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Abstract 
 

Text Data Mining, also known as Text Mining or Knowledge Discovery from 

Textual Data, refers to the process of extracting interesting and non-trivial 

patterns or knowledge from text documents. Regarded by many as the next 

wave of knowledge discovery, Text Mining has very high commercial value. 

Text Mining framework consists of two components: Text refining that 

transforms unstructured text documents into an intermediate form; and 

knowledge distillation that deduces patterns or knowledge from the 

intermediate form. 

The enormous amount of information stored in unstructured texts cannot 

simply be used for further processing by computers, which typically handle 

text as simple sequences of character strings. Therefore, specific pre-

processing methods and algorithms are required in order to extract useful 

patterns.  

There is more to Text Mining than just extracting information from single 

documents. In fact Text Mining leaps from the old fashioned information 

retrieval to information and knowledge discovery. The motivation behind this 

study of Text Data Mining algorithms was to bring out the gold hidden in any 

organization‘s data – be it a company or a university. Probably more than 

90% of an organization‘s data are never being looked at: letters from 

customers, email correspondence, patents, contracts, complaints, etc.  

This thesis / research basically involves the study of the existing Text Mining 

algorithms in different areas like Text Clustering, Text Categorization and Text 

Summarization and their comparatives in terms of implementation and 

applications. The initial Text Pre-processing and Text Transformation 

techniques have also been discussed. 

Some innovative algorithms have been developed which are either based on 

the existing ones with some changes so as to have a better output or 

represent a novel method of Text Mining. The developed algorithms have 

been published in Conference Proceedings or International Journals and the 

details of the publications are mentioned in the respective sections. 
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Chapter 1: Text Mining Overview 
 

1.1 Introduction  

Text Mining is a flourishing and thriving field that attempts to find meaningful 

information from textual or rather unstructured data.  It may be loosely 

characterized as the process of analyzing text to extract information that is 

useful for particular purposes.  Compared with the kind of data stored in 

databases, text is unstructured, amorphous, and difficult to deal with 

algorithmically. Nevertheless, in modern culture, text is the most common 

vehicle for the formal exchange of information. The field  of  Text Mining  

usually  deals  with  texts  whose  function  is  the  communication  of  factual 

information  or  opinions,  and  the  motivation  for  trying  to  extract  

information  from  such  text automatically is compelling - even if success is 

only partial. 

In 1999, Hearst wrote  that  the  nascent  field  of  ‗Text Data Mining‘  had a 

name and a fair amount of hype, but as yet almost no practitioners. Hearst 

defines Data Mining, information access, and corpus-based  computational  

linguistics  and  discusses  the  relationship  of  these  to  Text  Data Mining. I 

would be referring to Text Data Mining as Text Mining. 

To understand Text Mining it was necessary to understand the concepts, 

theory and model of Data Mining first. Since the literature on Data Mining is 

far more extensive, and also more focused: there are numerous textbooks 

and critical reviews that trace its development from roots in machine learning 

and statistics. The book ‗Data Mining Concepts‘ by Han and Kamber served 

as a platform to comprehend the various aspects of Data Mining, its 

applications and methodologies. This book however contains only a few 

pages on the concept of Text Mining. There are many other good books which 

have a very extensive coverage of different Data Mining techniques. They 

have been mentioned in the bibliography. 

There are a number good academic journals on Data Mining – some which 

are free and some are payable. The ‗Data Mining and Knowledge Discovery‘ 
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journal of SpringerLink allows abstracts to be accessed by guest. This journal 

has many latest research papers on Data Mining. Apart from this other 

journals like ‗Knowledge and Information Systems‘, ‗Machine Learning‘, ‘IEEE 

Transactions on Knowledge and Data Engineering‘ etc. are other sources of 

Data Mining related material.  

Text Mining emerged at an unfortunate time in history. Data Mining was able 

to ride the back of the high technology extravaganza throughout the 1990s, 

and became firmly established as a widely-used practical technology—though 

the dot com crash may have hit it harder than other areas. Text Mining, in 

contrast, emerged just before the market crash—the first workshops were 

held at the International Machine Learning Conference  in  July  1999  and  

the  International  Joint  Conference  on  Artificial  Intelligence in August 

1999—and missed the opportunity to gain a solid foothold during the boom 

years. 

1.1 Data Mining 

Since Data Mining is the superset of Text Mining, it is important to understand 

Data Mining first. Data is increasing at an unimaginable rate every year. The 

area of Data Mining has arisen over the last decade to address this problem. 

Progress in digital data acquisition and storage technology has resulted in the 

growth of huge databases. This has occurred in all areas starting from simple 

applications like supermarket transactions, railway reservations to the more 

complex and complicated ones like space research, molecular databases, 

images and astronomical bodies etc. Using this data to discover hidden 

knowledge, unexpected patterns and unknown information is Data Mining. 

Data Mining research and practice is in a state similar to that of databases in 

the 1960s. At that time the concept of databases was new and in the 

development stage where programmers were still trying to come out of the 

third generation of languages. Slowly the concept of relational databases was 

being developed, implemented and improvised upon. Presently we can say 

that databases are fully implemented and working efficiently all over the world.   
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The evolution of data warehouses from databases is slowly taking shape. The 

evolution of Data Mining techniques may take a similar path over the next few 

decades, making Data Mining techniques easier to use and develop. 

Data Mining can be defined as follows: 

“Data Mining is the non-trivial extraction of implicit, previously unknown 

and potentially useful information from data.” 

Most organizations have large databases that contain a wealth of potentially 

accessible information. However, it is usually very difficult to access this 

information. This uncontrolled growth of data will inevitably lead to a situation 

in which it becomes extremely difficult to access the desired information. In 

fact it would be like looking for a needle in a haystack. 

The sudden rise of interest in Data Mining could be because of the following 

reasons: 

 Most of the organizations have stored gigabytes of data about their 

products, customers, suppliers, competitors, etc. This database forms 

a potential gold or rather a diamond mine that can be explored to find 

hidden and extremely useful information. This information can be 

traced using simple queries. Data Mining algorithms typically zoom in 

on interesting sub-parts of the database and dig out the information. 

 Since networks have developed extensively, it becomes easy to 

connect databases situated at remote places. Thus connecting a 

client‘s file to a file with demographic data may lead to unexpected 

views on the spending patterns of certain population groups. 

 In the past few years, machine-learning techniques have expanded 

enormously. Neural networks, genetic algorithms and other techniques 

often make it easier to find connections in databases. 

 The client-server revolution gives the individual access to central 

information systems. Marketing specialists and policy makers also want 

to avail themselves of these newly acquired technical possibilities that 

would help them in making their strategies. 

The terms Knowledge Discovery in Database (KDD) and Data Mining are 

often used interchangeably. In fact there are other names like knowledge 

extraction, information discovery, exploratory data analysis, etc. also given to 

Data Mining. However KDD is the most popular name. 
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KDD is a process that involves many different steps. The input to this process 

is the data and the output is the useful information desired by the users. To 

ensure the usefulness and accuracy of the results of the process, interaction 

throughout the process by domain experts and technical experts might be 

needed. Of the many steps in KDD, one of the steps is Data Mining. However, 

if Data Mining is considered separately, to perform Data Mining all these steps 

are required. So in a way both mean the same thing. 

The different steps of KDD are as follows: 

 

 

 

 

 

 

  Initial      Selected       Pre-processed     Transformed     Data            Knowledge 
  Data             Data              Data                     Data                    Mining        

 

Figure 1.1 Steps of Knowledge Discovery in Databases 

Brief description of the steps: 

Selection:  

 The data obtained from heterogeneous data sources 

 The data selected depends on objective of Data Mining 

 The data are of different types like active, supplementary, shelf life etc. 

 This step is also called the identification and extraction stage 

Preprocessing: 

 Erroneous data is removed i.e. data that is skewed and invalid 

 Missing data is supplied i.e. usually by predicting the values 

Transformation: 

 The data from different sources is converted to a common format 

 If required data is encoded 

 Some data conversion is also done i.e. from simple format to more 

complex one 

 If statistics is to be used, several variables may be grouped into one 

 If neural networks is used values are changed to 1s and 0s 

 



Chapter 1: Text Mining Overview 

 

5 

 

Data Mining: 

 Applying algorithms to the transformed data 

 Selection of the correct set of algorithms 

 Each set could result in a different type of output 

Knowledge: 

 This step consists of interpretation and evaluation of results obtained 

 This is a heuristic i.e. a self-learning approach 

 The result, which is in the form of graphs and charts, is analyzed by 

experts giving knowledge 

The steps shown above are those of Data Mining. When applied to textual 

data there is a slight change in the steps and the kind of work to be done on 

the textual data.  

1.2 Text Mining 

Marti Hearst was one of the first researchers who talked about Text Mining 

and presented a paper on it in 19991. According to him, Text Mining is the 

discovery by computer of new, previously unknown information, by 

automatically extracting information from different written resources. A key 

element is the linking together of the extracted information together to form 

new facts or new hypotheses to be explored further by more conventional 

means of experimentation.  

Text Mining is different from what we're familiar with in web search. In search, 

the user is typically looking for something that is already known and has been 

written by someone else. The problem is pushing aside all the material that 

currently isn't relevant to your needs in order to find the relevant information. 

In Text Mining, the goal is to discover unknown but useful information from 

documents or rather unstructured data.  

To the uninitiated, it may seem that Google and other Web search engines do 

something similar, since they also pore through reams of documents in split-

second intervals. But, as experts note, search engines are merely retrieving 

information, displaying lists of documents that contain certain keywords. 

                                                 
1
 Hearst, M. Untangling Text Data Mining .In the Proceedings of ACL 1999 
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Text-mining programs go further, categorizing information, making links 

between otherwise unconnected documents and providing visual maps (some 

look like tree branches or spokes on a wheel) to lead users down new 

pathways that they might not have been aware of. 

Thus, Text Mining can be defined as: 

„The discovery by computer of new, previously unknown information, by 

automatically extracting information from a usually large amount of 

unstructured textual resources.‟ 

Text Mining can be compared in a simple form to different concepts like Data 

Mining, web mining, Natural Language Processing (NLP) etc. as follows: 

Data Mining 

 In Data Mining the data is structured and generally located in 

databases and in Text Mining, patterns are extracted from 

unstructured data in documents and text files 

 In Data Mining the information is implicit in the input – data i.e. 

unknown and not possible to extract without automatic 

techniques. In Text Mining the information is clearly stated in the 

input text but it not implied in a manner that is open to automatic 

processing. Text Mining strives to bring out the text in a form 

that is suitable for computer processing directly without human 

intervention 

Web Mining 

 The source of data is the Web – the largest source of data in the 

world where in Text Mining, the input is not necessarily the web 

– it could be textual data from any source (local or otherwise) 

 Data on the web is dynamic and rich in features and patterns 

and the data is text, audio, video, graphics, hyperlinks, tags etc. 

Information Retrieval (IR) 

 No genuinely new information is found. 

 The desired information merely coexists with other valid pieces 

of information. 

Computation Linguistics (CPL) & Natural Language Processing  

 An extrapolation from Data Mining on numerical data to Data 

Mining from textual collections 



Chapter 1: Text Mining Overview 

 

7 

 

 CPL computes statistics over large text collections in order to 

discover useful patterns which are used to inform algorithms for 

various sub-problems within NLP, e.g. Parts Of Speech tagging, 

and Word Sense Disambiguation 

 

 

Figure 1.2 The Text Mining Process 

1.3 Text Mining – A Research Domain 

Although a lot of work has been done on Text Mining, it is still a field of pure 

delight for researchers like me. As observed from the material – books, 

papers, online articles, journals, periodicals etc. there is a lot of scope for text 

miners to compare and contrast the different Text Mining methods and put 

forth the comparatives in a well organized form. This type of work would be 

useful to researchers, students and people involved in the Decision Support 

System of their organizers to mine the large amount of textual information that 

is available with them. 

Researchers and students would find this work very useful for the 

understanding and detailed study of Text Mining algorithms and methods. 
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Though a number of books are available, the topics covered are so vast and 

in some cases too detailed to grasp the real hub and core of Text Mining.  

Along with the literature survey I searched and gathered datasets to study and 

implement the algorithms. There are a number of datasets available on the 

internet and I have used them for my research after downloading them on my 

system. Some of the datasets used are as mentioned below: 

1. http://www.inf.ed.ac.uk/teaching/courses/dme/html/datasets0405.html 

2. http://www.datawrangling.com/some-datasets-available-on-the-web 

3. http://www.infochimps.com/tags/textmining 

4. http://archive.ics.uci.edu/ml/ 

5. http://www.cs.umb.edu/~smimarog/textmining/datasets/index.html 

6. http://repository.seasr.org/Datasets/UCI (UCI Machine Learning 

Repository) 

7. TREC 

8. REUTERS Collection 

9. Times Magazine:  

http://www.ifs.tuwien.ac.at/~andi/somlib/experiments_time60.html 

10. Tehelka Magazine: http://www.tehelka.com/archive_main.asp 

11. http://www.cs.toronto.edu/~roweis/data.html 

12. Citeseer Abstracts: http: //www.citeseerx.ist.psu.edu 

13. The M. S. University of Baroda - Faculty of Tech. & Engg.- results of 

past years 

14. Customer complaints dataset of Matrix Comsec Pvt. Ltd. 

The datasets contain structured as well as unstructured data. I initially worked 

on some of the algorithms with structured data and then implemented them on 

unstructured data. It was important to understand the Data Mining concepts 

before actually working on the Text Mining methods. As part of the literature 

survey and preliminary study I published/presented a number of study and 

survey papers related to databases, Data Mining and Text Mining. The details 

are given in the publications chapter at the end. Some brief descriptions of the 

datasets are as follows: 

 The Reuters collection (Reuters-21578) 

It is currently the most widely used test collection for text categorization 

research.  The data was originally collected and labeled by Carnegie 
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Group, Inc. and Reuters, Ltd. in the course of developing the 

CONSTRUE text categorization system. This corpus was used by me 

in many of my algorithms. It is a standard text dataset used by 

researchers all over the world. 

 The SOMLib Digital Library 

This site contains the Time Magazine Article Collection. It is a 

collection of 420 articles from the 1960's covering news from politics to 

social gossip. 

 Data for Matlab  

This site contains text data which can be directly used in a Matlab 

program. The site address is given in the list above no. 11. 

 UCI Machine Learning Repository 

This repository contains data in the .csv and .arff formats. Many 

datasets are available in this repository. The site address is as given in 

no. 6. 

1.4 Layout of the Thesis 

Broadly there are five steps involved in Text Data Mining. They are: 

1. Text Gathering  

2. Text Pre-processing 

3. Data Analysis (Attribute generation & selection) 

4. Visualization (Applying Text Mining algorithms) 

5. Evaluation 

The steps are quite similar to those of Data Mining. The most important issue 

over here was representing the textual data in order to apply the algorithms. 

The gathered data is pre-processed depending on whether the algorithm was 

statistical or some other. The text gathering was not a very difficult task as 

textual corpus for research is available on different sites with all the necessary 

metadata information regarding the layout of the data sets. The corpus details 

are mentioned above as well as along with the algorithms where they have 

been used. 

Chapter 2 and Chapter 3 are related to the process of text pre-processing and 

text transformation. The steps related to pre-processing are discussed along 
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with the details of the models, measures and concepts used in pre-

processing. The text transformation is related to transforming the text into a 

format which can be used for implementing the algorithms and creating the 

similarity matrices. The Vector Space Model, the Latent Semantic Analysis 

etc. is discussed in this chapter. 

The different Text Mining methods and the study related to the existing work, 

their drawbacks or limitations and the proposed new algorithms with the 

implementation details and results has been covered in subsequent chapters.  

Chapters 4, 5 and 6 are related to Text Clustering, Text Categorization and 

Text Summarization. In each chapter the perceptions and notions of the 

related area, different models as well as a comparative between the different 

methods available are given. The proposed algorithms and their 

implementation details are also shown and the related publication if any is 

mentioned at the appropriate places. The conclusions, results and future 

enhancements are mentioned towards the end of each chapter. 

Chapter 7 briefly describes the future enhancements possible in this field of 

Text Mining. 

The chapters are followed by the Summary of the work, the Appendices, 

Publication Details and Bibliography.  

The Appendix – A contains the list of stop words and Appendix – B contains a 

list of Text Mining tools available.  
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Chapter 2: Text Pre-processing 
 

2.1 Introduction   

Though this is considered to be the preliminary step to be conducted before 

actually applying Text Mining algorithms/methods, it is a very important 

process and this routine itself is divided into a number of sub-methods which 

again have optional algorithms with their own set of advantages and 

disadvantages. The text data on which I have executed the algorithm have 

been first converted to text format if it was not so. In fact the majority of the 

datasets were already in text format. 

Most of the Text Mining approaches are based on the idea that a text 

document can be described on the set of words contained in it i.e. bag-of-

words representation. The pre-processing itself is made up of a sequence of 

steps. The steps are explained in detail. 

2.2 Morphological Analysis  

The first step in text-preprocessing is the morphological analyses. It is divided 

into three subcategories: tokenization, filtering and stemming. Morphology is a 

part of linguistics which is dealing with words. Therefore, it deals with the 

smallest, useful unit of a document. One could say that characters are the 

smallest unit. Nonetheless, characters do not carry any valuable information 

for information retrieval. Firstly, Text Mining requires the words and the 

endings of a document. Finding words and separating them is known as 

tokenization.   

The next step is filtering of important and relevant words from our list of words 

which were the output of tokenization. This is also called stop words removal. 

The third step is stemming. Stemming is very important and a lot of research 

work has already been done on it. Stemming reduces words variants to its 

root form. Stemming of words increases the recall and precision of the 

information retrieval in Text Mining. The term recall describes the proportion 

of all relevant documents in a data set that are retrieved by the information 
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retrieval system. The term precision describes the proportion of relevant 

documents in the data set returned to the user. Precision and recall are two 

very important measures for text categorization, clustering as well as 

summarization. The details are discussed further as and when they are 

applied. 

2.3 Tokenization 

Over here the input document is split into a set of words by removing all 

punctuation marks, tabs and other non-text characters and replacing them 

with white spaces. The part-of-speech (POS) tagging is also applied in some 

cases where words are tagged according to the grammatical context of the 

word in the sentence, hence dividing up the words into nouns, verbs, etc. This 

is important for the exact analysis of relations between words.  

Another approach was to ignore the order in which the words occurred and 

instead focus on their statistical distributions (the bag-of-words approach). In 

this case it is necessary to index the text into data vectors. I have used the 

bag-of-words approach in implementing the algorithms. The POS becomes 

important if the research is related to NLP. In one algorithm as part of 

extension work POS has been implemented. 

Tokenization has been done using Visual Basic (using strip () function) as well 

as Matlab (using strtok () function). The Matlab function was found to be much 

more efficient and fast.  

2.4 Filtering 

This step is related to removing words which are of no importance for our Text 

Mining process like articles, prepositions, conjunctions, etc. This is also 

known as ‗Stop Words Filtering‘. It is controlled by human input and not 

automated. There is not one definite list of stop words which all tools use, if 

even used. The stop words list is available on the site of the Onix Text 

Retrievel Tookit and the site is: 

http://www.lextek.com/manuals/onix/stopwords1.html.  
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This is a very popular list and as per the requirement the list can be modified. 

I have used this list to remove the stop words. Another popular list is available 

on the MIT site and can be downloaded from: 

http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-

list/english.stop.  

2.5 Stemming 

2.5.1  Introduction 

Word stemming is an important feature supported by present day indexing 

and search systems. Indexing and searching are in turn part of Text Mining 

applications, Natural Language Processing (NLP) systems and Information 

Retrieval (IR) systems. The main idea is to improve recall by automatic 

handling of word endings by reducing the words to their word roots, at the 

time of indexing and searching. Recall in increased without compromising on 

the precision of the documents fetched. Stemming is usually done by 

removing any attached suffixes and prefixes (affixes) from index terms before 

the actual assignment of the term to the index. Since the stem of a term 

represents a broader concept than the original term, the stemming process 

eventually increases the number of retrieved documents in an IR system. Text 

clustering, categorization and summarization also require this conversion as 

part of the pre-processing before actually applying any related algorithm. 

A lot of research work has already been done on stemming1 and a number of 

different algorithms have already been developed and implemented. In this 

section a brief description of the available stemmers and their comparatives is 

presented. A paper titled ‗A Comparative Study of Stemming Algorithms‘ has 

been published by me as part of my research in the journal - ‗International 

Journal of Computer Technology and Applications’ (IJCTA) - Volume 2 

Issue 6/ November - December 2011/ pg. 1930-1938, ISSN:2229-6093. This 

journal has been indexed by Scirus, .docstoc, Scribd, Google Scholar, DOAJ, 

etc. Site: http://ijcta.com/vol2issue6.php 

 

 

                                                 
1
 The papers that I have referred to understand stemming methods and prepare a comparative based 

on them have been mentioned in the Bibliography – from [4] to [27]. 
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Errors in Stemming  

There are mainly two errors in stemming – over stemming and under 

stemming. Over-stemming is when two words with different stems are 

stemmed to the same root. This is also known as a false positive. Under-

stemming is when two words that should be stemmed to the same root are 

not. This is also known as a false negative. Paice has proved that light-

stemming reduces the over-stemming errors but increases the under-

stemming errors. On the other hand, heavy stemmers reduce the under-

stemming errors while increasing the over-stemming errors.  

 

Classification of Stemming Algorithms  

Broadly, stemming algorithms can be classified in three groups: truncating 

methods, statistical methods, and mixed methods. Each of these groups has 

a typical way of finding the stems of the word variants. These methods are 

shown in the Figure 2.1. 

 

             

Figure 2.1 Types of Stemming Algorithms 

2.5.2 Truncating Methods  

As the name clearly suggests these methods are related to removing the 

suffixes or prefixes (commonly known as affixes) of a word. The most basic 

Stemming Algorithms 

Truncating Statistical Mixed 

1) Lovins 

2) Porters 

3) Paice/Husk 

4) Dawson 

 

1) N-Gram 

2) HMM 

3) YASS 

1) Inflectional &   

     Derivational 

  a) Krovetz 

  b) Xerox 

2) Corpus Based  

3) Context Sensitive 
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stemmer was the Truncate (n) stemmer which truncated a word at the nth 

symbol i.e. keep n letters and remove the rest. In this method words shorter 

than n are kept as it is. The chances of over stemming increases when the 

word length is small. 

Another simple approach was the S-stemmer – an algorithm conflating 

singular and plural forms of English nouns. This algorithm was proposed by 

Donna Harman. The algorithm has rules to remove suffixes in plurals so as to 

convert them to the singular forms. 

 

Lovins Stemmer 

This was the first popular and effective stemmer proposed by Lovins in 1968. 

It performs a lookup on a table of 294 endings, 29 conditions and 35 

transformation rules, which have been arranged on a longest match principle. 

