pre-processing

13

This is a very popular list and as per the requirement the list can be modified.

I have used this list to remove the stop words. Another popular list is available

on the MIT site and can be downloaded from:

http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-

list/english.stop.

2.5 Stemming

2.5.1 Introduction

Word stemming is an important feature supported by present day indexing

and search systems. Indexing and searching are in turn part of Text Mining

applications, Natural Language Processing (NLP) systems and Information

Retrieval (IR) systems. The main idea is to improve recall by automatic

handling of word endings by reducing the words to their word roots, at the

time of indexing and searching. Recall in increased without compromising on

the precision of the documents fetched. Stemming is usually done by

removing any attached suffixes and prefixes (affixes) from index terms before

the actual assignment of the term to the index. Since the stem of a term

represents a broader concept than the original term, the stemming process

eventually increases the number of retrieved documents in an IR system. Text

clustering, categorization and summarization also require this conversion as

part of the pre-processing before actually applying any related algorithm.

A lot of research work has already been done on stemming1 and a number of

different algorithms have already been developed and implemented. In this

section a brief description of the available stemmers and their comparatives is

presented. A paper titled ‗A Comparative Study of Stemming Algorithms‘ has

been published by me as part of my research in the journal - ‗International

Journal of Computer Technology and Applications’ (IJCTA) - Volume 2

Issue 6/ November - December 2011/ pg. 1930-1938, ISSN:2229-6093. This

journal has been indexed by Scirus, .docstoc, Scribd, Google Scholar, DOAJ,

etc. Site: http://ijcta.com/vol2issue6.php

1
 The papers that I have referred to understand stemming methods and prepare a comparative based

on them have been mentioned in the Bibliography – from [4] to [27].

Chapter 2: Text Pre-processing

14

Errors in Stemming

There are mainly two errors in stemming – over stemming and under

stemming. Over-stemming is when two words with different stems are

stemmed to the same root. This is also known as a false positive. Under-

stemming is when two words that should be stemmed to the same root are

not. This is also known as a false negative. Paice has proved that light-

stemming reduces the over-stemming errors but increases the under-

stemming errors. On the other hand, heavy stemmers reduce the under-

stemming errors while increasing the over-stemming errors.

Classification of Stemming Algorithms

Broadly, stemming algorithms can be classified in three groups: truncating

methods, statistical methods, and mixed methods. Each of these groups has

a typical way of finding the stems of the word variants. These methods are

shown in the Figure 2.1.

Figure 2.1 Types of Stemming Algorithms

2.5.2 Truncating Methods

As the name clearly suggests these methods are related to removing the

suffixes or prefixes (commonly known as affixes) of a word. The most basic

Stemming Algorithms

Truncating Statistical Mixed

1) Lovins

2) Porters

3) Paice/Husk

4) Dawson

1) N-Gram

2) HMM

3) YASS

1) Inflectional &

 Derivational

 a) Krovetz

 b) Xerox

2) Corpus Based

3) Context Sensitive

Chapter 2: Text Pre-processing

15

stemmer was the Truncate (n) stemmer which truncated a word at the nth

symbol i.e. keep n letters and remove the rest. In this method words shorter

than n are kept as it is. The chances of over stemming increases when the

word length is small.

Another simple approach was the S-stemmer – an algorithm conflating

singular and plural forms of English nouns. This algorithm was proposed by

Donna Harman. The algorithm has rules to remove suffixes in plurals so as to

convert them to the singular forms.

Lovins Stemmer

This was the first popular and effective stemmer proposed by Lovins in 1968.

It performs a lookup on a table of 294 endings, 29 conditions and 35

transformation rules, which have been arranged on a longest match principle.

The Lovins stemmer removes the longest suffix from a word. Once the ending

is removed, the word is recoded using a different table that makes various

adjustments to convert these stems into valid words. It always removes a

maximum of one suffix from a word, due to its nature as single pass algorithm.

The advantages of this algorithm is it is very fast and can handle removal of

double letters in words like ‗getting‘ being transformed to ‗get‘ and also

handles many irregular plurals like – mouse and mice, index and indices etc.

Drawbacks of the Lovins approach are that it is time and data consuming.

Furthermore, many suffixes are not available in the table of endings. It is

sometimes highly unreliable and frequently fails to form words from the stems

or to match the stems of like-meaning words. This is because of the technical

vocabulary being used by the author.

Porters Stemmer

Porters stemming algorithm is as of now one of the most popular stemming

methods proposed in 1980. Many modifications and enhancements have

been done and suggested on the basic algorithm. It is based on the idea that

the suffixes in the English language (approximately 1200) are mostly made up

of a combination of smaller and simpler suffixes. It has five steps, and within

each step, rules are applied until one of them passes the conditions. If a rule

Chapter 2: Text Pre-processing

16

is accepted, the suffix is removed accordingly, and the next step is performed.

The resultant stem at the end of the fifth step is returned.

The rule looks like the following:

<condition> <suffix> → <new suffix>

For example, a rule (m>0) EED → EE means ―if the word has at least one

vowel and consonant plus EED ending, change the ending to EE‖. So

―agreed‖ becomes ―agree‖ while ―feed‖ remains unchanged. This algorithm

has about 60 rules and is very easy to comprehend.

Porter designed a detailed framework of stemming which is known as

‗Snowball‘. The main purpose of the framework is to allow programmers to

develop their own stemmers for other character sets or languages. Currently

there are implementations for many Romance, Germanic, Uralic and

Scandinavian languages as well as English, Russian and Turkish languages.

Based on the stemming errors, Paice reached to a conclusion that the Porter

stemmer produces less error rate than the Lovins stemmer. However it was

noted that Lovins stemmer is a heavier stemmer that produces a better data

reduction. The Lovins algorithm is noticeably bigger than the Porter algorithm,

because of its very extensive endings list. But in one way that is used to

advantage: it is faster. It has effectively traded space for time, and with its

large suffix set it needs just two major steps to remove a suffix, compared with

the five of the Porter algorithm.

 Paice/Husk Stemmer

The Paice/Husk stemmer is an iterative algorithm with one table containing

about 120 rules indexed by the last letter of a suffix. On each iteration, it tries

to find an applicable rule by the last character of the word. Each rule specifies

either a deletion or replacement of an ending. If there is no such rule, it

terminates. It also terminates if a word starts with a vowel and there are only

two letters left or if a word starts with a consonant and there are only three

characters left. Otherwise, the rule is applied and the process repeats.

The advantage is its simple form and each iteration taking care of both

deletion and replacement as per the rule applied.

The disadvantage is it is a very heavy algorithm and over stemming may

occur.

Chapter 2: Text Pre-processing

17

Dawson Stemmer

This stemmer is an extension of the Lovins approach except that it covers a

much more comprehensive list of about 1200 suffixes. Like Lovins it too is a

single pass stemmer and hence is pretty fast. The suffixes are stored in the

reversed order indexed by their length and last letter. In fact they are

organized as a set of branched character trees for rapid access.

The advantage is that it covers more suffixes than Lovins and is fast in

execution.

The disadvantage is it is very complex and lacks a standard reusable

implementation.

2.5.3 Statistical Methods

These are the stemmers who are based on statistical analysis and

techniques. Most of the methods remove the affixes but after implementing

some statistical procedure.

N-Gram Stemmer

This is a very interesting method and it is language independent. Over here

string-similarity approach is used to convert word inflation to its stem. An n-

gram is a string of n, usually adjacent, characters extracted from a section of

continuous text. To be precise an n-gram is a set of n consecutive characters

extracted from a word. The main idea behind this approach is that, similar

words will have a high proportion of n-grams in common. For n equals to 2 or

3, the words extracted are called digrams or trigrams, respectively. For

example, the word ‗INTRODUCTIONS‘ results in the generation of the

digrams:

I, IN, NT, TR, RO, OD, DU, UC, CT, TI, IO, ON, NS, S

and the trigrams:

**I, *IN, INT, NTR, TRO, ROD, ODU, DUC, UCT, CTI, TIO, ION, ONS, NS*,

S**

Chapter 2: Text Pre-processing

18

Where '*' denotes a padding space. There are n+1 such digrams and n+2

such trigrams in a word containing n characters.

Most stemmers are language-specific. Generally a value of 4 or 5 is selected

for n. After that a textual data or document is analyzed for all the n-grams. It is

obvious that a word root generally occurs less frequently than its

morphological form. This means a word generally has an affix associated with

it. A typical statistical analysis based on the inverse document frequency (IDF)

can be used to identify them.

This stemmer has an advantage that it is language independent and hence

very useful in many applications.

The disadvantage is it requires a significant amount of memory and storage

for creating and storing the n-grams and indexes and hence is not a very

practical approach.

HMM Stemmer

This stemmer is based on the concept of the Hidden Markov Model (HMMs)

which are finite-state automata where transitions between states are ruled by

probability functions. At each transition, the new state emits a symbol with a

given probability. This model was proposed by Melucci and Orio.

This method is based on unsupervised learning and does not need a prior

linguistic knowledge of the dataset. In this method the probability of each path

can be computed and the most probable path is found using the Viterbi coding

in the automata graph.

In order to apply HMMs to stemming, a sequence of letters that forms a word

can be considered the result of a concatenation of two subsequences: a prefix

and a suffix. A way to model this process is through an HMM where the states

are divided in two disjoint sets: initial can be the stems only and the later can

be the stems or suffixes. Transitions between states define word building

process. There are some assumptions that can be made in this method:

1. Initial states belong only to the stem-set - a word always starts with a

stem

Chapter 2: Text Pre-processing

19

2. Transitions from states of the suffix-set to states of the stem-set always

have a null probabiliy - a word can be only a concatenation of a stem

and a suffix.

3. Final states belong to both sets - a stem can have a number of different

derivations, but it may also have no suffix.

For any given word, the most probable path from initial to final states will

produce the split point (a transition from roots to suffixes). Then the sequence

of characters before this point can be considered as a stem.

The advantage of this method is it is unsupervised and hence knowledge of

the language is not required.

The disadvantage is it is a little complex and may over stem the words

sometimes.

YASS Stemmer

The name is an acronym for Yet Another Suffix Striper. This stemmer was

proposed by Prasenjit Majumder, et al. According to the authors the

performance of a stemmer generated by clustering a lexicon without any

linguistic input is comparable to that obtained using standard, rule-based

stemmers such as Porter‘s. This stemmer comes under the category of

statistical as well as corpus based. It does not rely on linguistic expertise.

Retrieval experiments by the authors on English, French, and Bengali

datasets show that the proposed approach is effective for languages that are

primarily suffixing in nature.

The clusters are created using hierarchical approach and distance measures.

Then the resulting clusters are considered as equivalence classes and their

centroids as the stems. As per the details given by Prasenjit, the edit distance

and YASS distance calculations for two string comparisons is shown in Figure

2.2 and Figure 2.3. The YASS distance measures D1, D2, D3 and D4 are

based on a Boolean function pi for penalty. It is defined as:

Chapter 2: Text Pre-processing

20

Where X and Y are two strings, X = x0x1x2 . . . xn and Y = y0y1y2 . . . yn. If the

strings are of unequal lengths we pad the shorter string with null characters to

make the strings lengths equal. Smaller the distance measure indicates

greater similarity between the strings. The edit distance between two strings

of characters is the number of operations required to transform one of them

into the other.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

a s t r o n o m e r - - - -

a s t r o n o m i c a l l Y

D1 = 1/28 + 1/29 + … + 1/213 = 0.0077

D2 = 1/8 x (1/20 + … + 1/213-8) = 0.2461

D3 = 6/8 x (1/20 + … + 1/213-8) = 1.4766

D4 = 6/14 x (1/20 + … + 1/213-8) = 0.8438

Edit distance = 6

Figure 2.2 Calculation of distance measures – 1

0 1 2 3 4 5 6 7 8 9

a s t r o n o m e r

a s t o n i s h - -

D1 = 1/23 + 1/24 + … + 1/29 = 0.2480

D2 = 1/3 x (1/20 + … + 1/29-3) = 0.6615

D3 = 7/3 x (1/20 + … + 1/29-3) = 4.6302

D4 = 7/10 x (1/20 + … + 1/29-3) = 1.3891

Edit distance = 5

Figure 2.3. Calculation of distance measures - 2

As per the distances D1, D2, D3 and D4 it can be seen that astronomer and

astronomically are more similar than astronomer and astonish. The edit

distance shows exactly opposite which means the new distance measures are

more accurate.

Chapter 2: Text Pre-processing

21

2.5.4 Inflectional and Derivational Methods

This is another approach to stemming and it involves both the inflectional as

well as the derivational morphology analysis. The corpus should be very large

to develop these types of stemmers and hence they are part of corpus base

stemmers too. In case of inflectional the word variants are related to the

language specific syntactic variations like plural, gender, case, etc whereas in

derivational the word variants are related to the part-of-speech (POS) of a

sentence where the word occurs.

 Krovetz Stemmer (KSTEM)

The Krovetz stemmer was presented in 1993 by Robert Krovetz and is a

linguistic lexical validation stemmer. Since it is based on the inflectional

property of words and the language syntax, it is very complicated in nature. It

effectively and accurately removes inflectional suffixes in three steps:

1. Transforming the plurals of a word to its singular form

2. Converting the past tense of a word to its present tense

3. Removing the suffix ‗ing‘

The conversion process first removes the suffix and then through the process

of checking in a dictionary for any recoding, returns the stem to a word. The

dictionary lookup also performs any transformations that are required due to

spelling exception and also converts any stem produced into a real word,

whose meaning can be understood.

The strength of derivational and inflectional analysis is in their ability to

produce morphologically correct stems, cope with exceptions, processing

prefixes as well as suffixes. Since this stemmer does not find the stems for all

word variants, it can be used as a pre-stemmer before actually applying a

stemming algorithm. This would increase the speed and effectiveness of the

main stemmer. Compared to Porter and Paice / Husk, this is a very light

stemmer. The Krovetz stemmer attempts to increase accuracy and

robustness by treating spelling errors and meaningless stems.

If the input document size is large this stemmer becomes weak and does not

perform very effectively. The major and obvious flaw in dictionary-based

algorithms is their inability to cope with words, which are not in the lexicon.

Chapter 2: Text Pre-processing

22

Also, a lexicon must be manually created in advance, which requires

significant efforts. This stemmer does not consistently produce a good recall

and precision performance.

Xerox Inflectional and Derivational Analyzer

The linguistics groups at Xerox have developed a number of linguistic tools for

English which can be used in information retrieval. In particular, they have

produced English lexical database which provides a morphological analysis of

any word in the lexicon and identifies the base form. Xerox linguists have

developed a lexical database for English and some other languages also

which can analyze and generate inflectional and derivational morphology. The

inflectional database reduces each surface word to the form which can be

found in the dictionary, as follows:

 nouns singular (e.g. children child)

 verbs infinitive (e.g. understood understand)

 adjectives positive form (e.g. best good)

 pronoun nominative (e.g. whom who)

The derivational database reduces surface forms to stems which are related

to the original in both form and semantics. For example, ‗government‘ stems

to ‗govern‘ while ‗department‘ is not reduced to ‗depart‘ since the two forms

have different meanings. All stems are valid English terms, and irregular

forms are handled correctly. The derivational process uses both suffix and

prefix removal, unlike most conventional stemming algorithms which rely

solely on suffix removal. A sample of the suffixes and prefixes that are

removed is given below:

 Suffixes: ly, ness, ion, ize, ant, ent, ic, al, Ic, ical, able, ance, ary, ate,

ce, y, dom, ee, eer, ence, ency, ery, ess, ful, hood, ible, icity, ify, ing,

ish, ism, ist, istic, ity, ive, less, let, like, ment, ory, ous, ty, ship, some,

ure

 Prefixes: anti, bi, co, contra, counter, de, di, dis, en, extra, in, inter,

intra, micro, mid, mini, multi, non, over, para, poly, post, pre, pro, re,

semi, sub, super, supra, sur, trans, tn, ultra, un

The databases are constructed using finite state transducers, which promotes

very efficient storage and access. This technology also allows the conflation

Chapter 2: Text Pre-processing

23

process to act in reverse, generating all conceivable surface forms from a

single base form. The database starts with a lexicon of about 77 thousand

base forms from which it can generate roughly half a million surface forms.

The advantages of this stemmer are that it works well with a large document

also and removes the prefixes also where ever applicable. All stems are valid

words since a lexical database which provides a morphological analysis of

any word in the lexicon is available for stemming. It has proved to work better

than the Krovetz stemmer for a large corpus.

 The disadvantage is that the output depends on the lexical database which

may not be exhaustive. Since this method is based on a lexicon, it cannot

correctly stem words which are not part of the lexicon. This stemmer has not

been implemented successfully on many other languages. Dependence on

the lexicon makes it a language dependent stemmer.

2.5.5 Corpus Based Method

This method of stemming was proposed by Xu and Croft. They have

suggested an approach which tries to overcome some of the drawbacks of

Porter stemmer. For example, the words ‗policy‘ and ‗police‘ are conflated

though they have a different meaning but the words ‗index‘ and ‗indices‘ are

not conflated though they have the same root. Porter stemmer also generates

stems which are not real words like ‗iteration‘ becomes ‗iter‘ and ‗general‘

becomes ‗gener‘. Another problem is that while some stemming algorithms

may be suitable for one corpus, they will produce too many errors on another.

Corpus based stemming refers to automatic modification of conflation classes

– words that have resulted in a common stem, to suit the characteristics of a

given text corpus using statistical methods. The basic hypothesis is that word

forms that should be conflated for a given corpus will co-occur in documents

from that corpus. Using this concept some of the over stemming or under

stemming drawbacks are resolved e.g. ‗policy‘ and ‗police‘ will no longer be

conflated.

To determine the significance of word form co-occurrence, the statistical

measure used is,

Em(a, b) = nab / (na + nb)

Chapter 2: Text Pre-processing

24

Where, a and b are a pair of words, na and nb are the number of occurrences

of a and b in the corpus, nab is the number of times both a and b fall in a text

window of size win in the corpus (they co-occur).

The way this stemmer works is to first use the Porter stemmer to identify the

stems of conflated words and then the next step is to use the corpus statistics

to redefine the conflation. Sometimes the Krovetz stemmer (KSTEM) along

with Porter stemmer is used in the initial stem to make sure that word

conflations are not missed out.

The advantage of this method is it can potentially avoid making conflations

that are not appropriate for a given corpus and the result is an actual word

and not an incomplete stem.

The disadvantage is that you need to develop the statistical measure for every

corpus separately and the processing time increases as in the first step two

stemming algorithms are first used before using this method.

2.5.6 Context Sensitive Method

This is a very interesting method of stemming unlike the usual method where

stemming is done before indexing a document, over here for a Web Search,

context sensitive analysis is done using statistical modeling on the query side.

This method was proposed by Funchun Peng et al.

Basically for the words of the input query, the morphological variants which

would be useful for the search are predicted before the query is submitted to

the search engine. This dramatically reduces the number of bad expansions,

which in turn reduces the cost of additional computation and improves the

precision at the same time.

After the predicted word variants from the query have been derived, a context

sensitive document matching is done for these variants. This conservative

strategy serves as a safeguard against spurious stemming, and it turns out to

be very important for improving precision.

This stemming process is divided into four steps after the query is fired:

1. Candidate generation:

Over here the Porter stemmer is used generate the stems from the query

words. This has absolutely no relation to the semantics of the words. For a

Chapter 2: Text Pre-processing

25

better output the corpus-based analysis based on distributional similarity is

used. The rationale of using distributional word similarity is that true variants

tend to be used in similar contexts. In the distributional word similarity

calculation, each word is represented with a vector of features derived from

the context of the word. We use the bigrams to the left and right of the word

as its context features, by mining a huge Web corpus. The similarity between

two words is the cosine similarity between the two corresponding feature

vectors.

2. Query Segmentation and head word detection:

When the queries are long, it is important to detect the main concept of the

query. The query is broken into segments which are generally the noun

phrases. For each noun phrase the most important word is detected which is

the head word. Sometimes a word is split to know the context. The mutual

information of two adjacent words is found and if it passes a threshold value,

they are kept in the same segment. Finding the headword is by using a

syntactical parser.

3. Context sensitive word expansion:

Now that the head words are obtained, using probability measures it is

decided which word variants would be most useful – generally they are the

plural forms of the words. This is done using the simplest and most successful

approach to language modeling which is the one based on the n-gram model

which uses the chain rule of probability. In this step all the important head

word variants are obtained. The traditional way of using stemming for Web

search, is referred as the naive model. This is to treat every word variant

equivalent for all possible words in the query. The query ―book store‖ will be

transformed into ―(book OR books)(store OR stores)‖ when limiting stemming

to pluralization handling only, where OR is an operator that denotes the

equivalence of the left and right arguments.

4. Context sensitive document matching:

Now that we have the word variants, in this step a variant match is considered

valid only if the variant occurs in the same context in the document as the

original word does in the query. The context is the left or the right non-stop

segments of the original word. Considering the fact that queries and

documents may not represent the intent in exactly the same way, this

Chapter 2: Text Pre-processing

26

proximity constraint is to allow variant occurrences within a window of some

fixed size. The smaller the window size is, the more restrictive the matching.

The advantage of this stemmer is it improves selective word expansion on the

query side and conservative word occurrence matching on the document side.

The disadvantage is the processing time and the complex nature of the

stemmer. There can be errors in finding the noun phrases in the query and

the proximity words.

2.6 Stemming and Lemmatizing

The basic function of both the methods – stemming and lemmatizing is

similar. Both of them reduce a word variant to its ‗stem‘ in stemming and

‗lemma‘ in lemmatizing. There is a very subtle difference between both the

concepts. In stemming the ‗stem‘ is obtaining after applying a set of rules but

without bothering about the part of speech (POS) or the context of the word

occurrence. In contrast, lemmatizing deals with obtaining the ‗lemma‘ of a

word which involves reducing the word forms to its root form after

understanding the POS and the context of the word in the given sentence.

