
Chapter 6

Robust State-Feedback Control of

Electric Spring: Linear Matrix

Inequality Approach of Linear

Quadratic Regulator Design

6.1 Introduction

A PI controller can not cater effectively to the dynamism considered in the system of

ES, as it may not satisfactorily comply with the demand of larger bandwidth, robust-

ness, higher gain, and phase margin. Further, the results of the Cascaded-PI controller

showed a considerable improvement in the voltage regulating capabilities, as presented in

Chapter:4 due to the control of one additional state of the system. The improved results

have led us to think about implementing the state feedback control and having a check

on each and every state of the system.

The literature on the control of V SC has witnessed methods employing H2-H∞ [116],

μ-synthesis and many more modern control techniques, which happen to be better than a

PI controller but arduous and quite involving as far as their design and implementation

are concerned.

Surprisingly, Robust and optimal control have not been presented in any available lit-

erature on the ES. Robust control is one such area of control that considers non-linearity

and parametric uncertainties of the model. The controller needs excellent robustness to
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counter the impact of variations in the system’s parameters and the variation in the grid’s

impedance, as presented in the Sec:2.6 of Chapter:2; while controlling the ES. Further,

the DC bus voltage may vary due to variation in the load and the state of the battery’s

charge.

State-space model and hence state feedback control has been proven to be the more

effective and comprehensive control strategy as that compared to the conventional or

classical control system [117][118][119] which is being designed and implemented using

only single variable feedback through transfer function approach. State feedback control

alone cannot eliminate steady-state errors. An integrator is required in conjunction with

state feedback to achieve zero steady-state error. Proper design of the closed-loop state

feedback controller, possessing an integrator, can offer stability to the converter connected

to a weak grid also. Classical control theory has provided the founding basis for the

output feedback closed-loop control, wherein modern control has provided the impetus to

the regime of complete state feedback control, by taking into account all the states of a

given system as feedback.

Different control strategies such as deadbeat control, the classical controller being

designed using pole placement technique [120], linear quadratic regulator (LQR) being

designed using Ackerman’s formula or by solving the algebraic Riccati equation, could

be used for the controller design of a grid-connected inverter. Realizing the deadbeat

control could be achieved by placing all the poles at the origin but is subjected to the

variation in switching frequency, leading to complications in the filter design, and further

its controller design. Method of pole placement using bode plot and Nyquist plot could

be used. Further, the design of PI or proportional resonant (PR) controller has proven

to be simple and straightforward, but the controller is so designed will be operating with

non-optimal control effort.

This chapter’s prime objective is to design a state feedback controller using the linear

quadratic regulator. The state feedback controller’s gain matrix is to be designed opti-

mally by using the numerical convex optimization method of linear matrix inequalities

(LMIs), with an assumption that all the system states are observable.
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6.2 Precursers of the Optimal Control of Electric Spring

using Linear Quadratic Regulator

The Linear Quadratic Regulator (LQR) [95] [121] is an approach of control that can pro-

vide robustness to the control, based on the selection of weighted cost functions of the

states and the inputs. LQR can provide Phase Margin, (P.M.)> 70o and more significant

Gain Margin (G.M.), which is much anticipated for efficient control and greater band-

width, which further leads to robustness against parametric excursions. Conventionally,

these cost functions can be derived by solving the Algebraic Riccati Equation (ARE).

The use of any arbitrary weights leads stable system, but the derived solution will be

non-optimal, and such a non-optimal controller may be asking for extra control effort or

maybe non-robust. The preceding discussion has driven us to go for optimal LQR design

for the robust control of ES. Various controllers have already been introduced in Section:

4.1 and its relative merits and demerits.

Optimization carried out using heuristic or meta-heuristic methods needs much effort

in terms of its exact modeling, training of the model, and framing up the constraints and

prove to be worth these efforts where the model is of larger order. Ours is a system where

the order of the system never exceeds the 5th order, and hence numerical optimization

techniques prove more efficient and accurate.