The Lovins stemmer removes the longest suffix from a word. Once the ending 

is removed, the word is recoded using a different table that makes various 

adjustments to convert these stems into valid words. It always removes a 

maximum of one suffix from a word, due to its nature as single pass algorithm.  

The advantages of this algorithm is it is very fast and can handle removal of 

double letters in words like ‗getting‘ being transformed to ‗get‘ and also 

handles many irregular plurals like – mouse and mice, index and indices etc. 

Drawbacks of the Lovins approach are that it is time and data consuming. 

Furthermore, many suffixes are not available in the table of endings. It is 

sometimes highly unreliable and frequently fails to form words from the stems 

or to match the stems of like-meaning words. This is because of the technical 

vocabulary being used by the author. 

 

Porters Stemmer 

Porters stemming algorithm is as of now one of the most popular stemming 

methods proposed in 1980. Many modifications and enhancements have 

been done and suggested on the basic algorithm. It is based on the idea that 

the suffixes in the English language (approximately 1200) are mostly made up 

of a combination of smaller and simpler suffixes. It has five steps, and within 

each step, rules are applied until one of them passes the conditions. If a rule 
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is accepted, the suffix is removed accordingly, and the next step is performed. 

The resultant stem at the end of the fifth step is returned.  

The rule looks like the following: 

<condition> <suffix> → <new suffix> 

For example, a rule (m>0) EED → EE means ―if the word has at least one 

vowel and consonant plus EED ending, change the ending to EE‖. So 

―agreed‖ becomes ―agree‖ while ―feed‖ remains unchanged. This algorithm 

has about 60 rules and is very easy to comprehend.  

Porter designed a detailed framework of stemming which is known as 

‗Snowball‘. The main purpose of the framework is to allow programmers to 

develop their own stemmers for other character sets or languages. Currently 

there are implementations for many Romance, Germanic, Uralic and 

Scandinavian languages as well as English, Russian and Turkish languages. 

Based on the stemming errors, Paice reached to a conclusion that the Porter 

stemmer produces less error rate than the Lovins stemmer. However it was 

noted that Lovins stemmer is a heavier stemmer that produces a better data 

reduction. The Lovins algorithm is noticeably bigger than the Porter algorithm, 

because of its very extensive endings list. But in one way that is used to 

advantage: it is faster. It has effectively traded space for time, and with its 

large suffix set it needs just two major steps to remove a suffix, compared with 

the five of the Porter algorithm. 

 

 Paice/Husk Stemmer  

The Paice/Husk stemmer is an iterative algorithm with one table containing 

about 120 rules indexed by the last letter of a suffix. On each iteration, it tries 

to find an applicable rule by the last character of the word. Each rule specifies 

either a deletion or replacement of an ending. If there is no such rule, it 

terminates. It also terminates if a word starts with a vowel and there are only 

two letters left or if a word starts with a consonant and there are only three 

characters left. Otherwise, the rule is applied and the process repeats.  

The advantage is its simple form and each iteration taking care of both 

deletion and replacement as per the rule applied. 

The disadvantage is it is a very heavy algorithm and over stemming may 

occur. 
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Dawson Stemmer 

This stemmer is an extension of the Lovins approach except that it covers a 

much more comprehensive list of about 1200 suffixes. Like Lovins it too is a 

single pass stemmer and hence is pretty fast. The suffixes are stored in the 

reversed order indexed by their length and last letter. In fact they are 

organized as a set of branched character trees for rapid access. 

The advantage is that it covers more suffixes than Lovins and is fast in 

execution. 

The disadvantage is it is very complex and lacks a standard reusable 

implementation. 

2.5.3 Statistical Methods 

These are the stemmers who are based on statistical analysis and 

techniques. Most of the methods remove the affixes but after implementing 

some statistical procedure. 

 

N-Gram Stemmer 

This is a very interesting method and it is language independent. Over here 

string-similarity approach is used to convert word inflation to its stem. An n-

gram is a string of n, usually adjacent, characters extracted from a section of 

continuous text. To be precise an n-gram is a set of n consecutive characters 

extracted from a word. The main idea behind this approach is that, similar 

words will have a high proportion of n-grams in common. For n equals to 2 or 

3, the words extracted are called digrams or trigrams, respectively. For 

example, the word ‗INTRODUCTIONS‘ results in the generation of the 

digrams: 

 

*I, IN, NT, TR, RO, OD, DU, UC, CT, TI, IO, ON, NS, S* 

 

and the trigrams: 

 

**I, *IN, INT, NTR, TRO, ROD, ODU, DUC, UCT, CTI, TIO, ION, ONS, NS*, 

S** 
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Where '*' denotes a padding space. There are n+1 such digrams and n+2 

such trigrams in a word containing n characters. 

Most stemmers are language-specific. Generally a value of 4 or 5 is selected 

for n. After that a textual data or document is analyzed for all the n-grams. It is 

obvious that a word root generally occurs less frequently than its 

morphological form. This means a word generally has an affix associated with 

it. A typical statistical analysis based on the inverse document frequency (IDF) 

can be used to identify them.  

This stemmer has an advantage that it is language independent and hence 

very useful in many applications. 

The disadvantage is it requires a significant amount of memory and storage 

for creating and storing the n-grams and indexes and hence is not a very 

practical approach. 

 

HMM Stemmer 

This stemmer is based on the concept of the Hidden Markov Model (HMMs) 

which are finite-state automata where transitions between states are ruled by 

probability functions. At each transition, the new state emits a symbol with a 

given probability. This model was proposed by Melucci and Orio. 

This method is based on unsupervised learning and does not need a prior 

linguistic knowledge of the dataset. In this method the probability of each path 

can be computed and the most probable path is found using the Viterbi coding 

in the automata graph. 

In order to apply HMMs to stemming, a sequence of letters that forms a word 

can be considered the result of a concatenation of two subsequences: a prefix 

and a suffix. A way to model this process is through an HMM where the states 

are divided in two disjoint sets: initial can be the stems only and the later can 

be the stems or suffixes. Transitions between states define word building 

process. There are some assumptions that can be made in this method: 

1. Initial states belong only to the stem-set - a word always starts with a 

stem 



Chapter 2: Text Pre-processing 

 

19 

 

2. Transitions from states of the suffix-set to states of the stem-set always 

have a null probabiliy - a word can be only a concatenation of a stem 

and a suffix. 

3. Final states belong to both sets - a stem can have a number of different 

derivations, but it may also have no suffix. 

For any given word, the most probable path from initial to final states will 

produce the split point (a transition from roots to suffixes). Then the sequence 

of characters before this point can be considered as a stem. 

The advantage of this method is it is unsupervised and hence knowledge of 

the language is not required. 

The disadvantage is it is a little complex and may over stem the words 

sometimes. 

 

YASS Stemmer 

The name is an acronym for Yet Another Suffix Striper. This stemmer was 

proposed by Prasenjit Majumder, et al. According to the authors the 

performance of a stemmer generated by clustering a lexicon without any 

linguistic input is comparable to that obtained using standard, rule-based 

stemmers such as Porter‘s. This stemmer comes under the category of 

statistical as well as corpus based. It does not rely on linguistic expertise. 

Retrieval experiments by the authors on English, French, and Bengali 

datasets show that the proposed approach is effective for languages that are 

primarily suffixing in nature. 

The clusters are created using hierarchical approach and distance measures. 

Then the resulting clusters are considered as equivalence classes and their 

centroids as the stems. As per the details given by Prasenjit, the edit distance 

and YASS distance calculations for two string comparisons is shown in Figure 

2.2 and Figure 2.3. The YASS distance measures D1, D2, D3 and D4 are 

based on a Boolean function pi for penalty. It is defined as: 
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Where X and Y are two strings, X = x0x1x2 . . . xn and Y = y0y1y2 . . . yn. If the 

strings are of unequal lengths we pad the shorter string with null characters to 

make the strings lengths equal. Smaller the distance measure indicates 

greater similarity between the strings. The edit distance between two strings 

of characters is the number of operations required to transform one of them 

into the other. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

a s t r o n o m e r - - - - 

a s t r o n o m i c a l l Y 

D1 = 1/28 + 1/29 + … + 1/213 = 0.0077 

D2 = 1/8 x (1/20 + … + 1/213-8) = 0.2461 

D3 = 6/8 x (1/20 + … + 1/213-8) = 1.4766 

D4 = 6/14 x (1/20 + … + 1/213-8) = 0.8438 

Edit distance = 6 

 

 

Figure 2.2 Calculation of distance measures – 1 

 

0 1 2 3 4 5 6 7 8 9 

a s t r o n o m e r 

a s t o n i s h - - 

D1 = 1/23 + 1/24 + … + 1/29 = 0.2480 

D2 = 1/3 x (1/20 + … + 1/29-3) = 0.6615 

D3 = 7/3 x (1/20 + … + 1/29-3) = 4.6302 

D4 = 7/10 x (1/20 + … + 1/29-3) = 1.3891 

Edit distance = 5 

 

 

Figure 2.3. Calculation of distance measures - 2 

 

As per the distances D1, D2, D3 and D4 it can be seen that astronomer and 

astronomically are more similar than astronomer and astonish. The edit 

distance shows exactly opposite which means the new distance measures are 

more accurate. 
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2.5.4  Inflectional and Derivational Methods 

This is another approach to stemming and it involves both the inflectional as 

well as the derivational morphology analysis. The corpus should be very large 

to develop these types of stemmers and hence they are part of corpus base 

stemmers too. In case of inflectional the word variants are related to the 

language specific syntactic variations like plural, gender, case, etc whereas in 

derivational the word variants are related to the part-of-speech (POS) of a 

sentence where the word occurs. 

 

 Krovetz Stemmer (KSTEM) 

The Krovetz stemmer was presented in 1993 by Robert Krovetz and is a 

linguistic lexical validation stemmer. Since it is based on the inflectional 

property of words and the language syntax, it is very complicated in nature. It 

effectively and accurately removes inflectional suffixes in three steps: 

1. Transforming the plurals of a word to its singular form 

2. Converting the past tense of a word to its present tense 

3. Removing the suffix ‗ing‘ 

The conversion process first removes the suffix and then through the process 

of checking in a dictionary for any recoding, returns the stem to a word. The 

dictionary lookup also performs any transformations that are required due to 

spelling exception and also converts any stem produced into a real word, 

whose meaning can be understood. 

The strength of derivational and inflectional analysis is in their ability to 

produce morphologically correct stems, cope with exceptions, processing 

prefixes as well as suffixes. Since this stemmer does not find the stems for all 

word variants, it can be used as a pre-stemmer before actually applying a 

stemming algorithm. This would increase the speed and effectiveness of the 

main stemmer. Compared to Porter and Paice / Husk, this is a very light 

stemmer. The Krovetz stemmer attempts to increase accuracy and 

robustness by treating spelling errors and meaningless stems. 

If the input document size is large this stemmer becomes weak and does not 

perform very effectively. The major and obvious flaw in dictionary-based 

algorithms is their inability to cope with words, which are not in the lexicon. 
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Also, a lexicon must be manually created in advance, which requires 

significant efforts. This stemmer does not consistently produce a good recall 

and precision performance. 

 

Xerox Inflectional and Derivational Analyzer 

The linguistics groups at Xerox have developed a number of linguistic tools for 

English which can be used in information retrieval. In particular, they have 

produced English lexical database which provides a morphological analysis of 

any word in the lexicon and identifies the base form. Xerox linguists have 

developed a lexical database for English and some other languages also 

which can analyze and generate inflectional and derivational morphology. The 

inflectional database reduces each surface word to the form which can be 

found in the dictionary, as follows: 

 nouns singular (e.g. children child) 

 verbs infinitive (e.g. understood understand) 

 adjectives positive form (e.g. best good) 

 pronoun nominative (e.g. whom who) 

The derivational database reduces surface forms to stems which are related 

to the original in both form and semantics. For example, ‗government‘ stems 

to ‗govern‘ while ‗department‘ is not reduced to ‗depart‘ since the two forms 

have different meanings. All stems are valid English terms, and irregular 

forms are handled correctly. The derivational process uses both suffix and 

prefix removal, unlike most conventional stemming algorithms which rely 

solely on suffix removal. A sample of the suffixes and prefixes that are 

removed is given below: 

 Suffixes: ly, ness, ion, ize, ant, ent, ic, al, Ic, ical, able, ance, ary, ate, 

ce, y, dom, ee, eer, ence, ency, ery, ess, ful, hood, ible, icity, ify, ing, 

ish, ism, ist, istic, ity, ive, less, let, like, ment, ory, ous, ty, ship, some, 

ure 

 Prefixes: anti, bi, co, contra, counter, de, di, dis, en, extra, in, inter, 

intra, micro, mid, mini, multi, non, over, para, poly, post, pre, pro, re, 

semi, sub, super, supra, sur, trans, tn, ultra, un 

The databases are constructed using finite state transducers, which promotes 

very efficient storage and access. This technology also allows the conflation 
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process to act in reverse, generating all conceivable surface forms from a 

single base form. The database starts with a lexicon of about 77 thousand 

base forms from which it can generate roughly half a million surface forms. 

The advantages of this stemmer are that it works well with a large document 

also and removes the prefixes also where ever applicable. All stems are valid 

words since a lexical database which provides a morphological analysis of 

any word in the lexicon is available for stemming. It has proved to work better 

than the Krovetz stemmer for a large corpus. 

 The disadvantage is that the output depends on the lexical database which 

may not be exhaustive. Since this method is based on a lexicon, it cannot 

correctly stem words which are not part of the lexicon. This stemmer has not 

been implemented successfully on many other languages. Dependence on 

the lexicon makes it a language dependent stemmer. 

2.5.5  Corpus Based Method 

This method of stemming was proposed by Xu and Croft. They have 

suggested an approach which tries to overcome some of the drawbacks of 

Porter stemmer. For example, the words ‗policy‘ and ‗police‘ are conflated 

though they have a different meaning but the words ‗index‘ and ‗indices‘ are 

not conflated though they have the same root. Porter stemmer also generates 

stems which are not real words like ‗iteration‘ becomes ‗iter‘ and ‗general‘ 

becomes ‗gener‘. Another problem is that while some stemming algorithms 

may be suitable for one corpus, they will produce too many errors on another.  

Corpus based stemming refers to automatic modification of conflation classes 

– words that have resulted in a common stem, to suit the characteristics of a 

given text corpus using statistical methods. The basic hypothesis is that word 

forms that should be conflated for a given corpus will co-occur in documents 

from that corpus. Using this concept some of the over stemming or under 

stemming drawbacks are resolved e.g. ‗policy‘ and ‗police‘ will no longer be 

conflated. 

To determine the significance of word form co-occurrence, the statistical 

measure used is, 

 

Em(a, b) = nab / (na + nb) 
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Where, a and b are a pair of words, na and nb are the number of occurrences 

of a and b in the corpus, nab is the number of times both a and b fall in a text 

window of size win in the corpus (they co-occur). 

The way this stemmer works is to first use the Porter stemmer to identify the 

stems of conflated words and then the next step is to use the corpus statistics 

to redefine the conflation. Sometimes the Krovetz stemmer (KSTEM) along 

with Porter stemmer is used in the initial stem to make sure that word 

conflations are not missed out. 

The advantage of this method is it can potentially avoid making conflations 

that are not appropriate for a given corpus and the result is an actual word 

and not an incomplete stem. 

The disadvantage is that you need to develop the statistical measure for every 

corpus separately and the processing time increases as in the first step two 

stemming algorithms are first used before using this method. 

2.5.6  Context Sensitive Method 

This is a very interesting method of stemming unlike the usual method where 

stemming is done before indexing a document, over here for a Web Search, 

context sensitive analysis is done using statistical modeling on the query side. 

This method was proposed by Funchun Peng et al.  

Basically for the words of the input query, the morphological variants which 

would be useful for the search are predicted before the query is submitted to 

the search engine. This dramatically reduces the number of bad expansions, 

which in turn reduces the cost of additional computation and improves the 

precision at the same time.  

After the predicted word variants from the query have been derived, a context 

sensitive document matching is done for these variants. This conservative 

strategy serves as a safeguard against spurious stemming, and it turns out to 

be very important for improving precision. 

This stemming process is divided into four steps after the query is fired: 

1. Candidate generation: 

Over here the Porter stemmer is used generate the stems from the query 

words. This has absolutely no relation to the semantics of the words. For a 
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better output the corpus-based analysis based on distributional similarity is 

used. The rationale of using distributional word similarity is that true variants 

tend to be used in similar contexts. In the distributional word similarity 

calculation, each word is represented with a vector of features derived from 

the context of the word. We use the bigrams to the left and right of the word 

as its context features, by mining a huge Web corpus. The similarity between 

two words is the cosine similarity between the two corresponding feature 

vectors. 

2. Query Segmentation and head word detection: 

When the queries are long, it is important to detect the main concept of the 

query. The query is broken into segments which are generally the noun 

phrases. For each noun phrase the most important word is detected which is 

the head word. Sometimes a word is split to know the context. The mutual 

information of two adjacent words is found and if it passes a threshold value, 

they are kept in the same segment. Finding the headword is by using a 

syntactical parser. 

3. Context sensitive word expansion: 

Now that the head words are obtained, using probability measures it is 

decided which word variants would be most useful – generally they are the 

plural forms of the words. This is done using the simplest and most successful 

approach to language modeling which is the one based on the n-gram model 

which uses the chain rule of probability. In this step all the important head 

word variants are obtained. The traditional way of using stemming for Web 

search, is referred as the naive model. This is to treat every word variant 

equivalent for all possible words in the query. The query ―book store‖ will be 

transformed into ―(book OR books)(store OR stores)‖ when limiting stemming 

to pluralization handling only, where OR is an operator that denotes the 

equivalence of the left and right arguments. 

4. Context sensitive document matching: 

Now that we have the word variants, in this step a variant match is considered 

valid only if the variant occurs in the same context in the document as the 

original word does in the query. The context is the left or the right non-stop 

segments of the original word. Considering the fact that queries and 

documents may not represent the intent in exactly the same way, this 
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proximity constraint is to allow variant occurrences within a window of some 

fixed size. The smaller the window size is, the more restrictive the matching. 

The advantage of this stemmer is it improves selective word expansion on the 

query side and conservative word occurrence matching on the document side. 

The disadvantage is the processing time and the complex nature of the 

stemmer. There can be errors in finding the noun phrases in the query and 

the proximity words. 

2.6 Stemming and Lemmatizing 

The basic function of both the methods – stemming and lemmatizing is 

similar. Both of them reduce a word variant to its ‗stem‘ in stemming and 

‗lemma‘ in lemmatizing. There is a very subtle difference between both the 

concepts. In stemming the ‗stem‘ is obtaining after applying a set of rules but 

without bothering about the part of speech (POS) or the context of the word 

occurrence. In contrast, lemmatizing deals with obtaining the ‗lemma‘ of a 

word which involves reducing the word forms to its root form after 

understanding the POS and the context of the word in the given sentence.  

In stemming, conversion of morphological forms of a word to its stem is done 

assuming each one is semantically related. The stem need not be an existing 

word in the dictionary but all its variants should map to this form after the 

stemming has been completed. There are two points to be considered while 

using a stemmer: 

 Morphological forms of a word are assumed to have the same base 

meaning and hence should be mapped to the same stem 

 Words that do not have the same meaning should be kept separate 

These two rules are good enough as long as the resultant stems are useful for 

our Text Mining or language processing applications. Stemming is generally 

considered as a recall-enhancing device. For languages with relatively simple 

morphology, the influence of stemming is less than for those with a more 

complex morphology. Most of the stemming experiments done so far are for 

English and other west European languages. 

Lemmatizing deals with the complex process of first understanding the 

context, then determining the POS of a word in a sentence and then finally 
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finding the ‗lemma‘. In fact an algorithm that converts a word to its 

linguistically correct root is called a lemmatizer. A lemma in morphology is the 

canonical form of a lexeme. Lexeme, in this context, refers to the set of all the 

forms that have the same meaning, and lemma refers to the particular form 

that is chosen by convention to represent the lexeme.  

In computational linguistics, a stem is the part of the word that never changes 

even when morphologically inflected, whilst a lemma is the base form of the 

verb. Stemmers are typically easier to implement and run faster, and the 

reduced accuracy may not matter for some applications. Lemmatizers are 

difficult to implement because they are related to the semantics and the POS 

of a sentence. Stemming usually refers to a crude heuristic process that 

chops off the ends of words in the hope of achieving this goal correctly most 

of the time, and often includes the removal of derivational affixes. The results 

are not always morphologically right forms of words. Nevertheless, since 

document index and queries are stemmed "invisibly" for a user, this peculiarity 

should not be considered as a flaw, but rather as a feature distinguishing 

stemming from lemmatization. Lemmatization usually refers to doing things 

properly with the use of a vocabulary and morphological analysis of words, 

normally aiming to remove inflectional endings only and to return the lemma.  

For example, the word inflations like gone, goes, going will map to the stem 

‗go‘. The word ‗went‘ will not map to the same stem. However a lemmatizer 

will map even the word ‗went‘ to the lemma ‗go‘. 

Stemming: 

introduction, introducing, introduces – introduc 

gone, going, goes – go  

Lemmatizing: 

introduction, introducing, introduces – introduce 

gone, going, goes, went – go  

2.7 Comparison between stemming methods  

As per all the methods and the related stemming algorithms discussed so far, 

a comparative of them related to their advantages and limitations is shown in 

Table 4, Table 5 and Table 6. It is clearly deduced that none of the stemmers 
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are totally exhaustive but more or less the purpose of stemming is resolved. 

As of now the Porter‘s Stemmer is the most popular and researchers make 

their own changes in the basic algorithm to cater to their requirements. 

 

Table 2.1 Truncating (Affix Removal) Methods 

Stemmer Advantages Limitations 

 
Lovins 

1) Fast – single pass 
algorithm. 

2) Handles removal of 
double letters in words 
like ‗getting‘ being 
transformed to ‗get‘.  

3) Handles many irregular 
plurals like – mouse and 
mice etc. 
 

1) Time consuming. 
2) Not all suffixes available. 
3) Not very reliable and 

frequently fails to form words 
from the stems . 

4) Dependent on the technical 
vocabulary being used by 
the author. 

 
Porters 

1) Produces the best output 
as compared to other 
stemmers. 

2) Less error rate. 
3) Compared to Lovins it‘s a 

light stemmer. 
4) The Snowball stemmer 

framework designed by 
Porter is language 
independent approach to 
stemming. 
 

1) The stems produced are not 
always real words. 

2) It has at least five steps and 
sixty rules and hence is time 
consuming. 

 
Paice / Husk 

1) Simple form. 
2)  Each iteration takes care 

of deletion and 
replacement. 

1) Heavy algorithm. 
2) Over stemming may occur. 

 
Dawson 

1) Covers more suffixes 
than Lovins. 

2) Fast in execution. 

1) Very complex. 
2) Lacks a standard 

implementation. 
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Table 2.2 Statistical Methods 

Stemmer Advantages Limitations 

 
N-Gram 

1) Based on the concept of 
n-grams and string 
comparisons. 