In stemming, conversion of morphological forms of a word to its stem is done

assuming each one is semantically related. The stem need not be an existing

word in the dictionary but all its variants should map to this form after the

stemming has been completed. There are two points to be considered while

using a stemmer:

 Morphological forms of a word are assumed to have the same base

meaning and hence should be mapped to the same stem

 Words that do not have the same meaning should be kept separate

These two rules are good enough as long as the resultant stems are useful for

our Text Mining or language processing applications. Stemming is generally

considered as a recall-enhancing device. For languages with relatively simple

morphology, the influence of stemming is less than for those with a more

complex morphology. Most of the stemming experiments done so far are for

English and other west European languages.

Lemmatizing deals with the complex process of first understanding the

context, then determining the POS of a word in a sentence and then finally

Chapter 2: Text Pre-processing

27

finding the ‗lemma‘. In fact an algorithm that converts a word to its

linguistically correct root is called a lemmatizer. A lemma in morphology is the

canonical form of a lexeme. Lexeme, in this context, refers to the set of all the

forms that have the same meaning, and lemma refers to the particular form

that is chosen by convention to represent the lexeme.

In computational linguistics, a stem is the part of the word that never changes

even when morphologically inflected, whilst a lemma is the base form of the

verb. Stemmers are typically easier to implement and run faster, and the

reduced accuracy may not matter for some applications. Lemmatizers are

difficult to implement because they are related to the semantics and the POS

of a sentence. Stemming usually refers to a crude heuristic process that

chops off the ends of words in the hope of achieving this goal correctly most

of the time, and often includes the removal of derivational affixes. The results

are not always morphologically right forms of words. Nevertheless, since

document index and queries are stemmed "invisibly" for a user, this peculiarity

should not be considered as a flaw, but rather as a feature distinguishing

stemming from lemmatization. Lemmatization usually refers to doing things

properly with the use of a vocabulary and morphological analysis of words,

normally aiming to remove inflectional endings only and to return the lemma.

For example, the word inflations like gone, goes, going will map to the stem

‗go‘. The word ‗went‘ will not map to the same stem. However a lemmatizer

will map even the word ‗went‘ to the lemma ‗go‘.

Stemming:

introduction, introducing, introduces – introduc

gone, going, goes – go

Lemmatizing:

introduction, introducing, introduces – introduce

gone, going, goes, went – go

2.7 Comparison between stemming methods

As per all the methods and the related stemming algorithms discussed so far,

a comparative of them related to their advantages and limitations is shown in

Table 4, Table 5 and Table 6. It is clearly deduced that none of the stemmers

Chapter 2: Text Pre-processing

28

are totally exhaustive but more or less the purpose of stemming is resolved.

As of now the Porter‘s Stemmer is the most popular and researchers make

their own changes in the basic algorithm to cater to their requirements.

Table 2.1 Truncating (Affix Removal) Methods

Stemmer Advantages Limitations

Lovins

1) Fast – single pass
algorithm.

2) Handles removal of
double letters in words
like ‗getting‘ being
transformed to ‗get‘.

3) Handles many irregular
plurals like – mouse and
mice etc.

1) Time consuming.
2) Not all suffixes available.
3) Not very reliable and

frequently fails to form words
from the stems .

4) Dependent on the technical
vocabulary being used by
the author.

Porters

1) Produces the best output
as compared to other
stemmers.

2) Less error rate.
3) Compared to Lovins it‘s a

light stemmer.
4) The Snowball stemmer

framework designed by
Porter is language
independent approach to
stemming.

1) The stems produced are not
always real words.

2) It has at least five steps and
sixty rules and hence is time
consuming.

Paice / Husk

1) Simple form.
2) Each iteration takes care

of deletion and
replacement.

1) Heavy algorithm.
2) Over stemming may occur.

Dawson

1) Covers more suffixes
than Lovins.

2) Fast in execution.

1) Very complex.
2) Lacks a standard

implementation.

Chapter 2: Text Pre-processing

29

Table 2.2 Statistical Methods

Stemmer Advantages Limitations

N-Gram

1) Based on the concept of
n-grams and string
comparisons.

2) Language independent.

1) Not time efficient.
2) Requires significant amount

of space for creating and
indexing the n-grams.

3) Not a very practical method.

HMM

1) Based on the concept of
Hidden Markov Model.

2) Unsupervised method
and so is language
independent.

1) A complex method for
implementation.

2) Over stemming may occur in
this method.

YASS

1) Based on hierarchical
clustering approach and
distance measures.

2) It is also a corpus based
method.

3) Can be used for any
language without knowing
its morphology.

1) Difficult to decide a threshold
for creating clusters.

2) Requires significant
computing power.

Table 2.3 Inflectional & Derivational Methods

Stemmer Advantages Limitations

Krovetz

1) It is a light stemmer.
2) Can be used as a pre-

stemmer for other
stemmers.

1) For large documents, this
stemmer is not efficient.

2) Inability to cope with words
outside the lexicon.

3) Does not consistently
produce a good recall and
precision.

4) Lexicon to be created in
advance.

Xerox

1) Works well for a large
document also.

2) Removes the prefixes
where ever applicable.

3) All stems are valid words.

1) Inability to cope with words
outside the lexicon.

2) Not implemented
successfully on language
other than English. Over
stemming may occur in this
method.

3) Dependence on the lexicon
makes it language
dependent.

Chapter 2: Text Pre-processing

30

2.8 Syntactical and Semantical Analysis

2.8.1 Syntactical Analysis

This analysis deals with the syntax of a sentence in natural language and is

useful in Information Retrieval systems. It can be divided in three parts: part-

of-speech tagging, phrase recognition and parsing.

1. Part-of-speech tagging: The recognition of the elements of a sentence like

nouns, verbs, adjectives, prepositions, etc. is realized through part of

speech tagging (POS tagging).

The part-of-speech (POS) tagging is also applied in some cases where

words are tagged according to the grammatical context of the word in the

sentence, hence dividing up the words into nouns, verbs, etc. This is

important for the exact analysis of relations between words.

2. Phrase Recognition (PR): This is also very similar to POS. It is required to

locate group of words or phrases. PR finds phrases like those given below:

 Preposition phrase (e.g. in love)

 Noun Phrase(e.g. the magician of Mecca)

 Verb Phrase (e.g. do business)

 Adjectival Phrase (e.g. small house)

 Adverbial Phrase (e.g. very quickly)

3. Parsing: This process is also part of POS as well as phrase recognition.

The sentences are fractionalized into grammatical units. The Stanford

parser is very popular for parsing. It generates a tree which is useful for

information extraction.

2.8.2 Semantical Analysis

This part of pre-processing deals with the meaning of the textual data i.e. the

semantics. It is more or less related to Natural Language Processing.

2.9 Conclusion

 As can be seen from all the algorithms that have been discussed so far, there

is a lot of similarity between the stemming algorithms and if one algorithm

scores better in one area, the other does better in some other area. In fact,

Chapter 2: Text Pre-processing

31

none of them give 100% output but are good enough to be applied to the Text

Mining, NLP or IR applications.

The main difference lies in using either a rule-based approach or a linguistic

one. A rule based approach may not always give correct output and the stems

generated may not always be correct words. As far as the linguistic approach

is concerned, since these methods are based on a lexicon, words outside the

lexicon are not stemmed properly. It is of utmost importance that the lexicon

being used is totally exhaustive which is a matter of language study. A

statistical stemmer may be language independent but does not always give a

reliable and correct stem.

The problem of over stemming and under stemming can be reduced only if

the syntax as well as the semantics of the words and their POS is taken into

consideration. This in conjunction with a dictionary look-up can help in

reducing the errors and converting stems to words. However no perfect

stemmer has been designed so far to match all the requirements.

For the purpose of implementation tokenizing has been implemented using

both Visual Basic and Matlab, filtering by Matlab and stemming by Visual

Basic. The stemming method implemented is the Porters Stemming as it has

been found to be the most appropriate by most of the researchers.

2.10 Future Enhancements

Although a lot of research work has already been done in developing

stemmers there still remains a lot to be done to improve recall as well as

precision.

There is a need for a method and a system for efficient stemming that

reduces the heavy tradeoff between false positives and false negatives. A

stemmer that uses the syntactical as well as the semantical knowledge to

reduce stemming errors should be developed. Perhaps developing a good

lemmatizer could help in achieving the goal.

32

Chapter 3: Text Transformation

3.1 Introduction

This is one of the most important stages as this is the process where the data

is modeled as per the Text Mining technique which is going to be selected

and used. So depending on whether we are planning for clustering,

summarization or categorization, the data transformation technique/model is

selected. Data Transformation is also called the Dimension Reduction

Technique. Since I have used the bad-of-words approach, the transformation

techniques would be related to it.

Broadly I am covering the most common and most efficient techniques which I

have focused on. Other related techniques would be explained as and when

required along with the algorithm whenever it is discussed.

3.2 The Vector Space Model (VSM)

3.2.1 Introduction to VSM

This model was proposed by Salton and it incorporates the local as well as

global information about terms in a document and corpus.

It is an algebraic model for representing text documents as vectors of

identifiers. The vector space model procedure can be divided in to three

stages. The first stage is the document indexing where content bearing terms

are extracted from the document text. The second stage is the weighting of

the indexed terms to enhance retrieval of document relevant to the user. The

last stage ranks the document with respect to the query according to a

similarity measure. The term ‗query‘ is used because this model is used in

Information Retrieval also.

The similarity between documents or a query and a document is determined

through calculations of the cosine similarity, Dice‘s coefficient, the Jaccard‘s

coefficient and in some cases the Eucliean distance. The vector space model

has been shown diagrammatically as in Figure 3.1. In the figure, d1 and d2

Chapter 3: Text Transformation

33

are document vectors and q1 is the query vector. We call them vectors

because they are made up of different terms.

Figure 3.1 The Vector Space Model

The angle between the documents or the query and documents determines

the similarity between them. The similarity measures are discussed in section

3.2.3.

3.2.2 The tf-idf score

The document indexing is done using the tf-idf method. It stands for term-

frequency (tf) and inverse document frequency (idf). It is weight based on

statistics which is assigned to a word to evaluate its importance in a single

document or a collection of documents. This weight is also used to generate

ranking in documents. It is used in almost all Text Mining algorithms. Over

here the assumption is that the first three steps of data pre-processing –

tokenization, removing stop words and stemming is already complete.

Chapter 3: Text Transformation

34

In the VSM, each document d is considered to be a vector in the term-space

i.e. terms that make the document. A document d can be represented as,

dtf = (tf1, tf2, …, tfn),

where tfi is the frequency of the ith term in document d. In this way each term

in a document can be represented by the tf vector. Since all documents are

not of the same size, we normalize the term frequency by dividing it by the

total number of unique terms in the document.

The inverse document frequency (idf) is a measure of the general importance

of the term in the corpus. It is obtained by dividing the total number of

documents by the number of documents containing the term and taking the

logarithm of that quotient.

 (3.1)

Where,

∣D∣ - total number of documents in the corpus

∣d:tϵd∣ - number of documents where term t appears

If a term is not in the corpus this will lead to division by zero and so we adjust

(1) by adding 1 to the denominator. i.e. 1 + ∣d:tϵd∣.

So now the tf-idf score for a term in a document becomes,

tf-idf (t, d) = tf × idf (3.2)

A high weight in tf-idf is reached by a high term frequency in a document and

a low document frequency of the term in the whole collection of documents.

This will filter out the common terms across the corpus. For terms of more

importance in certain algorithms, weights are also assigned i.e. tf score of

important terms is multiplied by some integer to increase its weightage.

The tf-idf scoring is very effectively shown in Figure 3.21. For each term of

each document in the corpus, in this way the tf-idf score is obtained. A matrix

is created to store these scores and then in the Text Mining algorithms these

scores are applied. The matrix looks like the example shown in Table 3.12.

1
 The diagram has been taken from a very informative article by Dr. E. Garcia, “The Vector Space

Model”, http://www.miislita.com/term-vector/term-vector-3.html
2
 Ibid.

Chapter 3: Text Transformation

35

The actual scores are stored in text files and the Matlab or Visual Basic

programs first creates the file and then reads and uses the scores in the

programs for the different Text Mining algorithms implementation.

Figure 3.2 The term and document frequencies

As shown in the figure, the corpus is a collection of documents, documents

consist of passages and passages consist of sentences. Thus, for a term i in

a document j we can talk in terms of collection frequencies (Cf), term

frequencies (tf), passage frequencies (Pf) and sentence frequencies (Sf).

Chapter 3: Text Transformation

36

Table 3.1 The tf-idf matrix example

3.2.3 Similarity Measures

As shown in Figure 3.1, to find the similarity between documents for text

classification or text clustering it is necessary to find the distance between the

documents. In the vector space model the most popular distance measure is

the cosine similarity.

The cosine similarity

 (3.3)

Over here the numerator is the dot product and the denominator is the

product of their Euclidean lengths. Dividing by the lengths will normalize the

lengths of the documents to the unit length and this would give an accurate

comparison now.

d1 and d2 are the documents that we are comparing. If the document vector

for document d1 is:

Chapter 3: Text Transformation

37

Which has a dictionary size of M, the Euclidean length of this vector is given

by:

This will normalize the length of the vector i.e. the effect of the denominator of

(3.3) is to length normalize the vectors. So the unit vector,

Will get the value,

 /

Similarly for .

We can rewrite (3.3) as,

 (3.4)

Where the RHS is the dot product of two unit vectors now. Higher the value of

similarity the more the documents are similar to each other. Based on this

concept a term-document matrix as shown in Table 3.1 is created.

A query can also be considered as a short document with a few terms. The

cosine similarity can be calculated between the query terms and the

document terms and the top ranking documents can be selected as output.

This is however very expensive and a document can have a high cosine score

even if it does not have all the terms of the query – (if some of the terms the

query occur a no. of times in the document the cosine similarity will increase)

The Jaccard’s Co-efficient

This is another method of finding the similarity between two documents. The

formula in (3.5) is the Jaccard‘s co-efficient for two documents di and dj.

Chapter 3: Text Transformation

38

Similarity (doci, docj) = (3.5)

Where,

│doci U docj│= total number of distinct words in doci or docj

│doci ∩ docj│= total number of common words in doci and docj

The Dice’s Co-efficient

Dice's coefficient, named after Lee Raymond Dice is given as follows:

 (3.6)

Where,

d1 and d2 are documents to be compared.

The Euclidean distance

 (3.7)

Where,

T = {t1, … ,tm} is the term set (vocabulary)

As mentioned before, the term weights are the tf-idf scores,

Wt,d1 – tf-idf score of the tth term in document d1.

Lower the value of the distance, closer are the documents.

3.2.4 Analysis of the Vector Space Model

The advantages of this model are:

 It is a simple model based on linear algebra

 The term weights not binary and dependent on term occurrence

 Allows computing a continuous degree of similarity between queries

and documents

 Allows ranking documents according to their possible relevance

Chapter 3: Text Transformation

39

 Easy to implement and understand

The limitations of this model are:

 Long documents are poorly represented because they have poor

similarity values (a small scalar product and a large dimensionality)

 In case of information retrieval, the search keywords must precisely

match document terms; word substrings might result in a "false positive

match"

 Semantic sensitivity; documents with similar context but different term

vocabulary won't be associated, resulting in a "false negative match".

 The order in which the terms appear in the document is lost in the

vector space representation

 Assumes terms are statistically independent

 Weighting is intuitive but not very formal

3.3 Latent Semantic Analysis (LSA)

3.3.1 Introduction to LSA

Latent Semantic Analysis is a fully automatic mathematical/statistical

technique for extracting and inferring relations of expected contextual usage

of words in passages of discourse. It is not a traditional natural language

processing or artificial intelligence program; it uses no humanly constructed

dictionaries, knowledge bases, semantic networks, grammars, syntactic

parsers, or morphologies, etc., and takes as its input only raw text parsed into

words defined as unique character strings and separated into meaningful

passages or samples such as sentences or paragraphs.

The first step is to represent the text as a matrix in which each row stands for

a unique word and each column stands for a text passage or other context.

Each cell contains the frequency with which the word of its row appears in the

passage denoted by its column. Next, the cell entries are subjected to a

preliminary transformation in which each cell frequency is weighted by a

function that expresses both the word's importance in the particular passage

and the degree to which the word type carries information in the domain of

discourse in general.

Chapter 3: Text Transformation

40

LSA is also known as Latent Semantic Indexing (LSI). This method uses a

semantic approach for information retrieval. The results of the search will

include terms which were not part of the query but similar to the meaning or

close to the terms in the query.

3.3.2 Singular Value Decomposition

LSA applies singular value decomposition (SVD) to the matrix. This is a form

of factor analysis, or more properly the mathematical generalization of which

factor analysis is a special case. In SVD a rectangular matrix is decomposed

into the product of three other matrices. One component matrix describes the

original row entities as vectors of derived orthogonal factor values, another

describes the original column entities in the same way, and the third is a

diagonal matrix containing scaling values such that when the three

components are matrix-multiplied, the original matrix is reconstructed. There

is a mathematical proof that any matrix can be so decomposed perfectly,

using no more factors than the smallest dimension of the original matrix.

When fewer than the necessary number of factors are used, the reconstructed

matrix is a least-squares best fit. One can reduce the dimensionality of the

solution simply by deleting coefficients in the diagonal matrix, ordinarily

starting with the smallest. (In practice, for computational reasons, for very

large corpora only a limited number of dimensions can be constructed.)

3.3.3 Working of LSA

Singular value decomposition can be used in topic identification of

documents. Using SVD, an m × n matrix, say X, is factored as: X = U∑VT

where U is m× t matrix, VT is t × n matrix, and ∑ is a diagonal matrix of t × t.

Here, we define matrix X as [doci] with one row per document, where X is n×d

where n is the number of documents and d is the vocabulary size. This term-

document matrix decomposes into: topic-document (U), topic-topic similarity

(∑) and term-topic (VT). The topic-document matrix (U) is of importance to us

since it represents the association between a document and a topic using

which we identify the most prevalent topic in the document. Documents with

same topic will lie in the same cluster. Hence the documents, which are highly

Chapter 3: Text Transformation

41

associated with the same topic, are clustered together. A document can have

more than one topic.

3.4 Principal Components Analysis (PCA)

This method is also related to the SVD. It has wide applications like dimension

reduction in information retrieval, image processing, pattern matching etc. The

main aim of PCA is the reduction of high dimensional data set into a very low

dimensional subspace.

It is a way of identifying patterns in data, and expressing the data in such a

way as to highlight their similarities and differences. Since patterns in data

can be hard to find in data of high dimension, where the luxury of graphical

representation is not available, PCA is a powerful tool for analyzing data.

The other main advantage of PCA is that once you have found these patterns

in the data, and you compress the data, i.e. by reducing the number of

dimensions, without much loss of information. It is necessary to understand

the statistical concepts of standard deviation and covariance as well

mathematical concepts of eigenvectors and eigenvalues.

3.5 Attribute Selection

3.5.1 Introduction

Attribute selection, more popularly known as feature selection is the technique

of selecting a subset of relevant features for building robust learning models in

machine learning using statistical methods. It is also called variable selection,

feature reduction or variable subset selection.

Many attribute / feature selection methods have been developed and

extensive research work has already been done in this field. A brief summary

of the methods available is given in section 3.5.2.

Feature selection is a process commonly used in machine learning, wherein a

subset of the features available from the data is selected for application of a

learning algorithm. The best subset contains the least number of dimensions

that most contribute to accuracy; we discard the remaining, unimportant

dimensions. This is an important stage of preprocessing and is one of two

Chapter 3: Text Transformation

42

ways of avoiding the curse of dimensionality – the other is feature extraction.

It decreases the size of the effective vocabulary and increases accuracy of

Text Mining by decreasing noise.

3.5.2 Comparison of Attribute Selection Methods

The most popular attribute selection methods are the frequency distribution,

Mutual Information (MI), the chi-square test, correlation coefficient and

relevancy score. The methods are all statistical based on probability

distributions. The formulas of these methods are given in Table 3.2. The

details about these methods are in the references section as per the

reference numbers in the last column of the table.

Table 3.2 Main methods of feature reduction / selection

Function

Denoted by

Mathematical Form

Document

Frequency

Information

gain

(Expected

Mutual

Information)

Chi-square

Correlation

coefficient

Relevancy

score

Chapter 3: Text Transformation

43

As per the research done by Martin Sewell3, the different feature selection

methods are as follows.

 Kira and Rendell (1992) described a statistical feature selection

algorithm called RELIEF that uses instance based learning to assign a

relevance weight to each feature.

 John, Kohavi and Pfleger (1994) addressed the problem of irrelevant

features and the subset selection problem. They presented definitions

for irrelevance and for two degrees of relevance (weak and strong).

They also state that features selected should depend not only on the

features and the target concept, but also on the induction algorithm.

Further, they claim that the filter model approach to subset selection

should be replaced with the wrapper model.

 Pudil, Novoviˇcov´a and Kittler (1994) presented ―floating‖ search

methods in feature selection. These are sequential search methods

characterized by a dynamically changing number of features included

or eliminated at each step. They were shown to give very good results

and to be computationally more effective than the branch and bound

method.

 Koller and Sahami (1996) examined a method for feature subset

selection based on Information Theory: they presented a theoretically

justified model for optimal feature selection based on using cross-

entropy to minimize the amount of predictive information lost during

feature elimination.

 Jain and Zongker (1997) considered various feature subset selection

algorithms and found that the sequential forward floating selection

algorithm, proposed by Pudil, Novoviˇcov´a and Kittler (1994),

dominated the other algorithms tested.

 Dash and Liu (1997) gave a survey of feature selection methods for

classification. In a comparative study of feature selection methods in

statistical learning of text categorization (with a focus is on aggressive

dimensionality reduction).

3
 The different feature selection methods as discussed by Martin Sewell, http://www.machine-

learning.martinsewell.com/feature-selection

Chapter 3: Text Transformation

44

 Yang and Pedersen (1997) evaluated document frequency (DF),

information gain (IG), mutual information (MI), a CHI-square test and

term strength (TS); and found IG and CHI to be the most effective.