The considered model (2.7) of the ES in Chapter:2, is a multiple-input-single-output

(MISO) system, wherein the variable grid voltage (vg) is acting as a second (disturbance)

input. The disturbance in vg has not been taken into account in the modeling of ES

and its PI controller’s design, in almost all the prior publications on ES (to reduce

the complexity in controller design, but with compromised robustness). State-feedback

control of ES, using the algebraic method of convex optimization for deriving optimally

weighted cost functions of LQR with an integrator (LQI), has been proposed in this

chapter by solving Linear Matrix Inequalities (LMIs) [73].

6.3 Model intricate of the System of Electric Spring

System of ES (Fig: 2.14) comprises of a load, bifurcated into critical and non-critical

one, and a V SC (acting as an ES) connected in series with the non-critical load, which

further has been connected to the distribution grid through a connecting cable (exhibited
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by impedance) and this combination is collectively responsible for maintaining the voltage

across the critical load, with its parametric values represented in Table. 2.1. This model,

as presented in Sec:2.4.2 of Chapter:2, has numerous uncertainties (mentioned in Sec:2.4.1

of Chapter:2).

Some six such polytopes, due to considered variation in the critical load only i.e.,

Rc1, Rc2, Rc1-L,Rc2-L,Rc1-C,Rc2-C, keeping Lg = 0.5+ j0.0942 Ω and Rnc = 2.2 Ω fixed,

could be derived correspondingly as:

A1 =

⎡
⎢⎢⎣
−0.1894e5 −1.6667e5 1.2500e5

500 0 0

−2459 0 −7049

⎤
⎥⎥⎦ , A2 =

⎡
⎢⎢⎣
−3193 −1.667e5 1.596e5

500 0 0

−3193 0 −8691

⎤
⎥⎥⎦ ,

A3 =

⎡
⎢⎢⎢⎢⎢⎣
−479 54.44 0 119.8

−1.667e5 0 −1.667e5 1.667e5

0 500 0 0

7333 −3333 0 −9000

⎤
⎥⎥⎥⎥⎥⎦ , A4 =

⎡
⎢⎢⎢⎢⎢⎣
−2842 54.44 0 119.8

−1.667e5 0 −1.667e5 1.667e5

0 500 0 0

7333 −3333 0 −9000

⎤
⎥⎥⎥⎥⎥⎦ ,

A5 =

⎡
⎢⎢⎢⎢⎢⎣

−206.2 206.2 0 453.7

1.894e4 −1.894e4 −1.667e5 1.25e5

0 500 0 0

−833.3− 2500 0 −7167

⎤
⎥⎥⎥⎥⎥⎦ ,

A6 =

⎡
⎢⎢⎢⎢⎢⎣
−34.77 34.77 0 76.49

3193 −3193 −1.667e5 1.596e5

0 500 0 0

−140.5 −3193 0 −8691

⎤
⎥⎥⎥⎥⎥⎦ ,

B1 = B2 = B3 = B4 = B5 = B6 =

⎡
⎢⎢⎣

0 0

500 0

0 3279

⎤
⎥⎥⎦ ,

C1 =
[
0.75 0 1.65

]
, C2 =

[
0.9579 0 2.107

]
, C3 = C4 =

[
−2.2 1 0 2.2

]
,

C5 =
[
0.25 0.75 0 1.65

]
, C6 =

[
0.04215 0.9579 0 2.107

]
(6.1)

Incorporating all the parametric changes (mentioned in Sec:2.4.1 and using the pa-

rameters given in Table:2.1) and deriving the model of the system, makes it a complex
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system to be analyzed, for the reason that it turns out to be a polytopic model [68] with

26 vertices (a version of the polytopic model with limited uncertainties having six vertices,

has been presented in (6.1)), and the solution of the same could be figured out iteratively

using Linear Programming approach [69] which is cumbersome and time causing. This

could be made simpler by transforming such polytopic model into a monotopic model,

using certain feasible assumptions, and deriving the controller through Semidefinite Pro-

gramming (using LMIs [73][68]) approach using the concept of modern, robust control.