2) Language independent. 

1) Not time efficient. 
2) Requires significant amount 

of space for creating and 
indexing the n-grams. 

3) Not a very practical method. 

 
HMM 

1) Based on the concept of 
Hidden Markov Model. 

2) Unsupervised method 
and so is language 
independent. 

1) A complex method for 
implementation. 

2) Over stemming may occur in 
this method. 

 
YASS 

1) Based on hierarchical 
clustering approach and 
distance measures. 

2) It is also a corpus based 
method. 

3) Can be used for any 
language without knowing 
its morphology. 
 

1) Difficult to decide a threshold 
for creating clusters. 

2) Requires significant 
computing power. 

 

 

Table 2.3 Inflectional & Derivational Methods 

Stemmer Advantages Limitations 

 
Krovetz 

1) It is a light stemmer. 
2) Can be used as a pre-

stemmer for other 
stemmers. 

 
 

1) For large documents, this 
stemmer is not efficient. 

2) Inability to cope with words 
outside the lexicon. 

3) Does not consistently 
produce a good recall and 
precision. 

4) Lexicon to be created in 
advance. 

 
Xerox 

1) Works well for a large 
document also. 

2) Removes the prefixes 
where ever applicable. 

3) All stems are valid words. 

1) Inability to cope with words 
outside the lexicon. 

2) Not implemented 
successfully on language 
other than English. Over 
stemming may occur in this 
method. 

3) Dependence on the lexicon 
makes it language 
dependent. 
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2.8 Syntactical and Semantical Analysis 

2.8.1 Syntactical Analysis 

This analysis deals with the syntax of a sentence in natural language and is 

useful in Information Retrieval systems. It can be divided in three parts: part-

of-speech tagging, phrase recognition and parsing. 

1. Part-of-speech tagging: The recognition of the elements of a sentence like 

nouns, verbs, adjectives, prepositions, etc. is realized through part of 

speech tagging (POS tagging).  

The part-of-speech (POS) tagging is also applied in some cases where 

words are tagged according to the grammatical context of the word in the 

sentence, hence dividing up the words into nouns, verbs, etc.  This is 

important for the exact analysis of relations between words. 

2. Phrase Recognition (PR): This is also very similar to POS. It is required to 

locate group of words or phrases. PR finds phrases like those given below: 

 Preposition phrase (e.g. in love) 

 Noun Phrase(e.g. the magician of Mecca) 

 Verb Phrase (e.g. do business) 

 Adjectival Phrase (e.g. small house) 

 Adverbial Phrase (e.g. very quickly) 

3. Parsing: This process is also part of POS as well as phrase recognition. 

The sentences are fractionalized into grammatical units. The Stanford 

parser is very popular for parsing. It generates a tree which is useful for 

information extraction.  

2.8.2 Semantical Analysis 

This part of pre-processing deals with the meaning of the textual data i.e. the 

semantics. It is more or less related to Natural Language Processing.  

2.9 Conclusion  

 As can be seen from all the algorithms that have been discussed so far, there 

is a lot of similarity between the stemming algorithms and if one algorithm 

scores better in one area, the other does better in some other area. In fact, 
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none of them give 100% output but are good enough to be applied to the Text 

Mining, NLP or IR applications.  

The main difference lies in using either a rule-based approach or a linguistic 

one. A rule based approach may not always give correct output and the stems 

generated may not always be correct words. As far as the linguistic approach 

is concerned, since these methods are based on a lexicon, words outside the 

lexicon are not stemmed properly. It is of utmost importance that the lexicon 

being used is totally exhaustive which is a matter of language study. A 

statistical stemmer may be language independent but does not always give a 

reliable and correct stem. 

The problem of over stemming and under stemming can be reduced only if 

the syntax as well as the semantics of the words and their POS is taken into 

consideration. This in conjunction with a dictionary look-up can help in 

reducing the errors and converting stems to words. However no perfect 

stemmer has been designed so far to match all the requirements. 

For the purpose of implementation tokenizing has been implemented using 

both Visual Basic and Matlab, filtering by Matlab and stemming by Visual 

Basic. The stemming method implemented is the Porters Stemming as it has 

been found to be the most appropriate by most of the researchers. 

2.10 Future Enhancements  

Although a lot of research work has already been done in developing 

stemmers there still remains a lot to be done to improve recall as well as 

precision. 

There is a need for a method and a system for efficient stemming that 

reduces the heavy tradeoff between false positives and false negatives. A 

stemmer that uses the syntactical as well as the semantical knowledge to 

reduce stemming errors should be developed. Perhaps developing a good 

lemmatizer could help in achieving the goal. 
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Chapter 3: Text Transformation 
 

3.1 Introduction  

This is one of the most important stages as this is the process where the data 

is modeled as per the Text Mining technique which is going to be selected 

and used. So depending on whether we are planning for clustering, 

summarization or categorization, the data transformation technique/model is 

selected. Data Transformation is also called the Dimension Reduction 

Technique. Since I have used the bad-of-words approach, the transformation 

techniques would be related to it. 

Broadly I am covering the most common and most efficient techniques which I 

have focused on. Other related techniques would be explained as and when 

required along with the algorithm whenever it is discussed.  

3.2 The Vector Space Model (VSM) 

3.2.1 Introduction to VSM 

This model was proposed by Salton and it incorporates the local as well as 

global information about terms in a document and corpus. 

It is an algebraic model for representing text documents as vectors of 

identifiers. The vector space model procedure can be divided in to three 

stages. The first stage is the document indexing where content bearing terms 

are extracted from the document text. The second stage is the weighting of 

the indexed terms to enhance retrieval of document relevant to the user. The 

last stage ranks the document with respect to the query according to a 

similarity measure. The term ‗query‘ is used because this model is used in 

Information Retrieval also. 

The similarity between documents or a query and a document is determined 

through calculations of the cosine similarity, Dice‘s coefficient, the Jaccard‘s 

coefficient and in some cases the Eucliean distance. The vector space model 

has been shown diagrammatically as in Figure 3.1. In the figure, d1 and d2 
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are document vectors and q1 is the query vector. We call them vectors 

because they are made up of different terms. 

 

 

 

 

Figure 3.1 The Vector Space Model 

 

The angle between the documents or the query and documents determines 

the similarity between them. The similarity measures are discussed in section 

3.2.3. 

3.2.2  The tf-idf score 

The document indexing is done using the tf-idf method. It stands for term-

frequency (tf) and inverse document frequency (idf).  It is weight based on 

statistics which is assigned to a word to evaluate its importance in a single 

document or a collection of documents. This weight is also used to generate 

ranking in documents. It is used in almost all Text Mining algorithms. Over 

here the assumption is that the first three steps of data pre-processing – 

tokenization, removing stop words and stemming is already complete.  
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In the VSM, each document d is considered to be a vector in the term-space 

i.e. terms that make the document. A document d can be represented as, 

dtf = (tf1, tf2, …, tfn), 

where tfi is the frequency of the ith term in document d. In this way each term 

in a document can be represented by the tf vector. Since all documents are 

not of the same size, we normalize the term frequency by dividing it by the 

total number of unique terms in the document.  

The inverse document frequency (idf) is a measure of the general importance 

of the term in the corpus. It is obtained by dividing the total number of 

documents by the number of documents containing the term and taking the 

logarithm of that quotient. 

 

       (3.1) 

Where, 

∣D∣ - total number of documents in the corpus 

∣d:tϵd∣ - number of documents where term t appears 

If a term is not in the corpus this will lead to division by zero and so we adjust 

(1) by adding 1 to the denominator. i.e. 1 + ∣d:tϵd∣. 

So now the tf-idf score for a term in a document becomes, 

tf-idf (t, d) = tf × idf      (3.2) 

A high weight in tf-idf is reached by a high term frequency in a document and 

a low document frequency of the term in the whole collection of documents. 

This will filter out the common terms across the corpus. For terms of more 

importance in certain algorithms, weights are also assigned i.e. tf score of 

important terms is multiplied by some integer to increase its weightage. 

The tf-idf scoring is very effectively shown in Figure 3.21. For each term of 

each document in the corpus, in this way the tf-idf score is obtained. A matrix 

is created to store these scores and then in the Text Mining algorithms these 

scores are applied. The matrix looks like the example shown in Table 3.12. 

                                                 
1
 The diagram has been taken from a very informative article by Dr. E. Garcia, “The Vector Space 

Model”, http://www.miislita.com/term-vector/term-vector-3.html 
2
 Ibid. 
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The actual scores are stored in  text files and the Matlab or Visual Basic 

programs first creates the file and then reads and uses the scores in the 

programs for the different Text Mining algorithms implementation. 

 

Figure 3.2 The term and document frequencies 

 

As shown in the figure, the corpus is a collection of documents, documents 

consist of passages and passages consist of sentences. Thus, for a term i in 

a document j we can talk in terms of collection frequencies (Cf), term 

frequencies (tf), passage frequencies (Pf) and sentence frequencies (Sf). 
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Table 3.1 The tf-idf matrix example 

 

 

3.2.3 Similarity Measures 

As shown in Figure 3.1, to find the similarity between documents for text 

classification or text clustering it is necessary to find the distance between the 

documents. In the vector space model the most popular distance measure is 

the cosine similarity.  

The cosine similarity 

 

     (3.3) 

Over here the numerator is the dot product and the denominator is the 

product of their Euclidean lengths. Dividing by the lengths will normalize the 

lengths of the documents to the unit length and this would give an accurate 

comparison now. 

d1 and d2 are the documents that we are comparing. If the document vector 

for document d1 is: 
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Which has a dictionary size of M, the Euclidean length of this vector is given 

by: 

 

This will normalize the length of the vector i.e. the effect of the denominator of 

(3.3) is to length normalize the vectors. So the unit vector, 

 

 

 

Will get the value, 

 

  /   

 

Similarly for   . 

We can rewrite (3.3) as, 

    (3.4) 

Where the RHS is the dot product of two unit vectors now. Higher the value of 

similarity the more the documents are similar to each other. Based on this 

concept a term-document matrix as shown in Table 3.1 is created. 

A query can also be considered as a short document with a few terms. The 

cosine similarity can be calculated between the query terms and the 

document terms and the top ranking documents can be selected as output. 

This is however very expensive and a document can have a high cosine score 

even if it does not have all the terms of the query – (if some of the terms the 

query occur a no. of times in the document the cosine similarity will increase) 

 

The Jaccard’s Co-efficient 

This is another method of finding the similarity between two documents. The 

formula in (3.5) is the Jaccard‘s co-efficient for two documents di and dj. 
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Similarity (doci, docj) =       (3.5) 

 

Where, 

│doci U docj│= total number of distinct words in doci or docj 

│doci ∩ docj│= total number of common words in doci and docj 

 

The Dice’s Co-efficient 

Dice's coefficient, named after Lee Raymond Dice is given as follows: 

     (3.6) 

 

Where, 

d1 and d2 are documents to be compared. 

 

The Euclidean distance 

 

   (3.7) 

 

Where, 

T = {t1, … ,tm} is the term set (vocabulary) 

As mentioned before, the term weights are the tf-idf scores, 

Wt,d1 – tf-idf score of the tth term in document d1. 

Lower the value of the distance, closer are the documents. 

3.2.4  Analysis of the Vector Space Model 

The advantages of this model are: 

 It is a simple model based on linear algebra 

 The term weights not binary and dependent on term occurrence 

 Allows computing a continuous degree of similarity between queries 

and documents 

 Allows ranking documents according to their possible relevance  
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 Easy to implement and understand 

 

The limitations of this model are: 

 Long documents are poorly represented because they have poor 

similarity values (a small scalar product and a large dimensionality) 

 In case of information retrieval, the search keywords must precisely 

match document terms; word substrings might result in a "false positive 

match" 

 Semantic sensitivity; documents with similar context but different term 

vocabulary won't be associated, resulting in a "false negative match". 

 The order in which the terms appear in the document is lost in the 

vector space representation  

 Assumes terms are statistically independent 

 Weighting is intuitive but not very formal 

3.3 Latent Semantic Analysis (LSA) 

3.3.1  Introduction to LSA 

Latent Semantic Analysis is a fully automatic mathematical/statistical 

technique for extracting and inferring relations of expected contextual usage 

of words in passages of discourse. It is not a traditional natural language 

processing or artificial intelligence program; it uses no humanly constructed 

dictionaries, knowledge bases, semantic networks, grammars, syntactic 

parsers, or morphologies, etc., and takes as its input only raw text parsed into 

words defined as unique character strings and separated into meaningful 

passages or samples such as sentences or paragraphs. 

The first step is to represent the text as a matrix in which each row stands for 

a unique word and each column stands for a text passage or other context. 

Each cell contains the frequency with which the word of its row appears in the 

passage denoted by its column. Next, the cell entries are subjected to a 

preliminary transformation in which each cell frequency is weighted by a 

function that expresses both the word's importance in the particular passage 

and the degree to which the word type carries information in the domain of 

discourse in general. 
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LSA is also known as Latent Semantic Indexing (LSI). This method uses a 

semantic approach for information retrieval. The results of the search will 

include terms which were not part of the query but similar to the meaning or 

close to the terms in the query. 

3.3.2 Singular Value Decomposition 

LSA applies singular value decomposition (SVD) to the matrix. This is a form 

of factor analysis, or more properly the mathematical generalization of which 

factor analysis is a special case. In SVD a rectangular matrix is decomposed 

into the product of three other matrices. One component matrix describes the 

original row entities as vectors of derived orthogonal factor values, another 

describes the original column entities in the same way, and the third is a 

diagonal matrix containing scaling values such that when the three 

components are matrix-multiplied, the original matrix is reconstructed. There 

is a mathematical proof that any matrix can be so decomposed perfectly, 

using no more factors than the smallest dimension of the original matrix. 

When fewer than the necessary number of factors are used, the reconstructed 

matrix is a least-squares best fit. One can reduce the dimensionality of the 

solution simply by deleting coefficients in the diagonal matrix, ordinarily 

starting with the smallest. (In practice, for computational reasons, for very 

large corpora only a limited number of dimensions can be constructed.) 

3.3.3  Working of LSA 

Singular value decomposition can be used in topic identification of 

documents. Using SVD, an m × n matrix, say X, is factored as: X = U∑VT 

where U is m× t matrix, VT is t × n matrix, and ∑ is a diagonal matrix of t × t. 

Here, we define matrix X as [doci] with one row per document, where X is n×d 

where n is the number of documents and d is the vocabulary size. This term-

document matrix decomposes into: topic-document (U), topic-topic similarity 

(∑) and term-topic (VT). The topic-document matrix (U) is of importance to us 

since it represents the association between a document and a topic using 

which we identify the most prevalent topic in the document. Documents with 

same topic will lie in the same cluster. Hence the documents, which are highly 
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associated with the same topic, are clustered together. A document can have 

more than one topic.  

 

3.4 Principal Components Analysis (PCA) 

This method is also related to the SVD. It has wide applications like dimension 

reduction in information retrieval, image processing, pattern matching etc. The 

main aim of PCA is the reduction of high dimensional data set into a very low 

dimensional subspace.  

It is a way of identifying patterns in data, and expressing the data in such a 

way as to highlight their similarities and differences. Since patterns in data 

can be hard to find in data of high dimension, where the luxury of graphical 

representation is not available, PCA is a powerful tool for analyzing data. 

The other main advantage of PCA is that once you have found these patterns 

in the data, and you compress the data, i.e. by reducing the number of 

dimensions, without much loss of information.  It is necessary to understand 

the statistical concepts of standard deviation and covariance as well 

mathematical concepts of eigenvectors and eigenvalues. 

3.5 Attribute Selection 

3.5.1  Introduction 

Attribute selection, more popularly known as feature selection is the technique 

of selecting a subset of relevant features for building robust learning models in 

machine learning using statistical methods. It is also called variable selection, 

feature reduction or variable subset selection. 

Many attribute / feature selection methods have been developed and 

extensive research work has already been done in this field. A brief summary 

of the methods available is given in section 3.5.2. 

Feature selection is a process commonly used in machine learning, wherein a 

subset of the features available from the data is selected for application of a 

learning algorithm. The best subset contains the least number of dimensions 

that most contribute to accuracy; we discard the remaining, unimportant 

dimensions. This is an important stage of preprocessing and is one of two 
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ways of avoiding the curse of dimensionality – the other is feature extraction. 

It decreases the size of the effective vocabulary and increases accuracy of 

Text Mining by decreasing noise. 

3.5.2  Comparison of Attribute Selection Methods 

The most popular attribute selection methods are the frequency distribution, 

Mutual Information (MI), the chi-square test, correlation coefficient and 

relevancy score. The methods are all statistical based on probability 

distributions. The formulas of these methods are given in Table 3.2. The 

details about these methods are in the references section as per the 

reference numbers in the last column of the table. 

Table 3.2 Main methods of feature reduction / selection 

 

Function 

 

Denoted by 

 

Mathematical Form 

 

Document 

Frequency 

 

 

 

 

 

Information 

gain 

(Expected 

Mutual 

Information) 

 

 

 

 

 

 

Chi-square 

 

 

 

 

 

 

Correlation 

coefficient 

 

 

 

 

 

Relevancy 

score 
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As per the research done by Martin Sewell3, the different feature selection 

methods are as follows. 

 Kira and Rendell (1992) described a statistical feature selection 

algorithm called RELIEF that uses instance based learning to assign a 

relevance weight to each feature. 

 John, Kohavi and Pfleger (1994) addressed the problem of irrelevant 

features and the subset selection problem. They presented definitions 

for irrelevance and for two degrees of relevance (weak and strong). 

They also state that features selected should depend not only on the 

features and the target concept, but also on the induction algorithm. 

Further, they claim that the filter model approach to subset selection 

should be replaced with the wrapper model. 

 Pudil, Novoviˇcov´a and Kittler (1994) presented ―floating‖ search 

methods in feature selection. These are sequential search methods 

characterized by a dynamically changing number of features included 

or eliminated at each step. They were shown to give very good results 

and to be computationally more effective than the branch and bound 

method. 

 Koller and Sahami (1996) examined a method for feature subset 

selection based on Information Theory: they presented a theoretically 

justified model for optimal feature selection based on using cross-

entropy to minimize the amount of predictive information lost during 

feature elimination. 

 Jain and Zongker (1997) considered various feature subset selection 

algorithms and found that the sequential forward floating selection 

algorithm, proposed by Pudil, Novoviˇcov´a and Kittler (1994), 

dominated the other algorithms tested. 

 Dash and Liu (1997) gave a survey of feature selection methods for 

classification. In a comparative study of feature selection methods in 

statistical learning of text categorization (with a focus is on aggressive 

dimensionality reduction). 

                                                 
3
 The different feature selection methods as discussed by Martin Sewell,  http://www.machine-

learning.martinsewell.com/feature-selection 
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 Yang and Pedersen (1997) evaluated document frequency (DF), 

information gain (IG), mutual information (MI), a CHI-square test and 

term strength (TS); and found IG and CHI to be the most effective. 

 Blum and Langley (1997) focused on two key issues: the problem of 

selecting relevant features and the problem of selecting relevant 

examples. 

 Kohavi and John (1997) introduced wrappers for feature subset 

selection. Their approach searches for an optimal feature subset 

tailored to a particular learning algorithm and a particular training set. 

 Yang and Honavar (1998) used a genetic algorithm for feature subset 

selection.  

 Liu and Motoda (1998) wrote their book on feature selection which 

offers an overview of the methods developed since the 1970s and 

provides a general framework in order to examine these methods and 

categorize them. 

 Weston, et al. (2001) introduced a method of feature selection for 

SVMs which is based upon finding those features which minimize 

bounds on the leave-one-out error.  

 Xing, Jordan and Karp (2001) successfully applied feature selection 

methods (using a hybrid of filter and wrapper approaches) to a 

classification problem in molecular biology involving only 72 data points 

in a 7130 dimensional space.  

 Forman (2003) presented an empirical comparison of twelve feature 

selection methods. Results revealed the surprising performance of a 

new feature selection metric, ‗Bi-Normal Separation‘ (BNS). 

 Guyon and Elisseeff (2003) gave an introduction to variable and 

feature selection. They recommend using a linear predictor of your 

choice (e.g. a 2 linear SVM) and select variables in two alternate ways: 

(1) with a variable ranking method using correlation coefficient or 

mutual information; (2) with a nested subset selection method 

performing forward or backward selection or with multiplicative 

updates. 
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Chapter 4: Text Clustering 
 

4.1 Introduction to Text Clustering 

Clustering is an unsupervised method of grouping texts / documents in such a 

way that in spite of having little knowledge about the content of the 

documents, we can group together similar documents into independent 

clusters based on some input parameters. In fact, given a training data set of 

documents, the goal of a clustering algorithm is to group similar documents in 

the same cluster while putting dissimilar documents in different clusters. 

Clustering is used in a wide variety of fields: biology, statistics, pattern 

recognition, information retrieval, machine learning, psychology, and Data 

Mining. For example, it is used to group related documents for browsing, to 

find genes and proteins that have similar functionality, to find the similarity in 

medical image database, or as a means of data compression.  

Document clustering has been studied for quite a while and has wide 

applications like topic extraction, content filtering and also as a pre-processing 

step for text categorization. The indexing methods that I have used to rank 

documents have already been discussed in the previous sections. The 

measures that have been used in implementing the clustering algorithms are 

the tf-idf scores, singular value decomposition (svd), etc. and distance 

measure like the cosine similarity, Jaccard‘s co-efficient, etc.  

4.2 Evaluation of Cluster Quality  

There are different measures available to evaluate the correctness of clusters 

after an algorithm has been implemented. There are two types of measures – 

internal and external. Internal measures check the correctness within the 

clusters and across clusters i.e. how similar documents within a single cluster 

are and how different documents are across clusters.  

The other more popular measures are the external measures. They are called 

external measures because we test the clusters on documents which have 
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been already classified (training sets) or those classified by human 

experts/judges which are called the gold standard classes. 

There are many other external measures. Some are explained as follows1: 

 Purity: This is a very simple method. To compute purity, each cluster is 

assigned to the class which is most frequent in the cluster, and then 

the accuracy of this assignment is measured by counting the number of 

correctly assigned documents and dividing by N – total number of 

documents. 

  (4.1) 

Where, 

Ω = {w1, w2,…,wk} is the set of clusters 

С = {c1, c2, …, cj} is the set of classes 

 - the set of documents in  

- the set of documents in  

Purity is close to zero for bad clusters and close to one for good 

clusters. 

 The Rand Index (RI): The Rand index penalizes both false positive and 

false negative decisions during clustering. A true positive (TP) decision 

assigns two similar documents to the same cluster; a true negative 

(TN) decision assigns two dissimilar documents to different clusters. 

There are two types of errors we can commit. A false positive (FP) 

decision assigns two dissimilar documents to the same cluster. A false 

negative (FN) decision assigns two similar documents to different 

clusters. The Rand index measures the percentage of decisions that 

are correct. That is, it is simply accuracy. 