 Blum and Langley (1997) focused on two key issues: the problem of

selecting relevant features and the problem of selecting relevant

examples.

 Kohavi and John (1997) introduced wrappers for feature subset

selection. Their approach searches for an optimal feature subset

tailored to a particular learning algorithm and a particular training set.

 Yang and Honavar (1998) used a genetic algorithm for feature subset

selection.

 Liu and Motoda (1998) wrote their book on feature selection which

offers an overview of the methods developed since the 1970s and

provides a general framework in order to examine these methods and

categorize them.

 Weston, et al. (2001) introduced a method of feature selection for

SVMs which is based upon finding those features which minimize

bounds on the leave-one-out error.

 Xing, Jordan and Karp (2001) successfully applied feature selection

methods (using a hybrid of filter and wrapper approaches) to a

classification problem in molecular biology involving only 72 data points

in a 7130 dimensional space.

 Forman (2003) presented an empirical comparison of twelve feature

selection methods. Results revealed the surprising performance of a

new feature selection metric, ‗Bi-Normal Separation‘ (BNS).

 Guyon and Elisseeff (2003) gave an introduction to variable and

feature selection. They recommend using a linear predictor of your

choice (e.g. a 2 linear SVM) and select variables in two alternate ways:

(1) with a variable ranking method using correlation coefficient or

mutual information; (2) with a nested subset selection method

performing forward or backward selection or with multiplicative

updates.

45

Chapter 4: Text Clustering

4.1 Introduction to Text Clustering

Clustering is an unsupervised method of grouping texts / documents in such a

way that in spite of having little knowledge about the content of the

documents, we can group together similar documents into independent

clusters based on some input parameters. In fact, given a training data set of

documents, the goal of a clustering algorithm is to group similar documents in

the same cluster while putting dissimilar documents in different clusters.

Clustering is used in a wide variety of fields: biology, statistics, pattern

recognition, information retrieval, machine learning, psychology, and Data

Mining. For example, it is used to group related documents for browsing, to

find genes and proteins that have similar functionality, to find the similarity in

medical image database, or as a means of data compression.

Document clustering has been studied for quite a while and has wide

applications like topic extraction, content filtering and also as a pre-processing

step for text categorization. The indexing methods that I have used to rank

documents have already been discussed in the previous sections. The

measures that have been used in implementing the clustering algorithms are

the tf-idf scores, singular value decomposition (svd), etc. and distance

measure like the cosine similarity, Jaccard‘s co-efficient, etc.

4.2 Evaluation of Cluster Quality

There are different measures available to evaluate the correctness of clusters

after an algorithm has been implemented. There are two types of measures –

internal and external. Internal measures check the correctness within the

clusters and across clusters i.e. how similar documents within a single cluster

are and how different documents are across clusters.

The other more popular measures are the external measures. They are called

external measures because we test the clusters on documents which have

Chapter 4: Text Clustering

46

been already classified (training sets) or those classified by human

experts/judges which are called the gold standard classes.

There are many other external measures. Some are explained as follows1:

 Purity: This is a very simple method. To compute purity, each cluster is

assigned to the class which is most frequent in the cluster, and then

the accuracy of this assignment is measured by counting the number of

correctly assigned documents and dividing by N – total number of

documents.

 (4.1)

Where,

Ω = {w1, w2,…,wk} is the set of clusters

С = {c1, c2, …, cj} is the set of classes

 - the set of documents in

- the set of documents in

Purity is close to zero for bad clusters and close to one for good

clusters.

 The Rand Index (RI): The Rand index penalizes both false positive and

false negative decisions during clustering. A true positive (TP) decision

assigns two similar documents to the same cluster; a true negative

(TN) decision assigns two dissimilar documents to different clusters.

There are two types of errors we can commit. A false positive (FP)

decision assigns two dissimilar documents to the same cluster. A false

negative (FN) decision assigns two similar documents to different

clusters. The Rand index measures the percentage of decisions that

are correct. That is, it is simply accuracy.

 (4.2)

1
 These measures are taken from the book “An Introduction to Information Retrieval” by Christopher

et al, online edition

Chapter 4: Text Clustering

47

 F-measure: This measure is based on recall and precision. The

formula to calculate the F-measure for a cluster j and class i is:

Recall(i, j) = nij / ni (4.3)

Precision (i, j) = nij / nj (4.4)

Where,

nij – number of members of class i in cluster j

ni – number of members of class i

nj – number of members of class j

F(i, j) = (2 * Recall(i, j) * Precision (i, j)) / (Recall(i, j) + Precision (i, j))

(4.5)

After finding the F measure for all clusters in this way the overall F

measure is computed by taking the weighted average of all values for

F:

 (4.6)

Where,

n – total number of documents

 Another way of representing the above is:

 (4.7)

 (4.8)

 (4.9)

Other than these measures there are others like the Mutual Information (MI)

and the Entropy – both of which are based on probabilities.

The clustering algorithms studied are:

 The K-Means Algorithm

 The DBSCAN Algorithm

 The SNN

 Have developed SNNAE

Chapter 4: Text Clustering

48

4.3 The K-Means Algorithm

4.3.1 The simple K-Means

The K-Means is a partitioning method of clustering where n documents are

partitioned into k partitions / clusters in such a way that each cluster has at

least one document and each document belongs to only one cluster. The

second condition is sometimes relaxed if we know that a document can

belong to more than one topic or subject.

This is one of the simplest methods and creates clusters which are spherical

in shape. This algorithm works well for a small corpus. The time complexity of

this algorithm is linear in the number of documents. K-means is based on the

concept that a center point can represent a cluster. In particular, for K-means

we use the notion of a centroid, which is the mean or median point of a group

of points (in this case documents). Note that a centroid almost never

corresponds to an actual data point.

In the K-Means algorithm the input is the number of clusters k, the corpus

containing the documents to be clustered and k initial arbitrary documents.

The output contains k clusters of documents.

The algorithm works as follows:

1. Select arbitrarily K documents as the initial centroids.

2. Assign each document to the closest centroid using some similarity

function.

3. Re-compute the centroid (mean) of each cluster.

4. Repeat steps 2 and 3 until the centroids do not change.

4.3.2 The Bisecting K-Means Algorithm

This algorithm is combination of K-Means and agglomerative hierarchical

algorithm (uses the divisive method). This algorithm also has a complexity

which is linear in the number of documents.

In this method we start with a single cluster which contains all the documents.

The algorithm then splits the main cluster in different clusters as per the

following algorithm:

1. Select a cluster to split

2. Find two sub-clusters from the cluster using the K-Means algorithm

Chapter 4: Text Clustering

49

3. Repeat step 2, the bisecting step, by selecting the largest cluster with

least overall similarity.

4. Repeat steps 1, 2 and three until the desired number of clusters is

reached.

4.3.3 The similarity measures

To find the distances between the documents and the centroids, I first

calculated the tf-idf scores for each term in the documents. After that I created

a term X document matrix for the tf-idf scores.

As per the details given in Table 2, for different values of k and initial cluster

centroids, the clusters created are shown. The similarity measure used to find

the similarity between the documents and the centroids was the cosine

similarity.

(doci, docj) = (4.10)

Where,

 (used to normalize the vectors)

doci & docj – are the tf-idf scores of the two documents

For our algorithm, we need to find the centroid c once iteration is complete.

The centroid for a set of S documents with their vector representations can be

found by,

 (4.11)

This would be a vector obtained by averaging individual scores of all

documents belonging to the set S. Finally the sets become the clusters.

Chapter 4: Text Clustering

50

4.4 The DBSCAN Algorithm

It stands for Density Based Spatial Clustering Algorithm with Noise. Though

this is a density based algorithm it has been found to give very good results in

text clustering also.

DBSCAN requires two parameters: epsilon (eps) and minimum points

(minPts). In the textual data eps would be the value of cosine distance

(between 0 and 1) and minPts generally works well for 4 (at least four

documents are similar to the document under consideration). For the following

algorithm, a point is a document.

1. It starts with an arbitrary starting point that has not been visited. It then

finds all the neighbor points within distance eps of the starting point.

2. If the number of neighbors is greater than or equal to minPts, a cluster

is formed. The starting point and its neighbors are added to this cluster

and the starting point is marked as visited.

3. The algorithm then repeats the evaluation process for all the neighbors

recursively.

4. If the number of neighbors is less than minPts, the point is marked as

noise.

5. If a cluster is fully expanded (all points within reach are visited) then the

algorithm proceeds to iterate through the remaining unvisited points in

the dataset.

This algorithm has an advantage that it does not require to know the number

of clusters in the data a priori and it can also detect noise. Moreover the

clusters unlike K-Means are of arbitrary shape.

The disadvantage is it depends on the distance function. For structured low

dimensional data the Euclidean distance is good enough but for the textual

data we sometimes consider other similarity measures also. I have used the

cosine similarity to implement DBSCAN. If documents of a particular class are

few in number they would get classified as noisy documents.

4.5 The Shared Nearest Neighbor Algorithm (SNN)

The main difference between this algorithm and DBSCAN is that it defines the

similarity between points by looking at the number of nearest neighbors that

Chapter 4: Text Clustering

51

two points share. Using this similarity measure in the SNN algorithm, the

density is defined as the sum of the similarities of the nearest neighbors of a

point. Points with high density become core points, while points with low

density represent noise points. All remainder points that are strongly similar to

a specific core points will represent a new clusters.

The steps to implement SNN are:

1. Identify the k nearest neighbors for each point (the k points most

similar to a given point, using a distance function to calculate the

similarity).

2. Calculate the SNN similarity between pairs of points as the number of

nearest neighbors that the two points share. The SNN similarity is zero

if the second point in not in its list of k nearest neighbors, and vice-

versa.

3. Calculate the SNN density of each point: number of nearest neighbors

that share Eps or greater neighbors.

4. Detect the core points. If the SNN density of the point is equal or

greater than MinPts then classify the point as core.

5. Form the cluster from the core points. Classify core points into the

same cluster if

they share Eps or greater neighbours.

6. Identify the noise points. All non-core points that are not within a radius

of Eps of a core point are classified as noise.

7. Assign the remainder points to the cluster that contains the most

similar core point.

The SNN similarity takes the sum of the similarity of the point‘s nearest

neighbors as a measure of density. It works well for the data in low, medium

and high dimensionality. The SNN similarity measure reflects the local

configuration of the points in the data space. It is insensitive to the variation of

density and dimensionality. According to SNN density, the higher the density,

it is likely to represent core or representative point and lower the density, it is

likely to represent noise points. The key feature of SNN density measure is

that it is able to find clusters of different shapes and sizes.

Chapter 4: Text Clustering

52

After studying the K-Means, DBSCAN and SNN algorithms I have designed a

new algorithm which I call the SNNAE (Shared Nearest Neighbor Algorithm

with Enclosures). This proposed algorithm has created better clusters and

given a better output.

This algorithm has been published by the World Research Congress and

IEEE and is available on IEEE Computer Society Portal, ACM Digital Library,

Google Scholar, Bibsonomy, etc. and is available on the site:

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5171034

4.6 The Shared Nearest Neighbor Algorithm with Enclosures
(SNNAE)

The proposed algorithm, SNNAE, is based on the ‗enclosure‘ approach, which

uses an inexpensive distance measure to approximately divide the data into

overlapping subsets and then applies expensive distance measure to

calculate similarity only between the points in the same enclosure. The

proposed algorithm is efficient and scalable because with this approach

significant computation is reduced by eliminating all of the distance

comparisons among points that do not fall within a common enclosure.

In the proposed algorithm, the density of the points is defined in terms of

number of neighbors with which it shares a total number – Eps(a parameter)

or greater neighbors. If this number is greater or equal to the MinPts(another

parameter), then a point is consider to have high density otherwise it

represents low density points. Also, the parameter Eps is calculated

automatically from the enclosures and MinPts can be user specified or fixed to

3, which is shown as good value from many experimental results. The size of

nearest neighborhood is also provided as input. The steps of the algorithm are

as follows:

 Creating Enclosures: In the first stage, data points are divided into

overlapping subset or enclosures where enclosure is simply a subset of

the data points. Every data point must appear in at least one enclosure

and any data point may appear in more than one enclosure as shown in

Chapter 4: Text Clustering

53

Figure 4.12. Enclosures are created with the intention that points not

appearing in any common enclosure are far enough apart that they could

not possibly be in the same cluster.

Figure 4.1 Three data clusters and enclosures

In the above figure, the solid circles show the example of overlapping

enclosures that cover all the data points. Consider an arbitrary point p

as shown in the figure. All the points inside the solid circle are the

nearest adjacent points for the central point p. All the points between

the dashed circle and solid circle are the nearest far adjacent points to

the central point p. The dashed circle is used to ensure that points in

the same clusters will not be split into different clusters. For e.g. there

are no common points in two overlapping enclosures of cluster1. If

dashed circles were not used then natural cluster1 would split into two

small clusters.

In the second stage, the proposed algorithm finds the optimal value of

Eps, the radius of neighborhood to define the density from the

overlapped enclosures created in first stage and then apply the SNN

clustering algorithm.

2
 A.M.Fahim et al. “Density Clustering Algorithm Based on Radius of Data (DCBRD)”, Georgian Electronic

Scientific Journal: Computer Science and Telecommunications, vol. 11, No.4, 2006.

Chapter 4: Text Clustering

54

To create overlapping subset or enclosure we first need to calculate

radius of the enclosure. First of all, all the data points are stored in a

single cluster called cluster feature (CF). This is a data structure which

contains summary information about all points.

 (4.12)

Where, LS is the linear sum of the n data points.

 (4.13)

Where, xi is d-dimensional data points.

Then to calculate the radius of the data space which covers all the data

point, we first find the centre of all the data point using the formula:

 (4.14)

Then radius of entire data set is calculated as:

 (4.15)

From this radius, area of the circle is found as:

 (4.16)

The circular area for more than two dimensions requires the 4/3

coefficient to be included in the formula. Then we calculate area from

another point of view, called rectangular area, based on minimum

bounding rectangle, which also covers all data point.

 (4.17)

 Where, Li is the difference between maximum and minimum value for

the dimension i, which is also called as length of dimension i. In the

Figure 4.2 blue points indicate length of x dimension and red points

indicate length of y dimension.

In the multi-dimensional data set, as the dimension increase the data

becomes more uniform and sparser. Therefore, while calculating radius

of the overlapping enclosures, we have to consider dimension of the

Chapter 4: Text Clustering

55

data set. Also, radius depends on the area of the data space. This ratio

should vary between 0 and 1.

Figure 4.2 Circular and rectangular area of data space

By considering ratio area and dimension of the data space, the radius r

of the overlapped enclosures is calculated as:

 r = d * ratio area + ratio area / 2 (4.18)

Where, d is the dimension of data space and ratio area is ratio of

rectangular and circular area or inverse. Always, the radius of the

overlapped enclosures is greater than expected Eps.

Overlapping enclosures are created using the radius r. To create

enclosures, the first point of the data set is taken as the centre of the

first enclosure. Then consider distance between every other point with

that centre point. All the points whose distance to the centre point is

less than or equal to radius r, are considered to be the nearest

adjacent point to the centre point and are put in the list1 of that

enclosure. If the distance to the centre point is less than or equal to r *

1.5 then points are considered to be as nearest far adjacent points and

are put in list2 of that enclosure. All the points whose distance is

greater than r * 1.5 and less than r * 2 are considered to be as centre of

the next enclosure to ensure overlapping of enclosures.

For each point in the list1, the algorithm keeps the distance to the

nearest enclosure and identification of that enclosure, since point may

be covered by more than one enclosure.

Chapter 4: Text Clustering

56

 Finding Optimal Value of Eps: To find the optimal value of Eps, we

consider only the points in the solid threshold. We find distance for each

point with every other point within the same enclosure. These distances

are calculated by using the following equation:

 (4.19)

Where, d is the dimension, and Pi, k and P j, k are the k th component of

the ith and jth object. From this distance, we find the maximum distance

between the nearest pair. This process is repeated for all the enclosures.

Then optimal value of Eps is found by taking average of all of these

maximum distances, i.e. Eps = maxi / k, where k is the number of

overlapped enclosures and maxi is the maximum distance for enclosure i.

This Eps value is used to measure the density of the point in the proposed

algorithm.

 Finding Nearest Neighbor: When the algorithm retrieves the nearest

neighbors of a point, it directly goes to the best enclosure (i.e. nearest

enclosure which covers that point.). It then computes the distance with

every other point in enclosure (within solid threshold) and considers only

those points that are having distance less than or equal to Eps as the

nearest neighbors of that point. If size k, of the nearest neighbor list is

given as an input then only k nearest neighbors are considered, otherwise

all neighbors having distance less than or equal to Eps are considered as

nearest neighbors of that point.

If the distance between the centre point and point considered is greater

than Eps then the algorithm computes the distance between that point and

solid edge. If this distance is less than Eps value then we compute

distance between the point considered and all the points in the dashed

edge to find its nearest neighbors with respect to Eps. In this way the final

clusters are created.

Chapter 4: Text Clustering

57

4.6.1 Complexity of the SNNAE Algorithm

The complexity of the algorithm can be found as follows:

Let,

n= number of records/instances/data points in data file

d= number of dimensions/ attributes

k= size of nearest neighbor list

e= number of enclosures

s= n/e i.e. average number of points in each enclosure

The proposed algorithm is divided into two stages.

1. In the first stage, n data points are divided into e enclosures. So its

Complexity is O (ne)

2. The Eps value is calculated using only the points that are amongst

the same enclosure. Assuming each enclosure covers s points on

an average, calculation of Eps will have time complexity of (s2e).

So its Complexity is O (s2e).

 So, the time complexity of the first stage is:

 O (ne +s2e)

In the second stage, getting the nearest neighbor, complexity:

O (ns),

Since distance of each point with every other point in the same enclosure is

only calculated. Therefore, the total time complexity of the proposed algorithm

is:

O (ne + s2e + ns)

4.6.2 The Dataset Description

The datasets used those already mentioned in the first chapter of Text Mining

Overview. In the implementation of the algorithms, the datasets are db1, fish,

abalone, and cpu. These datasets vary in size and number of attributes

(dimensions). The site from where they can be downloaded is

http://archive.ics.uci.edu/ml/ and the WEKA datasets. The brief description of

each dataset used in the evaluation of this algorithm and the SNN algorithm is

shown in Table 4.1.

Chapter 4: Text Clustering

58

Table 4.1 Details of datasets used

Dataset Instances Attributes Data Type

Cpu 209 7 Real

Fish 1100 2 Synthetic

Abalone 4177 7 Real

Db1 10000 2 Synthetic

4.6.3 Implementation and result

The proposed SNNAE algorithm has been evaluated on several different real

and synthetic datasets. The result of this algorithm is compared with that of

SNN clustering algorithm in terms of scalability, efficiency and quality of

clusters. Both algorithms produce the same result most of the time, but

compared to SNN, SNNAE is more scalable and efficient.

The implementation shown is on the Abalone dataset. Abalones are small to

very large-sized edible sea snails. The shells of abalones have a low and

open spiral structure, and are characterized by several open respiratory pores

in a row near the shell's outer edge. The flesh of abalones is widely

considered to be a desirable food, and is consumed raw or cooked in a variety

of different dishes. The attribute details are given in Table 4.2. The algorithms

were implemented by varying the values of the input parameters and finding

the output for each case. Some sample inputs and outputs are given further.

The parameter values calculated using the SNNAE algorithm for creating first

the enclosures and then finding the Eps is depicted in Table 4.3. In Table 4.4

a comparison in terms of execution time in seconds between the SNN and the

SNNAE algorithm at each step of execution is shown.

There are seven attributes and a total of 4177 record sets. The details of the

attributes are:

Chapter 4: Text Clustering

59

Table 4.2 Attribute details of Abalone dataset

Name Data Type Description

Length continuous Longest shell measurement

Diameter continuous perpendicular to length

Height continuous with meat in shell

Whole weight continuous whole abalone

Shucked weight continuous weight of meat

Viscera weight continuous gut weight (after bleeding)

Shell weight continuous after being dried

Input: Dataset, Minimum points (Minpts), nearest neighbors (nnls)

Output: Clusters, noise points

Table 4.3 Value of different parameters

Radius of all data 0.489

Radius of enclosure 0.099

Number of enclosures 288

Eps 0.0538

Case No. 1: Considered Minpts = 3, and all possible nearest neighbours.

Table 4.4 Implementation Result for minpts-3, nnls-all

No. Functionality
SNN
time (sec)

SNNAE
time(sec)

1 Find nearest neighbors 51.262 4.227

2 Find shared nearest neighbors 92.305 76.675

3 Get initial clusters 3.011 2.917

4 Get border and noise points 68.531 75.973

5 Compose cluster 0.375 0.764

Total 215.484 160.556

Chapter 4: Text Clustering

60

Figure 4.3 Implementation graph for minpts-3 and nnls-all

Table 4.5 Points distribution in clusters with minpts-3, nnls-all

Cluster No.
% of points
with SNN

% of points
with SNNAE

0 (noise) 14.29 15.21

1 85.08 84.17

2 0.31 0.31

3 0.19 0.19

4 0.12 0.12

Total 100 100

0

10

20

30

40

50

60

70

80

90

100

Find
nearest

neighbors

Find
shared
nearest

neighbors

Get initial
clusters

Get
border

and noise
points

Compose
cluster

E
x

e
c

u
ti

o
n

 T
im

e
 i
n

 s
e

c
s

Task Performed

SNN time (sec)

SNNAE time(sec)

Chapter 4: Text Clustering

61

Case No. 2: Considered Minpts = 3, and nnls = 20

Table 4.6 Implementation Results for minpts-3, nnls-20

No. Functionality
SNN
time (sec)

SNNAE
time(sec)

1 Find nearest neighbors 49.561 4.259

2 Find shared nearest neighbors 5.257 0.842

3 Get initial clusters 1.139 1.077

4 Get border and noise points 69.514 74.943

5 Compose cluster 0.468 0.811

Total 125.939 81.932

Figure 4.4 Implementation graph for minpts-3 and nnls-20.