The same is presented in the upcoming sections.

The polytopic model (6.1) has been transformed into a monotopic model, by consid-

ering the following assumptions:

• The worst-case critical load of the model with the smallest possible order of the

system is considered to reduce the controller design effort.

• Highest possible non-critical load is to be considered, to present the worst-case

scenario.

• Moderate grid impedance Zg is to be considered.

• Best possible DC-bus voltage is to be considered to reduce the effort of the controller.

Considering all these assumptions and taking into account the parameters prescribed

in the Table:6.1, for deriving the model of the system which could further be used for the

controller design.

Table 6.1: Parameters of the Considered Model

Parameters Nomenclature

Dc Bus Voltage Vdc 750V

Filter Inductance Lf 2mH

Filter Capacitance Cf 6 μF

Impedance of the Cable Zg 0.5 + j0.095Ω

Grid Voltage vg 276V

Critical Load Rc 6.6 Ω

Non-Critical Load Rnc 2.2 Ω
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The model so derived is represented by A1, B1, C1 (one of the monotope of Eqiaton:

6.1). This model has been considered for the controller design, and from this point onward,

it is considered the system’s model.

6.3.1 State Feedback Control of Electric Spring

Figure 6.1: Schema of State Feedback controlled ES, using LQI controller.

State feedback control (SFC), if used alone for the control of system of ES (inner

loop shown in the rectangle), leads to non-zero steady-state error. To achieve zero steady-

state error, an integrator has been proposed. The system possessing a SFC controller,

being incorporated with an integrator, can be seen in Figure. 6.1. The introduction of an

integrator adds an additional state (xi), and the same can be represented as,

xi =

∫
(vref(τ)− vcr(τ)dτ) (6.2)

u(t) = −K.xo(t) = −(F.x(t) +G.xi(t)), is the control law governing SFC,with

K = [F G], is SFC matrix (6.3)

where,

xo(t) = [x(t) xi(t)]
T , augmented state matrix

F and G, are Gains of LQR and Integrator, respectively

K, gain matrix of LQI Controller,

r(t) = vref(max).φ, reference voltage with (vref(max) = 230×√2 V) and

φ = sin(ωt+ δ), signal available from E-PLL.
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Using A1, B1 and C1 of (6.1) and considering (6.2), the resulting augmented state-space

model turns out as,[
˙x(t)

˙xi(t)

]
=

[
A 0

−C 0

][
x(t)

xi(t)

]
+

[
B

0

]
U(t) +

[
0

I

]
r(t),

yo =
[
C 0

] [x(t)
xi(t)

]

˙xo(t) =
−
A.xo(t) +

−
B.U ′o(t)

yo =
−
C.xo(t)

(6.4)

Where, subscript ”o” represents augmented system model, I- the identity matrix and

U ′o(t) = [U(t) r(t)]T , and the updated A,B,C parameters of the augmented model are,

−
A =

⎡
⎢⎢⎢⎢⎢⎣
−1.89e4 −1.67e5 1.25e5 0

500 0 0 0

−2459 0 −7049 0

−0.75 0 −1.65 0

⎤
⎥⎥⎥⎥⎥⎦ ;

−
B =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0

500 0 0

0 3279 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎦ ;

−
C =

[
0.75 0 1.65 0

]
(6.5)

6.4 Design of Optimal Linear Quadratic Regulator

for State-Feedback Control

This work resorts to the state feedback controller (static one) design (assuming that all

the states are measurable) for stability, regulation, and robustness to control the ES for

the ultimate desired performance specifications. The augmented system’s model (6.5)

has failed to satisfy the norm of controllability, which has been negotiated by using the

fragmented controller’s gain (K) into two parts (F and G), for the controller design.

Design of gain pertaining to state feedback (F ) has been carried out through optimization

of LQR, using A1, B1 and C1 of (6.1), and another part i.e., integrator (G) using pole

placement method.

For a controllable MIMO system, there happens to be non-unique controller gain

matrix K for which control law is governed by,

u(t) = −F.x(t) (6.6)
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Where, Fm×n, is the state feedback gain matrix.