      (4.2) 

  

 

                                                 
1
 These measures are taken from the book “An Introduction to Information Retrieval” by Christopher 

et al, online edition 
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 F-measure: This measure is based on recall and precision. The 

formula to calculate the F-measure for a cluster j and class i is: 

Recall(i, j) = nij / ni       (4.3) 

Precision (i, j) = nij / nj      (4.4)  

Where, 

nij – number of members of class i in cluster j 

ni – number of members of class i 

nj – number of members of class j 

F(i, j) = (2 * Recall(i, j) * Precision (i, j)) / (Recall(i, j) + Precision (i, j))  

(4.5) 

After finding the F measure for all clusters in this way the overall F 

measure is computed by taking the weighted average of all values for 

F: 

      (4.6) 

Where, 

n – total number of documents 

 Another way of representing the above is: 

     (4.7) 

     (4.8) 

        (4.9) 

Other than these measures there are others like the Mutual Information (MI) 

and the Entropy – both of which are based on probabilities. 

 

The clustering algorithms studied are: 

 The K-Means Algorithm 

 The DBSCAN Algorithm 

 The SNN 

 Have developed SNNAE 
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4.3 The K-Means Algorithm 

4.3.1  The simple K-Means 

The K-Means is a partitioning method of clustering where n documents are 

partitioned into k partitions / clusters in such a way that each cluster has at 

least one document and each document belongs to only one cluster. The 

second condition is sometimes relaxed if we know that a document can 

belong to more than one topic or subject. 

This is one of the simplest methods and creates clusters which are spherical 

in shape. This algorithm works well for a small corpus. The time complexity of 

this algorithm is linear in the number of documents. K-means is based on the 

concept that a center point can represent a cluster.  In particular, for K-means 

we use the notion of a centroid, which is the mean or median point of a group 

of points (in this case documents).  Note that a centroid almost never 

corresponds to an actual data point. 

In the K-Means algorithm the input is the number of clusters k, the corpus 

containing the documents to be clustered and k initial arbitrary documents. 

The output contains k clusters of documents.  

The algorithm works as follows:  

1. Select arbitrarily K documents as the initial centroids.  

2. Assign each document to the closest centroid using some similarity 

function.  

3. Re-compute the centroid (mean) of each cluster.  

4. Repeat steps 2 and 3 until the centroids do not change. 

4.3.2  The Bisecting K-Means Algorithm 

This algorithm is combination of K-Means and agglomerative hierarchical 

algorithm (uses the divisive method). This algorithm also has a complexity 

which is linear in the number of documents. 

In this method we start with a single cluster which contains all the documents. 

The algorithm then splits the main cluster in different clusters as per the 

following algorithm: 

1. Select a cluster to split 

2. Find two sub-clusters from the cluster using the K-Means algorithm 
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3. Repeat step 2, the bisecting step, by selecting the largest cluster with 

least overall similarity. 

4. Repeat steps 1, 2 and three until the desired number of clusters is 

reached. 

4.3.3  The similarity measures 

To find the distances between the documents and the centroids, I first 

calculated the tf-idf scores for each term in the documents. After that I created 

a term X document matrix for the tf-idf scores. 

As per the details given in Table 2, for different values of k and initial cluster 

centroids, the clusters created are shown. The similarity measure used to find 

the similarity between the documents and the centroids was the cosine 

similarity. 

 

(doci, docj) =       (4.10) 

Where, 

         (used to normalize the vectors)                                            

doci & docj – are the tf-idf scores of the two documents 

 

For our algorithm, we need to find the centroid c once iteration is complete. 

The centroid for a set of S documents with their vector representations can be 

found by, 

        (4.11) 

This would be a vector obtained by averaging individual scores of all 

documents belonging to the set S. Finally the sets become the clusters. 
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4.4 The DBSCAN Algorithm 

It stands for Density Based Spatial Clustering Algorithm with Noise. Though 

this is a density based algorithm it has been found to give very good results in 

text clustering also. 

DBSCAN requires two parameters: epsilon (eps) and minimum points 

(minPts). In the textual data eps would be the value of cosine distance 

(between 0 and 1) and minPts generally works well for 4 (at least four 

documents are similar to the document under consideration). For the following 

algorithm, a point is a document. 

1. It starts with an arbitrary starting point that has not been visited. It then 

finds all the neighbor points within distance eps of the starting point.  

2. If the number of neighbors is greater than or equal to minPts, a cluster 

is formed. The starting point and its neighbors are added to this cluster 

and the starting point is marked as visited.  

3. The algorithm then repeats the evaluation process for all the neighbors 

recursively.  

4. If the number of neighbors is less than minPts, the point is marked as 

noise.  

5. If a cluster is fully expanded (all points within reach are visited) then the 

algorithm proceeds to iterate through the remaining unvisited points in 

the dataset.  

This algorithm has an advantage that it does not require to know the number 

of clusters in the data a priori and it can also detect noise. Moreover the 

clusters unlike K-Means are of arbitrary shape. 

The disadvantage is it depends on the distance function. For structured low 

dimensional data the Euclidean distance is good enough but for the textual 

data we sometimes consider other similarity measures also. I have used the 

cosine similarity to implement DBSCAN. If documents of a particular class are 

few in number they would get classified as noisy documents.  

4.5 The Shared Nearest Neighbor Algorithm (SNN) 

The main difference between this algorithm and DBSCAN is that it defines the 

similarity between points by looking at the number of nearest neighbors that 
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two points share. Using this similarity measure in the SNN algorithm, the 

density is defined as the sum of the similarities of the nearest neighbors of a 

point. Points with high density become core points, while points with low 

density represent noise points. All remainder points that are strongly similar to 

a specific core points will represent a new clusters. 

 

The steps to implement SNN are:  

1. Identify the k nearest neighbors for each point (the k points most 

similar to a given point, using a distance function to calculate the 

similarity).  

2. Calculate the SNN similarity between pairs of points as the number of 

nearest neighbors that the two points share. The SNN similarity is zero 

if the second point in not in its list of k nearest neighbors, and vice-

versa.  

3. Calculate the SNN density of each point: number of nearest neighbors 

that share Eps or greater neighbors.  

4. Detect the core points. If the SNN density of the point is equal or 

greater than MinPts then classify the point as core.  

5. Form the cluster from the core points. Classify core points into the 

same cluster if  

they share Eps or greater neighbours. 

6. Identify the noise points. All non-core points that are not within a radius 

of Eps of a core point are classified as noise.  

7. Assign the remainder points to the cluster that contains the most 

similar core point. 

 

The SNN similarity takes the sum of the similarity of the point‘s nearest 

neighbors as a measure of density. It works well for the data in low, medium 

and high dimensionality. The SNN similarity measure reflects the local 

configuration of the points in the data space. It is insensitive to the variation of 

density and dimensionality. According to SNN density, the higher the density, 

it is likely to represent core or representative point and lower the density, it is 

likely to represent noise points. The key feature of SNN density measure is 

that it is able to find clusters of different shapes and sizes. 
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After studying the K-Means, DBSCAN and SNN algorithms I have designed a 

new algorithm which I call the SNNAE (Shared Nearest Neighbor Algorithm 

with Enclosures). This proposed algorithm has created better clusters and 

given a better output.  

This algorithm has been published by the World Research Congress and 

IEEE and is available on IEEE Computer Society Portal, ACM Digital Library, 

Google Scholar, Bibsonomy, etc. and is available on the site: 

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5171034 

4.6 The Shared Nearest Neighbor Algorithm with Enclosures 
(SNNAE) 

The proposed algorithm, SNNAE, is based on the ‗enclosure‘ approach, which 

uses an inexpensive distance measure to approximately divide the data into 

overlapping subsets and then applies expensive distance measure to 

calculate similarity only between the points in the same enclosure. The 

proposed algorithm is efficient and scalable because with this approach 

significant computation is reduced by eliminating all of the distance 

comparisons among points that do not fall within a common enclosure.   

In the proposed algorithm, the density of the points is defined in terms of 

number of neighbors with which it shares a total number – Eps(a parameter) 

or greater neighbors. If this number is greater or equal to the MinPts(another 

parameter), then a point is consider to have high density otherwise it 

represents low density points. Also, the parameter Eps is calculated 

automatically from the enclosures and MinPts can be user specified or fixed to 

3, which is shown as good value from many experimental results. The size of 

nearest neighborhood is also provided as input. The steps of the algorithm are 

as follows: 

 Creating Enclosures: In the first stage, data points are divided into 

overlapping subset or enclosures where enclosure is simply a subset of 

the data points. Every data point must appear in at least one enclosure 

and any data point may appear in more than one enclosure as shown in 
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Figure 4.12. Enclosures are created with the intention that points not 

appearing in any common enclosure are far enough apart that they could 

not possibly be in the same cluster.  

 

Figure 4.1 Three data clusters and enclosures 

In the above figure,  the solid circles show the example of overlapping 

enclosures that cover all the data points. Consider an arbitrary point p 

as shown in the figure. All the points inside the solid circle are the 

nearest adjacent points for the central point p. All the points between 

the dashed circle and solid circle are the nearest far adjacent points to 

the central point p. The dashed circle is used to ensure that points in 

the same clusters will not be split into different clusters. For e.g. there 

are no common points in two overlapping enclosures of cluster1. If 

dashed circles were not used then natural cluster1 would split into two 

small clusters. 

In the second stage, the proposed algorithm finds the optimal value of 

Eps, the radius of neighborhood to define the density from the 

overlapped enclosures created in first stage and then apply the SNN 

clustering algorithm.  

                                                 
2
 A.M.Fahim et al. “Density Clustering Algorithm Based on Radius of Data (DCBRD)”, Georgian Electronic 

Scientific Journal: Computer Science and Telecommunications, vol. 11, No.4, 2006. 
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To create overlapping subset or enclosure we first need to calculate 

radius of the enclosure. First of all, all the data points are stored in a 

single cluster called cluster feature (CF). This is a data structure which 

contains summary information about all points. 

       (4.12) 

Where, LS is the linear sum of the n data points. 

        (4.13) 

Where, xi is d-dimensional data points. 

Then to calculate the radius of the data space which covers all the data 

point, we first find the centre of all the data point using the formula: 

    (4.14) 

Then radius of entire data set is calculated as: 

   (4.15) 

From this radius, area of the circle is found as: 

     (4.16) 

The circular area for more than two dimensions requires the 4/3 

coefficient to be included in the formula. Then we calculate area from 

another point of view, called rectangular area, based on minimum 

bounding rectangle, which also covers all data point.     

                                                            

            (4.17)                                    

 Where, Li  is the difference between maximum and minimum value for 

the dimension i, which is  also called as length of dimension i. In the 

Figure 4.2 blue points indicate length of x dimension and red points 

indicate length of y dimension. 

In the multi-dimensional data set, as the dimension increase the data 

becomes more uniform and sparser. Therefore, while calculating radius 

of the overlapping enclosures, we have to consider dimension of the 
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data set. Also, radius depends on the area of the data space. This ratio 

should vary between 0 and 1.  

 

Figure 4.2 Circular and rectangular area of data space 

By considering ratio area and dimension of the data space, the radius r 

of the overlapped enclosures is calculated as: 

  r = d * ratio area + ratio area / 2     (4.18) 

Where, d is the dimension of data space and ratio area is ratio of 

rectangular and circular area or inverse. Always, the radius of the 

overlapped enclosures is greater than expected Eps. 

Overlapping enclosures are created using the radius r. To create 

enclosures, the first point of the data set is taken as the centre of the 

first enclosure. Then consider distance between every other point with 

that centre point. All the points whose distance to the centre point is 

less than or equal to radius r, are considered to be the nearest 

adjacent point to the centre point and are put in the list1 of that 

enclosure. If the distance to the centre point is less than or equal to r * 

1.5 then points are considered to be as nearest far adjacent points and 

are put in list2 of that enclosure. All the points whose distance is 

greater than r * 1.5 and less than r * 2 are considered to be as centre of 

the next enclosure to ensure overlapping of enclosures. 

For each point in the list1, the algorithm keeps the distance to the 

nearest enclosure and identification of that enclosure, since point may 

be covered by more than one enclosure. 
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 Finding Optimal Value of Eps: To find the optimal value of Eps, we 

consider only the points in the solid threshold. We find distance for each 

point with every other point within the same enclosure.  These distances 

are calculated by using the following equation: 

    (4.19) 

Where, d is the dimension, and Pi, k and P j, k are the k th component of 

the ith and jth object. From this distance, we find the maximum distance 

between the nearest pair. This process is repeated for all the enclosures. 

Then optimal value of Eps is found by taking average of all of these 

maximum distances, i.e.  Eps = maxi / k, where k is the number of 

overlapped enclosures and maxi is the maximum distance for enclosure i. 

This Eps value is used to measure the density of the point in the proposed 

algorithm.  

 Finding Nearest Neighbor: When the algorithm retrieves the nearest 

neighbors of a point, it directly goes to the best enclosure (i.e. nearest 

enclosure which covers that point.). It then computes the distance with 

every other point in enclosure (within solid threshold) and considers only 

those points that are having distance less than or equal to Eps as the 

nearest neighbors of that point. If size k, of the nearest neighbor list is 

given as an input then only k nearest neighbors are considered, otherwise 

all neighbors having distance less than or equal to Eps are considered as 

nearest neighbors of that point.  

If the distance between the centre point and point considered is greater 

than Eps then the algorithm computes the distance between that point and 

solid edge. If this distance is less than Eps value then we compute 

distance between the point considered and all the points in the dashed 

edge to find its nearest neighbors with respect to Eps. In this way the final 

clusters are created. 
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4.6.1 Complexity of the SNNAE Algorithm 

The complexity of the algorithm can be found as follows: 

Let, 

n= number of records/instances/data points in data file 

d= number of dimensions/ attributes  

k= size of nearest neighbor list 

e= number of enclosures 

s= n/e i.e. average number of points in each enclosure 

The proposed algorithm is divided into two stages.  

1. In the first stage, n data points are divided into e enclosures. So its 

Complexity is O (ne) 

2. The Eps value is calculated using only the points that are amongst 

the same enclosure. Assuming each enclosure covers s points on 

an average, calculation of Eps will have time complexity of (s2e). 

So its Complexity is O (s2e). 

 So, the time complexity of the first stage is: 

  O (ne +s2e) 

In the second stage, getting the nearest neighbor, complexity: 

O (ns), 

Since distance of each point with every other point in the same enclosure is 

only calculated. Therefore, the total time complexity of the proposed algorithm 

is:  

O (ne + s2e + ns) 

4.6.2 The Dataset Description 

The datasets used those already mentioned in the first chapter of Text Mining 

Overview. In the implementation of the algorithms, the datasets are db1, fish, 

abalone, and cpu. These datasets vary in size and number of attributes 

(dimensions). The site from where they can be downloaded is 

http://archive.ics.uci.edu/ml/ and the WEKA datasets. The brief description of 

each dataset used in the evaluation of this algorithm and the SNN algorithm is 

shown in Table 4.1. 
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Table 4.1 Details of datasets used 

Dataset Instances Attributes  Data Type 

Cpu 209 7 Real 

Fish 1100 2 Synthetic 

Abalone 4177 7 Real 

Db1 10000 2 Synthetic 

 

4.6.3 Implementation and result 

The proposed SNNAE algorithm has been evaluated on several different real 

and synthetic datasets. The result of this algorithm is compared with that of 

SNN clustering algorithm in terms of scalability, efficiency and quality of 

clusters. Both algorithms produce the same result most of the time, but 

compared to SNN, SNNAE is more scalable and efficient.   

The implementation shown is on the Abalone dataset. Abalones are small to 

very large-sized edible sea snails. The shells of abalones have a low and 

open spiral structure, and are characterized by several open respiratory pores 

in a row near the shell's outer edge. The flesh of abalones is widely 

considered to be a desirable food, and is consumed raw or cooked in a variety 

of different dishes. The attribute details are given in Table 4.2. The algorithms 

were implemented by varying the values of the input parameters and finding 

the output for each case. Some sample inputs and outputs are given further. 

The parameter values calculated using the SNNAE algorithm for creating first 

the enclosures and then finding the Eps is depicted in Table 4.3. In Table 4.4 

a comparison in terms of execution time in seconds between the SNN and the 

SNNAE algorithm at each step of execution is shown. 

There are seven attributes and a total of 4177 record sets. The details of the 

attributes are: 
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Table 4.2  Attribute details of Abalone dataset 

Name  Data Type  Description 

Length  continuous  Longest shell measurement  

Diameter  continuous  perpendicular to length  

Height  continuous  with meat in shell  

Whole weight  continuous  whole abalone  

Shucked weight  continuous  weight of meat  

Viscera weight  continuous  gut weight (after bleeding)  

Shell weight  continuous  after being dried  

 

 

Input: Dataset, Minimum points (Minpts), nearest neighbors (nnls) 

Output: Clusters, noise points 

 

Table 4.3 Value of different parameters 

Radius of all data 0.489 

Radius of enclosure 0.099 

Number of enclosures 288 

Eps 0.0538 

 

Case No. 1: Considered Minpts = 3, and all possible nearest neighbours.  

 

Table 4.4 Implementation Result for minpts-3, nnls-all 

No. Functionality 
SNN 
time (sec) 

SNNAE 
time(sec) 

1 Find nearest neighbors 51.262 4.227 

2 Find shared nearest neighbors 92.305 76.675 

3 Get initial clusters 3.011 2.917 

4 Get border and noise points 68.531 75.973 

5 Compose cluster 0.375 0.764 

Total   215.484 160.556 
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Figure 4.3 Implementation graph for minpts-3 and nnls-all 

 

Table 4.5 Points distribution in clusters with minpts-3, nnls-all 

Cluster No. 
% of points 
with SNN 

% of  points 
with SNNAE 

0 (noise) 14.29 15.21 

1 85.08 84.17 

2 0.31 0.31 

3 0.19 0.19 

4 0.12 0.12 

Total 100 100 
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Case No. 2: Considered Minpts = 3, and nnls = 20 

 

 

Table 4.6 Implementation Results for minpts-3, nnls-20 

No. Functionality 
SNN 
time (sec) 

SNNAE 
time(sec) 

1 Find nearest neighbors 49.561 4.259 

2 Find shared nearest neighbors 5.257 0.842 

3 Get initial clusters 1.139 1.077 

4 Get border and noise points 69.514 74.943 

5 Compose cluster 0.468 0.811 

Total   125.939 81.932 

 

 

 

 

Figure 4.4  Implementation graph for minpts-3 and nnls-20. 
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Table 4.7 Points distribution in clusters with minpts-3, nnls-20 

Cluster No. 
% of points 
with SNN 

% of  points 
with SNNAE 

0 (noise) 14.01 15.87 

1 84.68 83 

2 0.34 0.22 

3 0.22 0.12 

4 0.12 1 

5 0.1 0.12 

6 0.12 0.07 

7 0.1 0.1 

8 0.1 0.14 

9 0.14 0.1 

10 0.1 0.17 

Total 100 100 

 

 

Case No. 3: Considered Minpts = 3, and nnls = 25 

 

Table 4.8 Implementation Results for minpts-3, nnls-25 

No. Functionality 
SNN 
time (sec) 

SNNAE time(sec) 

1 Find nearest neighbors 49.546 4.29 

2 Find shared nearest neighbors 7.129 1.326 

3 Get initial clusters 1.498 1.404 

4 Get border and noise points 65.957 69.031 

5 Compose cluster 0.437 0.796 

Total   124.582 76.847 
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Figure 4.5  Implementation graph for minpts-3 and nnls-25 

 

 

Table 4.9 Points distribution in clusters with minpts-3, nnls-25 

Cluster No. 
% of points 
with SNN 

% of  points 
with SNNAE 

0 (noise) 13.48 15.44 

1 85.2 83.43 

2 0.34 0.22 

3 0.22 0.12 

4 0.12 1 

5 0.1 0.12 

6 0.12 0.07 

7 0.1 0.1 

8 0.1 0.14 

9 0.14 0.1 

10 0.1 0.17 

Total 100 100 

 

In this way two more cases were taken with minpts =4 and nnls = 20 and then 

25. The consolidated result is as shown in Table 4.10. 
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Table 4.10 Combined Results of all cases 

Experiment 
No. 

Minpts nnls 
SNN 
Total time(sec) 

SNNAE 
Total time(sec) 

1 3 all 215.484 160.556 

2 3 20 125.939 81.932 

3 3 25 124.582 76.847 

4 4 20 127.016 80.793 

5 4 25 128.81 79.076 

     

 

Figure 4.6 Implementation Graph for all cases 

Similar results have been obtained for the rest of the datasets with structured 

as well as unstructured data. It is clearly evident that the time taken in finding 

the nearest neighbors and shared nearest neighbors is very less in SNNAE as 

compared to SNN. In finding the initial clusters and composing the clusters 

both take almost the same time. In finding the border and noise points 

however, SNN is slightly better than SNNAE. The overall time taken is by 

SNNAE is quite less as compared to SNN (Figure 4.6). 
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4.7 Conclusion and comparison of algorithms 

The proposed algorithm, SNNAE is based on density, and k-nearest neighbor 

approach. The basic idea of this algorithm is to find the way of computing the 

nearest neighbors of points by restricting the number of points considered. 

This algorithm uses the enclosure approach to divide the data into 

overlapping region which greatly reduce the number of distance calculations 

required for clustering. This reduces the computational complexity of the SNN 

clustering algorithm which is O (n2) to O (ne + s2e + ns). The experimental 

results demonstrated the scalability and efficiency of the proposed algorithm. 

The algorithm has been tested against structured as well as unstructured 

data. The datasets can be downloaded from the sited mentioned in chapter 1. 

The proposed algorithm provides a robust alternative to the other considered 

clustering approaches that are more limited in the types of data and clusters 

that they can handle. 

Table 4.11 shows the comparison of the clustering algorithms like the K-

Means, DBSCAN, SNN and SNNAE. The comparison is in terms of 

complexity, handling multidimensional data etc. 

There are many clustering algorithms but the partitioning and hierarchical 

methods are more popular. Variants of the basic k-Means are also very 

popular. This chapter gives details of the popular algorithms being used in the 

field of Text Mining. 
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Table 4.11 Comparison of clustering algorithms 

Clustering Criteria K-means DBSCAN SNN SNNAE 

Complexity 
 

O(nkt) where 
n = no. of data 
points 
k = no. of 
clusters 
t = no. of 
iterations 

 O(n2) where n 
is the number of 
data points 
 

O(n2) where n is 
the number of 
data points 
 

O (ne + s2e + ns) 
where 
n=no. of data points 
s= avg. number of 
points in enclosure 
e= number of 
enclosures 

Handle 
multidimensional 
data 

No No Yes Yes 

Handle large 
dataset 
 

Yes Yes Yes Yes 

Handle Noise 
 

No Yes Yes Yes 

Shape of Clusters 
 

Spherical only 
Any arbitrary 
shape 

Any arbitrary 
shape 

Any arbitrary shape 

Types of data 
handled 

Any Any Any Any 

Scalable 
 

Yes 

Not  without 
enhancement 
because of its 
complexity 

Not without 
enhancement 
because of its 
complexity 

Yes 

Input parameters 
 

 k – no. of 
clusters 
 k initial cluster      
centroid 

Eps – radius 
Minpts – no. of 
minimum points 

 k - size of 
nearest neighbor 
list 
MinPts 
Eps 

Minpts – no. of 
minimum points 
Nnls – size of 
nearest neighbor 
list  

 

4.8 Future Enhancement 

There is a lot of scope in this field of Text Clustering. Methods like the fuzzy 

clustering are becoming popular as these methods apply the concept of 

fuzziness i.e. a three valued logic like true, false and maybe for a document to 

belong to a cluster. There are other hierarchical methods also where still there 

is scope for research. There are clustering methods related to neural 

networks also. 