0

10

20

30

40

50

60

70

80

Find
nearest

neighbors

Find
shared
nearest

neighbors

Get initial
clusters

Get border
and noise

points

Compose
cluster

E
x

e
c

u
ti

o
n

 t
im

e
 i
n

 s
e

c
s

Task Performed

SNN time (sec)

SNNAE time(sec)

Chapter 4: Text Clustering

62

Table 4.7 Points distribution in clusters with minpts-3, nnls-20

Cluster No.
% of points
with SNN

% of points
with SNNAE

0 (noise) 14.01 15.87

1 84.68 83

2 0.34 0.22

3 0.22 0.12

4 0.12 1

5 0.1 0.12

6 0.12 0.07

7 0.1 0.1

8 0.1 0.14

9 0.14 0.1

10 0.1 0.17

Total 100 100

Case No. 3: Considered Minpts = 3, and nnls = 25

Table 4.8 Implementation Results for minpts-3, nnls-25

No. Functionality
SNN
time (sec)

SNNAE time(sec)

1 Find nearest neighbors 49.546 4.29

2 Find shared nearest neighbors 7.129 1.326

3 Get initial clusters 1.498 1.404

4 Get border and noise points 65.957 69.031

5 Compose cluster 0.437 0.796

Total 124.582 76.847

Chapter 4: Text Clustering

63

Figure 4.5 Implementation graph for minpts-3 and nnls-25

Table 4.9 Points distribution in clusters with minpts-3, nnls-25

Cluster No.
% of points
with SNN

% of points
with SNNAE

0 (noise) 13.48 15.44

1 85.2 83.43

2 0.34 0.22

3 0.22 0.12

4 0.12 1

5 0.1 0.12

6 0.12 0.07

7 0.1 0.1

8 0.1 0.14

9 0.14 0.1

10 0.1 0.17

Total 100 100

In this way two more cases were taken with minpts =4 and nnls = 20 and then

25. The consolidated result is as shown in Table 4.10.

0

10

20

30

40

50

60

70

Find
nearest

neighbors

Find
shared
nearest

neighbors

Get initial
clusters

Get border
and noise

points

Compose
cluster

E
x

e
c

u
ti

o
n

 t
im

e
 i
n

 s
e

c
s

Task Performed

SNN time (sec)

SNNAE time(sec)

Chapter 4: Text Clustering

64

Table 4.10 Combined Results of all cases

Experiment
No.

Minpts nnls
SNN
Total time(sec)

SNNAE
Total time(sec)

1 3 all 215.484 160.556

2 3 20 125.939 81.932

3 3 25 124.582 76.847

4 4 20 127.016 80.793

5 4 25 128.81 79.076

Figure 4.6 Implementation Graph for all cases

Similar results have been obtained for the rest of the datasets with structured

as well as unstructured data. It is clearly evident that the time taken in finding

the nearest neighbors and shared nearest neighbors is very less in SNNAE as

compared to SNN. In finding the initial clusters and composing the clusters

both take almost the same time. In finding the border and noise points

however, SNN is slightly better than SNNAE. The overall time taken is by

SNNAE is quite less as compared to SNN (Figure 4.6).

0

50

100

150

200

250

1 2 3 4 5

215.484

125.939 124.582 127.016 128.81

160.556

81.932
76.847 80.793 79.076

E
x

e
c

u
ti

o
n

 t
im

e
 i
n

 s
e

c
s

Different values of Minpts and nnls

SNN Total time(sec)

SNNAE Total time(sec)

Chapter 4: Text Clustering

65

4.7 Conclusion and comparison of algorithms

The proposed algorithm, SNNAE is based on density, and k-nearest neighbor

approach. The basic idea of this algorithm is to find the way of computing the

nearest neighbors of points by restricting the number of points considered.

This algorithm uses the enclosure approach to divide the data into

overlapping region which greatly reduce the number of distance calculations

required for clustering. This reduces the computational complexity of the SNN

clustering algorithm which is O (n2) to O (ne + s2e + ns). The experimental

results demonstrated the scalability and efficiency of the proposed algorithm.

The algorithm has been tested against structured as well as unstructured

data. The datasets can be downloaded from the sited mentioned in chapter 1.

The proposed algorithm provides a robust alternative to the other considered

clustering approaches that are more limited in the types of data and clusters

that they can handle.

Table 4.11 shows the comparison of the clustering algorithms like the K-

Means, DBSCAN, SNN and SNNAE. The comparison is in terms of

complexity, handling multidimensional data etc.

There are many clustering algorithms but the partitioning and hierarchical

methods are more popular. Variants of the basic k-Means are also very

popular. This chapter gives details of the popular algorithms being used in the

field of Text Mining.

Chapter 4: Text Clustering

66

Table 4.11 Comparison of clustering algorithms

Clustering Criteria K-means DBSCAN SNN SNNAE

Complexity

O(nkt) where
n = no. of data
points
k = no. of
clusters
t = no. of
iterations

 O(n2) where n
is the number of
data points

O(n2) where n is
the number of
data points

O (ne + s2e + ns)
where
n=no. of data points
s= avg. number of
points in enclosure
e= number of
enclosures

Handle
multidimensional
data

No No Yes Yes

Handle large
dataset

Yes Yes Yes Yes

Handle Noise

No Yes Yes Yes

Shape of Clusters

Spherical only
Any arbitrary
shape

Any arbitrary
shape

Any arbitrary shape

Types of data
handled

Any Any Any Any

Scalable

Yes

Not without
enhancement
because of its
complexity

Not without
enhancement
because of its
complexity

Yes

Input parameters

 k – no. of
clusters
 k initial cluster
centroid

Eps – radius
Minpts – no. of
minimum points

 k - size of
nearest neighbor
list
MinPts
Eps

Minpts – no. of
minimum points
Nnls – size of
nearest neighbor
list

4.8 Future Enhancement

There is a lot of scope in this field of Text Clustering. Methods like the fuzzy

clustering are becoming popular as these methods apply the concept of

fuzziness i.e. a three valued logic like true, false and maybe for a document to

belong to a cluster. There are other hierarchical methods also where still there

is scope for research. There are clustering methods related to neural

networks also.

Document clustering is still not a very popular method in Information Retrieval.

The reason being clustering is slow for large corpora. This can act as a

domain of research too.

67

Chapter 5: Text Categorization

5.1 Introduction to Text Categorization

Text categorization (also known as text classification or topic spotting) is the

task of automatically sorting a set of documents into categories from a

predefined set. This task has several applications, including automated

indexing of scientific articles according to predefined thesauri of technical

terms, filing patents into patent directories, selective dissemination of

information to information consumers, identification of document genre,

authorship attribution, survey coding, and even automated essay grading.

Automatic text categorization can play an important role in a wide variety of

more flexible, dynamic and personalized information management tasks as

well: real-time sorting of email or files into folder hierarchies; topic

identification to support topic-specific processing operations; structured

search and/or browsing; or finding documents that match long-term standing

interests or more dynamic task-based interests. Classification technologies

should be able to support category structures that are very general, consistent

across individuals, and relatively static.

There are two approaches that you can take:

 rule-based approach

 write a set of rules that classify documents

 machine learning-based approach

 using a set of sample documents that are classified into

the classes (training data), automatically create classifiers

based on the training data

The research on text categorization can be cast back to the work of M. E.

Maron. From that time, the technique has being used to apply to information

retrieval, document organization, and text filtering and so on. The schematic

of the learning process for categorization is shown in Figure 5.1.

Chapter 5: Text Categorization

68

Figure 5.1 Schematic of learning process

There are broadly two steps in classification: developing the classifiers using

the training dataset and then implementing them on the testing dataset.

Sometimes the training set is itself divided into two parts where the first half is

used to generate rules and the second half is used to check the validity of the

rules. Since classification itself first needs the training datasets with the

classes predefined, this part has to be done manually by a domain expert or

can be done automatically by first using some text clustering method which

does not require the domain knowledge, and then use the clusters that have

been created as the training datasets with classes as defined by clustering.

Thus each class / label requires a set of rules based on which the test dataset

can be classified. In machine learning approach these set of rules or text

classifiers are automatically created from the training dataset. If the method

used is a statistical one it is called statistical text classification. The test data

can belong to one class or multiple classes. It depends on the assumptions

used while developing the algorithm. I have implemented and studied four

methods– Naïve Bayes, K-Nearest Neighbors and Decision Trees which are

statistical methods. The fourth method support vector machine is a

combination of statistics and mathematics.

Text Files

Word counts

per file

Data sets

Naïve Bayes

Classifiers

K-Nearest

Neighbors

Support

Vector

Machines

Decision

Trees

Feature

Selection

Learning

Methods

Finding

Similarity

Chapter 5: Text Categorization

69

 Testing data

Figure 5.2 The training and testing datasets

5.2 The Evaluation Measures

Text classification rules are typically evaluated using performance measures

from information retrieval. Common metrics for text categorization evaluation

include recall, precision, accuracy and error rate and F1. Given a test set of N

documents, a two-by-two contingency table with four cells can be constructed

for each binary classification problem.

The cells contain the counts for true positive (TP), false positive (FP), true

negative (TN) and false negative (FN), respectively. Clearly, N = TP + FP +

TN + FN. I have used these parameters for my study. The metrics for binary-

decisions are defined as:

 Precision(P) = TP / (TP + FP)

 Recall(R) = TP / (TP + FN)

 Accuracy = (TP + TN)/N

 Error = (FP + FN)/N

 F1 = 2(P*R) / P + R

F-measure (F1)

 harmonic mean of recall and precision

 sometimes instead of multiplying by the numerator by 2, other

parameters like ∝ or β are also used where each one of them has

some integer value.

Chapter 5: Text Categorization

70

Micro-average F1

 global calculation of F1 regardless of topics

Macro-average F1

 average on F1 scores of all the topics

The formulas to find the different F measures is given in Table 5.1.

Table 5.1 The F measures for Microaveraging and Macroaveraging

 Microaveraging Macroaveraging

Precision(π)

Recall()

Where c represents the class.

These scores can be computed for the binary decisions on each individual

category first and then be averaged over categories (macro-averaging). They

can also be computed globally over all the n x m binary decisions where n is

the total number of test documents and m is the number of categories under

consideration (micro-averaging).

The micro-averaged F1 tend to be dominated by the classifier‘s performance

on common categories whereas the macro-averaged F1 are more influenced

by the performance of rare categories.

Due to the often highly unbalance number of positive vs. negative examples,

note that TN often dominates the accuracy and error of a system, leading to

miss-interpretation of the results. For example, when the positive examples of

a category constitute only 1% of the entire test set, a trivial classifier that

makes negative predictions for all documents has an accuracy of 99%, or an

error of 1%. However, such a system is useless. For this reason, recall,

Chapter 5: Text Categorization

71

precision and F1 are more commonly used instead of accuracy and error in

text categorization evaluations.

Figure 5.3 Common evaluation metrics

In multi-label classification, the simplest method for computing an aggregate

score across categories is to average the scores of all binary task. The

resulted scores are called macro-averaged recall, precision, F1, etc. Another

way of averaging is to sum over TP, FP, TN, FN and N over all the categories

first, and then compute each of the above metrics. The resulted scores are

called micro-averaged. Macro-averaging gives an equal weight to each

category, and is often dominated by the system‘s performance on rare

categories (the majority) in a power-law like distribution. Micro-averaging

gives an equal weight to each document, and is often dominated by the

system‘s performance on most common categories. The two ways of

measuring performance are complementary to each other, and both are

informative.

A free-text document is typically represented as a feature vector

x=(x(1),…,x(p)) , where feature values x(i) typically encode the presence of

words, word n-grams, syntactically or semantically tagged phrases, Named

Entities (e.g., people or organization names), etc. in the document. A standard

method for computing the feature values x(i) for a particular document d is

called the bag of words approach as discussed before.

It is useful to differentiate text classification problems by the number of

classes a document can belong to. If there are exactly two classes (e.g. spam

/ non-spam), this is called a ‗binary‘ text classification problem. If there are

more than two classes (e.g. positive / neutral / negative) and each document

falls into exactly one class, this is a ‗multi-class‘ problem. In many cases,

Chapter 5: Text Categorization

72

however, a document may have more than one associated category in a

classification scheme, e.g., a journal article could belong to computational

biology, machine learning and some sub-domains in both categories. This

type of text classification task is called a ‗multi-label‘ categorization problem.

Multi-label and multi-class tasks are often handled by reducing them to k

binary classification tasks, one for each category. For each such binary

classification tasks, members of the respective category are designated as

positive examples, while all others are designated as negative examples. We

will therefore focus more on binary classification.

The classification algorithms studied are:

 Naïve Bayes Classifiers

 k Nearest Neighbor

 Decision Trees

 Support Vector Machines

5.3 Feature Selection

The feature selection methods have already been discussed in the Chapter 3

on Text Transformation. In Text Classification applications, it is customary to

run a dimensionality reduction pass before starting to build the internal

representations of the documents. This means identifying a new vector space

in which to represent the documents in such a way that the new vectors have

a much smaller number of dimensions than the original ones. Several

techniques for dimensionality reduction have been devised within Text

Classification. An important class of such techniques is feature extraction

methods (e.g., term clustering methods, latent semantic indexing). Feature

extraction methods define a new vector space in which each dimension is a

combination of some or all of the original dimensions; their effect is usually a

reduction of both the dimensionality of the vectors and the overall stochastic

dependence among dimensions.

An even more important class of dimensionality reduction techniques is that of

feature selection methods, which do not attempt to generate new terms, but

try to select the best ones from the original set. The measure of quality for a

term is its expected impact on the accuracy of the resulting classifier. To

Chapter 5: Text Categorization

73

measure this, feature selection functions are employed for scoring each term

according to this expected impact so that the highest scoring terms can be

retained for the new vector space.

These functions mostly come from statistics (e.g., chi-square), information

theory (e.g., Mutual Information), or machine learning (e.g., Information Gain),

and tend to encode each in their own way the intuition that the best terms for

classification purposes are the ones that are distributed most differently

across the different categories.

5.4 Naïve Bayes Classification (NB)

NB algorithm has been widely used for document classification, and shown to

produce very good performance. The basic idea is to use the joint

probabilities of words and categories to estimate the probabilities of

categories given a document. NB algorithm computes the posterior probability

that the document belongs to different classes and assigns it to the class with

the highest posterior probability. The posterior probability of class is computed

using Bayes rule and the testing sample is assigned to the class with the

highest posterior probability. The naive part of NB algorithm is the assumption

of word independence that the conditional probability of a word given a

category is assumed to be independent from the conditional probabilities of

other words given that category.

There are two versions of NB algorithm. One is the Bernoulli model that only

takes into account the presence or absence of a particular term, so it doesn't

capture the number of occurrence of each word. The other model is the

multinomial model that captures the word frequency information in

documents. Both the models have been implemented using the dataset

described above. The detailed study and comparisons are given below. Both

are based on the Bayes theorem, where a document d is placed in the class c

as per the probability given below:

 (5.1)

Chapter 5: Text Categorization

74

For classes the probability P(d) will remain same as it does not depend on

any class and hence can be ignored. So, the posterior probability now

becomes,

 (5.2)

Since we are dealing with terms within a document the posterior probability

P(d/c), is actually P((t1,t2, …tn)/c) where each ti is a term or a feature of the

document. Similarly for P(c/d). In the Naïve Bayes approach we assume each

term occurrence is conditionally independent and that is why the name Naïve.

It‘s a simple assumption because of which of posterior probability P((t1,t2,

…tn)/c) now becomes,

 (5.3)

 (5.4)

In the above formula,

 - is the conditional probability of term tk occurring in class c,

P(c) - is the prior probability of a document occurring in class c

t1,t2, … ,tnd - are the terms(tokens) of document d that are part of the

vocabulary

nd – total number of tokens in the document

 - is the multiplication of conditional probabilities of all terms in

the document

5.4.1 The Multinomial Model:

This model depends on the term counts in a document i.e. the number of

times a term occurs in a document. The position of the term is not considered.

As per (5.2) and (5.4), the posterior probability becomes,

 (5.5)

 can have many terms and the multiplication of the probabilities

can result in floating point underflow. So a better option is to use logarithms.

After applying logs, (5.5) becomes,

Chapter 5: Text Categorization

75

 (5.6)

In the multinomial model to find the probabilities on the RHS of (5.5) we use

the maximum likelihood estimate i.e. the relative frequencies of occurrences.

As per this estimate, the probability P(c/d) can be calculated by using the

following frequencies:

 (5.7)

Where,

Nc – total number of documents in class c

N – total number of documents

 (5.8)

Where,

Tct – total number of occurrences of term t in documents of class c

 - total number of terms in all documents of class c

In (5.8) the probability becomes zero if a term does not occur in a class and if

it is applied to (5.5) it will become multiplication by zero. To eliminate this

problem, Laplace‘s smoothing is used as follows:

 (5.9)

 - this is equal to V the size of the vocabulary.

The formula in (5.5) using (5.7) and (5.8) becomes,

 (5.10)

Chapter 5: Text Categorization

76

We can now find the probabilities for the document for each class and

the document will belong to the class where this probability is maximum. So

our aim is to find max. .

5.4.2 The Bernoulli Model

In this model, unlike the multinomial model instead of counting the number of

times terms/tokens occur in a document, the presence or absence of a term

(0 or 1) is noted. The P(t/c) estimates the fraction of documents of class c that

contain term t.

The implementation and analysis shows that the Bernoulli model works well

for short documents only. The main drawback being that since just the

presence of a term is noted, a document which contains a certain term only

once may get classified in a class to which it actually does not depend.

This model is also based on the formula mentioned in (5.6) and (5.10). The

difference lies in the estimation strategies. Unlike multinomial in the Bernoulli

model the absence of a term is also modeled while computing the

probabilities. The estimates for priors P(c) are similar to (5.7), whereas there

is a little difference in estimates for (5.9) which is given below:

Tct – total number of documents of class c where term t occurs

 - total number of documents of class c

V – two cases to be considered for each term i.e. occurrence or non-

occurrence

The final equation of (10) now becomes,

 (5.11)

In (5.11), the terms t1… tx occur in the document whereas the terms ty … tm

do not occur in the document. The document d is placed in the class which

has the highest probability using (5.11).

Chapter 5: Text Categorization

77

5.4.3 Comparison of the Multinomial and Bernoulli Models

The comparison1 between both the models considering different aspects in

shown Table 5.2.

Table 5.2 Comparison between Multinomial model and Bernoulli model

Parameters Multinomial Model Bernoulli Model

Variable used t – number of times a term
occurs in a document

t – 1 if term occurs, 0 if it does
not in a document

Document
representation

d = {t1, t2, … , tn} where t1,
t2,…tn terms are occurring in
document d and are also part
of V(vocabulary) – terms in d
but not part of V are not
considered

d = {t1, t2, … , tn} where each tk

ϵ {0,1} – indicates the presence
or absence of a term in the
document d

Multiple term
occurrences
consideration

Yes No

Efficiency
(Document size)

Both short and long Only short

No. of features
handled

Efficient with more Works best with few

Estimate for the term
‗the‘

P(X = the / c) 0.5 P(Uthe = 1 / c) = 1.0

5.5 k-Nearest Neighbor (kNN)

kNN classifier is an instance-based learning algorithm that is based on a

distance function for pairs of observations, such as the Euclidean, Cosine or

Jaccard distance. In this classification paradigm, k nearest neighbors of a

training data is computed first. Then the similarities of one sample from testing

data to the k nearest neighbors are aggregated according to the class of the

neighbors, and the testing sample is assigned to the most similar class. One

of advantages of kNN is that it is well suited for multi-modal classes as its

classification decision is based on a small neighborhood of similar objects

(i.e., the major class). So, even if the target class is multi-modal (i.e., consists

of objects whose independent variables have different characteristics for

different subsets), it can still lead to good accuracy. A major drawback of the

similarity measure used in kNN is that it uses all features equally in computing

1
 Based on the details in the book by Christopher Manning et al.,”An Introduction to Information

Retrieval”, Cambridge UP, 2009.

Chapter 5: Text Categorization

78

similarities. This can lead to poor similarity measures and classification errors,

when only a small subset of the features is useful for classification.

The main concept behind kNN is that a test document is expected to have the

same class as that of the training documents located in the local region

surrounding it. The test document is assigned to the majority class of its k

closest neighbors. It is important to decide the value of k because the

accuracy of the classification is dependent on it. It is desirable to keep an odd

value for k so that ties may not occur. One alternative way is to set the value

of k in such a way that it gives the best result on the held out portion of the

training set.

To decide whether a document di should be classified under class ck, first of

all the k most similar documents to di are taken. These are the k-nearest

neighbors of di. If a large proportion of them are classified under ck then di is

classified under ck otherwise not.

The formula used for classification is:

 (5.12)

Where,

di – document to be classified

xj – one of the neighbors of di

y(xj, ck) ϵ {0, 1} indicates whether document xj belongs to class ck

Unlike other classifiers, kNN does not classify documents in just two

subspaces. This is an advantage over other methods.

There is another measure to classify documents using kNN. The system first

finds the k nearest neighbors from amongst the training documents. The

similarity score of each of these k documents to the test document is used as

the weight of the categories of the neighbor document. The weights of the

documents of the same category are added together and are considered as

the likelihood score of the test document belonging to that category. After

finding the likelihood scores for all categories falling in the k-neighborhood,

the scores are sorted in ascending order and are ranked accordingly. By

thresholding on these scores, the binary category assignments are obtained.

The decision rule in kNN is:

Chapter 5: Text Categorization

79

 (5.13)

Where,

is the similarity measure between the test document di and

neighboring document xj. This is generally the cosine similarity. The rest of

the variables are as defined in (12).