Optimization transforms the solution of F , from non-unique to a unique solution such

that the desired pre-set value of vcr is achieved within the shortest possible time that too

with the slightest control effort, in the presence of transients and load variation. The

cyclic approach [122] has been considered for simplifying the system’s model that is to be

used for the LQR design.

6.4.1 Cyclic Design

The cyclic design transforms a multi-input system into a single-input type by creating a

new input, which happens to be the linear combination of multiple inputs of the system,

{A,B,C,D}. Cyclicity of a matrix A can be investigated by the condition of association

of unique/distinct eigenvalue associated with each Jordon block of A. Steps for carrying

out the cyclic design are explained as follows:

• Check for the controllability of system having n-state and p-input pair {A,B}, using
rank of controllability matrix Co (= [B AB A2B . . . An−1B]), which

must be equal to rank of the system.

• if A is cyclic, then for almost any p × 1 random vector v, the single-input pair

{A,B.v} is controllable. v should be as small as possible to restrict the control cost

to a smallest possible value.

• Check for the controllability of the modified pair {A,B.v}, if not so, repeat the

same by changing v.

• The modified system {A,B.v, C,D} with the modified input is given by

u(t) = v.u′(t) = −v.k.x(t) and F = −v.k

These steps have been followed in redefining the model, to get it converted into a SISO

system, to be used in LQR design.

Considererig the random value v = [0.6991 0.8909]T , and applying the above men-

tioned steps of cyclic transformation, the modified SISO model has been derived as:
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A =

⎡
⎢⎢⎣
−1.894e4 −1.042e4 1.562e4

8000 −1.183 −0.3036
−1.967e4 −3.263 −7051

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0

−27.84
71.63

⎤
⎥⎥⎦ ,

C =
[
192 0 52.8

]
, D = 0

(6.7)

6.4.2 Optimal Linear Quadratic Regulator

Optimal LQR controller, for the given state feedback u (6.6), can be designed by mini-

mizing the cost function J (by penalizing the state and input behavior simultaneously),

which can be represented as,

Jmin =

∫ ∞

0

(xTQx+ uTRu)dt (6.8)

Where,

xTQx is state cost, and uTRu is the control cost, with corresponding weigh-

tage/penalties represented by Qn×n and Rm×m, for a given stabilizable pair (An×n, Bn×m)

and detectable pair (Q,A).

Solution of this optimization problem can be determined by evaluating P for,

ATP + PA− PBR−1BTP +Q < 0 (6.9)

Here,

P (= P T ) > 0, is Lyapunov variable. Q(= QT ) > 0 and R > 0 are the inequalities,

that justifies (6.9).

Equation (6.9) is called the Continuous-time Algebraic Riccati equation (in the form

of a strict inequality). Any arbitrary value of Q and R does not guarantee the optimal

controller gain matrix F . The inequality (6.9) could be implemented in the form of Linear

Matrix Inequalities (LMIs) for finding out the optimal value of F . The LMIs have been

detailed in the following subsection.

6.4.3 LQR Design using Linear Matrix Inequalities

LMIs are matrix inequalities, linear or affine, for a given set of matrix variables. They

are essentially meant to be used with convex constraints. An LMI, in the canonical form
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is presented as,

L(x) = L0 +
m∑
i=1

Lixi > 0 (6.10)

Where,

L0 . . .Lm are symmetrical matrices of the form Li = LT
i , and x = (xi . . .xm) represents

the vector of decision variables. L(x) is positive definite and is an affine function of x.

LMIs presentation in this form is inefficient from the storage viewpoint and is detrimental

to the LMI solver, and hence it is presented in the structured form e.g., Lyapunov

inequality (6.11).