Document clustering is still not a very popular method in Information Retrieval. 

The reason being clustering is slow for large corpora. This can act as a 

domain of research too. 
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Chapter 5: Text Categorization 
 

5.1 Introduction to Text Categorization  

Text categorization (also known as text classification or topic spotting) is the 

task of automatically sorting a set of documents into categories from a 

predefined set. This task has several applications, including automated 

indexing of scientific articles according to predefined thesauri of technical 

terms, filing patents into patent directories, selective dissemination of 

information to information consumers, identification of document genre, 

authorship attribution, survey coding, and even automated essay grading.  

Automatic text categorization can play an important role in a wide variety of 

more flexible, dynamic and personalized information management tasks as 

well: real-time sorting of email or files into folder hierarchies; topic 

identification to support topic-specific processing operations; structured 

search and/or browsing; or finding documents that match long-term standing 

interests or more dynamic task-based interests.  Classification technologies 

should be able to support category structures that are very general, consistent 

across individuals, and relatively static. 

There are two approaches that you can take:  

 rule-based approach  

 write a set of rules that classify documents  

 machine learning-based approach  

 using a set of sample documents that are classified into 

the classes (training data), automatically create classifiers 

based on the training data 

The research on text categorization can be cast back to the work of M. E. 

Maron.  From that time, the technique has being used to apply to information 

retrieval, document organization, and text filtering and so on. The schematic 

of the learning process for categorization is shown in Figure 5.1.  
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Figure 5.1 Schematic of learning process 

There are broadly two steps in classification: developing the classifiers using 

the training dataset and then implementing them on the testing dataset. 

Sometimes the training set is itself divided into two parts where the first half is 

used to generate rules and the second half is used to check the validity of the 

rules. Since classification itself first needs the training datasets with the 

classes predefined, this part has to be done manually by a domain expert or 

can be done automatically by first using some text clustering method which 

does not require the domain knowledge, and then use the clusters that have 

been created as the training datasets with classes as defined by clustering. 

Thus each class / label requires a set of rules based on which the test dataset 

can be classified. In machine learning approach these set of rules or text 

classifiers are automatically created from the training dataset. If the method 

used is a statistical one it is called statistical text classification. The test data 

can belong to one class or multiple classes. It depends on the assumptions 

used while developing the algorithm. I have implemented and studied four 

methods– Naïve Bayes, K-Nearest Neighbors and Decision Trees which are 

statistical methods. The fourth method support vector machine is a 

combination of statistics and mathematics. 
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                                   Testing data 

                                                      

Figure 5.2 The training and testing datasets 

5.2 The Evaluation Measures 

Text classification rules are typically evaluated using performance measures 

from information retrieval. Common metrics for text categorization evaluation 

include recall, precision, accuracy and error rate and F1. Given a test set of N 

documents, a two-by-two contingency table with four cells can be constructed 

for each binary classification problem.  

The cells contain the counts for true positive (TP), false positive (FP), true 

negative (TN) and false negative (FN), respectively. Clearly, N = TP + FP + 

TN + FN. I have used these parameters for my study. The metrics for binary-

decisions are defined as: 

 Precision(P) = TP / (TP + FP)  

 Recall(R) = TP / (TP + FN)  

 Accuracy = (TP + TN)/N  

 Error = (FP + FN)/N  

 F1 = 2(P*R) / P + R 

F-measure (F1) 

 harmonic mean of recall and precision 

 sometimes instead of multiplying by the numerator by 2, other 

parameters like ∝ or β are also used where each one of them has 

some integer value. 



Chapter 5: Text Categorization 

 

70 

 

Micro-average F1 

 global calculation of F1 regardless of topics 

Macro-average F1 

 average on F1 scores of all the topics 

The formulas to find the different F measures is given in Table 5.1. 

 

Table 5.1 The F measures for Microaveraging and Macroaveraging 

 Microaveraging Macroaveraging 

 
Precision(π) 

 

 

 

Recall( ) 
 

 

 

Where c represents the class. 

These scores can be computed for the binary decisions on each individual 

category first and then be averaged over categories (macro-averaging). They 

can also be computed globally over all the n x m binary decisions where n is 

the total number of test documents and m is the number of categories under 

consideration (micro-averaging). 

The micro-averaged F1 tend to be dominated by the classifier‘s performance 

on common categories whereas the macro-averaged F1 are more influenced 

by the performance of rare categories. 

Due to the often highly unbalance number of positive vs. negative examples, 

note that TN often dominates the accuracy and error of a system, leading to 

miss-interpretation of the results. For example, when the positive examples of 

a category constitute only 1% of the entire test set, a trivial classifier that 

makes negative predictions for all documents has an accuracy of 99%, or an 

error of 1%. However, such a system is useless. For this reason, recall, 
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precision and F1 are more commonly used instead of accuracy and error in 

text categorization evaluations. 

 

Figure 5.3  Common evaluation metrics 

In multi-label classification, the simplest method for computing an aggregate 

score across categories is to average the scores of all binary task. The 

resulted scores are called macro-averaged recall, precision, F1, etc. Another 

way of averaging is to sum over TP, FP, TN, FN and N over all the categories 

first, and then compute each of the above metrics. The resulted scores are 

called micro-averaged. Macro-averaging gives an equal weight to each 

category, and is often dominated by the system‘s performance on rare 

categories (the majority) in a power-law like distribution. Micro-averaging 

gives an equal weight to each document, and is often dominated by the 

system‘s performance on most common categories. The two ways of 

measuring performance are complementary to each other, and both are 

informative. 

A free-text document is typically represented as a feature vector 

x=(x(1),…,x(p)) , where feature values x(i) typically encode the presence of 

words, word n-grams, syntactically or semantically tagged phrases, Named 

Entities (e.g., people or organization names), etc. in the document. A standard 

method for computing the feature values x(i) for a particular document d is 

called the bag of words approach as discussed before.  

It is useful to differentiate text classification problems by the number of 

classes a document can belong to. If there are exactly two classes (e.g. spam 

/ non-spam), this is called a ‗binary‘ text classification problem. If there are 

more than two classes (e.g. positive / neutral / negative) and each document 

falls into exactly one class, this is a ‗multi-class‘ problem. In many cases, 
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however, a document may have more than one associated category in a 

classification scheme, e.g., a journal article could belong to computational 

biology, machine learning and some sub-domains in both categories. This 

type of text classification task is called a ‗multi-label‘ categorization problem. 

Multi-label and multi-class tasks are often handled by reducing them to k 

binary classification tasks, one for each category. For each such binary 

classification tasks, members of the respective category are designated as 

positive examples, while all others are designated as negative examples. We 

will therefore focus more on binary classification. 

The classification algorithms studied are: 

 Naïve Bayes Classifiers 

 k Nearest Neighbor 

 Decision Trees 

 Support Vector Machines  

5.3 Feature Selection 

The feature selection methods have already been discussed in the Chapter 3 

on Text Transformation. In Text Classification applications, it is customary to 

run a dimensionality reduction pass before starting to build the internal 

representations of the documents. This means identifying a new vector space 

in which to represent the documents in such a way that the new vectors have 

a much smaller number of dimensions than the original ones. Several 

techniques for dimensionality reduction have been devised within Text 

Classification. An important class of such techniques is feature extraction 

methods (e.g., term clustering methods, latent semantic indexing). Feature 

extraction methods define a new vector space in which each dimension is a 

combination of some or all of the original dimensions; their effect is usually a 

reduction of both the dimensionality of the vectors and the overall stochastic 

dependence among dimensions.  

An even more important class of dimensionality reduction techniques is that of 

feature selection methods, which do not attempt to generate new terms, but 

try to select the best ones from the original set. The measure of quality for a 

term is its expected impact on the accuracy of the resulting classifier. To 
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measure this, feature selection functions are employed for scoring each term 

according to this expected impact so that the highest scoring terms can be 

retained for the new vector space. 

These functions mostly come from statistics (e.g., chi-square), information 

theory (e.g., Mutual Information), or machine learning (e.g., Information Gain), 

and tend to encode each in their own way the intuition that the best terms for 

classification purposes are the ones that are distributed most differently 

across the different categories. 

5.4 Naïve Bayes Classification (NB) 

NB algorithm has been widely used for document classification, and shown to 

produce very good performance. The basic idea is to use the joint 

probabilities of words and categories to estimate the probabilities of 

categories given a document. NB algorithm computes the posterior probability 

that the document belongs to different classes and assigns it to the class with 

the highest posterior probability. The posterior probability of class is computed 

using Bayes rule and the testing sample is assigned to the class with the 

highest posterior probability. The naive part of NB algorithm is the assumption 

of word independence that the conditional probability of a word given a 

category is assumed to be independent from the conditional probabilities of 

other words given that category.  

There are two versions of NB algorithm. One is the Bernoulli model that only 

takes into account the presence or absence of a particular term, so it doesn't 

capture the number of occurrence of each word. The other model is the 

multinomial model that captures the word frequency information in 

documents. Both the models have been implemented using the dataset 

described above. The detailed study and comparisons are given below. Both 

are based on the Bayes theorem, where a document d is placed in the class c 

as per the probability given below: 

   

      (5.1) 
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For classes the probability P(d) will remain same as it does not depend on 

any class and hence can be ignored. So, the posterior probability now 

becomes, 

      (5.2) 

Since we are dealing with terms within a document the posterior probability 

P(d/c), is actually P((t1,t2, …tn)/c) where each ti is a term or a feature of the 

document. Similarly for P(c/d). In the Naïve Bayes approach we assume each 

term occurrence is conditionally independent and that is why the name Naïve. 

It‘s a simple assumption because of which of posterior probability P((t1,t2, 

…tn)/c) now becomes, 

          (5.3)  

        (5.4) 

In the above formula,  

 -  is the conditional probability of term tk occurring in class c, 

P(c) - is the prior probability of a document occurring in class c 

t1,t2, … ,tnd -  are the terms(tokens) of document d that are part of the 

vocabulary 

nd – total number of tokens in the document  

 - is the multiplication of conditional probabilities of all terms in 

the document 

5.4.1 The Multinomial Model: 

This model depends on the term counts in a document i.e. the number of 

times a term occurs in a document. The position of the term is not considered.  

As per (5.2) and (5.4), the posterior probability becomes, 

 

    (5.5) 

 

  can have many terms and the multiplication of the probabilities 

can result in floating point underflow. So a better option is to use logarithms. 

After applying logs, (5.5) becomes, 
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        (5.6) 

 

In the multinomial model to find the probabilities on the RHS of (5.5) we use 

the maximum likelihood estimate i.e. the relative frequencies of occurrences. 

As per this estimate, the probability P(c/d) can be calculated by using the 

following frequencies: 

        (5.7) 

  

Where, 

Nc – total number of documents in class c 

N – total number of documents    

       (5.8) 

Where, 

Tct – total number of occurrences of term t in documents of class c 

 - total number of terms in all documents of class c 

 

In (5.8) the probability becomes zero if a term does not occur in a class and if 

it is applied to (5.5) it will become multiplication by zero. To eliminate this 

problem, Laplace‘s smoothing is used as follows: 

 

    (5.9)  

 

 - this is equal to V the size of the vocabulary. 

 

The formula in (5.5) using (5.7) and (5.8) becomes, 

 

     (5.10)
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We can now find the probabilities for the document for each class and 

the document will belong to the class where this probability is maximum. So 

our aim is to find max. . 

5.4.2 The Bernoulli Model 

In this model, unlike the multinomial model instead of counting the number of 

times terms/tokens occur in a document, the presence or absence of a term 

(0 or 1) is noted. The P(t/c) estimates the fraction of documents of class c that 

contain term t. 

The implementation and analysis shows that the Bernoulli model works well 

for short documents only. The main drawback being that since just the 

presence of a term is noted, a document which contains a certain term only 

once may get classified in a class to which it actually does not depend. 

This model is also based on the formula mentioned in (5.6) and (5.10). The 

difference lies in the estimation strategies. Unlike multinomial in the Bernoulli 

model the absence of a term is also modeled while computing the 

probabilities. The estimates for priors P(c) are similar to (5.7), whereas there 

is a little difference in estimates for (5.9) which is given below: 

Tct – total number of documents of class c where term t occurs 

 - total number of documents of class c 

V – two cases to be considered for each term i.e. occurrence or non-

occurrence 

 

The final equation of (10) now becomes, 

 

          (5.11) 

 

In (5.11), the terms t1… tx occur in the document whereas the terms ty … tm 

do not occur in the document. The document d is placed in the class which 

has the highest probability using (5.11). 
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5.4.3 Comparison of the Multinomial and Bernoulli Models 

The comparison1 between both the models considering different aspects in 

shown Table 5.2. 

 

Table 5.2 Comparison between Multinomial model and Bernoulli model 

Parameters Multinomial Model  Bernoulli Model 

Variable used t – number of times a term 
occurs in a document  

t – 1 if term occurs, 0 if it does 
not in a document 

Document 
representation 

d = {t1, t2, … , tn} where t1, 
t2,…tn terms are occurring in 
document d and are also part 
of V(vocabulary) – terms in d 
but not part of V are not 
considered 

d = {t1, t2, … , tn} where each tk 

ϵ {0,1} – indicates the presence 
or absence of a term in the 
document d 

Multiple term 
occurrences 
consideration 

Yes No 

Efficiency  
(Document size) 

Both short and long Only short 

No.  of features 
handled 

Efficient with more Works best with few 

Estimate for the term 
‗the‘ 

P(X = the / c)  0.5 P(Uthe = 1 / c) = 1.0 

 

5.5 k-Nearest Neighbor (kNN) 

kNN classifier is an instance-based learning algorithm that is based on a 

distance function for pairs of observations, such as the Euclidean, Cosine or 

Jaccard distance. In this classification paradigm, k nearest neighbors of a 

training data is computed first. Then the similarities of one sample from testing 

data to the k nearest neighbors are aggregated according to the class of the 

neighbors, and the testing sample is assigned to the most similar class. One 

of advantages of kNN is that it is well suited for multi-modal classes as its 

classification decision is based on a small neighborhood of similar objects 

(i.e., the major class). So, even if the target class is multi-modal (i.e., consists 

of objects whose independent variables have different characteristics for 

different subsets), it can still lead to good accuracy. A major drawback of the 

similarity measure used in kNN is that it uses all features equally in computing 

                                                 
1
 Based on the details in the book by Christopher Manning et al.,”An Introduction to Information 

Retrieval”, Cambridge UP, 2009. 
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similarities. This can lead to poor similarity measures and classification errors, 

when only a small subset of the features is useful for classification.  

The main concept behind kNN is that a test document is expected to have the 

same class as that of the training documents located in the local region 

surrounding it. The test document is assigned to the majority class of its k 

closest neighbors. It is important to decide the value of k because the 

accuracy of the classification is dependent on it. It is desirable to keep an odd 

value for k so that ties may not occur. One alternative way is to set the value 

of k in such a way that it gives the best result on the held out portion of the 

training set.  

To decide whether a document di should be classified under class ck, first of 

all the k most similar documents to di are taken. These are the k-nearest 

neighbors of di. If a large proportion of them are classified under ck then di is 

classified under ck otherwise not. 

The formula used for classification is:  

    (5.12) 

Where, 

di – document to be classified 

xj – one of the neighbors of di 

y(xj, ck) ϵ {0, 1} indicates whether document xj belongs to class ck 

 

Unlike other classifiers, kNN does not classify documents in just two 

subspaces. This is an advantage over other methods. 

There is another measure to classify documents using kNN. The system first 

finds the k nearest neighbors from amongst the training documents. The 

similarity score of each of these k documents to the test document is used as 

the weight of the categories of the neighbor document. The weights of the 

documents of the same category are added together and are considered as 

the likelihood score of the test document belonging to that category. After 

finding the likelihood scores for all categories falling in the k-neighborhood, 

the scores are sorted in ascending order and are ranked accordingly. By 

thresholding on these scores, the binary category assignments are obtained. 

The decision rule in kNN is: 
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          (5.13) 

Where, 

is the similarity measure between the test document di and 

neighboring document xj. This is generally the cosine similarity. The rest of 

the variables are as defined in (12). 

As per this method the class with the maximum similarity is chosen as the 

class to which the test document will now belong. This definitely gives a better 

approximation as shown in the results in the next section. In the simple 

method discussed before the class of the top ranking category is assigned to 

the document but in that method the document belongs to only one category. 

Actually documents can belong to more than one category so depending on 

the similarity measures it can belong to more than one category.  

5.6 The Novel kNN 

Both the above methods work well when we assume that the number of 

documents in each class is equally distributed in the training sets. This may 

not be always true. If the number of training documents for some classes is 

much more than the rest then there are chances that these documents may 

get selected in the k nearest neighbors and the test document would 

automatically belong to the majority class instead of the actual class it belongs 

to. 

 To overcome this drawback I have designed an algorithm which I will now call 

‗The Novel kNN Algorithm‘. In this proposed algorithm the selection of k 

nearest documents has been normalized and the algorithm will follow the 

following steps: 

1. First select the n nearest neighbors from each class for the document 

di. The value of n should not be greater than the size of the smallest 

class. For e.g. the smallest training class contains 10 documents then 

n <= 10. 
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2. Sort these n nearest neighbors in descending order of the similarity - 

. 

3. Select now the top k documents from the list prepared in step 2. These 

are the final k nearest neighbors of document di now. 

4. Using (5.13), now find the class to which di is most similar to and would 

belong. 

 

Selecting the value of n is very important because we would not like to 

misclassify a document. This has been done by first splitting the training set 

into two – one to select the classes and apply the formula and other split to be 

experimented upon to check the validity of the algorithm. The implementation 

and results are displayed in section 5.11. 

This algorithm has been submitted for publication in an International Journal. 

5.7 Decision Trees 

This form of classification uses a decision tree algorithm for creating rules. 

Generally speaking, a decision tree is a method of deciding between two (or 

more, but usually two) choices. In document classification, the choices are 

"the document matches the training set" or "the document does not match the 

training set." 

A decision tree has a set of attributes (features) that can be tested. These can 

include: words from the document stems of words from the document (as an 

example, the stem of running is run) themes from the document (if themes are 

supported for the language in use) Decision trees are produced by algorithms 

that identify various ways of splitting a data set into branch-like segments. 

These segments form an inverted decision tree that originates with a root 

node at the top of the tree.  

The object of analysis is reflected in this root node as a simple, one-

dimensional display in the decision tree interface. The name of the field of 

data that is the object of analysis is usually displayed, along with the spread 

or distribution of the values that are contained in that field.  

For each leaf of the decision tree, the decision rule provides a unique path for 

data to enter the class that is defined as the leaf. All nodes, including the 



Chapter 5: Text Categorization 

 

81 

 

bottom leaf nodes, have mutually exclusive assignment rules; as a result, 

records or observations from the parent data set can be found in one node 

only. Once the decision rules have been determined, it is possible to use the 

rules to predict new node values based on new or unseen data. In predictive 

modeling, the decision rule yields the predicted value.  

A decision looks like the one shown in Figure 5.42 where the documents are 

to be classified for the category ‗Coffee‘. The rules are binary presence (P) or 

absence (A) of an attribute. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Decision tree 

 

The test at each node in the Figure 5.4 above is binary – which is not 

necessarily the case always. It is possible that each node i.e. feature value 

falls in different ranges and takes more than two paths. The feature at each 

node determines the order of the rules. 

To build a decision tree it is necessary to take care of the following criteria: 

 The most discriminating feature is at the root of the tree – this can be 

found by selecting the feature that can best discriminate and classify a 

document (any of the feature selection methods described before can 

be selected) 

                                                 
2
 Have referred to the book ‘Text Mining Application Programming’ by Manu Kochady for decision 

trees – algorithm and figure. 
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 Find the information gain and entropy for the selected feature – higher 

the entropy lower is the information gain. Features with low information 

gain would not generate a good tree 

 Select features which generally divide the documents in equal sizes 

 Once all the features have been evaluated for their information gain a 

decision tree can be constructed as per the algorithm given below. 

The following is a recursive algorithm (based on C4.5 algorithm) to generate a 

decision tree once all the training documents and the features involved are 

decided: 

1. If all documents in the set of passed documents belong to one 

category, then return that category. 

2. If there are no features with sufficient information gain for a branch 

decision, then return the most popular category among the documents 

3. Choose the feature with the highest information gain. 

a. Build a sub tree of documents with the positive values of the 

feature and remove that feature from the current list of features. 

b. Build a sub tree of documents with the negative values of the 

feature and remove that feature from the current list of features. 

c. Recursively, call this algorithm with the sub trees and new 

feature list from steps a and b. Do these till no more features 

remain. 

d. Add two branches to the current tree with positive and negative 

values of the feature. 

4. Return the tree 

The above algorithm is for a binary tree but it can be modified for a general 

tree. Generating a decision tree is complex and sometimes over fitting may 

occur. To avoid this, the tree is pruned i.e. the leaf nodes with the least 

probability of classification are removed. 

The measures used to decide the features are the I-Measure, Entropy and 

Information Gain. 
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5.8 Support Vector Machine (SVM) 

A support vector machine (SVM) is a concept in computer science for a set of 

related supervised learning methods that analyze data and recognize 

patterns, used for classification and regression analysis. The standard SVM 

takes a set of input data and predicts, for each given input, which of two 

possible classes the input is a member of, which makes the SVM a non-

probabilistic binary linear classifier. Given a set of training examples, each 

marked as belonging to one of two categories, an SVM training algorithm 

builds a model that assigns new examples into one category or the other. An 

SVM model is a representation of the examples as points in space, mapped 

so that the examples of the separate categories are divided by a clear gap 

that is as wide as possible. New examples are then mapped into that same 

space and predicted to belong to a category based on which side of the gap 

they fall on. 

Vapnik proposed SVMs in 1979, but they have only recently been gaining 

popularity in the learning community.  In its simplest linear form, an SVM is a 

hyperplane that separates a set of positive examples from a set of negative 

examples with maximum margin – see Figure 5.5. 

 

Figure 5.5 The linear SVM 

The simplest linear version of the SVM gives good classification accuracy, is 

fast to learn and fast for classifying new instances3. 