As per this method the class with the maximum similarity is chosen as the

class to which the test document will now belong. This definitely gives a better

approximation as shown in the results in the next section. In the simple

method discussed before the class of the top ranking category is assigned to

the document but in that method the document belongs to only one category.

Actually documents can belong to more than one category so depending on

the similarity measures it can belong to more than one category.

5.6 The Novel kNN

Both the above methods work well when we assume that the number of

documents in each class is equally distributed in the training sets. This may

not be always true. If the number of training documents for some classes is

much more than the rest then there are chances that these documents may

get selected in the k nearest neighbors and the test document would

automatically belong to the majority class instead of the actual class it belongs

to.

 To overcome this drawback I have designed an algorithm which I will now call

‗The Novel kNN Algorithm‘. In this proposed algorithm the selection of k

nearest documents has been normalized and the algorithm will follow the

following steps:

1. First select the n nearest neighbors from each class for the document

di. The value of n should not be greater than the size of the smallest

class. For e.g. the smallest training class contains 10 documents then

n <= 10.

Chapter 5: Text Categorization

80

2. Sort these n nearest neighbors in descending order of the similarity -

.

3. Select now the top k documents from the list prepared in step 2. These

are the final k nearest neighbors of document di now.

4. Using (5.13), now find the class to which di is most similar to and would

belong.

Selecting the value of n is very important because we would not like to

misclassify a document. This has been done by first splitting the training set

into two – one to select the classes and apply the formula and other split to be

experimented upon to check the validity of the algorithm. The implementation

and results are displayed in section 5.11.

This algorithm has been submitted for publication in an International Journal.

5.7 Decision Trees

This form of classification uses a decision tree algorithm for creating rules.

Generally speaking, a decision tree is a method of deciding between two (or

more, but usually two) choices. In document classification, the choices are

"the document matches the training set" or "the document does not match the

training set."

A decision tree has a set of attributes (features) that can be tested. These can

include: words from the document stems of words from the document (as an

example, the stem of running is run) themes from the document (if themes are

supported for the language in use) Decision trees are produced by algorithms

that identify various ways of splitting a data set into branch-like segments.

These segments form an inverted decision tree that originates with a root

node at the top of the tree.

The object of analysis is reflected in this root node as a simple, one-

dimensional display in the decision tree interface. The name of the field of

data that is the object of analysis is usually displayed, along with the spread

or distribution of the values that are contained in that field.

For each leaf of the decision tree, the decision rule provides a unique path for

data to enter the class that is defined as the leaf. All nodes, including the

Chapter 5: Text Categorization

81

bottom leaf nodes, have mutually exclusive assignment rules; as a result,

records or observations from the parent data set can be found in one node

only. Once the decision rules have been determined, it is possible to use the

rules to predict new node values based on new or unseen data. In predictive

modeling, the decision rule yields the predicted value.

A decision looks like the one shown in Figure 5.42 where the documents are

to be classified for the category ‗Coffee‘. The rules are binary presence (P) or

absence (A) of an attribute.

Figure 5.4 Decision tree

The test at each node in the Figure 5.4 above is binary – which is not

necessarily the case always. It is possible that each node i.e. feature value

falls in different ranges and takes more than two paths. The feature at each

node determines the order of the rules.

To build a decision tree it is necessary to take care of the following criteria:

 The most discriminating feature is at the root of the tree – this can be

found by selecting the feature that can best discriminate and classify a

document (any of the feature selection methods described before can

be selected)

2
 Have referred to the book ‘Text Mining Application Programming’ by Manu Kochady for decision

trees – algorithm and figure.

Feature: Export

P: 0.3272

Size: 55 docs

Feature: Producers

P: 0.1290

Size: 31 docs

Feature: Quota

P: 0.5834

Size: 24 docs

P: 0.1818

Size: 22 docs

P: 0

Size: 9 docs

P: 0.3

Size: 10 docs

P: 0.7857

Size: 14 docs

P A

P

P

A

A

Chapter 5: Text Categorization

82

 Find the information gain and entropy for the selected feature – higher

the entropy lower is the information gain. Features with low information

gain would not generate a good tree

 Select features which generally divide the documents in equal sizes

 Once all the features have been evaluated for their information gain a

decision tree can be constructed as per the algorithm given below.

The following is a recursive algorithm (based on C4.5 algorithm) to generate a

decision tree once all the training documents and the features involved are

decided:

1. If all documents in the set of passed documents belong to one

category, then return that category.

2. If there are no features with sufficient information gain for a branch

decision, then return the most popular category among the documents

3. Choose the feature with the highest information gain.

a. Build a sub tree of documents with the positive values of the

feature and remove that feature from the current list of features.

b. Build a sub tree of documents with the negative values of the

feature and remove that feature from the current list of features.

c. Recursively, call this algorithm with the sub trees and new

feature list from steps a and b. Do these till no more features

remain.

d. Add two branches to the current tree with positive and negative

values of the feature.

4. Return the tree

The above algorithm is for a binary tree but it can be modified for a general

tree. Generating a decision tree is complex and sometimes over fitting may

occur. To avoid this, the tree is pruned i.e. the leaf nodes with the least

probability of classification are removed.

The measures used to decide the features are the I-Measure, Entropy and

Information Gain.

Chapter 5: Text Categorization

83

5.8 Support Vector Machine (SVM)

A support vector machine (SVM) is a concept in computer science for a set of

related supervised learning methods that analyze data and recognize

patterns, used for classification and regression analysis. The standard SVM

takes a set of input data and predicts, for each given input, which of two

possible classes the input is a member of, which makes the SVM a non-

probabilistic binary linear classifier. Given a set of training examples, each

marked as belonging to one of two categories, an SVM training algorithm

builds a model that assigns new examples into one category or the other. An

SVM model is a representation of the examples as points in space, mapped

so that the examples of the separate categories are divided by a clear gap

that is as wide as possible. New examples are then mapped into that same

space and predicted to belong to a category based on which side of the gap

they fall on.

Vapnik proposed SVMs in 1979, but they have only recently been gaining

popularity in the learning community. In its simplest linear form, an SVM is a

hyperplane that separates a set of positive examples from a set of negative

examples with maximum margin – see Figure 5.5.

Figure 5.5 The linear SVM

The simplest linear version of the SVM gives good classification accuracy, is

fast to learn and fast for classifying new instances3.

3
 Detailed information about SVM is available from Vapnik, V., The Nature of Statistical Learning

Theory, Springer-Verlag, 1995.

Chapter 5: Text Categorization

84

5.9 Dataset Description

The Reuters-21578 collection has been used for the above methods and it is

a very popular one for text categorization research and is publicly available at:

http://www.research.att.com/~lewis/reuters21578.html.

There are 12,902 stories that have been classified into 118 categories (e.g.,

corporate acquisitions, earnings, money market, grain, and interest). The

stories average about 200 words in length. There are different splits available

but I have used the ModApte4 split in which 75% of the stories (9603 stories)

are used to build classifiers and the remaining 25% (3299 stories) to test the

accuracy of the resulting models in reproducing the manual category

assignments. The stories are split temporally, so the training items all occur

before the test items. The mean number of categories assigned to a story is

1.2, but many stories are not assigned to any of the 118 categories, and some

stories are assigned to 12 categories. The number of stories in each category

varied widely as well, ranging from ―earnings‖ which contains 3964 documents

to ―castor-oil‖ which contains only one test document. Table 5.3 shows the

ten most frequent categories along with the number of training and test

examples in each. These 10 categories account for 75% of the training

instances, with the remainder distributed among the other 108 categories.

Table 5.45 gives the experimental results.

4
 Susan Dumais et al., “Inductive Learning Algorithms and Representations for Text Categorization

“,Proceedings of the seventh international conference on Information and knowledge management,
ISBN:1-58113-061-9 doi>10.1145/288627.288651
5
 Ibid

Chapter 5: Text Categorization

85

Table 5.3 Dataset Description – Training and Testing

Category
Training Set

(total no. of docs)
Testing Set

(total no. of docs)

Earn 2877 1087

Acquisitions 1650 719

Money-fx 538 179

Grain 433 149

Crude 389 189

Trade 369 118

Interest 347 131

Ship 197 89

Wheat 212 71

Corn 182 56

5.10 Implementation and result

The first step was pre-processing the documents (training as well as testing

datasets). This has been done using MatLab 7 and Visual Basic 6:

1. Tokenizing

2. Removing stop words

3. Stemming (Porters Stemming)

For the training datasets:

1. Creating the vocabulary

2. Finding the term counts – document-wise, whole collection-wise

3. Creating a term by document matrix (one with term counts for

multinomial, one with 0s and 1s for Bernoulli). The tf-idf matrix is also

created.

The pre-processed data is now used to implement the algorithms. The results

are shown in the Table 5.4 and graphical representation in Figure 5.6 given

below. The breakeven point is the value at which precision and recall are

equal or the ratio of precision to recall. The Naïve Bayes in the Table 5.4 is

the multinomial model.

Chapter 5: Text Categorization

86

The comparison graph6 of multinomial and Bernoulli for the same dataset but

two categories interest and ship is shown in Figure 5.8. It is clearly visible that

as the vocabulary size increases, the performance of Bernoulli model

deteriorates.

Table 5.4 The breakeven performance for all categories

 Naïve Bayes (%) Decision Trees (%) Linear SVM (%)

Earn 95.9 97.8 98.0

Acquisitions 87.8 89.7 93.6

Money-fx 56.6 66.2 74.5

Grain 78.8 85.0 94.6

Crude 79.5 85.0 88.9

Trade 63.9 72.5 75.9

Interest 64.9 67.1 77.7

Ship 85.4 74.2 85.6

Wheat 69.7 92.5 91.8

Corn 65.3 91.8 90.3

To compare these methods in the algorithms discussed, the comparative

between the implementation by three researchers7 – Yang, Weiss and

Joachims is given in Table 5.5 and graphically in Figure 5.7. The dataset is

the same and values of the breakeven points are for all sets together. As seen

from the table in most cases, support vector machine and k nearest

neighbor (kNN) have better output.

6
 Andrew Mc Callum et al., “A comparison of event models for Naïve Bayes Classification”

7
 Shi Yong et al., “Comparison of Text Categorization Algorithm”, Wuhan University Journal of

Natural Sciences
Vol. 9 No. 5, 2004, pg. 798-804

Chapter 5: Text Categorization

87

Figure 5.6 Comparison of the methods for all categories

Table 5.5 Comparative details for the algorithms (Breakeven points)

Researcher Naïve Bayes
K Nearest
Neighbors

SVM

Yang 71.5 85.0 85.9

Weiss 73.4 86.3 86.3

Joachims 72.0 82.3 86.0

0

10

20

30

40

50

60

70

80

90

100
B

re
a
k
e
v

e
n

 p
o

in
t

Categories

Naïve Bayes (%)

Decision Trees (%)

Linear SVM (%)

Chapter 5: Text Categorization

88

Figure 5.7 Comparison of the methods for three categories combined

Figure 5.8 Comparison of Multinomial and Bernoulli models

0

10

20

30

40

50

60

70

80

90

Naïve Bayes K Nearest
Neighbors

SVM

B
re

a
k

e
v
e

n
 P

o
in

t

Classification Methods

Yang

Weiss

Joachims

Chapter 5: Text Categorization

89

5.11 The comparison between k-NN and Novel k-NN

Using the same datasets but first by taking a subset of it and using the

holdback method (some part of training datasets being used as testing

datasets) and varying the value of k, the output and the breakeven point for

both the methods are given in Table 5.6. The categories considered are only

the top 5 categories.

In case of the proposed algorithm – the Novel k-NN as already explained

before, first the value of n is taken as input from the user which is value less

than or equal to the size of the smallest class. After selecting n number of

nearest neighbors from each class, they are sorted in descending order of

their similarity and then the top k are selected. Though this method increases

the number of iterations, the output is more accurate. As can be seen from the

values, as k increases, the performance of Novel k-NN also improves as

compared to the k-NN.

Table 5.6 Comparison of k-NN and Novel k-NN

 Breakeven Points

Value of k k - Nearest Neighbors Novel k - Nearest Neighbors

5 67.95 66.50

10 68.50 67.45

20 65.60 66.75

30 63.54 66.90

40 60.80 65.50

50 59.25 64.20

Figure 5.9 Comparison of k-NN and Novel k-NN

54

56

58

60

62

64

66

68

70

5 10 20 30 40 50

B
re

ak
e

ve
n

 P
o

in
ts

Value of k

k - Nearest
Neighbors

Novel k -
Nearest
Neighbors

Chapter 5: Text Categorization

90

5.12 Future Enhancement

There are basically two frontiers for further research and development in this

field. The first and foremost challenge is delivering high accuracy in all

applicative contexts. While highly effective classifiers have been produced for

applicative domains such as the thematic classification of professionally

authored texts (such as newswires), in other domains reported accuracies are

far from satisfying. Such applicative contexts include the classification of Web

pages, where the use of text is more varied and obeys rules different from

those of linear verbal communication; spam filtering, a task that has an

adversarial nature in that spammers adapt their spamming strategies to

circumvent the latest spam filtering technologies; and authorship attribution, in

which current technology is not yet able to tackle the inherent stylistic

variability among texts written by the same author. Though these areas have

their own methods of classification it is still not fully developed and exploited –

the methods used are a combination of NLP, image processing, AI, etc. and

not just text processing.

A second important challenge is to bypass the document labeling bottleneck

(i.e., labeling, or manually classifying, documents for use in the training phase

is costly). To this end, semi-supervised methods have been proposed that

allow building classifiers from a small sample of labeled documents and a

usually larger sample of unlabeled documents (Nigam, McCallum, Thrun, &

Mitchell, 2000). However, the problem of learning text classifiers mainly from

unlabeled data is still open.

Another area of research is Bayes Network. It differs from the Naïve Bayes in

the basic naïve assumption of word independence that the conditional

probability of a word given a category is assumed to be independent from the

conditional probabilities of other words given that category. When this

assumption is removed, comes the concept of Bayes Nets. BNs became

extremely popular models in the last decade. They have been used for

applications in various areas, such as machine learning, Text Mining, natural

language processing, speech recognition, signal processing, bioinformatics,

error-control codes, medical diagnosis, weather forecasting, and cellular

networks.

91

Chapter 6: Text Summarization

6.1 Introduction to Text Summarization

Text Summarization is condensing the source text into a shorter version

preserving its information content and overall meaning. It is very difficult for

human beings to manually summarize large documents of text. The Internet

normally provides more information than is needed. Therefore, a twofold

problem is encountered: searching for relevant documents through an

overwhelming number of documents available, and absorbing a large quantity

of relevant information.

The goal of automatic text summarization is condensing the source text into a

shorter version. Summaries may be classified by any of the following criteria:

 Detail: Indicative/informative

 Granularity: specific events/overview

 Technique: Extraction/Abstraction

 Content: Generalized/Query-based

Figure 6.1 A Summarization Machine

An ideal summarization machine would look like the one shown in Figure 6.1.

An indicative summary gives the main focus of the document and contains

only a few lines whereas an informative summary is generally long and can be

Chapter 6: Text Summarization

92

read in place of the main document. The granularity decides the extent to

which we want the summary to be broken into i.e. short, medium, detailed

(specific event related or an overview) etc.

When the summary is the result of a query asked it becomes a query related

otherwise it is a general summary. Topic-oriented summaries focus on a

user's topic of interest, and extract the information in the text that is related to

the specified topic. On the other hand, generic summaries try to cover as

much of the information content as possible, preserving the general topical

organization of the original text.

Text Summarization methods are more popularly classified into extractive and

abstractive summarization. An extractive summarization method consists of

selecting important sentences, paragraphs etc. from the original document

and concatenating them into shorter form. The importance of sentences is

decided based on statistical and linguistic features of sentences. An

Abstractive summarization attempts to develop an understanding of the main

concepts in a document and then express those concepts in clear natural

language.

Text Summarization can be divided into the following areas:

 Selection based (tf-idf, ranking, etc.)

 Understanding based (syntactic analysis, semantic analysis)

 Information Extraction / Information Retrievel

The selection methods are more popular than the understanding based as the

latter are connected to the Natural Language Processing (NLP). The

extractive methods are based on tf-idf (term frequency-inverse document

frequency), cluster based methods, the Latent Semantic Analysis (LSA) which

is based on singular value decomposition or concept based summarization

which is based on the vector space model. There are other methods also

which are based on graphs, neural networks, fuzzy logic, regression, etc.

Some of the above mentioned topics have been discussed earlier in the

classification and clustering section.

The extraction based summarization methods studied are:

 Single document summarization

 Multi-document summarization

 Topic models

Chapter 6: Text Summarization

93

As part of further research in the field of abstraction, I have developed an

algorithm based on the semantics i.e. a part-of-speech (POS) tagger. It is

called the ‗Multi-Liaison Algorithm‘ and it is explained in section 6.8.

For all types of summarization techniques the pre-processing steps generally

remain same as discussed before. However there is a slight difference in text

summarization. The details are given below.

6.2 Tokenization

Though tokenization is required to find the term frequencies, we store the

sentences of the document separately and the weights assigned are to the

sentences also. In some cases the position of the sentences is very important

because the term weights depend on the position of the sentences in which

the terms occur i.e. the title, the first paragraph, the last paragraph etc. These

positions are given more weightage.

Removal of stop words and stemming remain the same.

6.2.1 Sentence Scoring

In extractive summarization it is important that from the document or set of

documents we find out first which sentences are more important for the

summary than the rest. This is possible only if some ranking / scoring is

associated with them. There are four types of words which generally affect the

sentence scores:

1. Cue words: These are the indicative words of the document which give

some hint or analysis of the content like ―summary‖, ―reflects‖,

―conclusion‖, ―purpose‖ etc. These types of words are to be given more

weightage.

2. Content Words (keywords): These are generally the nouns in sentences.

Generally sentences containing proper nouns are considered important.

These can also be the words which are acronyms, capitalized or italicized.

3. Title words: If a document has a title, generally the words in the title

represent the main concept on which the document is based, so these

words are important and are given extra weightage.

4. Location: the location of the sentence is very important. The first line and

the last paragraph are more or less very important for the summary.

Chapter 6: Text Summarization

94

The sentence scoring has been done as follows:

Si = w1 * Ci + w2 * Ki + w3 * Ti + w4 * Li (6.1)

Where,

Si – score of sentence i

Ci – score of sentence i based on cue words

Ki – score of sentence i based on keywords

Ti – score of sentence i based on title words

Li – score of sentence i based on its location

w1, w2, w3, w4 – are the weights assigned

In short, for document summary, score of a sentence is dependent on the

frequency of the words in that sentence, their related weightage as per the

details given above and the sum of it.

6.3 Single document summarization

Whenever summarization is be done it is necessary to know to what length

the main document should be summarized (size of summary as compared to

size of the document). This is also known as the compression rate. For

example a 10 sentence document when compressed by 10% results in a one

line summary.

Once each sentence is scored those sentences are ranked based on the

descending order of their scores. Then depending on the compression rate

the top sentences are selected as part of the summary.

6.4 Multi-document summarization

When summary is required from multiple documents, it is necessary that the

documents are related to each other as far as the main content topics are

concerned. In case we need to summarize multiple documents which are of

mixed types, the first step is to applying text clustering on them so as to form

clusters of same types of documents. Once these clusters are formed, for

each cluster a separate summary can be generated.

Since the individual summary is generated from multiple documents belonging

to a cluster, there is always a possibility that similar sentences from different

Chapter 6: Text Summarization

95

documents selected and repeated in the final summary. To make sure that the

inter-sentence similarity is low, the following formula can be applied:

 (6.2)

Where,

i, j – the ith and jth sentences

ti, tj – term frequencies of ith and jth sentences

Depending on the similarity measures and compression ratio, top ranking but

non-overlapping sentences are selected from multiple documents. The

limitation in this method is the sequence in which the sentences from different

documents would be displayed. This can be handled by noting the location of

the selected sentences in its respective document (starting, middle, and end)

and try to output each sentence as per its location.

Purely extractive summaries often give better results compared to automatic

abstractive summaries. This is due to the fact that the problems in abstractive

summarization, such as semantic representation, inference and natural

language generation, are relatively harder compared to a data-driven

approach such as sentence extraction. In fact, truly abstractive summarization

has not reached to a mature stage today. Existing abstractive summarizers

often depend on an extractive preprocessing component. The output of the

extractor is cut and pasted, or compressed to produce the abstract of the text.

Limitations of Extractive Methods are:

 Extracted sentences usually tend to be longer than average. Due to

this, part of the segments that are not essential for summary also get

included, consuming space.

 Important or relevant information is usually spread across sentences,

and extractive summaries cannot capture this (unless the summary is

long enough to hold all those sentences).

 Conflicting information may not be presented accurately.

Chapter 6: Text Summarization

96

6.5 Comparison of Text Summarization methods

There are a number of different methods that have been developed for Text

summarization and the base of these methods is either related to statistics,

mathematics or NLP. A comparative is given in Table 6.1.

Table 6.1 Comparison between Text Summarization methods

Main concept of the
method

Working Method type

Tf-idf based summary

Based on simple heuristic features of the
sentences:

 Position in the text
 The overall frequency of the words

they contain
 Key phrases indicating the

importance of the sentences
 A commonly used measure to

assess the importance of the words
in a sentence is the inverse
document frequency

Extractive Method

Centroid-based
summarization, a well-
known method for
judging sentence
centrality and then
selecting the sentences

The measures used are:
 Degree
 LexRank with threshold
 Continuous LexRank inspired from

the prestige concept in social
networks.

Extractive method

Lexical chains

 Basically lexical chains exploit the
cohesion among an arbitrary
number of related words

 Lexical chains can be computed in a
source document by grouping
(chaining) sets of words that are
semantically related

 Identities, synonyms, and
hypernyms / hyponyms (which
together define a tree of ―is a‖
relations between words) are the
relations among words that might
cause them to be grouped into the
same lexical chain.