                                                 
3
 Detailed information about SVM is available from Vapnik, V., The Nature of Statistical Learning 

Theory, Springer-Verlag, 1995. 
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5.9 Dataset Description 

The Reuters-21578 collection has been used for the above methods and it is 

a very popular one for text categorization research and is publicly available at: 

http://www.research.att.com/~lewis/reuters21578.html.   

There are 12,902 stories that have been classified into 118 categories (e.g., 

corporate acquisitions, earnings, money market, grain, and interest).  The 

stories average about 200 words in length. There are different splits available 

but I have used the ModApte4 split in which 75% of the stories (9603 stories) 

are used to build classifiers and the remaining 25% (3299 stories) to test the 

accuracy of the resulting models in reproducing the manual category 

assignments.  The stories are split temporally, so the training items all occur 

before the test items.  The mean number of categories assigned to a story is 

1.2, but many stories are not assigned to any of the 118 categories, and some 

stories are assigned to 12 categories.  The number of stories in each category 

varied widely as well, ranging from ―earnings‖ which contains 3964 documents 

to ―castor-oil‖ which contains only one test document.  Table 5.3 shows the 

ten most frequent categories along with the number of training and test 

examples in each.  These 10 categories account for 75% of the training 

instances, with the remainder distributed among the other 108 categories. 

Table 5.45 gives the experimental results. 

  

 

 

 

 

 

 

 

 

                                                 
4
 Susan Dumais et al., “Inductive Learning Algorithms and Representations for Text Categorization 

“,Proceedings of the seventh international conference on Information and knowledge management, 
ISBN:1-58113-061-9 doi>10.1145/288627.288651 
5
 Ibid 



Chapter 5: Text Categorization 

 

85 

 

 

Table 5.3  Dataset Description – Training and Testing 

Category 
Training Set 

(total no. of docs) 
Testing Set 

(total no. of docs) 

Earn 2877 1087 

Acquisitions 1650 719 

Money-fx 538 179 

Grain 433 149 

Crude 389 189 

Trade 369 118 

Interest 347 131 

Ship 197 89 

Wheat 212 71 

Corn 182 56 

 

5.10 Implementation and result 

The first step was pre-processing the documents (training as well as testing 

datasets). This has been done using MatLab 7 and Visual Basic 6: 

1. Tokenizing 

2. Removing stop words 

3. Stemming (Porters Stemming) 

For the training datasets: 

1. Creating the vocabulary 

2. Finding the term counts – document-wise, whole collection-wise 

3. Creating a term by document matrix (one with term counts for 

multinomial, one with 0s and 1s for Bernoulli). The tf-idf matrix is also 

created. 

The pre-processed data is now used to implement the algorithms. The results 

are shown in the Table 5.4 and graphical representation in Figure 5.6 given 

below. The breakeven point is the value at which precision and recall are 

equal or the ratio of precision to recall. The Naïve Bayes in the Table 5.4 is 

the multinomial model.  
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The comparison graph6 of multinomial and Bernoulli for the same dataset but 

two categories interest and ship is shown in Figure 5.8. It is clearly visible that 

as the vocabulary size increases, the performance of Bernoulli model 

deteriorates. 

 

Table 5.4  The breakeven performance for all categories 

 Naïve Bayes (%) Decision Trees (%) Linear SVM (%) 

Earn 95.9 97.8 98.0 

Acquisitions 87.8 89.7 93.6 

Money-fx 56.6 66.2 74.5 

Grain 78.8 85.0 94.6 

Crude 79.5 85.0 88.9 

Trade 63.9 72.5 75.9 

Interest 64.9 67.1 77.7 

Ship 85.4 74.2 85.6 

Wheat 69.7 92.5 91.8 

Corn 65.3 91.8 90.3 

 

To compare these methods in the algorithms discussed, the comparative 

between the implementation by three researchers7 – Yang, Weiss and 

Joachims is given in Table 5.5 and graphically in Figure 5.7.  The dataset is 

the same and values of the breakeven points are for all sets together. As seen 

from the table  in  most  cases,  support  vector  machine  and  k  nearest  

neighbor  (kNN)  have  better output. 

 

 

 

 

 

 

 

 

 

 

 

                                                 
6
 Andrew Mc Callum et al., “A comparison of event models for Naïve Bayes Classification” 

7
 Shi Yong et al., “Comparison of Text Categorization Algorithm”,  Wuhan  University Journal of 

Natural Sciences  
Vol. 9  No. 5, 2004, pg.  798-804 



Chapter 5: Text Categorization 

 

87 

 

 

 

 

Figure 5.6 Comparison of the methods for all categories 

 

 

 

Table 5.5  Comparative details for the algorithms (Breakeven points) 

Researcher Naïve Bayes 
K  Nearest 
Neighbors 

SVM 

Yang 71.5 85.0 85.9 

Weiss 73.4 86.3 86.3 

Joachims 72.0 82.3 86.0 
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Figure 5.7 Comparison of the methods for three categories combined 

 

 

Figure 5.8 Comparison of Multinomial and Bernoulli models 
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5.11 The comparison between k-NN and Novel k-NN 

Using the same datasets but first by taking a subset of it and using the 

holdback method (some part of training datasets being used as testing 

datasets) and varying the value of k, the output and the breakeven point for 

both the methods are given in Table 5.6. The categories considered are only 

the top 5 categories. 

In case of the proposed algorithm – the Novel k-NN as already explained 

before, first the value of n is taken as input from the user which is value less 

than or equal to the size of the smallest class. After selecting n number of 

nearest neighbors from each class, they are sorted in descending order of 

their similarity and then the top k are selected. Though this method increases 

the number of iterations, the output is more accurate. As can be seen from the 

values, as k increases, the performance of Novel k-NN also improves as 

compared to the k-NN. 

Table 5.6 Comparison of k-NN and Novel k-NN 

 Breakeven Points 

Value of k k - Nearest Neighbors Novel k - Nearest Neighbors 

5 67.95 66.50 

10 68.50 67.45 

20 65.60 66.75 

30 63.54 66.90 

40 60.80 65.50 

50 59.25 64.20 

 

 

Figure 5.9 Comparison of k-NN and Novel k-NN 
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5.12 Future Enhancement  

There are basically two frontiers for further research and development in this 

field. The first and foremost challenge is delivering high accuracy in all 

applicative contexts. While highly effective classifiers have been produced for 

applicative domains such as the thematic classification of professionally 

authored texts (such as newswires), in other domains reported accuracies are 

far from satisfying. Such applicative contexts include the classification of Web 

pages, where the use of text is more varied and obeys rules different from 

those of linear verbal communication; spam filtering, a task that has an 

adversarial nature in that spammers adapt their spamming strategies to 

circumvent the latest spam filtering technologies; and authorship attribution, in 

which current technology is not yet able to tackle the inherent stylistic 

variability among texts written by the same author. Though these areas have 

their own methods of classification it is still not fully developed and exploited – 

the methods used are a combination of NLP, image processing, AI, etc. and 

not just text processing. 

A second important challenge is to bypass the document labeling bottleneck 

(i.e., labeling, or manually classifying, documents for use in the training phase 

is costly). To this end, semi-supervised methods have been proposed that 

allow building classifiers from a small sample of labeled documents and a 

usually larger sample of unlabeled documents (Nigam, McCallum, Thrun, & 

Mitchell, 2000). However, the problem of learning text classifiers mainly from 

unlabeled data is still open. 

Another area of research is Bayes Network. It differs from the Naïve Bayes in 

the basic naïve assumption of word independence that the conditional 

probability of a word given a category is assumed to be independent from the 

conditional probabilities of other words given that category. When this 

assumption is removed, comes the concept of Bayes Nets. BNs became 

extremely popular models in the last decade. They have been used for 

applications in various areas, such as machine learning, Text Mining, natural 

language processing, speech recognition, signal processing, bioinformatics, 

error-control codes, medical diagnosis, weather forecasting, and cellular 

networks. 
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Chapter 6: Text Summarization 
 

6.1 Introduction to Text Summarization 

Text Summarization is condensing the source text into a shorter version 

preserving its information content and overall meaning. It is very difficult for 

human beings to manually summarize large documents of text. The Internet 

normally provides more information than is needed. Therefore, a twofold 

problem is encountered: searching for relevant documents through an 

overwhelming number of documents available, and absorbing a large quantity 

of relevant information.  

The goal of automatic text summarization is condensing the source text into a 

shorter version. Summaries may be classified by any of the following criteria: 

 Detail: Indicative/informative 

 Granularity: specific events/overview 

 Technique: Extraction/Abstraction 

 Content: Generalized/Query-based 

 

Figure 6.1 A Summarization Machine                                                                     

An ideal summarization machine would look like the one shown in Figure 6.1. 

An indicative summary gives the main focus of the document and contains 

only a few lines whereas an informative summary is generally long and can be 
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read in place of the main document. The granularity decides the extent to 

which we want the summary to be broken into i.e. short, medium, detailed 

(specific event related or an overview) etc. 

When the summary is the result of a query asked it becomes a query related 

otherwise it is a general summary. Topic-oriented summaries focus on a 

user's topic of interest, and extract the information in the text that is related to 

the specified topic. On the other hand, generic summaries try to cover as 

much of the information content as possible, preserving the general topical 

organization of the original text. 

Text Summarization methods are more popularly classified into extractive and 

abstractive summarization. An extractive summarization method consists of 

selecting important sentences, paragraphs etc. from the original document 

and concatenating them into shorter form. The importance of sentences is 

decided based on statistical and linguistic features of sentences. An 

Abstractive summarization attempts to develop an understanding of the main 

concepts in a document and then express those concepts in clear natural 

language.  

Text Summarization can be divided into the following areas: 

 Selection based (tf-idf, ranking, etc.) 

 Understanding based (syntactic analysis, semantic analysis) 

 Information Extraction / Information Retrievel 

The selection methods are more popular than the understanding based as the 

latter are connected to the Natural Language Processing (NLP). The 

extractive methods are based on tf-idf (term frequency-inverse document 

frequency), cluster based methods, the Latent Semantic Analysis (LSA) which 

is based on singular value decomposition or concept based summarization 

which is based on the vector space model. There are other methods also 

which are based on graphs, neural networks, fuzzy logic, regression, etc.  

Some of the above mentioned topics have been discussed earlier in the 

classification and clustering section.  

The extraction based summarization methods studied are: 

 Single document summarization 

 Multi-document summarization 

 Topic models 
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As part of further research in the field of abstraction, I have developed an 

algorithm based on the semantics i.e. a part-of-speech (POS) tagger. It is 

called the ‗Multi-Liaison Algorithm‘ and it is explained in section 6.8. 

For all types of summarization techniques the pre-processing steps generally 

remain same as discussed before. However there is a slight difference in text 

summarization. The details are given below. 

6.2 Tokenization 

Though tokenization is required to find the term frequencies, we store the 

sentences of the document separately and the weights assigned are to the 

sentences also. In some cases the position of the sentences is very important 

because the term weights depend on the position of the sentences in which 

the terms occur i.e. the title, the first paragraph, the last paragraph etc. These 

positions are given more weightage. 

Removal of stop words and stemming remain the same.   

6.2.1 Sentence Scoring 

In extractive summarization it is important that from the document or set of 

documents we find out first which sentences are more important for the 

summary than the rest. This is possible only if some ranking / scoring is 

associated with them. There are four types of words which generally affect the 

sentence scores: 

1. Cue words: These are the indicative words of the document which give 

some hint or analysis of the content like ―summary‖, ―reflects‖, 

―conclusion‖, ―purpose‖ etc. These types of words are to be given more 

weightage.  

2. Content Words (keywords): These are generally the nouns in sentences. 

Generally sentences containing proper nouns are considered important. 

These can also be the words which are acronyms, capitalized or italicized.  

3. Title words: If a document has a title, generally the words in the title 

represent the main concept on which the document is based, so these 

words are important and are given extra weightage. 

4. Location: the location of the sentence is very important. The first line and 

the last paragraph are more or less very important for the summary. 
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The sentence scoring has been done as follows: 

Si = w1 * Ci + w2 * Ki + w3 * Ti + w4 * Li    (6.1) 

  

Where, 

Si – score of sentence i 

Ci – score of sentence i based on cue words 

Ki – score of sentence i based on keywords 

Ti – score of sentence i based on title words 

Li – score of sentence i based on  its location 

w1, w2, w3, w4 – are the weights assigned 

In short, for document summary, score of a sentence is dependent on the 

frequency of the words in that sentence, their related weightage as per the 

details given above and the sum of it.  

6.3 Single document summarization 

Whenever summarization is be done it is necessary to know to what length 

the main document should be summarized (size of summary as compared to 

size of the document). This is also known as the compression rate. For 

example a 10 sentence document when compressed by 10% results in a one 

line summary. 

Once each sentence is scored those sentences are ranked based on the 

descending order of their scores. Then depending on the compression rate 

the top sentences are selected as part of the summary. 

6.4 Multi-document summarization 

When summary is required from multiple documents, it is necessary that the 

documents are related to each other as far as the main content topics are 

concerned. In case we need to summarize multiple documents which are of 

mixed types, the first step is to applying text clustering on them so as to form 

clusters of same types of documents. Once these clusters are formed, for 

each cluster a separate summary can be generated. 

Since the individual summary is generated from multiple documents belonging 

to a cluster, there is always a possibility that similar sentences from different 
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documents selected and repeated in the final summary. To make sure that the 

inter-sentence similarity is low, the following formula can be applied: 

  

          (6.2)  

Where, 

i, j – the ith and jth sentences 

ti, tj – term frequencies of ith and jth sentences  

Depending on the similarity measures and compression ratio, top ranking but 

non-overlapping sentences are selected from multiple documents. The 

limitation in this method is the sequence in which the sentences from different 

documents would be displayed. This can be handled by noting the location of 

the selected sentences in its respective document (starting, middle, and end) 

and try to output each sentence as per its location.  

Purely extractive summaries often give better results compared to automatic 

abstractive summaries. This is due to the fact that the problems in abstractive 

summarization, such as semantic representation, inference and natural 

language generation, are relatively harder compared to a data-driven 

approach such as sentence extraction. In fact, truly abstractive summarization 

has not reached to a mature stage today. Existing abstractive summarizers 

often depend on an extractive preprocessing component. The output of the 

extractor is cut and pasted, or compressed to produce the abstract of the text. 

Limitations of Extractive Methods are:  

 Extracted sentences usually tend to be longer than average. Due to 

this, part of the segments that are not essential for summary also get 

included, consuming space.   

 Important or relevant information is usually spread across sentences, 

and extractive summaries cannot capture this (unless the summary is 

long enough to hold all those sentences).  

 Conflicting information may not be presented accurately. 
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6.5 Comparison of Text Summarization methods 

There are a number of different methods that have been developed for Text 

summarization and the base of these methods is either related to statistics, 

mathematics or NLP. A comparative is given in Table 6.1. 

 

Table 6.1 Comparison between Text Summarization methods 

Main concept of the 
method 

Working Method type 

Tf-idf based summary 

Based on simple heuristic features of the 
sentences: 

 Position in the text 
 The overall frequency of the words 

they contain 
 Key phrases indicating the 

importance of the sentences 
  A commonly used measure to 

assess the importance of the words 
in a sentence is the inverse 
document frequency 

Extractive Method 

Centroid-based 
summarization, a well-
known method for 
judging sentence 
centrality and then 
selecting the sentences 
 

The measures used are: 
 Degree 
 LexRank with threshold 
 Continuous LexRank inspired from 

the prestige concept in social 
networks. 

Extractive method 

Lexical chains  

 Basically lexical chains exploit the 
cohesion among an arbitrary 
number of related words  

 Lexical chains can be computed in a 
source document by grouping 
(chaining) sets of words that are 
semantically related 

 Identities, synonyms, and 
hypernyms / hyponyms (which 
together define a tree of ―is a‖ 
relations between words) are the 
relations among words that might 
cause them to be grouped into the 
same lexical chain. 

Abstractive 
method 

A graph based 
representation  

 A document cluster where vertices 
represent the sentences and edges 
are defined in terms of the similarity 
relation between pairs of sentences 

 This representation enables us to 
make use of several centrality 
heuristics defined on graphs 

A combination of 
Extractive and 
Abstractive 
methods 
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Maximum Marginal 
Relevance Multi 
Document (MMR-MD) 
summarization  
 

 (MMR-MD) summarization is a 
purely extractive summarization 
method that is based on Maximal 
Marginal Relevance concept 
proposed for information retrieval  

 It aims at having high relevance of 
the summary to the query or the 
document topic, while keeping 
redundancy in the summary low 

 It can accommodate a number of 
criteria for sentence selection such 
as content words, chronological 
order, query/topic similarity, anti-
redundancy and pronoun penalty 

Extractive Method 

Cluster based methods   
 

 Documents are usually written such 
that they address different topics 
one after the other in an organized 
manner 

 They are normally broken up 
explicitly or implicitly into sections 
i.e. themes  

 If the document collection for which 
summary is being produced is of 
totally different topics, document 
clustering becomes almost essential 
to generate a meaningful summary. 

 

Extractive Method 

Latent Semantic 
Indexing 

 This method uses the concept of the 
Singular Value Decomposition 
(SVD) 

 The process starts with the creation 
of a terms by sentences matrix 

 After applying the SVD as discussed 
before, the sentences with the 
highest index i.e. best sentences 
describing the salient topics of the 
text are selected 

Extractive Method 

 

The above is not an exhaustive list of methods but covers the most popular 

and commonly used ones. Variants of the above methods are also available.  

Some very good Text Summarization tools have been developed. They are: 

 

MEAD 

MEAD is a publicly available toolkit for multi-lingual summarization and 

evaluation. The toolkit implements multiple summarization algorithms (at 

arbitrary compression rates) such as position-based, Centroid, TF*IDF, and 

query-based methods. Methods for evaluating the quality of the summaries 
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include co-selection (precision/recall, kappa, and relative utility) and content-

based measures (cosine, word overlap, bigram overlap). 

MEAD v1.0 and v2.0 were developed at the University of Michigan in 2000 

and early 2001. MEAD v3.01 – v3.06 were written in the summer of 2001, an 

eight-week summer workshop on Text Summarization was held at Johns 

Hopkins University. More details are available at: 

 http://www.clsp.jhu.edu/ws2001/groups/asmd. 

 

SUMMARIST  

This tool provides the abstracts and the extracts for English, Indonesian, 

Arabic, Spanish, Japanese etc. documents. It combines the symbolic world 

knowledge i.e. dictionaries like the WordNet and other lexicons as well as 

robust NLP processing techniques to generate the summaries. SUMMARIST 

is based on the following equation: 

Summarization = topic identification + interpretation + generation 

This tool is developed by the Natural Language Group at the University of 

Southern California. 

 

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) 

ROUGE is a set of metrics and a software package used for evaluating 

automatic summarization and machine translation software in natural 

language processing. The metrics compare an automatically produced 

summary or translation against a reference or a set of references (human-

produced) summary or translation. Lin and Hovy‘s designed this package. For 

the inception of ROUGE, please refer Lin & Hovy's HLT-NAACL 2003 (Lin and 

Hovy 2003) paper. 

 

SUMMONS 

McKeown and Radev (1995) presented a system called SUMMONS which 

summarizes related news articles. The SUMMONS is a genre specific system 

which operates in the terrorist domain. The goal of the system is to generate 

fluent, variable–length summaries. SUMMONS is based on traditional 

language generation architecture and has two main modules for doing content 

planning and linguistic operations. The content planner consists of paragraph 
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planner and combiner. The linguistic component is made up of a lexical 

chooser, ontologizer and a sentence generator. 

6.6 Sample Output of Text Summarizer 

A sample output of the MEAD summarizer is given below. The input are three 

text files, the summary generated is compressed by first 10% and then 25%. 

File1 is of 1319, File2 of 1307 and File3 of1067 characters. Though the 

system is for Dutch, its gives a good output for English language. 

Input to the summarizer were three files: 

 

TEXT 1 

I have assessed Ami in the lab assignments where I found that she has the 

potential of a very good programmer. She was also effectively involved in 

organizing university level technical event ―Dwianki‖ where I was mentor for 

the same. I observed that she had the quality to work independently as well 

as in a group with equal ease. Her dedication to work for the best is 

substantiated by her excellent grades in all the courses I have handled. 

Considering her overall academic distinctions and achievements, I place her 

among top 5 % of the students associated with me in recent years. I am 

happy to see that she has decided to take her education to a higher level by 

pursuing a Masters degree at your Graduate School. She is a person with 

pleasing demeanor and has good communication skills. She always had the 

passion to learn new things and I am sure that she will continue to explore 

new horizons with the same zeal. I am confident that she will not only 

continue to be a promising and competitive student but would also be capable 

of efficiently discharging her roles as research / graduate assistant. I strongly 

recommend her for higher studies with deserving financial assistance. I feel 

that her academic proficiency and potential for research make her one of the 

truly outstanding candidates I have come across.  

TEXT 2 

In my course of interaction with him I have come to know Deepal as an 

exceptionally sincere and assiduous student. He has good understanding of 

theoretical aspects on one hand and its application to practical problems on 
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other hand. His lab work is consistent and he has performed exceedingly well 

in all his university lab examinations. This confirmed his capability of grasping 

the core concepts of the subjects and clear understanding of the basic 

principles. Deepal has mature personality and his attitude towards peer is co-

operative and congenial. I have seen him produce very good results on 

complex projects that required great attention to details without compromising 

on the quality. ' Sparsh - Multi-touch Interaction System ' , final year project 

consisted of real time video processing and developing application to take the 

advantage of multi-touch sensing , which awarded Best project in two National 

level competitions . His keen analytic mind , systematic work habits , 

determination to pursue any chosen assignment to a successful conclusion 

provide an excellent blend of qualities required for successful pursuit of a 

graduate program . I am confident that given an opportunity, he will excel in 

his field of study. I therefore strongly recommend him for admission in your 

esteemed institution.  

TEXT 3 

As an Associate Professor of the Computer Science Department of The M S 

University, I can describe he has very good logical ability and intuitive thinking 

which makes him a very talented student. Moreover, he focuses more on 

conceptual learning and has the habit of thinking out of the box. He has 

excellent communication skills and always solves the problems assigned to 

him with a systematic and analytic approach. His diligence and dedication 

complement his good qualities. The quality I like the most about Nishant is 

that he is extremely humble and down to earth. He is an innovative thinker 

and is really good at writing. He has a good grasping power and his approach 

towards his work is always positive. He always has the attitude of learning 

from his mistakes. Apart from his studies, he actively participated in 

extracurricular activities and was the Training and Placement Coordinator of 

his batch. He was responsible for the campus recruitment of the Computer 

Science Department. Moreover, he always displayed good team spirit and 

was very supportive.  
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Output summary: (25%) 

[1] I have assessed Ami in the lab assignments where I found that she 

has the potential of a very good programmer.  

[2] I am happy to see that she has decided to take her education to a 

higher level by pursuing a Masters degree at your Graduate School.  