Abstractive
method

A graph based
representation

 A document cluster where vertices
represent the sentences and edges
are defined in terms of the similarity
relation between pairs of sentences

 This representation enables us to
make use of several centrality
heuristics defined on graphs

A combination of
Extractive and
Abstractive
methods

Chapter 6: Text Summarization

97

Maximum Marginal
Relevance Multi
Document (MMR-MD)
summarization

 (MMR-MD) summarization is a
purely extractive summarization
method that is based on Maximal
Marginal Relevance concept
proposed for information retrieval

 It aims at having high relevance of
the summary to the query or the
document topic, while keeping
redundancy in the summary low

 It can accommodate a number of
criteria for sentence selection such
as content words, chronological
order, query/topic similarity, anti-
redundancy and pronoun penalty

Extractive Method

Cluster based methods

 Documents are usually written such
that they address different topics
one after the other in an organized
manner

 They are normally broken up
explicitly or implicitly into sections
i.e. themes

 If the document collection for which
summary is being produced is of
totally different topics, document
clustering becomes almost essential
to generate a meaningful summary.

Extractive Method

Latent Semantic
Indexing

 This method uses the concept of the
Singular Value Decomposition
(SVD)

 The process starts with the creation
of a terms by sentences matrix

 After applying the SVD as discussed
before, the sentences with the
highest index i.e. best sentences
describing the salient topics of the
text are selected

Extractive Method

The above is not an exhaustive list of methods but covers the most popular

and commonly used ones. Variants of the above methods are also available.

Some very good Text Summarization tools have been developed. They are:

MEAD

MEAD is a publicly available toolkit for multi-lingual summarization and

evaluation. The toolkit implements multiple summarization algorithms (at

arbitrary compression rates) such as position-based, Centroid, TF*IDF, and

query-based methods. Methods for evaluating the quality of the summaries

Chapter 6: Text Summarization

98

include co-selection (precision/recall, kappa, and relative utility) and content-

based measures (cosine, word overlap, bigram overlap).

MEAD v1.0 and v2.0 were developed at the University of Michigan in 2000

and early 2001. MEAD v3.01 – v3.06 were written in the summer of 2001, an

eight-week summer workshop on Text Summarization was held at Johns

Hopkins University. More details are available at:

 http://www.clsp.jhu.edu/ws2001/groups/asmd.

SUMMARIST

This tool provides the abstracts and the extracts for English, Indonesian,

Arabic, Spanish, Japanese etc. documents. It combines the symbolic world

knowledge i.e. dictionaries like the WordNet and other lexicons as well as

robust NLP processing techniques to generate the summaries. SUMMARIST

is based on the following equation:

Summarization = topic identification + interpretation + generation

This tool is developed by the Natural Language Group at the University of

Southern California.

ROUGE (Recall-Oriented Understudy for Gisting Evaluation)

ROUGE is a set of metrics and a software package used for evaluating

automatic summarization and machine translation software in natural

language processing. The metrics compare an automatically produced

summary or translation against a reference or a set of references (human-

produced) summary or translation. Lin and Hovy‘s designed this package. For

the inception of ROUGE, please refer Lin & Hovy's HLT-NAACL 2003 (Lin and

Hovy 2003) paper.

SUMMONS

McKeown and Radev (1995) presented a system called SUMMONS which

summarizes related news articles. The SUMMONS is a genre specific system

which operates in the terrorist domain. The goal of the system is to generate

fluent, variable–length summaries. SUMMONS is based on traditional

language generation architecture and has two main modules for doing content

planning and linguistic operations. The content planner consists of paragraph

Chapter 6: Text Summarization

99

planner and combiner. The linguistic component is made up of a lexical

chooser, ontologizer and a sentence generator.

6.6 Sample Output of Text Summarizer

A sample output of the MEAD summarizer is given below. The input are three

text files, the summary generated is compressed by first 10% and then 25%.

File1 is of 1319, File2 of 1307 and File3 of1067 characters. Though the

system is for Dutch, its gives a good output for English language.

Input to the summarizer were three files:

TEXT 1

I have assessed Ami in the lab assignments where I found that she has the

potential of a very good programmer. She was also effectively involved in

organizing university level technical event ―Dwianki‖ where I was mentor for

the same. I observed that she had the quality to work independently as well

as in a group with equal ease. Her dedication to work for the best is

substantiated by her excellent grades in all the courses I have handled.

Considering her overall academic distinctions and achievements, I place her

among top 5 % of the students associated with me in recent years. I am

happy to see that she has decided to take her education to a higher level by

pursuing a Masters degree at your Graduate School. She is a person with

pleasing demeanor and has good communication skills. She always had the

passion to learn new things and I am sure that she will continue to explore

new horizons with the same zeal. I am confident that she will not only

continue to be a promising and competitive student but would also be capable

of efficiently discharging her roles as research / graduate assistant. I strongly

recommend her for higher studies with deserving financial assistance. I feel

that her academic proficiency and potential for research make her one of the

truly outstanding candidates I have come across.

TEXT 2

In my course of interaction with him I have come to know Deepal as an

exceptionally sincere and assiduous student. He has good understanding of

theoretical aspects on one hand and its application to practical problems on

Chapter 6: Text Summarization

100

other hand. His lab work is consistent and he has performed exceedingly well

in all his university lab examinations. This confirmed his capability of grasping

the core concepts of the subjects and clear understanding of the basic

principles. Deepal has mature personality and his attitude towards peer is co-

operative and congenial. I have seen him produce very good results on

complex projects that required great attention to details without compromising

on the quality. ' Sparsh - Multi-touch Interaction System ' , final year project

consisted of real time video processing and developing application to take the

advantage of multi-touch sensing , which awarded Best project in two National

level competitions . His keen analytic mind , systematic work habits ,

determination to pursue any chosen assignment to a successful conclusion

provide an excellent blend of qualities required for successful pursuit of a

graduate program . I am confident that given an opportunity, he will excel in

his field of study. I therefore strongly recommend him for admission in your

esteemed institution.

TEXT 3

As an Associate Professor of the Computer Science Department of The M S

University, I can describe he has very good logical ability and intuitive thinking

which makes him a very talented student. Moreover, he focuses more on

conceptual learning and has the habit of thinking out of the box. He has

excellent communication skills and always solves the problems assigned to

him with a systematic and analytic approach. His diligence and dedication

complement his good qualities. The quality I like the most about Nishant is

that he is extremely humble and down to earth. He is an innovative thinker

and is really good at writing. He has a good grasping power and his approach

towards his work is always positive. He always has the attitude of learning

from his mistakes. Apart from his studies, he actively participated in

extracurricular activities and was the Training and Placement Coordinator of

his batch. He was responsible for the campus recruitment of the Computer

Science Department. Moreover, he always displayed good team spirit and

was very supportive.

Chapter 6: Text Summarization

101

Output summary: (25%)

[1] I have assessed Ami in the lab assignments where I found that she

has the potential of a very good programmer.

[2] I am happy to see that she has decided to take her education to a

higher level by pursuing a Masters degree at your Graduate School.

[3] She always had the passion to learn new things and I am sure that

she will continue to explore new horizons with the same zeal.

[4] In my course of interaction with him I have come to know Deepal as

an exceptionally sincere and assiduous student.

[5] He has good understanding of theoretical aspects on one hand and its

application to practical problems on other hand.

[6] As an Associate Professor of the Computer Science Department of

The M S University , I can describe he has very good logical ability and

intuitive thinking which makes him a very talented student .

[7] Moreover, he focuses more on conceptual learning and has the habit

of thinking out of the box.

[8] He has excellent communication skills and always solves the problems

assigned to him with a systematic and analytic approach.

Output summary: (10%)

[1] I have assessed Ami in the lab assignments where I found that she

has the potential of a very good programmer.

[2] In my course of interaction with him I have come to know Deepal as an

exceptionally sincere and assiduous student.

[3] As an Associate Professor of the Computer Science Department of

The M S University , I can describe he has very good logical ability and

intuitive thinking which makes him a very talented student .

[4] He has excellent communication skills and always solves the problems

assigned to him with a systematic and analytic approach.

The screen shots are given below:

Chapter 6: Text Summarization

102

Figure 6.2 Screen shots of MEAD Summarizer

Chapter 6: Text Summarization

103

6.7 Topic Model

6.7.1 Introduction to Topic Model

A topic model is a type of statistical model for discovering the abstract "topics"

that occur in a collection of documents. An early topic model was probabilistic

latent semantic indexing (PLSI), created by Thomas Hofmann in 1999. Latent

Dirichlet allocation (LDA) is perhaps the most common topic model currently

in use. The topic model is a statistical language model that relates words and

documents through topics. It is based on idea that documents are made up of

a mixture of topics, where topics are distributions over words. The Table 6.2

contains the conceptual comparison of various topic models.

With the increasing availability of other large, heterogeneous data collections,

topic models have been adapted to model data from fields as diverse as

computer vision, finance, bioinformatics, cognitive science, music, and the

social sciences. While the underlying models are often extremely similar,

these communities use topic models in different ways in order to achieve

different goals.

Table 6.2 Conceptual comparison of various topic models

Model Name Advantages Disadvantages

Latent
Semantic
Analysis (LSA)

+ significant compression over
 simple tf-idf representation
+ Original high-dimensional vectors

are sparse but the corresponding
low-dimensional latent vectors will
not be sparse, makes it possible to
compute meaningful association
between pairs of doc even no
common term

+ can capture some aspects of basic
linguistic notion such as polysemy
and synonymy.

- Not capable of handling dynamic
document collection

 - No generative model
 - No statistical standard methods
 - Output is not interpretable

k-means
(cluster-
model/mixture
of unigrams)

+posses fully generative semantics - document is considered to fall
 in a single cluster i.e. topic

Chapter 6: Text Summarization

104

Probabilistic
Latent
Semantic
Analysis
(pLSA)

+ consider the document to be made
up of more than one topic

-No probabilistic model at the doc
level (i.e. no generative model-how
the document can be generated)
which leads to very serious problem
of : number of parameters grows
linearly with the size of corpus.

- How to assign the probability to
document outside the training set is
not defined.

- No assumption about how the
mixture weight θ is generated.

Latent Dirichlet
Allocation
(LDA)

+ provides a proper generative model
+ robust and versatile
+ domain knowledge is not required
+ as an unsupervised learning

technique, human-intensive task of
finding labeled examples for training
set is completely eliminated.

-although, time and space
complexity grows linearly with the
number of documents,
computations are only practical for
modest-sized collections of up to
hundreds of thousands of
documents.

I have studied the topic model which is also a part of Text Mining in general

and text summarization in particular. An approach called the Gibbs Sampling,

a Markov Chain Monte Carlo method, is highly attractive because it is simple,

fast and has very few adjustable parameters.

As part of the research, I have tried to derive a scalable algorithm which leads

to reduction in the space complexity of the original Gibbs sampling for topic

model. The concept used to reduce the space complexity is partitioning the

dataset into smaller sets and then executing the algorithm for each partition.

This reduces the space requirement without any impact on the time

complexity. The enhanced Gibbs sampling algorithm has been implemented

and experimented on four different datasets.

This work has been published in ‘International Journal of Computer

Information Systems’ by Silicon Valley Publishers (UK), ISSN: 2229-

5208, October 2011 issue and is available at:

 http://www.svpublishers.co.uk/#/ijcis-oct-2011/4557969965. Before actually

implementing the algorithm it was necessary to understand the LDA, the

Gibbs Sampling and then propose a new approach. The step-wise and

precise study and implementation is as given in the next section.

6.7.2 Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is a generative probabilistic model of a

corpus. The basic idea is that documents are represented as random mixtures

Chapter 6: Text Summarization

105

over latent topics, where each topic is characterized by a distribution over

words. The graphical model representation of LDA is shown in Figure 6.3.

Figure 6.3 Graphical model representation of LDA

LDA assumes the following generative process for each document w in a

corpus D:

1. Choose N ~ Poisson().

2. Choose ~ Dir(α).

3. For each of the N words wn:

(a) Choose a topic zn ~ Multinomial(θ).

(b) Choose a word wn from p(wn │zn, β), a multinomial

 probability conditioned on the topic zn.

There are three levels to the LDA representation. The parameters and their

significance are:

1. α and β are corpus level and are sampled once in the process of

generating a corpus.

2. θ is document-level variable, sampled once per document.

3. z and w are word-level variables and are sampled once for each word in

each document.

To compute the posterior distribution of the hidden nodes for a given document

i.e. the inference to implement the LDA is given by:

 (6.3)

The distribution is difficult to be estimated because of the denominator which is

a normalizing constant.

Chapter 6: Text Summarization

106

The key idea behind the LDA model for text data is to assume that the words

in each document were generated by a mixture of topics, where a topic is

represented as a multinomial probability distribution over words.

The mixing coefficients for each document and the word topic distributions are

unobserved (hidden) and are learned from data using unsupervised learning

methods. Blei et al. introduced the LDA model within a general Bayesian

framework and developed a variational algorithm for learning the model from

data. Griffiths and Steyvers subsequently proposed a learning algorithm based

on collapsed Gibbs sampling. Both the variational and Gibbs sampling

approaches have their advantages: the variational approach is arguably faster

computationally, but the Gibbs sampling approach is in principal more accurate

since it asymptotically approaches the correct distribution.

6.7.3 Gibbs Sampling

Introduction

Gibbs sampling is an example of a Markov chain Monte Carlo algorithm. The

algorithm is named after the physicist J. W. Gibbs, in reference to an analogy

between the sampling algorithm and statistical physics. The algorithm was

described by brothers Stuart and Donald Geman in 1984, some eight decades

after the passing of Gibbs. As mentioned before Griffiths and Steyvers

proposed the collapsed Gibbs sampling.

The Smoothed LDA

Before discussing Gibbs sampling it is necessary to understand how the LDA

is smoothed1 because of the problem with the original one. One problem that

might arise with the original LDA model as shown in Figure 6.3 is that, the new

document outside of training set is likely to contain words that did not appear in

any of the documents in a training corpus, and zero probability would be

assigned such words. To cope with the situation, the ‗smoothed‘ model is

shown in Figure 6.4. The strategy used is, not to estimate the model

parameters explicitly, but instead considering the posterior distribution over the

assignments of words to topics, P (z|w). The estimates of θ and Ф are then

1
 The detailed explanation of the smoothed LDA and the equations in given in the bibliography – [43]

to [54].

Chapter 6: Text Summarization

107

obtained by examining this posterior distribution. Evaluating P (z|w) requires

solving a problem that has been studied in detail in Bayesian statistics and

statistical physics, computing a probability distribution over a large discrete

space.

Here, α and β are hyper parameters, specifying the nature of the priors on θ

and Ф. Although these hyper parameters could be vector-valued, for the

purposes of this model we assume symmetric Dirichlet priors, with α and β

each having a single value. These priors are conjugate to the multinomial

distributions θ and Ф, allowing us to compute the joint distribution P (w, z) by

integrating out θ and Ф.

Figure 6.4 Graphical model representation of smoothed LDA

6.7.4 The Gibbs Algorithm for LDA

After applying a number of steps to the equation 6.3, the conditional

distribution as mentioned by Griffiths et al.2 is:

 (6.4)

The different terminology used in the equation 6.4 is given in Tab. 6.3.

2
 The detailed derivation of the formula is in the work by Griffiths, T.L., and Steyvers, M., “Finding

Scientific Topics”, National Academy of Sciences, 101 (suppl. 1) 5228–5235, 2004.([45], [46]).

Chapter 6: Text Summarization

108

Table 6.3 Terms and their meanings for equation 6.4

Term Meaning

 Number of instances of word w

assigned to topic t, not including

current one

 Total number of words assigned to

topic t, not including current one

 Number of words assigned to topic t

in document d, not including current

one

 Total number of words in document d

not including current one

Having obtained the full conditional distribution, the Gibbs Sampling algorithm

is then straightforward. The zn variables are initialized to values in {1, 2 . . . T},

determining the initial state of the Markov chain. The chain is then run for a

number of iterations, each time finding a new state by sampling each zn from

the distribution specified by the equation 6.4. After enough iterations for the

chain to approach the target distribution, the samples are taken after an

appropriate lag to ensure that their autocorrelation is low. The algorithm is

presented in Figure 6.5.

With a set of samples from the posterior distribution P(z | w), statistics that are

independent of the content of individual topics can be computed by integrating

across the full set of samples. For any single sample we can estimate Ф and θ

from the value z by:

 (6.5)

 (6.6)

These values correspond to the predictive distributions over new words w and

new topics z conditioned on w and z. The algorithm for Gibbs sampling LDA is

Chapter 6: Text Summarization

109

shown in Figure 6.5. The dimensions required in this algorithm are shown in

Tab. 6.4 and the details of the arrays required are shown in Tab. 6.5.

Table 6.4 Dimensions required in Gibbs Algorithm

Parameter Description

D Number of documents in corpus

W Number of words in vocabulary

N Total number of words in corpus

T Number of topics

ITER Number of iterations of Gibbs

sampler

Table 6.5 Arrays used in Gibbs Algorithm

Array Description

wid(N) Word ID of n
th

 word

did(N) Document ID of n
th

 word

z(N) Topic assignment to n
th

 word

Cwt(W,T) Count of word w in topic t

Ctd(T,D) Count of topic t in document d

Ct(T) Count of topic t

Chapter 6: Text Summarization

110

Figure 6.5 Gibbs Sampling Algorithm for LDA

6.7.5 Analysis of Gibbs Algorithm

The time and space complexity of the Gibbs sampling algorithm as shown in

Figure 6.5 is:

Time Complexity ~ O (ITER * N* T)

Space Complexity ~ O (3 N + (D + W) T)

To understand the limitations of the existing algorithm, consider a million-

document corpus with the following size parameters:

D =106

W=104

N=109

Input: document-word index, vocabulary-word index, vocabulary, parameters value.

Output: topic wise word distribution

Procedure: as described below.

 //initialization of Markov chain initial state

 for all words of the corpus n Є [1, N] do

 sample topic index z (n) ~ Mult (1/T)

 // increment the count variables

 Cwt(wid(n),t) ++ , Ctd(t,did(n))++, Ct(t) ++ ;

 end for

 // run the chain over the burn-in period, and check for the

 // convergence. Generally for fixed number of iterations and then

 // take the samples at appropriate lag.

 for iteration i Є [1, ITER] do

 for all words of the corpus n Є [1, N] do

topic = z(n)

// decrement all the count variables, as not to

// include the current assignment

Cwt(wid(n),t) -- , Ctd(t,did(n))--, Ct(t) -- ;

 for each topic t Є [1, T] do

 P(t) = (Cwt(wid(n),t)+β)(Ctd(t,did(n))+α) /

 (Ct(t)+W β))

 end for

 sample topic t from P(t)

 z(i) = t

 // increment all the count variables to consider

 //this new topic assignment

Cwt(wid(n),t) ++ , Ctd(t,did(n))++, Ct(t) ++ ;

 end for

 end for

Chapter 6: Text Summarization

111

For this corpus, it would be reasonable to run with T = 103 topics and ITER =

103 iterations. Using the space complexity equation as given above, the

required memory would be,

(3* 109+ (106 +104) 103) = 4 Giga Bytes

This memory requirement is beyond most desktop computers and this makes

Gibbs sampled topic model computation impractical for many purposes. As

observed from the space complexity equation, the memory requirement

increases because of N – the total number of words in a corpus which is

getting multiplied three times.

To reduce this space complexity problem, I have proposed the Enhanced

Gibbs sampling algorithm.

6.8 The Enhanced Gibbs sampling algorithm

To reduce the space requirement of the original Gibbs algorithm, I have

applied the concept of partitioning the word set N and then executing the

algorithm instead of loading the whole word set in a single run. With this we

can achieve the reduction in space requirement as the size of N now reduces

without any impact on the time complexity.

After each run on a partition the result is stored in separate variables and

there is absolutely no need to merge the results of each partition. The

variables are treated as global variables for all partitions.

Suppose we consider three partitions of the original word set N. The space

complexity becomes:

Space Complexity ~ O (3 * N / P + (D + W) T)

Where P is total number of partitions,

 ~ O (3 * N / 3+ (D + W) T)

 ~ O (N + (D + W) T)

The space requirement reduces considerably. Meanwhile the time complexity

becomes:

Time Complexity ~ O (ITER * N / P * T * P)

 ~ O (ITER * N* T)

The time complexity does not change since the algorithm is executed as

many times as the number of partitions but for a smaller word set each time.

Chapter 6: Text Summarization

112

 The proposed algorithm

The enhanced algorithm would require the following steps for execution:

 Read each document, perform tokenization, remove stop words, and

apply case folding.

 Generate document-word matrix.

 Generate the vocabulary of the unique words in the collection.

 From the document-word matrix, generate the sparse arrays containing

the vocabulary index and document index of each word.

 Apply the Enhanced Gibbs Sampling algorithm to extract the topic from

the collection.

 Output the result.

The algorithm is as shown in Figure 6.6.

Chapter 6: Text Summarization

113

Figure 6.6 The Enhanced Gibbs Sampling Algorithm

6.8.1 Implementation of the Enhanced Gibbs Sampling Algorithm

This algorithm was implemented and tested on four datasets by varying the

parameter values. It was implemented using MATLAB 7.0.1.

Input: document-word index, vocabulary-word index, vocabulary, parameters

value.

Output: topic wise word distribution

Procedure: as described below

 //initialization of Markov chain initial state

 for all partition p Є [1, P] do

for all words of the current partition p, n Є [1, N/P] do

 sample topic index z(n) ~ Mult(1/T)

 // increment the count variables

Cwt(wid(n),t) ++ , Ctd(t,did(n))++, Ct(t) ++ ;

end for

 end for

 // run the chain over the burn-in period, and check for the convergence.