[3]  She always had the passion to learn new things and I am sure that 

she will continue to explore new horizons with the same zeal.  

[4]  In my course of interaction with him I have come to know Deepal as 

an exceptionally sincere and assiduous student.  

[5] He has good understanding of theoretical aspects on one hand and its 

application to practical problems on other hand.  

[6] As an Associate Professor of the Computer Science Department of 

The M S University , I can describe he has very good logical ability and 

intuitive thinking which makes him a very talented student .  

[7] Moreover, he focuses more on conceptual learning and has the habit 

of thinking out of the box.  

[8] He has excellent communication skills and always solves the problems 

assigned to him with a systematic and analytic approach.  

Output summary: (10%) 

[1]  I have assessed Ami in the lab assignments where I found that she 

has the potential of a very good programmer.  

[2]  In my course of interaction with him I have come to know Deepal as an 

exceptionally sincere and assiduous student.  

[3]  As an Associate Professor of the Computer Science Department of 

The M S University , I can describe he has very good logical ability and 

intuitive thinking which makes him a very talented student .  

[4]  He has excellent communication skills and always solves the problems 

assigned to him with a systematic and analytic approach.  

The screen shots are given below: 
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Figure 6.2 Screen shots of MEAD Summarizer 
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6.7 Topic Model 

6.7.1 Introduction to Topic Model  

A topic model is a type of statistical model for discovering the abstract "topics" 

that occur in a collection of documents. An early topic model was probabilistic 

latent semantic indexing (PLSI), created by Thomas Hofmann in 1999. Latent 

Dirichlet allocation (LDA) is perhaps the most common topic model currently 

in use. The topic model is a statistical language model that relates words and 

documents through topics. It is based on idea that documents are made up of 

a mixture of topics, where topics are distributions over words. The Table 6.2 

contains the conceptual comparison of various topic models. 

With the increasing availability of other large, heterogeneous data collections, 

topic models have been adapted to model data from fields as diverse as 

computer vision, finance, bioinformatics, cognitive science, music, and the 

social sciences. While the underlying models are often extremely similar, 

these communities use topic models in different ways in order to achieve 

different goals. 

Table 6.2 Conceptual comparison of various topic models 

Model Name Advantages Disadvantages 

Latent 
Semantic 
Analysis (LSA) 

+ significant compression over    
   simple tf-idf representation 
+ Original high-dimensional vectors       

are sparse but the corresponding 
low-dimensional latent vectors will 
not be sparse, makes it possible to 
compute meaningful association 
between pairs of doc even no 
common term 

+  can capture some aspects of basic 
linguistic notion such as polysemy 
and synonymy. 

- Not  capable of handling dynamic 
document collection 

 - No generative model 
 - No statistical standard methods 
 - Output is not interpretable 

k-means 
(cluster-
model/mixture 
of unigrams) 

+posses fully generative semantics - document is considered to fall    
   in a single cluster i.e. topic 
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Probabilistic 
Latent 
Semantic 
Analysis 
(pLSA) 

+ consider the document to be made 
up of more than one topic  

-No probabilistic model at the doc 
level (i.e. no generative model-how 
the document can be generated) 
which leads to very serious problem 
of : number of parameters grows 
linearly with the size of corpus. 

- How to assign the probability to 
document outside the training set is 
not defined. 

- No assumption about how the 
mixture weight θ is generated. 

Latent Dirichlet 
Allocation 
(LDA)  

+ provides a proper generative model 
+ robust and versatile 
+ domain knowledge is not required 
+ as an unsupervised learning 

technique, human-intensive task of 
finding labeled examples for training 
set is completely eliminated. 

-although, time and space 
complexity grows linearly with the 
number of documents, 
computations are only practical for 
modest-sized collections of up to 
hundreds of thousands of 
documents. 

            

I have studied the topic model which is also a part of Text Mining in general 

and text summarization in particular. An approach called the Gibbs Sampling, 

a Markov Chain Monte Carlo method, is highly attractive because it is simple, 

fast and has very few adjustable parameters.  

As part of the research, I have tried to derive a scalable algorithm which leads 

to reduction in the space complexity of the original Gibbs sampling for topic 

model. The concept used to reduce the space complexity is partitioning the 

dataset into smaller sets and then executing the algorithm for each partition. 

This reduces the space requirement without any impact on the time 

complexity. The enhanced Gibbs sampling algorithm has been implemented 

and experimented on four different datasets. 

This work has been published in ‘International Journal of Computer 

Information Systems’ by Silicon Valley Publishers (UK), ISSN: 2229-

5208, October 2011 issue and is available at: 

 http://www.svpublishers.co.uk/#/ijcis-oct-2011/4557969965. Before actually 

implementing the algorithm it was necessary to understand the LDA, the 

Gibbs Sampling and then propose a new approach. The step-wise and 

precise study and implementation is as given in the next section. 

6.7.2 Latent Dirichlet Allocation 

Latent Dirichlet allocation (LDA) is a generative probabilistic model of a 

corpus. The basic idea is that documents are represented as random mixtures 
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over latent topics, where each topic is characterized by a distribution over 

words. The graphical model representation of LDA is shown in Figure 6.3. 

 

Figure 6.3 Graphical model representation of LDA 

LDA assumes the following generative process for each document w in a 

corpus D: 

1. Choose N ~ Poisson( ). 

2. Choose ~ Dir(α). 

3. For each of the N words wn: 

(a) Choose a topic zn ~ Multinomial(θ). 

(b) Choose a word wn from p(wn │zn, β), a multinomial  

            probability conditioned on the topic zn. 

There are three levels to the LDA representation. The parameters and their 

significance are:  

1. α and β are corpus level and are sampled once in the process of 

generating a corpus. 

2. θ is document-level variable, sampled once per document. 

3. z and w are word-level variables and are sampled once for each word in 

each document. 

To compute the posterior distribution of the hidden nodes for a given document 

i.e. the inference to implement the LDA is given by: 

                       (6.3) 

 

The distribution is difficult to be estimated because of the denominator which is 

a normalizing constant. 
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The key idea behind the LDA model for text data is to assume that the words 

in each document were generated by a mixture of topics, where a topic is 

represented as a multinomial probability distribution over words. 

The mixing coefficients for each document and the word topic distributions are 

unobserved (hidden) and are learned from data using unsupervised learning 

methods. Blei et al. introduced the LDA model within a general Bayesian 

framework and developed a variational algorithm for learning the model from 

data. Griffiths and Steyvers subsequently proposed a learning algorithm based 

on collapsed Gibbs sampling. Both the variational and Gibbs sampling 

approaches have their advantages: the variational approach is arguably faster 

computationally, but the Gibbs sampling approach is in principal more accurate 

since it asymptotically approaches the correct distribution. 

6.7.3 Gibbs Sampling 

Introduction 

Gibbs sampling is an example of a Markov chain Monte Carlo algorithm. The 

algorithm is named after the physicist J. W. Gibbs, in reference to an analogy 

between the sampling algorithm and statistical physics. The algorithm was 

described by brothers Stuart and Donald Geman in 1984, some eight decades 

after the passing of Gibbs. As mentioned before Griffiths and Steyvers 

proposed the collapsed Gibbs sampling.  

 

The Smoothed LDA 

Before discussing Gibbs sampling it is necessary to understand how the LDA 

is smoothed1 because of the problem with the original one. One problem that 

might arise with the original LDA model as shown in Figure 6.3 is that, the new 

document outside of training set is likely to contain words that did not appear in 

any of the documents in a training corpus, and zero probability would be 

assigned such words. To cope with the situation, the ‗smoothed‘ model is 

shown in Figure 6.4. The strategy used is, not to estimate the model 

parameters explicitly, but instead considering the posterior distribution over the 

assignments of words to topics, P (z|w). The estimates of θ and Ф are then 

                                                 
1
 The detailed explanation of the smoothed LDA and the equations in given in the bibliography – [43] 

to [54]. 
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obtained by examining this posterior distribution. Evaluating P (z|w) requires 

solving a problem that has been studied in detail in Bayesian statistics and 

statistical physics, computing a probability distribution over a large discrete 

space. 

Here, α and β are hyper parameters, specifying the nature of the priors on θ 

and Ф. Although these hyper parameters could be vector-valued, for the 

purposes of this model we assume symmetric Dirichlet priors, with α and β 

each having a single value. These priors are conjugate to the multinomial 

distributions θ and Ф, allowing us to compute the joint distribution P (w, z) by 

integrating out θ and Ф.  

 

 

Figure 6.4 Graphical model representation of smoothed LDA 

6.7.4 The Gibbs Algorithm for LDA 

After applying a number of steps to the equation 6.3, the conditional 

distribution as mentioned by Griffiths et al.2 is: 

       (6.4)  

 

The different terminology used in the equation 6.4 is given in Tab. 6.3.  

 

                                                 
2
 The detailed derivation of the formula is in the work by Griffiths, T.L., and Steyvers, M., “Finding 

Scientific Topics”, National Academy of  Sciences, 101 (suppl. 1) 5228–5235, 2004.([45], [46]). 
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Table 6.3 Terms and their meanings for equation 6.4 

Term Meaning 

 Number of instances of word w 

assigned to topic t, not including 

current one 

 Total number of words assigned to 

topic t, not including current one 

 Number of words assigned to topic t 

in document d, not including current 

one 

 Total number of words in document d 

not including current one 

 

Having obtained the full conditional distribution, the Gibbs Sampling algorithm 

is then straightforward. The zn variables are initialized to values in {1, 2 . . . T}, 

determining the initial state of the Markov chain. The chain is then run for a 

number of iterations, each time finding a new state by sampling each zn from 

the distribution specified by the equation 6.4. After enough iterations for the 

chain to approach the target distribution, the samples are taken after an 

appropriate lag to ensure that their autocorrelation is low. The algorithm is 

presented in Figure 6.5.  

With a set of samples from the posterior distribution P(z | w), statistics that are 

independent of the content of individual topics can be computed by integrating 

across the full set of samples. For any single sample we can estimate Ф and θ 

from the value z by: 

       (6.5)  

 

       (6.6) 

These values correspond to the predictive distributions over new words w and 

new topics z conditioned on w and z. The algorithm for Gibbs sampling LDA is 
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shown in Figure 6.5. The dimensions required in this algorithm are shown in 

Tab. 6.4 and the details of the arrays required are shown in Tab. 6.5. 

 

Table 6.4 Dimensions required in Gibbs Algorithm 

Parameter Description 

D  Number of documents in corpus 

W  Number of words in vocabulary 

N  Total number of words in corpus 

T  Number of topics 

ITER  Number of iterations of Gibbs 

sampler 

 

Table 6.5 Arrays used in Gibbs Algorithm 

Array Description 

wid(N) Word ID of n
th

 word 

did(N) Document ID of n
th

 word 

z(N) Topic assignment to n
th

 word 

Cwt(W,T) Count of word w in topic t 

Ctd(T,D) Count of topic t in document d 

Ct(T) Count of topic t 
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Figure 6.5 Gibbs Sampling Algorithm for LDA 

 

6.7.5 Analysis of Gibbs Algorithm 

The time and space complexity of the Gibbs sampling algorithm as shown in 

Figure 6.5 is: 

Time Complexity ~ O ( ITER * N* T )  

Space Complexity ~ O ( 3 N + ( D + W) T) 

To understand the limitations of the existing algorithm, consider a million-

document corpus with the following size parameters:  

D =106 

W=104 

N=109 

Input:  document-word index, vocabulary-word index, vocabulary, parameters value. 

Output: topic wise word distribution 

Procedure: as described below. 

  //initialization of Markov chain initial state  

 for all words of the corpus n Є [1, N] do 

 sample topic index z (n) ~ Mult (1/T) 

 // increment the count variables 

           Cwt(wid(n),t) ++ , Ctd(t,did(n))++, Ct(t) ++ ; 

 end for 

 // run the chain over the burn-in period, and check for the  

 // convergence. Generally for fixed number of iterations and then 

 // take the samples at appropriate lag. 

 for iteration i Є [1, ITER] do 

 for all words of the corpus n Є [1, N] do 

topic = z(n) 

// decrement all the count variables, as not to  

// include the current assignment 

Cwt(wid(n),t) -- , Ctd(t,did(n))--, Ct(t) -- ; 

 for each topic t Є [1, T] do 

      P(t) = (Cwt(wid(n),t)+β)(Ctd(t,did(n))+α ) /  

                (Ct(t)+W β)) 

 end for  

 sample topic t from P(t) 

 z(i) = t 

 // increment all the count variables to consider  

                  //this new topic  assignment 

Cwt(wid(n),t) ++ , Ctd(t,did(n))++, Ct(t) ++ ; 

 end for 

  end for 
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For this corpus, it would be reasonable to run with T = 103 topics and ITER = 

103 iterations. Using the space complexity equation as given above, the 

required memory would be, 

(3* 109+ (106 +104) 103 ) = 4 Giga Bytes 

This memory requirement is beyond most desktop computers and this makes 

Gibbs sampled topic model computation impractical for many purposes. As 

observed from the space complexity equation, the memory requirement 

increases because of N – the total number of words in a corpus which is 

getting multiplied three times.  

To reduce this space complexity problem, I have proposed the Enhanced 

Gibbs sampling algorithm. 

6.8 The Enhanced Gibbs sampling algorithm 

To reduce the space requirement of the original Gibbs algorithm, I have 

applied the concept of partitioning the word set N and then executing the 

algorithm instead of loading the whole word set in a single run. With this we 

can achieve the reduction in space requirement as the size of N now reduces 

without any impact on the time complexity.  

After each run on a partition the result is stored in separate variables and 

there is absolutely no need to merge the results of each partition. The 

variables are treated as global variables for all partitions. 

Suppose we consider three partitions of the original word set N. The space 

complexity becomes: 

Space Complexity ~ O (3 * N / P + (D + W) T) 

Where P is total number of partitions, 

                               ~ O (3 * N  / 3+ (D + W) T)  

                       ~ O (N + (D + W) T)   

The space requirement reduces considerably.  Meanwhile the time complexity 

becomes: 

Time Complexity ~ O ( ITER * N / P * T * P) 

                              ~ O ( ITER * N* T ) 

The time complexity does not change since the algorithm is executed as 

many times as the number of partitions but for a smaller word set each time.  
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 The proposed algorithm 

The enhanced algorithm would require the following steps for execution: 

 Read each document, perform tokenization, remove stop words, and 

apply case folding. 

 Generate document-word matrix. 

 Generate the vocabulary of the unique words in the collection. 

 From the document-word matrix, generate the sparse arrays containing 

the vocabulary index and document index of each word. 

 Apply the Enhanced Gibbs Sampling algorithm to extract the topic from 

the collection. 

 Output the result. 

The algorithm is as shown in Figure 6.6.  
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Figure 6.6  The Enhanced Gibbs Sampling Algorithm 

6.8.1 Implementation of the Enhanced Gibbs Sampling Algorithm 

This algorithm was implemented and tested on four datasets by varying the 

parameter values. It was implemented using MATLAB 7.0.1. 

Input:  document-word index, vocabulary-word index, vocabulary, parameters 

value. 

Output: topic wise word distribution 

 

Procedure: as described below 

 

  //initialization of Markov chain initial state  

 

  for all partition p Є [1, P] do 

for all words of the current partition p,  n Є [1, N/P] do 

 sample topic index z(n) ~ Mult(1/T) 

 // increment the count variables 

Cwt(wid(n),t) ++ , Ctd(t,did(n))++, Ct(t) ++ ; 

 

end for 

  end for 

 

 // run the chain over the burn-in period, and check for the convergence.  

// Generally for the fixed number of iteration and then take the samples at  

  // appropriate lag. 

 

 for all partition p Є [1, P] do 

     for iteration i Є [1, ITER] do 

           for all words of the current partition p, n Є [1, N/P] do 

      topic = z (n) 

 

     // decrement all the count variables, as not to include the   

                 // current assignment 

             

   Cwt(wid(n),t) -- , Ctd(t,did(n))--, Ct(t) -- ; 

             for each topic t Є [1, T] do 

                  P(t) = (Cwt(wid(n),t) + β)(Ctd(t,did(n)) + α ) /  

                                              (Ct(t) + W β)) 

 end for  

  

sample topic t from P(t) 

z(i) = t 

 

 // increment all the count variables to consider this new  

                  // topic assignment 

Cwt(wid(n),t) ++ , Ctd(t,did(n))++, Ct(t) ++ ; 

           end for 

    end for 

end for 
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The Datasets 

To extract the topics we require a text dataset that is rich in different topics. 

There are large number of textual datasets available which can be most 

suitable for this type of implementation such as news articles, emails, 

literature, research papers and abstracts, technical reports. The datasets that 

we used were: 

1. The Cite Seer collection of scientific literature abstracts 

2. The NIPS dataset of research papers 

3. The Times Magazine articles 

4. The Tehelka Magazine articles 

The result after the preprocessing is completed on the four datasets is shown 

in Tab.6.6. This output is now used for the next step i.e. applying the 

Enhanced Gibbs sampling algorithm with different partitions.  

Table 6.6 Output after pre-processing 

Parameter 
Values 

Cite Seer NIPS 
Times 
Magazine 

Tehelka 
Magazine 

No. of Total 
Words(N) 

8320 51515 29601 17184 

No. Unique 
Words(W) 

683 1485 3820 1772 

No.  of 
Documents (D) 

474 90 420 125 

Time Taken in 
Seconds 

120.656 661.532 410.359 244.86 

 

6.8.2 Output and Comparison of the Enhanced Algorithm 

This is the second phase i.e. applying both the Gibbs sampling and the 

Enhanced Gibbs sampling algorithms once the preprocessing is completed. A 

number of successive iterations are made through the topic assignment done 

by random sampling over the dataset. The proposed method does the same 

but instead of in a single step over the whole dataset, the dataset is divided 

into successive partitions and the algorithm is applied for each partition.  

The output of both the algorithms with their comparisons is shown in Tab. 6.7 

and Tab. 6.8. The algorithms were implemented on all the datasets with 

varying parameter values. I have displayed only two outputs related to the 

Cite Seer dataset in this section. Each dataset displayed similar results and 
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there was a considerable reduction in the space complexity when the 

Enhanced Gibbs sampling was used. 

 

Table 6.7 Output and comparison of both algorithms 

Name of 
Arrays 
required by 
the 
algorithm 

Original Algorithm Proposed Algorithm 

No Partition Partition = 2 

 Size Bytes Size Bytes 

ct (1,T) 1  x 30 240 1  x 30 240 

ctd (T,D) 30x474 113760 30x474 113760 

cwt (W,T) 683x30 163920 683x30 163920 

did (1, N) 1x 8320 66560 1 x 4160 33280 

wid (1, N) 1x 8320 66560 1 x 4160 33280 

z (1, N) 1x 8320 66560 1 x 4160 33280 

Total Bytes 477600 377760 

Time 
Taken 
(secs) 

36.438 36.063 

 

In Tab. 6.7 the values for the parameters are: T = 30, ITER = 1000, α = 1.0 

and β = .01 whereas in Tab. 6.8 the result with varying parameter values and 

partition values is displayed. 

 

Table 6.8 Summary of comparison of both algorithms 

 

 

 

 

 

 

 

 

 

As can be seen from the observations shown, space complexity reduces 

significantly whereas the time complexity reduces marginally.  

Parameters  T = 30 
ITER = 1000 
α = 1 
β = 0.01 

T = 10 
ITER = 1000 
α = 0.05 
β = 0.01 

 Time 
(sec) 

Space 
(Bytes) 

Time 
(sec) 

Space 
(Bytes) 

No Partition 36.438 477600 20.516 292320 

Partition = 2 36.063 377760 20.344 192480 

Partition = 3 35.734 344488 20.078 159208 

Partition = 4 35.64 327840 20.094 142560 
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6.8.3 Conclusion and future enhancements of Topic Model 

The topic model is a statistical language model that relates words and 

documents through topics. It is based on the idea that documents are made 

up of a mixture of topics, where topics are distributions over words. Gibbs 

sampling for implementing LDA has been a very popular model for topic 

models as compared to alternative methods such as variational Bayes and 

expectation propagation. Gibbs Sampling, a Markov Chain Monte Carlo 

method, is highly attractive because it is simple, fast and has very few 

adjustable parameters. 

While the time and space complexity of the topic model scales linearly with 

the number of documents in a collection, computations are only practical for 

modest-sized collections of up to hundreds of thousands of documents. In this 

paper we have proposed an enhanced Gibbs sampled topic model algorithm 

which scales better than the original as the space complexity gets 

considerably reduced. 

There are number of extensions possible with the topic models, such as 

author-topic models, author-role-topic models, topic models for images, 

hidden Markov topic models. Parallel topic models are also an emerging area 

of interest. The future work will be concentrating on any such extension of the 

topic model. 

6.9 The Multi-Liaison Algorithm 

6.9.1 Introduction of the proposed algorithm 

The Multi-Liaison algorithm is useful for extracting multiple connections or 

links between subject and object from natural language input (English), which 

can have one or more than one subject, predicate and object.  The parse tree 

visualization and the dependencies generated from the Stanford Parser are 

used to extract this information from the given sentence. Using the 

dependencies I have generated an output which displays which subject is 

related to which object and the connecting predicate. Finding the subjects and 

objects helps in determining the entities involved and the predicates 

determine the relationship that exists between the subject and the object. The 
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subjects can either be nouns or even pronouns. Moreover, one subject can be 

related to multiple objects and vice-versa.  

I have named this algorithm ‗The Multi-Liaison Algorithm‘ since the liaison 

between the subjects and objects would be displayed. The word ‗liaison‘ has 

been used since the relationship and association between the subjects and 

predicates are displayed. This output would be useful for natural language 

processing (NLP), information retrieval, information extraction and also 

abstractive text summarization.  

This algorithm has been published in the ‗International Journal of 

Advanced Computer Science and Applications (IJACSA)’ by The Science 

and Information (SAI) Organization, ISSN: 2156-5570 (Online) & ISSN: 2158-

107X (Print), Volume 2 Issue 5, 2011. It is available online at: 

 http://thesai.org/Publication/Archives/Volume2No5.aspx. 

6.9.2 The Stanford Parser 

The Stanford Parser is a probabilistic parser which uses the knowledge of 

language gained from hand-parsed sentences to try to produce the most likely 

analysis of new sentences. This package is a Java implementation of 

probabilistic natural language parsers.  

The Stanford dependencies provide a representation of grammatical relations 

between words in a sentence for any user who wants to extract textual 

relationships. The dependency obtained from Stanford parser can be mapped 

directly to graphical representation in which words in a sentence are nodes in 

graph and grammatical relationships are edge labels. This has been used to 

extract the relation between multiple subjects and objects when the sentence 

to be parsed is a little complicated. Stanford dependencies (SD) are triplets: 

name of the relation, governor and dependent. 

6.9.3 The Parse Tree and Dependencies 

The parse tree generated by the Stanford Parser is represented by three 

divisions: A sentence (S) having a noun phrase (NP), a verbal phrase (VP) 

and the full stop (.). The root of the tree is S.  