// Generally for the fixed number of iteration and then take the samples at

 // appropriate lag.

 for all partition p Є [1, P] do

 for iteration i Є [1, ITER] do

 for all words of the current partition p, n Є [1, N/P] do

 topic = z (n)

 // decrement all the count variables, as not to include the

 // current assignment

 Cwt(wid(n),t) -- , Ctd(t,did(n))--, Ct(t) -- ;

 for each topic t Є [1, T] do

 P(t) = (Cwt(wid(n),t) + β)(Ctd(t,did(n)) + α) /

 (Ct(t) + W β))

 end for

sample topic t from P(t)

z(i) = t

 // increment all the count variables to consider this new

 // topic assignment

Cwt(wid(n),t) ++ , Ctd(t,did(n))++, Ct(t) ++ ;

 end for

 end for

end for

Chapter 6: Text Summarization

114

The Datasets

To extract the topics we require a text dataset that is rich in different topics.

There are large number of textual datasets available which can be most

suitable for this type of implementation such as news articles, emails,

literature, research papers and abstracts, technical reports. The datasets that

we used were:

1. The Cite Seer collection of scientific literature abstracts

2. The NIPS dataset of research papers

3. The Times Magazine articles

4. The Tehelka Magazine articles

The result after the preprocessing is completed on the four datasets is shown

in Tab.6.6. This output is now used for the next step i.e. applying the

Enhanced Gibbs sampling algorithm with different partitions.

Table 6.6 Output after pre-processing

Parameter
Values

Cite Seer NIPS
Times
Magazine

Tehelka
Magazine

No. of Total
Words(N)

8320 51515 29601 17184

No. Unique
Words(W)

683 1485 3820 1772

No. of
Documents (D)

474 90 420 125

Time Taken in
Seconds

120.656 661.532 410.359 244.86

6.8.2 Output and Comparison of the Enhanced Algorithm

This is the second phase i.e. applying both the Gibbs sampling and the

Enhanced Gibbs sampling algorithms once the preprocessing is completed. A

number of successive iterations are made through the topic assignment done

by random sampling over the dataset. The proposed method does the same

but instead of in a single step over the whole dataset, the dataset is divided

into successive partitions and the algorithm is applied for each partition.

The output of both the algorithms with their comparisons is shown in Tab. 6.7

and Tab. 6.8. The algorithms were implemented on all the datasets with

varying parameter values. I have displayed only two outputs related to the

Cite Seer dataset in this section. Each dataset displayed similar results and

Chapter 6: Text Summarization

115

there was a considerable reduction in the space complexity when the

Enhanced Gibbs sampling was used.

Table 6.7 Output and comparison of both algorithms

Name of
Arrays
required by
the
algorithm

Original Algorithm Proposed Algorithm

No Partition Partition = 2

 Size Bytes Size Bytes

ct (1,T) 1 x 30 240 1 x 30 240

ctd (T,D) 30x474 113760 30x474 113760

cwt (W,T) 683x30 163920 683x30 163920

did (1, N) 1x 8320 66560 1 x 4160 33280

wid (1, N) 1x 8320 66560 1 x 4160 33280

z (1, N) 1x 8320 66560 1 x 4160 33280

Total Bytes 477600 377760

Time
Taken
(secs)

36.438 36.063

In Tab. 6.7 the values for the parameters are: T = 30, ITER = 1000, α = 1.0

and β = .01 whereas in Tab. 6.8 the result with varying parameter values and

partition values is displayed.

Table 6.8 Summary of comparison of both algorithms

As can be seen from the observations shown, space complexity reduces

significantly whereas the time complexity reduces marginally.

Parameters T = 30
ITER = 1000
α = 1
β = 0.01

T = 10
ITER = 1000
α = 0.05
β = 0.01

 Time
(sec)

Space
(Bytes)

Time
(sec)

Space
(Bytes)

No Partition 36.438 477600 20.516 292320

Partition = 2 36.063 377760 20.344 192480

Partition = 3 35.734 344488 20.078 159208

Partition = 4 35.64 327840 20.094 142560

Chapter 6: Text Summarization

116

6.8.3 Conclusion and future enhancements of Topic Model

The topic model is a statistical language model that relates words and

documents through topics. It is based on the idea that documents are made

up of a mixture of topics, where topics are distributions over words. Gibbs

sampling for implementing LDA has been a very popular model for topic

models as compared to alternative methods such as variational Bayes and

expectation propagation. Gibbs Sampling, a Markov Chain Monte Carlo

method, is highly attractive because it is simple, fast and has very few

adjustable parameters.

While the time and space complexity of the topic model scales linearly with

the number of documents in a collection, computations are only practical for

modest-sized collections of up to hundreds of thousands of documents. In this

paper we have proposed an enhanced Gibbs sampled topic model algorithm

which scales better than the original as the space complexity gets

considerably reduced.

There are number of extensions possible with the topic models, such as

author-topic models, author-role-topic models, topic models for images,

hidden Markov topic models. Parallel topic models are also an emerging area

of interest. The future work will be concentrating on any such extension of the

topic model.

6.9 The Multi-Liaison Algorithm

6.9.1 Introduction of the proposed algorithm

The Multi-Liaison algorithm is useful for extracting multiple connections or

links between subject and object from natural language input (English), which

can have one or more than one subject, predicate and object. The parse tree

visualization and the dependencies generated from the Stanford Parser are

used to extract this information from the given sentence. Using the

dependencies I have generated an output which displays which subject is

related to which object and the connecting predicate. Finding the subjects and

objects helps in determining the entities involved and the predicates

determine the relationship that exists between the subject and the object. The

Chapter 6: Text Summarization

117

subjects can either be nouns or even pronouns. Moreover, one subject can be

related to multiple objects and vice-versa.

I have named this algorithm ‗The Multi-Liaison Algorithm‘ since the liaison

between the subjects and objects would be displayed. The word ‗liaison‘ has

been used since the relationship and association between the subjects and

predicates are displayed. This output would be useful for natural language

processing (NLP), information retrieval, information extraction and also

abstractive text summarization.

This algorithm has been published in the ‗International Journal of

Advanced Computer Science and Applications (IJACSA)’ by The Science

and Information (SAI) Organization, ISSN: 2156-5570 (Online) & ISSN: 2158-

107X (Print), Volume 2 Issue 5, 2011. It is available online at:

 http://thesai.org/Publication/Archives/Volume2No5.aspx.

6.9.2 The Stanford Parser

The Stanford Parser is a probabilistic parser which uses the knowledge of

language gained from hand-parsed sentences to try to produce the most likely

analysis of new sentences. This package is a Java implementation of

probabilistic natural language parsers.

The Stanford dependencies provide a representation of grammatical relations

between words in a sentence for any user who wants to extract textual

relationships. The dependency obtained from Stanford parser can be mapped

directly to graphical representation in which words in a sentence are nodes in

graph and grammatical relationships are edge labels. This has been used to

extract the relation between multiple subjects and objects when the sentence

to be parsed is a little complicated. Stanford dependencies (SD) are triplets:

name of the relation, governor and dependent.

6.9.3 The Parse Tree and Dependencies

The parse tree generated by the Stanford Parser is represented by three

divisions: A sentence (S) having a noun phrase (NP), a verbal phrase (VP)

and the full stop (.). The root of the tree is S.

The Stanford typed dependencies representation was designed to provide a

simple description of the grammatical relationships in a sentence that can

Chapter 6: Text Summarization

118

easily be understood. The current representation contains approximately 52

grammatical relations. The dependencies are all binary relations. The

definitions make use of the Penn Treebank part-of-speech (POS) tags and

phrasal labels.

To find the multiple subjects in a sentence our algorithm searches the NP sub

tree. The predicate is found in the VP sub tree and the objects are found in

three different sub trees, all siblings of the VP sub tree containing the

predicate. The sub trees are: PP (prepositional phrase), NP (noun phrase)

and ADJP (adjective phrase).

6.9.4 The Multi-Liaison Algorithm details

To execute this algorithm, first we start with parsing a sentence by the

Stanford parser and storing the result in some intermediate file so that it can

be taken as input for this algorithm. The triplet extraction algorithm3 has also

been considered before finding the liaisons.

The application was written in JAVA using Net Beans IDE 6.5 RC2. It parsed

a single sentence of 12 words in 8.35 seconds and displayed the output as

shown in the examples below. This algorithm works equally well with simple

as well as complex sentences and the output is very clear and precise.

As shown in Figure 6.7, the Multi-Liaison Algorithm takes as input the POS of

each word, the parse tree and the typed dependencies [9]. Two functions are

then called, the first is the GET_TRIPLETS and the second is the

GET_RELATIONSHIP.

3
 Delia Rusu, Lorand Dali, Blaz Fortuna, Marko Grobelnik, Dunja Mladenic, “Triplet extraction from

sentences” in Artificial Intelligence Laboratory, Jožef Stefan Institute, Slovenia, Nov. 7, 2008.

Chapter 6: Text Summarization

119

Figure 6.7 The Multi-Liaison Algorithm

As shown in Figure 6.8, the GET_TRIPLETS function takes as input the

Stanford Parse Tree and by considering the nodes under the NP sub tree and

the VP sub tree, finds all the subjects, objects and predicates.

The GET_RELATIONSHIP finds and displays the relationships between the

subjects and objects. The algorithm is displayed in Figure 6.9.

Function: CONVERT_ SENTENCE (Input_Str)
Returns: POS tagging, Parse tree, Typed Dependencies
Input_Str: Sentence to be parsed

[Run the Stanford parser with Input_Str as input]

Output_Str i) POS of each word
 ii) The parse tree generated
 iii) The typed dependencies
Return Output_Str

Function: MULTI_LIAISON (Output_Str)
Returns: Multiple liaisons or error message
 Function GET_TRIPLETS (Output_Str)
 Function GET_RELATIONSHIP (Output_Str)
Display the multiple liaisons

Chapter 6: Text Summarization

120

Figure 6.8 The GET_TRIPLETS Function

Function: GET_TRIPLET (Output_Str)
Returns: Multiple subjects, objects and predicates
[Read level 1 of Parse Tree – refer Figure 2]
If tree contains ‗NP‘ or ‗NNP‘ then
 Function GET_SUBJECT (NP sub tree)
Else
 Return error message

If tree contains ‗VP‘ then
 Function GET_PREDICATE (VP sub tree)
 Function GET_OBJECT (VP sub tree)
Else
 Return error message

Function: GET_SUBJECT (NP sub tree)
Returns: Subject(s) and adjective(s)
For (all nodes of NP sub tree) do
 If NP sub tree contains ‗NN‘ or ‗NNP‘ or ‗NNS‘ then
 Store POS as a subject
 If NP sub tree contains ‗JJ‘ then
 Store POS as an adjective
Return the subject(s) and adjective(s)

Function: GET_PREDICATE (VP sub tree)
Returns: Predicate(s)
For (all nodes of VP sub tree) do
 If VP sub tree contains ‗VB?‘ then
 Store POS as a predicate
 Else

Return error message
Return the predicate(s)

Function: GET_OBJECT (VP sub tree)
Returns: Object(s)
For (all nodes of VP sub tree) do
 If VP sub tree contains ‗NP‘ then
 For (all nodes of VP_NP sub tree) do
 If VP_NP sub tree contains ‗NP‘ or ‗NN‘ then
 Store POS as an object
 Else
 Return error message
 Else
 Return error message
Return the object(s)

Chapter 6: Text Summarization

121

Figure 6.9 The GET_RELATIONSHIP Function

6.9.5 Output of the Multi-Liaison Algorithm

As per the algorithm discussed above, the output is shown below. In the first

example, the outputs of the Stanford parse as well as the output of the Multi-

Liaison both are displayed including the parse tree. In subsequent examples

the parse tree is not displayed but the tagging, dependencies and the Multi-

Liaison output is displayed. Figure 6.10 displays the parse tree.

Function: GET_RELATIONSHIP (Output_Str)
Returns: Multiple liaisons / relations
[Read the Stanford typed dependencies from Output_Str]
For (all terms in typed dependencies) do
 If typed dependencies contain ‗NSUBJ‘ then
 Store both words of NSUBJ as S1 and S2
 For each value of subject from GET_SUBJECT do
 If subject matches S2 then
 [Check for predicates]

 For each value of predicate from
 GET_PREDICATE do

 If predicate matches S1 then
 [Concatenate subject and predicate as
 R1]
 Store R1 in the relation
 If typed dependencies contain ‗DOBJ‘ or ‗PREP‘ then
 Store both the words as D1 and D2
 For each value of object in GET_OBJECT do
 If object matches D2 then
 Store value of object in the relation as R2
Return R1+R2

Chapter 6: Text Summarization

122

Figure 6.10 The Stanford Parse Tree

Chapter 6: Text Summarization

123

Figure 6.11 Example 1

Example 1: The old beggar ran after the rich man who was wearing a black coat
The Stanford Parser output:
Tagging:
The/DT old/JJ beggar/NN ran/VBD after/IN the/DT rich/JJ man/NN who/WP was/VBD
wearing/VBG a/DT black/JJ coat/NN

Parse Tree:
(ROOT
 (S
 (NP (DT The) (JJ old) (NN beggar))
 (VP (VBD ran)
 (PP (IN after)
 (NP
 (NP (DT the) (JJ rich) (NN man))
 (SBAR
 (WHNP (WP who))
 (S
 (VP (VBD was)
 (VP (VBG wearing)
 (NP (DT a) (JJ black) (NN coat)))))))))))

Typed Dependencies:
det(beggar-3, The-1)
amod(beggar-3, old-2)
nsubj(ran-4, beggar-3)
det(man-8, the-6)
amod(man-8, rich-7)
prep_after(ran-4, man-8)
nsubj(wearing-11, man-8)
aux(wearing-11, was-10)
rcmod(man-8, wearing-11)
det(coat-14, a-12)
amod(coat-14, black-13)
dobj(wearing-11, coat-14)

The Multi-Liaison Output:
Subject: 1
NN beggar
Predicate: 3
VBD ran
VBD was
VBG wearing
Object: 2
NN man JJ rich
NN coat JJ black

Relationship:
beggar - ran - man
man - wearing - coat

Chapter 6: Text Summarization

124

As shown above, the Multi-Liaison Algorithm displays the relationship

between the subject and object (beggar and man) as well as the relationship

between the two objects (man and coat).

Figure 6.11 Example 2

Figure 6.12 Example 2

Example 2: The dog and the cat ran after the mouse and the mongoose

Tagging:
The/DT dog/NN and/CC the/DT cat/NN ran/VBD after/IN the/DT mouse/NN and/CC
the/DT mongoose/NN

Typed Dependencies:
det(dog-2, The-1)
nsubj(ran-6, dog-2)
det(cat-5, the-4)
conj_and(dog-2, cat-5)
nsubj(ran-6, cat-5)
det(mouse-9, the-8)
prep_after(ran-6, mouse-9)
det(mongoose-12, the-11)
prep_after(ran-6, mongoose-12)
conj_and(mouse-9, mongoose-12)

The Multi-Liaison Output:
Subject: 2
NN dog
NN cat
Predicate: 1
VBD ran
Object: 2
NN mouse
NN mongoose

Relationship:
dog - ran – mouse - mongoose
cat - ran - mouse - mongoose

Chapter 6: Text Summarization

125

Figure 6.13 Example 3

All the three examples shown in the figures above have different number of

subjects and objects and the relationship between them is also not similar.

The Multi-Liaison Algorithm output in this way can be very useful for Text

Mining applications where a variety of sentences are to be mined.

Example 3: Jack and I visited the zoo with our children

I have also considered pronoun as a subject and therefore have got the relationship with
2 subjects in terms of noun and pronoun.

Tagging:
Jack/NNP and/CC I/PRP visited/VBD the/DT zoo/NN with/IN our/PRP$ children/NNS

Typed Dependencies:
nsubj(visited-4, Jack-1)
conj_and(Jack-1, I-3)
nsubj(visited-4, I-3)
det(zoo-6, the-5)
dobj(visited-4, zoo-6)
poss(children-9, our-8)
prep_with(visited-4, children-9)

The Multi-Liaison Output:
Subject: 2
NNP Jack
PRP I
Predicate: 1
VBD visited
Object: 2
NN zoo
NNS children
PRP$ our

Relationship:
Jack - visited - zoo - children
I - visited - zoo - children

Chapter 6: Text Summarization

126

6.9.6 Conclusion and future enhancements

The proposed algorithm which displays the relationships between subjects

and objects in sentences where there are multiple subjects and objects. The

Stanford parser output was used to generate this result.

This algorithm would be usable not only by Text Mining experts and

computational linguists but also by the computer science community more

generally and by all sorts of professionals like biologists, medical researchers,

political scientists, business and market analysts, etc. In fact it would be easy

for users not necessarily versed in linguistics to see how to use and to get

value from the simple relationship that is displayed so effectively.

127

Chapter 7: Future Enhancements

The enhancements in Text Mining have already been discussed in the related

chapters. However one article1 interested me as it is very much related to

what exactly Text Mining is supposed to do.

During a series of hearings, the U.S. Senate Select Committee on Intelligence

showed that prior to September 11, 2001, the American intelligence

community had collected a significant amount of data about the men who

attacked the World Trade Center and the Pentagon. The various intelligence

agencies were simply unable to connect the dots. In his report, Richard C.

Shelby, then vice chairman of the committee, stressed that agencies need

powerful new tools to analyze the huge volumes of information they bring in.

Text-mining software is one of the front-line tools that the government is now

using to tease out valuable connections. These specialized search engines

can quickly sift through mountains of unstructured text—anything that's not

carefully arranged in a database or spreadsheet—and pull out the meaningful

stuff. They can infer relationships within data that are not stated explicitly. It is

something we do all the time automatically but is enormously complicated for

computers. "We bridge the gap between information and action," says Barak

Pridor, CEO of ClearForest, a text-mining company.

The result of years of research at facilities such as Bell Labs and the Palo Alto

Research Center, Text Mining applications have long been used in business.

But more government agencies, including the Defense Intelligence Agency,

the Department of Homeland Security, and the FBI, are using them to

evaluate the multitude of e-mail messages, phone call transcripts, memos,

foreign news stories, and other pieces of intelligence data these agencies

collect each day.

Software from companies such as Autonomy, ClearForest, and Inxight

Software can locate words and phrases the same way an ordinary search

engine does. But that's just the beginning. Such applications are clever

enough to run conceptual searches, locating, say, all the phone numbers and

1
 http://www.pcmag.com/article2/, Cade Metz, ‘Uncovering telltale patterns’

Chapter 7: Future Enhancements

128

place names buried in a collection of intelligence communiqués. More

impressive, the software can identify relationships, patterns, and trends

involving words, phrases, numbers, and other data.

Using statistical and mathematical analysis, the programs can sift through

thousands of documents and determine how certain words relate to each

other. If a news story says that "Zacarias Moussaoui was a follower of the

Islamic cleric Abu Qatada while living in London," a Text Mining application

can identify Moussaoui and Qatada as people, identify London as a place,

and determine the relationship among the three.

In theory, a human analyst could pick up those connections easily, but

manually sifting through the enormous volumes of information is often

impractical. Fortunately, Text Mining applications can deal with these and

other similar functions.

129

Summary

The enormous amount of information stored in unstructured texts cannot

simply be used for further processing by computer, which typically handles

text as simple sequences of character strings. Therefore, specific processing

methods and algorithms are required in order to extract useful patterns. Text

Mining refers generally to the process of extracting interesting information and

knowledge from unstructured text. Text Mining represents a significant step

forward from text retrieval. It is a relatively new and vibrant research area that

is changing the emphasis in text-based information technologies from low

level ‗retrieval‘ and ‗extraction‘ to higher level ‗analysis‘ and ‗exploration‘

capabilities. Given the large amount of data available today in the form of text,

tools that automatically find interesting relationships, hypothesis or ideas, or

assist the user in finding these would be extremely useful and current

research area.

In this thesis, the work on Text Mining has been divided in three main sections

– Text Clustering, Text Classification and Text Summarization. The Text Pre-

processing and Text Transformation which are the preliminary steps before

actually a Text Mining algorithm can be implemented have been discussed

first. A comparative between the different stemming algorithms has been

discussed in detail.

 In subsequent sections the three broad applications mentioned above and

their related algorithms and methods which are currently popular have been

discussed.

Text Clustering is the unsupervised method of Text Mining of gathering or

dividing related documents in such a way that documents within cluster are

similar to each other whereas the documents across clusters are different.

The algorithms discussed are the K-Means, the DBSCAN and the SNN. A

new algorithm ‗SNNAE‘ has been proposed and its implementation details

and comparative between the others is also given.

Text Classification or Text Categorization is the supervised method of Text

Mining where we have a training class of documents which have pre-defined

130

classes associated with them and using these training documents, classifiers

are modeled or learned so that they can be applied on the new documents

which have not been pre-classified i.e. the testing class of documents. In this

section the Naïve Bayes (Two variants), kNN, decision trees and support

vector machines are discussed. Their comparatives are also given. A new

method based on kNN – ‗The Novel kNN‘ has been designed and

implemented.

Text Summarization deals with producing a synopsis / summary of a single

document or set of documents. It deals with abstractive and extractive

methods. In this section apart from discussing what is already available, two

innovative algorithms have been designed. One is related to the topic model –

a probabilistic model that automatically learns the topics contained in a set of

documents. The method developed is based on the Latent Dirichlet Allocation

which is used to find the latent semantic structure that is topics in the case of

text collections. The method applied is the Gibbs sampling – a kind of Markov

Chain Monte Carlo Method. The proposed algorithm is the ‗Enhanced Gibbs

Sampling‘. Another algorithm related to part-of-speech (POS) tagger - ‗The

Multi-Liaison Algorithm‘ has been designed which can be useful in text

summarization when the semantics are also to be studied. This can be part of

natural language processing as well as Text Mining application.

All the related algorithms mentioned above have been published in either

International Journals or International Conference Proceedings.

With today‘s need to handle and process collections that are orders of

magnitude much larger, scalable and parallel Text Mining methods are

required. A lot of work has been going and in this field and a lot more remains

to be done.