The Stanford typed dependencies representation was designed to provide a 

simple description of the grammatical relationships in a sentence that can 
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easily be understood. The current representation contains approximately 52 

grammatical relations. The dependencies are all binary relations. The 

definitions make use of the Penn Treebank part-of-speech (POS) tags and 

phrasal labels. 

To find the multiple subjects in a sentence our algorithm searches the NP sub 

tree. The predicate is found in the VP sub tree and the objects are found in 

three different sub trees, all siblings of the VP sub tree containing the 

predicate. The sub trees are: PP (prepositional phrase), NP (noun phrase) 

and ADJP (adjective phrase). 

6.9.4 The Multi-Liaison Algorithm details 

To execute this algorithm, first we start with parsing a sentence by the 

Stanford parser and storing the result in some intermediate file so that it can 

be taken as input for this algorithm. The triplet extraction algorithm3 has also 

been considered before finding the liaisons. 

The application was written in JAVA using Net Beans IDE 6.5 RC2. It parsed 

a single sentence of 12 words in 8.35 seconds and displayed the output as 

shown in the examples below. This algorithm works equally well with simple 

as well as complex sentences and the output is very clear and precise. 

As shown in Figure 6.7, the Multi-Liaison Algorithm takes as input the POS of 

each word, the parse tree and the typed dependencies [9]. Two functions are 

then called, the first is the GET_TRIPLETS and the second is the 

GET_RELATIONSHIP.  

 

 

 

 

 

 

 

 

                                                 
3
 Delia Rusu, Lorand Dali, Blaz Fortuna, Marko Grobelnik, Dunja Mladenic, “Triplet extraction from 

sentences” in Artificial Intelligence Laboratory, Jožef Stefan Institute, Slovenia, Nov. 7, 2008. 
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Figure 6.7 The Multi-Liaison Algorithm 

 

As shown in Figure 6.8, the GET_TRIPLETS function takes as input the 

Stanford Parse Tree and by considering the nodes under the NP sub tree and 

the VP sub tree, finds all the subjects, objects and predicates. 

The GET_RELATIONSHIP finds and displays the relationships between the 

subjects and objects. The algorithm is displayed in Figure 6.9. 

 

 

 

 

 

 

 

 

 
Function: CONVERT_ SENTENCE (Input_Str)  
Returns: POS tagging, Parse tree, Typed Dependencies 
Input_Str: Sentence to be parsed 
 
[Run the Stanford parser with Input_Str as input] 
 
Output_Str   i)  POS of each word 
                        ii) The parse tree generated  
                        iii) The typed dependencies 
Return Output_Str 
 
Function: MULTI_LIAISON (Output_Str) 
Returns: Multiple liaisons or error message 
   Function GET_TRIPLETS (Output_Str)  
               Function GET_RELATIONSHIP (Output_Str)  
Display the multiple liaisons  
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Figure 6.8 The GET_TRIPLETS Function 

 

 

 

 

Function: GET_TRIPLET (Output_Str) 
Returns: Multiple subjects, objects and predicates    
[Read level 1 of Parse Tree – refer Figure 2] 
If tree contains ‗NP‘ or ‗NNP‘ then  
          Function GET_SUBJECT (NP sub tree) 
Else  
          Return error message 
 
If tree contains ‗VP‘ then 
         Function GET_PREDICATE (VP sub tree) 
         Function GET_OBJECT (VP sub tree) 
Else  
         Return error message 
 
Function: GET_SUBJECT (NP sub tree) 
Returns: Subject(s) and adjective(s) 
For (all nodes of NP sub tree) do  
      If NP sub tree contains ‗NN‘ or ‗NNP‘ or ‗NNS‘ then 
       Store POS as a subject 
      If NP sub tree contains ‗JJ‘ then  
        Store POS as an adjective 
Return the subject(s) and adjective(s) 
 
Function: GET_PREDICATE (VP sub tree) 
Returns: Predicate(s) 
For (all nodes of VP sub tree) do 
      If VP sub tree contains ‗VB?‘ then 
        Store POS as a predicate 
      Else  

Return error message 
Return the predicate(s) 
 
Function: GET_OBJECT (VP sub tree) 
Returns: Object(s) 
For (all nodes of VP sub tree) do 
      If VP sub tree contains ‗NP‘ then 
          For (all nodes of VP_NP sub tree) do 
                   If VP_NP sub tree contains ‗NP‘ or ‗NN‘ then 
               Store POS as an object 
                        Else  
                              Return error message 
      Else 
              Return error message 
Return the object(s) 
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Figure 6.9 The GET_RELATIONSHIP Function 

6.9.5 Output of the Multi-Liaison Algorithm 

As per the algorithm discussed above, the output is shown below. In the first 

example, the outputs of the Stanford parse as well as the output of the Multi-

Liaison both are displayed including the parse tree. In subsequent examples 

the parse tree is not displayed but the tagging, dependencies and the Multi-

Liaison output is displayed. Figure 6.10 displays the parse tree. 

 

 

 

 

 

 

 

 

 

 

 

Function: GET_RELATIONSHIP (Output_Str) 
Returns: Multiple liaisons / relations  
[Read the Stanford typed dependencies from Output_Str] 
For (all terms in typed dependencies) do  
      If typed dependencies contain ‗NSUBJ‘ then 
         Store both words of NSUBJ as S1 and S2 
         For each value of subject from GET_SUBJECT do  
        If subject matches S2 then   
                [Check for predicates] 

    For each value of predicate from  
    GET_PREDICATE do 

                   If predicate matches S1 then     
            [Concatenate subject and predicate as  
                               R1]  
           Store R1 in the relation       
     If typed dependencies contain ‗DOBJ‘ or ‗PREP‘ then 
         Store both the words as D1 and D2 
         For each value of object in GET_OBJECT do  
        If object matches D2 then   
               Store value of object in the relation as R2  
Return R1+R2 
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Figure 6.10 The Stanford Parse Tree 

 

 

 

 

 

 

 

 

 

 



Chapter 6: Text Summarization 

 

123 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 Example 1 

Example 1: The old beggar ran after the rich man who was wearing a black coat 
The Stanford Parser output: 
Tagging: 
The/DT old/JJ beggar/NN ran/VBD after/IN the/DT rich/JJ man/NN who/WP was/VBD 
wearing/VBG a/DT black/JJ coat/NN 
 
Parse Tree: 
(ROOT 
  (S 
    (NP (DT The) (JJ old) (NN beggar)) 
    (VP (VBD ran) 
      (PP (IN after) 
        (NP 
          (NP (DT the) (JJ rich) (NN man)) 
          (SBAR 
            (WHNP (WP who)) 
            (S 
              (VP (VBD was) 
                (VP (VBG wearing) 
                  (NP (DT a) (JJ black) (NN coat))))))))))) 
 
Typed Dependencies: 
det(beggar-3, The-1) 
amod(beggar-3, old-2) 
nsubj(ran-4, beggar-3) 
det(man-8, the-6) 
amod(man-8, rich-7) 
prep_after(ran-4, man-8) 
nsubj(wearing-11, man-8) 
aux(wearing-11, was-10) 
rcmod(man-8, wearing-11) 
det(coat-14, a-12) 
amod(coat-14, black-13) 
dobj(wearing-11, coat-14) 
 
The Multi-Liaison Output: 
Subject: 1 
NN beggar    
Predicate: 3 
VBD ran   
VBD was   
VBG wearing   
Object: 2 
NN man   JJ rich   
NN coat  JJ black   
 
Relationship: 
beggar - ran  - man 
man - wearing  - coat  
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As shown above, the Multi-Liaison Algorithm displays the relationship 

between the subject and object (beggar and man) as well as the relationship 

between the two objects (man and coat). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 Example 2 

 

 

 

 

 

 

 

  

Figure 6.12 Example 2 

 

 

 

 

 

 

 

 

 

Example 2: The dog and the cat ran after the mouse and the mongoose 
 
Tagging: 
The/DT dog/NN and/CC the/DT cat/NN ran/VBD after/IN the/DT mouse/NN and/CC 
the/DT mongoose/NN 
 
Typed Dependencies: 
det(dog-2, The-1) 
nsubj(ran-6, dog-2) 
det(cat-5, the-4) 
conj_and(dog-2, cat-5) 
nsubj(ran-6, cat-5) 
det(mouse-9, the-8) 
prep_after(ran-6, mouse-9) 
det(mongoose-12, the-11) 
prep_after(ran-6, mongoose-12) 
conj_and(mouse-9, mongoose-12) 
 
The Multi-Liaison Output: 
Subject: 2 
NN dog    
NN cat    
Predicate: 1 
VBD ran   
Object: 2 
NN mouse    
NN mongoose  
 
Relationship: 
dog - ran – mouse -  mongoose 
cat - ran - mouse -  mongoose 
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Figure 6.13 Example 3 

 

All the three examples shown in the figures above have different number of 

subjects and objects and the relationship between them is also not similar. 

The Multi-Liaison Algorithm output in this way can be very useful for Text 

Mining applications where a variety of sentences are to be mined. 

 

 

 

Example 3: Jack and I visited the zoo with our children 
 
I have also considered pronoun as a subject and therefore have got the relationship with 
2 subjects in terms of noun and pronoun.  
 
Tagging: 
Jack/NNP and/CC I/PRP visited/VBD the/DT zoo/NN with/IN our/PRP$ children/NNS 
 
Typed Dependencies: 
nsubj(visited-4, Jack-1) 
conj_and(Jack-1, I-3) 
nsubj(visited-4, I-3) 
det(zoo-6, the-5) 
dobj(visited-4, zoo-6) 
poss(children-9, our-8) 
prep_with(visited-4, children-9) 
 
The Multi-Liaison Output: 
Subject: 2 
NNP Jack   
PRP I 
Predicate: 1 
VBD visited   
Object: 2 
NN zoo     
NNS children   
PRP$ our   
 
Relationship: 
Jack - visited - zoo - children 
I - visited - zoo - children 
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6.9.6 Conclusion and future enhancements 

The proposed algorithm which displays the relationships between subjects 

and objects in sentences where there are multiple subjects and objects. The 

Stanford parser output was used to generate this result. 

This algorithm would be usable not only by Text Mining experts and 

computational linguists but also by the computer science community more 

generally and by all sorts of professionals like biologists, medical researchers, 

political scientists, business and market analysts, etc. In fact it would be easy 

for users not necessarily versed in linguistics to see how to use and to get 

value from the simple relationship that is displayed so effectively. 



 

127 

 

Chapter 7: Future Enhancements 
 

The enhancements in Text Mining have already been discussed in the related 

chapters. However one article1 interested me as it is very much related to 

what exactly Text Mining is supposed to do. 

During a series of hearings, the U.S. Senate Select Committee on Intelligence 

showed that prior to September 11, 2001, the American intelligence 

community had collected a significant amount of data about the men who 

attacked the World Trade Center and the Pentagon. The various intelligence 

agencies were simply unable to connect the dots. In his report, Richard C. 

Shelby, then vice chairman of the committee, stressed that agencies need 

powerful new tools to analyze the huge volumes of information they bring in. 

Text-mining software is one of the front-line tools that the government is now 

using to tease out valuable connections. These specialized search engines 

can quickly sift through mountains of unstructured text—anything that's not 

carefully arranged in a database or spreadsheet—and pull out the meaningful 

stuff. They can infer relationships within data that are not stated explicitly. It is 

something we do all the time automatically but is enormously complicated for 

computers. "We bridge the gap between information and action," says Barak 

Pridor, CEO of ClearForest, a text-mining company. 

The result of years of research at facilities such as Bell Labs and the Palo Alto 

Research Center, Text Mining applications have long been used in business. 

But more government agencies, including the Defense Intelligence Agency, 

the Department of Homeland Security, and the FBI, are using them to 

evaluate the multitude of e-mail messages, phone call transcripts, memos, 

foreign news stories, and other pieces of intelligence data these agencies 

collect each day. 

Software from companies such as Autonomy, ClearForest, and Inxight 

Software can locate words and phrases the same way an ordinary search 

engine does. But that's just the beginning. Such applications are clever 

enough to run conceptual searches, locating, say, all the phone numbers and 

                                                 
1
 http://www.pcmag.com/article2/, Cade Metz, ‘Uncovering telltale patterns’ 
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place names buried in a collection of intelligence communiqués. More 

impressive, the software can identify relationships, patterns, and trends 

involving words, phrases, numbers, and other data. 

Using statistical and mathematical analysis, the programs can sift through 

thousands of documents and determine how certain words relate to each 

other. If a news story says that "Zacarias Moussaoui was a follower of the 

Islamic cleric Abu Qatada while living in London," a Text Mining application 

can identify Moussaoui and Qatada as people, identify London as a place, 

and determine the relationship among the three. 

In theory, a human analyst could pick up those connections easily, but 

manually sifting through the enormous volumes of information is often 

impractical. Fortunately, Text Mining applications can deal with these and 

other similar functions. 
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Summary 
 

The enormous amount of information stored in unstructured texts cannot 

simply be used for further processing by computer, which typically handles 

text as simple sequences of character strings. Therefore, specific processing 

methods and algorithms are required in order to extract useful patterns. Text 

Mining refers generally to the process of extracting interesting information and 

knowledge from unstructured text. Text Mining represents a significant step 

forward from text retrieval. It is a relatively new and vibrant research area that 

is changing the emphasis in text-based information technologies from low 

level ‗retrieval‘ and ‗extraction‘ to higher level ‗analysis‘ and ‗exploration‘ 

capabilities. Given the large amount of data available today in the form of text, 

tools that automatically find interesting relationships, hypothesis or ideas, or 

assist the user in finding these would be extremely useful and current 

research area. 

In this thesis, the work on Text Mining has been divided in three main sections 

– Text Clustering, Text Classification and Text Summarization. The Text Pre-

processing and Text Transformation which are the preliminary steps before 

actually a Text Mining algorithm can be implemented have been discussed 

first. A comparative between the different stemming algorithms has been 

discussed in detail. 

 In subsequent sections the three broad applications mentioned above and 

their related algorithms and methods which are currently popular have been 

discussed.  

Text Clustering is the unsupervised method of Text Mining of gathering or 

dividing related documents in such a way that documents within cluster are 

similar to each other whereas the documents across clusters are different. 

The algorithms discussed are the K-Means, the DBSCAN and the SNN. A 

new algorithm ‗SNNAE‘ has been proposed and its implementation details 

and comparative between the others is also given.  

Text Classification or Text Categorization is the supervised method of Text 

Mining where we have a training class of documents which have pre-defined 
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classes associated with them and using these training documents, classifiers 

are modeled or learned so that they can be applied on the new documents 

which have not been pre-classified i.e. the testing class of documents. In this 

section the Naïve Bayes (Two variants), kNN, decision trees and support 

vector machines are discussed. Their comparatives are also given. A new 

method based on kNN – ‗The Novel kNN‘ has been designed and 

implemented.  

Text Summarization deals with producing a synopsis / summary of a single 

document or set of documents. It deals with abstractive and extractive 

methods. In this section apart from discussing what is already available, two 

innovative algorithms have been designed. One is related to the topic model – 

a probabilistic model that automatically learns the topics contained in a set of 

documents. The method developed is based on the Latent Dirichlet Allocation 

which is used to find the latent semantic structure that is topics in the case of 

text collections. The method applied is the Gibbs sampling – a kind of Markov 

Chain Monte Carlo Method. The proposed algorithm is the ‗Enhanced Gibbs 

Sampling‘. Another algorithm related to part-of-speech (POS) tagger - ‗The 

Multi-Liaison Algorithm‘ has been designed which can be useful in text 

summarization when the semantics are also to be studied. This can be part of 

natural language processing as well as Text Mining application. 

All the related algorithms mentioned above have been published in either 

International Journals or International Conference Proceedings.  

With today‘s need to handle and process collections that are orders of 

magnitude much larger, scalable and parallel Text Mining methods are 

required. A lot of work has been going and in this field and a lot more remains 

to be done. 
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Appendix A 
 

The stop words list is available on the site of the Onix Text Retrievel Tookit 

and the site is:  http://www.lextek.com/manuals/onix/stopwords1.html. This 

stopword list is probably the most widely used stopword list. It covers a wide 

number of stopwords without getting too aggressive and including too many 

words which a user might search upon. This wordlist contains 429 words. 

 http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-

list/english.stop - is another site where stopwords are available. 

 

a about above across after again against all 

almost alone along already also although always among 

an and another any anybody anyone anything anywhere 

are area areas around as ask asked asking 

asks at away      

back backed backing backs be became because become 

become
s 

been before began behind being beings best 

better between big both but by   

came can cannot case cases certain certainly clear 

clearly come could      

did differ different differentl
y 

do does done down 

down downed downing downs during    

each early either end ended ending ends enough 

even evenly ever every everybod
y 

everyone everythin
g 

everywher
e 

face faces fact facts far felt few find 

finds first for four from full fully further 

furthere
d 

furtherin
g 

furthers      

gave general generall
y 

get gets give given gives 

go going good goods got great greater greatest 

group grouped grouping groups     

had has have having he her here herself 

high high high higher highest him himself his 

how however       

i if importan
t 

in interest intereste
d 

interestin
g 

interests 

into is it its itself    

just        

keep keeps kind knew know known knows  

large largely last later latest least less let 

lets like likely long longer longest   

made make making man many may me member 

member
s 

men might more most mostly mr mrs 

much must my myself     
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necessary need needed needing needs never new new 

newer newest next no nobody non noone not 

nothing now nowhere number number
s 

   

of off often old older oldest on once 

one only open opened opening opens or order 

ordered ordering orders other others our out over 

part parted parting parts per perhaps place places 

point pointed pointing points possible present presente
d 

presentin
g 

presents problem problem
s 

put puts    

quite        

rather really right right room rooms   

said same saw say says second seconds see 

seem seemed seeming seems sees several shall she 

should show showed showin
g 

shows side sides since 

small smaller smallest so some somebod
y 

someone somethin
g 

somewher
e 

state states still still such sure  

take taken than that the their them then 

there therefor
e 

these they thing things think thinks 

this those though thought thought
s 

three through thus 

to today together too took toward turn turned 

turning turns two      

under until up upon us use used uses 

very        

want wanted wanting wants was way ways we 

well wells went were what when where whether 

which while who whole whose why will with 

within without work worked working works would  

year years yet you young younger youngest your 

yours        
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Appendix B 
 

Some popular Text Mining tools available: 

 

Product Name Pre-

processing 

Clustering Categorizing Summarizing API 

Commercial 

Clearforest √ √  √  

Copernic 

Summarizer √   √  

dt Search √   √  

Insightful Infact √ √ √ √ √ 

Inxight √ √ √ √ √ 

SPSS Clementine √ √ √ √  

SAS Text Miner √ √ √ √  

TEMIS √ √ √ √  

WordStat √ √ √ √  

Open Source 

GATE √ √ √ √ √ 

RapidMiner √ √ √ √ √ 

Weka / WEA √ √ √ √ √ 

R / tm √ √ √ √ √ 
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Publications 
 

International Level: 

Sr. 
No. 

Name of Journal/Organization 
Year of 

Publication 
Title of Paper 

1 

 
International Journal of Computer 
Technology and Applications (IJCTA) - 
Volume 2 Issue 6/ November - 
December 2011/ pg. 1930-1938, 
ISSN:2229-6093. 
http://ijcta.com/vol2issue6.php 

2011 
A Comparative Study of 
Stemming Algorithms 

2 

 
International Journal of Computer 
Information Systems by Silicon Valley 
Publishers (UK), ISSN: 2229-5208, 
October 2011 issue and is available at 
http://www.svpublishers.co.uk/#/ijcis-oct-
2011/4557969965. 

2011 
The Enhanced Gibbs Sampling 
for Topic Model 

3 

 
International Journal of Advanced 
Computer Science and Applications 
(ISSN: 2156-5570) 
Vol. 2, No. 5 (2011), p. 130--134. 
http://thesai.org/Publication/Archives/Vol
ume2No5.aspx 

2011 The Multi-Liaison Algorithm 

4 

 
IEEE Computer Society & 
World Research Organization (CSIE09) 
ISBN 978-0-7695-3507-4/08, 
DOI 10.1109/CSIE2009.997, 
Pg. 436 
BMS Number CFP0960F-CDR 
http://www.computer.org/portal/web/csdl
/doi/10.1109/CSIE.2009.997 

2009 
The Shared Nearest Neighbor 
Algorithm with Enclosures 
(SNNAE) 

5 

 
Macmillan Publisher, Institute Of 
Mangement Technology, Ghaziabad. 
ISBN 0230-63469-9 
Pg. 221 

2008 

 
Discovering Communication 
Threads In Emails Using A 
Conceptual Clustering 
Approach 

6 

 
INCRUIS 2006 – International 
Conference on Resource Utilization, 
Kongu Engineering College, Tamil 
Nadu.  
ISBN 81-7764-940-x, Pg. 916 

 
2006 

Fuzzy Clustering for The 
Student Resource Utilization 
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 National Level: 

 

Sr. 
No. 

Name of Journal/Organization 
Year of 

Publication 
Title of Paper 

1 
 

SPCTS, DAIICT & IEEE 2007 

 
An Approach Towards The 
SNN Clustering Algorithm 
 
(Awarded 2nd Prize) 

2 
 
Tele Tech 2005 National Seminar on 
Applied Computing Tech., IETE, Rajkot. 

 
2005 

 
Ontology Mining for Virtual 
Reality 

3 
 
Business Information Management 
Conference, IMT Ghaziabad. 

 
2005 

 
Data Quality - A Stepping 
Stone in Business 
Intelligence 

4 
 
Business Information Management 
Conference,IMT Ghaziabad 

 
2005 

 
Text Data Mining for 
Knowledge Discovery in 
Business Intelligence 

5 

 
National Conference on Information & 
Communication Technology - 2005, 
Technology Today, Ahmedabad. 

 
2005 

 
Knowledge Discovery - 
Using Grids 

6 

 
National Conference on Information & 
Communication Technology - 2005, 
Technolgy Today, Ahmedabad. 

 
2005 

 
Ontology Clustering -An 
Insight 

7 
 
Gyanodaya : Next Generation IT, 
Gyanganga Institute , Jabalpur. 

 
2005. 

 

 
Datamining - The Metadata 

8 
 
Embedded Systems And Emerging 
Trends, IETE, Vadodara. 

 
2005 

 
An Approach Towards 
Embedded Databases 

9 

 
National Level Technical Paper 
Presentation Competion, S.V.Institute, 
Kadi & Amoghsiddhi Edu. Society, 
Sangli 

 
2005 

 
A Study of Contemporary 
Databases 
 

10 

 
National Level Technical Paper 
Presentation Competition , S.V.Institute, 
Kadi & Amoghsiddhi Edu. Society, 
Sangli  
 

 
2005 

 
An Insight to Data Mining 
and Data Warehousing 
 
(Awarded First Prize) 
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