131

Appendix A

The stop words list is available on the site of the Onix Text Retrievel Tookit

and the site is: http://www.lextek.com/manuals/onix/stopwords1.html. This

stopword list is probably the most widely used stopword list. It covers a wide

number of stopwords without getting too aggressive and including too many

words which a user might search upon. This wordlist contains 429 words.

 http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-

list/english.stop - is another site where stopwords are available.

a about above across after again against all

almost alone along already also although always among

an and another any anybody anyone anything anywhere

are area areas around as ask asked asking

asks at away

back backed backing backs be became because become

become
s

been before began behind being beings best

better between big both but by

came can cannot case cases certain certainly clear

clearly come could

did differ different differentl
y

do does done down

down downed downing downs during

each early either end ended ending ends enough

even evenly ever every everybod
y

everyone everythin
g

everywher
e

face faces fact facts far felt few find

finds first for four from full fully further

furthere
d

furtherin
g

furthers

gave general generall
y

get gets give given gives

go going good goods got great greater greatest

group grouped grouping groups

had has have having he her here herself

high high high higher highest him himself his

how however

i if importan
t

in interest intereste
d

interestin
g

interests

into is it its itself

just

keep keeps kind knew know known knows

large largely last later latest least less let

lets like likely long longer longest

made make making man many may me member

member
s

men might more most mostly mr mrs

much must my myself

132

necessary need needed needing needs never new new

newer newest next no nobody non noone not

nothing now nowhere number number
s

of off often old older oldest on once

one only open opened opening opens or order

ordered ordering orders other others our out over

part parted parting parts per perhaps place places

point pointed pointing points possible present presente
d

presentin
g

presents problem problem
s

put puts

quite

rather really right right room rooms

said same saw say says second seconds see

seem seemed seeming seems sees several shall she

should show showed showin
g

shows side sides since

small smaller smallest so some somebod
y

someone somethin
g

somewher
e

state states still still such sure

take taken than that the their them then

there therefor
e

these they thing things think thinks

this those though thought thought
s

three through thus

to today together too took toward turn turned

turning turns two

under until up upon us use used uses

very

want wanted wanting wants was way ways we

well wells went were what when where whether

which while who whole whose why will with

within without work worked working works would

year years yet you young younger youngest your

yours

133

Appendix B

Some popular Text Mining tools available:

Product Name Pre-

processing

Clustering Categorizing Summarizing API

Commercial

Clearforest √ √ √

Copernic

Summarizer √ √

dt Search √ √

Insightful Infact √ √ √ √ √

Inxight √ √ √ √ √

SPSS Clementine √ √ √ √

SAS Text Miner √ √ √ √

TEMIS √ √ √ √

WordStat √ √ √ √

Open Source

GATE √ √ √ √ √

RapidMiner √ √ √ √ √

Weka / WEA √ √ √ √ √

R / tm √ √ √ √ √

134

Publications

International Level:

Sr.
No.

Name of Journal/Organization
Year of

Publication
Title of Paper

1

International Journal of Computer
Technology and Applications (IJCTA) -
Volume 2 Issue 6/ November -
December 2011/ pg. 1930-1938,
ISSN:2229-6093.
http://ijcta.com/vol2issue6.php

2011
A Comparative Study of
Stemming Algorithms

2

International Journal of Computer
Information Systems by Silicon Valley
Publishers (UK), ISSN: 2229-5208,
October 2011 issue and is available at
http://www.svpublishers.co.uk/#/ijcis-oct-
2011/4557969965.

2011
The Enhanced Gibbs Sampling
for Topic Model

3

International Journal of Advanced
Computer Science and Applications
(ISSN: 2156-5570)
Vol. 2, No. 5 (2011), p. 130--134.
http://thesai.org/Publication/Archives/Vol
ume2No5.aspx

2011 The Multi-Liaison Algorithm

4

IEEE Computer Society &
World Research Organization (CSIE09)
ISBN 978-0-7695-3507-4/08,
DOI 10.1109/CSIE2009.997,
Pg. 436
BMS Number CFP0960F-CDR
http://www.computer.org/portal/web/csdl
/doi/10.1109/CSIE.2009.997

2009
The Shared Nearest Neighbor
Algorithm with Enclosures
(SNNAE)

5

Macmillan Publisher, Institute Of
Mangement Technology, Ghaziabad.
ISBN 0230-63469-9
Pg. 221

2008

Discovering Communication
Threads In Emails Using A
Conceptual Clustering
Approach

6

INCRUIS 2006 – International
Conference on Resource Utilization,
Kongu Engineering College, Tamil
Nadu.
ISBN 81-7764-940-x, Pg. 916

2006

Fuzzy Clustering for The
Student Resource Utilization

135

 National Level:

Sr.
No.

Name of Journal/Organization
Year of

Publication
Title of Paper

1

SPCTS, DAIICT & IEEE 2007

An Approach Towards The
SNN Clustering Algorithm

(Awarded 2nd Prize)

2

Tele Tech 2005 National Seminar on
Applied Computing Tech., IETE, Rajkot.

2005

Ontology Mining for Virtual
Reality

3

Business Information Management
Conference, IMT Ghaziabad.

2005

Data Quality - A Stepping
Stone in Business
Intelligence

4

Business Information Management
Conference,IMT Ghaziabad

2005

Text Data Mining for
Knowledge Discovery in
Business Intelligence

5

National Conference on Information &
Communication Technology - 2005,
Technology Today, Ahmedabad.

2005

Knowledge Discovery -
Using Grids

6

National Conference on Information &
Communication Technology - 2005,
Technolgy Today, Ahmedabad.

2005

Ontology Clustering -An
Insight

7

Gyanodaya : Next Generation IT,
Gyanganga Institute , Jabalpur.

2005.

Datamining - The Metadata

8

Embedded Systems And Emerging
Trends, IETE, Vadodara.

2005

An Approach Towards
Embedded Databases

9

National Level Technical Paper
Presentation Competion, S.V.Institute,
Kadi & Amoghsiddhi Edu. Society,
Sangli

2005

A Study of Contemporary
Databases

10

National Level Technical Paper
Presentation Competition , S.V.Institute,
Kadi & Amoghsiddhi Edu. Society,
Sangli

2005

An Insight to Data Mining
and Data Warehousing

(Awarded First Prize)

136

Bibliography

[1] Hearst, M. Untangling Text Data Mining .In the Proceedings of ACL'99:the 37th Annual
Meeting of the Association for Computational Linguistics, University of Maryland, June 20-
26, 1999.

[2] Keno Buss Literature Review on Preprocessing for Text Mining. Software Technology
Research Laboratory, http://www.cse.dmu.ac.uk/STRL/.

[3] G. Salton , A. Wong , C. S. Yang, A vector space model for automatic indexing (http:/ /
doi. acm. org/ 10. 1145/ 361219. 361220), Communications of the ACM, v.18 n.11, p.613-
620, Nov. 1975.

[4] Eiman Tamah Al-Shammari, ―Towards An Error-Free Stemming‖, in Proceedings of ADIS
European Conference Data Mining 2008, pp. 160-163.

[5] Frakes W.B. ―Term conflation for information retrieval‖. Proceedings of the 7th annual
international ACM SIGIR conference on Research and development in information
retrieval. 1984, 383-389.

[6] Frakes William B. ―Strength and similarity of affix removal stemming algorithms‖. ACM
SIGIR Forum, Volume 37, No. 1. 2003, 26-30.

[7] Funchun Peng, Nawaaz Ahmed, Xin Li and Yumao Lu. ―Context sensitive stemming for
web search‖. Proceedings of the 30th annual international ACM SIGIR conference on
Research and development in information retrieval. 2007, 639-646.

[8] Galvez Carmen and Moya-Aneg•n F˜lix. ―An evaluation of conflation accuracy using finite-
state transducers‖. Journal of Documentation 62(3). 2006, 328-349

[9] J. B. Lovins, ―Development of a stemming algorithm,‖ Mechanical Translation and
Computer Linguistic., vol.11, no.1/2, pp. 22-31, 1968.

[10] Harman Donna. ―How effective is suffixing?‖ Journal of the American Society for
Information Science. 1991; 42, 7-15 7.

[11] Hull David A. and Grefenstette Gregory. ―A detailed analysis of English stemming
algorithms‖. Rank Xerox Research Center Technical Report. 1996.

[12] Kraaij Wessel and Pohlmann Renee. ―Viewing stemming as recall enhancement‖.
Proceedings of the 19

th
 annual international ACM SIGIR conference on Research and

development in information retrieval. 1996, 40-48.
[13] Krovetz Robert. ―Viewing morphology as an inference process‖. Proceedings of the 16th

annual international ACM SIGIR conference on Research and development in information
retrieval. 1993, 191-202.

[14] Mayfield James and McNamee Paul. ―Single N-gram stemming‖. Proceedings of the 26th
annual international ACM SIGIR conference on Research and development in information
retrieval. 2003, 415-416.

[15] Melucci Massimo and Orio Nicola. ―A novel method for stemmer generation based on
hidden Markov models‖. Proceedings of the twelfth international conference on
Information and knowledge management. 2003, 131-138.

[16] Mladenic Dunja. ―Automatic word lemmatization‖. Proceedings B of the 5th International
Multi-Conference Information Society IS. 2002, 153-159.

[17] Paice Chris D. ―Another stemmer‖. ACM SIGIR Forum, Volume 24, No. 3. 1990, 56-61.
[18] Paice Chris D. ―An evaluation method for stemming algorithms‖. Proceedings of the 17th

annual international ACM SIGIR conference on Research and development in information
retrieval. 1994, 42-50.

[19] Plisson Joel, Lavrac Nada and Mladenic Dunja. ―A rule based approach to word
lemmatization‖. Proceedings C of the 7th International Multi-Conference Information
Society IS. 2004.

[20] Porter M.F. ―An algorithm for suffix stripping‖. Program. 1980; 14, 130-137.
[21] Porter M.F. ―Snowball: A language for stemming algorithms‖. 2001.
[22] R. Sun, C.-H. Ong, and T.-S. Chua. ―Mining Dependency Relations for Query Expansion

in Passage Retrieval‖. In SIGIR, 2006
[23] Prasenjit Majumder, Mandar Mitra, Swapan K. Parui, Gobinda Kole, Pabitra Mitra and

Kalyan Kumar Datta. ―YASS: Yet another suffix stripper‖. ACM Transactions on
Information Systems. Volume 25, Issue 4. 2007, Article No. 18.

137

[24] Toman Michal, Tesar Roman and Jezek Karel. ―Influence of word normalization on text
classification‖. The 1st International Conference on Multidisciplinary Information Sciences
& Technologies. 2006, 354-358.

[25] Xu Jinxi and Croft Bruce W. ―Corpus-based stemming using co-occurrence of word
variants‖. ACM Transactions on Information Systems. Volume 16, Issue 1. 1998, 61-81.

[26] Hull D. A. and Grefenstette,― A detailed analysis of English Stemming Algorithms‖,
XEROX Technical Report, http://www.xrce.xerox.

[27] Rui Xu, Student Member, IEEE and Donald Wunsch II, Fellow, IEEE ―Survey of
Clustering Algorithm‖, IEEE Transactions on Neural Networks, Vol. 16, No.3, May (2005).

[28] Martin Ester. Hans-Peter Kriegel, Jorg Sandar, Xiaowei Xu,‖ A Density-based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise,‖ KDD 96, Portland, OR,
pp. 226-231 (1996).

[29] Hetal Bhavsar and Anjali Jivani, ―An approach towards the Shared Nearest Neighbor
(SNN) Clustering Algorithm‖,in the National Conference SPCTS ‘07 at DAII-CT,
Gandhinagar, India, September (2007).

[30] R. A. Jarvis and E. A. Patrick. ―Clustering using a Similarity Measure Based on Shared
Nearest Neighbors,‖ IEEE Transaction on Computers, Vol. C-22, No.11,November
(1973).

[31] Levent Ertoz, Michel Steinbach and Vipin Kumar, ―Finding clusters of different sizes,
shapes,and densities in noisy, high dimensional data‖, accepted for SIAM International
Conference on Data Mining (2003).

[32] A.M.Fahim, A.M Salem, F.A. Torkey and M.A. Ramadan ―Density Clustering Algorithm
Based on Radius of Data (DCBRD)‖, Georgian Electronic Scientific Journal:Computer
Science and Telecommunications, vol. 11, No.4, 2006.

[33] Levent Ertöz, Michael Steinbach, Vipin Kumar, ― A New SNN clustering algorithm and its
applications‖, Workshop on Clustering High Dimensional Data and its Applications,‖
Second SIAM International Conference on Data Mining, Arlington, VA, (2002)

[34] A, McCallum, K. Nigam, L. Ungar, ―Efficient Clustering of High-Dimensional Data Sets
with Application to Reference Matching,‖ KDD 2000, pp. 169-178 (2000).

[35] Zhiwei SUN, Zheng ZHAO, Hongmei WANG, Maode MA, Liangang and Yantai SHU, ―A
Fast Clustering Algorithm Based on Grid and Density‖, in IEEE, CCECE/CCEGI,
Saskatoon, May 2005.

[36] YasserEl-Sonbaty, M.A. Ismail, and Mohamed Farouk, ―An Efficient Density Based
Clustering Algorithm for Large Databases‖, In Proceedings of the 16

th
 IEEE International

Conference on Tools with Artificial Intelligence, 2004.
[37] Susan Dumais et al., ―Inductive Learning Algorithms and Representations for Text

Categorization ―,Proceedings of the seventh international conference on Information and
knowledge management, ISBN:1-58113-061-9 doi>10.1145/288627.288651

[38] Joachims T, Text Categorization with Support Vector Machines: Learning with Many
Relevant Features. Machine Learning, 1998. 11398:137-142.

[39] Yang Yi ming, I.iu Xin. A Re-Examination of Text Categorization Methods.
Proceedings of ACM SIGIR Conference on Research and Development of Information
Retrieval, Berkeley,California, 1999.42.

[40] Weiss S M, Damerau C F J. Maximizing Text Mining Performance. IEEE Intelligent
Systems. New York: IEEE Press, 1999.12l.

[41] C. Apte, F. Damerau, and S. Weiss. Towards Language Independent Automated
Learning of Text Categorization Methods.online on google scholar.

[42] Hofmann, Thomas (1999). "Probabilistic Latent Semantic Indexing". Proceedings of the
Twenty-Second Annual International SIGIR Conference on Research and Development in
Information Retrieval. http://www.cs.brown.edu/~th/papers/Hofmann-SIGIR99.pdf.

[43] Blei, David M.; Ng, Andrew Y.; Jordan, Michael I; Lafferty, John (January 2003). "Latent
Dirichlet allocation". Journal of Machine Learning Research 3: pp. 993–1022.
doi:10.1162/jmlr.2003.3.4-5.993. http://jmlr.csail.mit.edu/papers/v3/blei03a.html.

[44] David Newman, Padhraic Smyth, Mark Steyvers. ―Scalable Parallel Topic Models‖.
Journal of Intelligence Community Research and Development (2006).

[45] Griffiths, T.L., and Steyvers, M., ―Finding Scientific Topics‖, National Academy of
Sciences, 101 (suppl. 1) 5228–5235, 2004.

[46] Griffiths, T. L., & Steyvers, M., ―A probabilistic approach to semantic representation‖, In

Proceedings of the 24
th

Annual Conference of the Cognitive Science Society, 2002.

138

[47] Griffiths, T., ―Gibbs sampling in the generative model of Latent Dirichlet Allocation‖,
Technical report, Stanford University (2002).

[48] D. Newman, C. Chemudugunta, P. Smyth, M. Steyvers, ―Analyzing Entities and Topics in
News Articles using Statistical Topic Models‖, LNCS 3975, Intelligence and Security
Informatics. Springer. (2006).

[49] R. M. Neal (1993) ―Probabilistic Inference Using Markov Chain Monte Carlo Methods‖,
http://www.cs.utoronto.ca/_radford/review.abstract.html.

[50] G. Heinrich, ―Parameter estimation for text analysis‖, Technical Report, 2004.
[51] D. Newman and S. Block, ―Probabilistic topic decomposition of an eighteenth-century

American newspaper‖, J. Am. Soc. Inf. Sci. Techno., 57(6):753--767, 2006.
[52] Steyvers, M. & Griffiths, T., ―Probabilistic topic models‖, In T. Landauer, D. S. McNamara,

S. Dennis, & W. Kintsch (Eds.), Handbook of Latent Semantic Analysis. Hillsdale, NJ:
Erlbaum, 2007.

[53] Griffiths, T. L., & Yuille, A., ―A primer on probabilistic inference‖, to appear in M. Oaks ford
and N. Chater (Eds.). The probabilistic mind: Prospects for rational models of cognition.
Oxford: Oxford University Press.

[54] D. Heckerman, ―A Tutorial on Learning with Bayesian Networks‖, In Learning in Graphical
Models, M. Jordan, Ed... MIT Press, Cambridge, MA, 1999.

[55] H. Guo and W.H. Hsu, ―A survey of algorithms for real-time Bayesian network inference‖,
AAAI/KDD/UAI-2002 Joint Workshop on Real-Time Decision Support and Diagnosis
Systems, 1-12, Edmonton, Alberta, 2002.

[56] Kass, R. E., Carlin, B. P., Gelman, A., and Neal, R. M., ―Markov Chain Monte Carlo in
Practice: A Roundtable Discussion'', The American Statistician, Vol. 52, pp. 93-100, 1998.

[57] M. Girolami and A. Kaban, ―On an equivalence between PLSI and LDA‖, In Proceedings
of SIGIR 2003. http://citeseer.ist.psu.edu/girolami03equivalence.html.

[58] Kevin P. Murphy, ―An introduction to graphical models‖, University of Columbia, 2001.
[59] D. Klein, C. D. Manning, ―Fast exact inference with a factored model for natural language

parsing‖ in Advances in Neural Information Processing Systems 15 (NIPS 2002),
Cambridge, MA: MIT Press, pp. 3-10, 2003.

[60] D. Klein, C. D. Manning, ―Accurate unlexicalized parsing‖ in Proceedings of the 41st
Meeting of the Association for Computational Linguistics, pp. 423-430, 2003.

[61] Delia Rusu, Lorand Dali, Blaz Fortuna, Marko Grobelnik, Dunja Mladenic, ―Triplet
extraction from sentences‖ in Artificial Intelligence Laboratory, Jožef Stefan Institute,
Slovenia, Nov. 7, 2008.

[62] D. Lin, P. Pantel, ―DIRT - Discovery of inference rules from text‖ in Proceedings of ACM
SIGKDD Conference on Knowledge Discovery and Data Mining 2001. pp. 323-328, 2001.

[63] J. Leskovec, M. Grobelnik, N. Milic-Frayling, ―Learning sub-structures of document
semantic graphs for document summarization‖ in Proceedings of the 7th International
Multi-Conference Information Society IS 2004, Volume B. pp. 18-25, 2004.

[64] J. Leskovec, N. Milic-Frayling, M. Grobelnik, ―Impact of linguistic analysis on the semantic
graph coverage and learning of document extracts‖ in National Conference on Artificial
Intelligence, 2005.

[65] O. Etzioni, M. Cafarella, D. Downey, A. M. Popescu, T. Shaked, S. Soderland, D. S.
Weld, A.Yates. Unsupervised named-entity extraction from the Web: An experimental
study. Artificial Intelligence, Volume 165, Issue 1, June 2005, Pages 91-134.

[66] Marie-Catherine de Marneffe, Bill MacCartney, Christopher D. Manning, ―Generating
typed dependency parses from phrase structure parses‖ in LREC 2006.

[67] Marie-Catherine de Marneffe, Christopher D. Manning, ―The Stanford typed
dependencies representation‖ in COLING Workshop on Cross-framework and Cross-
domain Parser Evaluation, 2008.

[68] Marie-Catherine de Marneffe, Christopher D. Manning, ―The Stanford typed
dependencies manual‖ in Revised for Stanford Parser v1.6.2, February, 2010.

[69] Daniel Cer, Marie-Catherine de Marneffe, Daniel Jurafsky, Christopher D. Manning,
―Parsing to Stanford dependencies: Trade-offs between speed and accuracy‖ in 7th
International Conference on Language Resources and Evaluation (LREC 2010).

[70] Dick Grune and Ceriel Jacobs, ―Parsing Techniques – A Practical Guide,‖ in Proceedings
of the 8

th
 International Conference, CICLing 2007, Mexico City, A. Gelbukh (Ed), pp. 311-

324, Springer, Germany, 2007.

139

Books:

[1] Jiawei Han and Micheline Kamber, ‗Data Mining Concepts and Techniques‘, Elsevier

(2001).
[2] Christopher Manning et al.,‘An Introduction to Information Retrieval‘, Cambridge UP,

2009.
[3] Manu Kochady ‗Text Mining Application Programming‘ , Thomson India Edition, 2006.
[4] C.S.R. Prabhu, ―Data Warehousing – Concepts, Techniques, Products and Applications‖,

PHI
[5] Margaret H. Dunham, ―Data Mining – Introductory and Advanced Topics, Pearson Edu.
[6] IBM, ―An Introduction to Building the Data Warehouse‖, PHI
[7] Alex Berson, Stephen J. Smith, ―Data Warehousing, Data Mining & OLAP‖, Tata McGraw

Hill
[8] David Hand, Heikki Mannila, Padhraic Smyth, ―Principles of Data Mining‖, PHI
[9] Daniel T. Larose, ―Data Mining Methods and Models‖, Wiley-Interscience.
[10] Bart Kosko, 1995, ― Neural Networks And Fuzzy Systems‖, PHI, New Delhi.
[11] Ronen Feldman, James Sanger, ―The Text Mining Handbook‖, Cambridge University

Press, 2006
[12] Ritu Arora, ―Text Mining: Classification and Clustering‖, University of Alabama at

Birmingham
[13] Thomas Miller, ―Data and Text Mining‖, Pearson Education, 2008.
[14] Daniel Jurafsky & James Martin, ―Speech & Language Processing ―, Pearson Education
[15] Steven Bird, Ewan Klein & Edward Loper, ―Natural Language Processing with Python‖,

O‘Reilly