Lyapunov Inequality, whose satisfactory fulfillment signifies asymptotic stability of a

relaxed system (ẋ = Ax), is a LMI and is represented as,

ATP + PA < 0 for P > 0, (6.11)

Our aim, in a feedback control system with u = −Fx (having F = R−1BTP ), is to

determine F ∈ �mxn such that all the eigenvalues A− BF ∈ �nxn, lies in the left half of

the s-plane. Inequality (6.11) in closed loop can be represented as,

(A− BF )TP + P (A−BF ) < 0

P−1[ATP − F TBTP + PA− PBF ]P−1 < 0

P−1AT − P−1F TBT + AP−1 −BFP−1 < 0 (6.12)

The inequality (6.12) is non-linear in nature and can be linearized, by the method of

change of variables as, Q = P−1; ∀ Q > 0 and further Y = FQ; ∀ Y > 0. Using these

newly introduced variables, (6.12) can be transformed into,

QAT + AQ− Y TBT − BY < 0 (6.13)

Solving (6.13) for Q and Y using any of the iterative approach of Linear Programming,

and back substituting the values of Q and Y , yields P and hence F . Change of variable

and back substitution is computationally involving and may not give ample robustness

to the controller [123], against parametric excursions. These shortfalls of Eigen Analysis

based solution of Lyapunov inequality (6.11) can be negotiated by using Riccati inequality

(6.9). Further, (6.11) is a special case of (6.9), with B = 0. Solving (6.9) for P ensures

asymptotic stability of the closed-loop system through F , and assures optimality of F for

the reason that (6.9) could be derived from (6.8).
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Inequality (6.9) is non-linear in nature and hence it has been converted into LMI,

using Schur complement Lemma as,[
ATP + PA+Q PB

BTP −R

]
< 0 (6.14)

Implementing inequalities (Q > 0, P > 0, R > 0 and (6.14)) in Robust Control Toolbox

of Matlab as LMIs, yield P and R as,

P =

⎡
⎢⎢⎣

0.0017 0.0000 −0.0001
0.0000 0.0017 0.0000

−0.0001 0.0000 0.0242

⎤
⎥⎥⎦ ,

R = 15.9047

Optimal F has been found, by substituting the optimally derived values of P and R into

control law (6.5), where F ,

F = R−1BTP = [−0.0105 0.0095 − 0.0180] (6.15)

and using two distinct values of G as Ki1 = 25e3 and Ki2 = 2.5e3, yields state feedback

gain matrix K as,

K = [F G] = [Kcf KLf KLg Ki] (6.16)

= [−0.0105 0.0095 − 0.0180 25e3] (6.17)

= [−0.0105 0.0095 − 0.0180 2.5e3] (6.18)

Values of F and G have been implemented into the control scheme as depicted in

Figure. 6.1, and executed through the controller block shown in Figure. 6.2.

6.5 Experimental Arrangement for Testing the Per-

formance of Electric Spring

A test-bench, as presented in Fig: 2.14 of Chapter:2, has been used to test the anticipated

performance of ES under various load variations and voltage excursions in vg (mimicking

a practical situation prevailing in the distribution grid). Designed LQI controller (6.16)

has been tried on the test-bench through the control block presented in Fig: 6.2. A
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feed-forward compensation has been added, in LQI control [71], to avert the impact of

transients and achieve smooth transition at the advent of load change. Grid voltage vg

has been varied along with the load (varied with load variants) at the time instances

mentioned in Table. 6.2.

Figure 6.2: The control block of ES, with LQI control.

6.6 Analysis and Evaluation of Results

The performance of the system (modeled as A1, B1, C1 of (6.1), being controlled by state-

feedback control (using LQI controller), has been evaluated through the step response

and frequency response analysis. These performance benchmarks have been justified and

validated through the performance of the test-bench (Figure.2.14), by executing its control

through the said controller depicted in Figure.6.2.

6.6.1 Frequency Response Analysis

Figure. 6.3 shows the bode plot of the system’s model considered under three different

configurations viz. loop gain of the system, (a) in open loop, (b) with the LQR controller

(6.15), and (c) with LQI controller (6.16). The plot of loop gain with state feedback

gain (6.17) using Ki1 = 25 × 103 yields a P.M. of 85.7682◦ and a G.M. of 122.6678db,

which is sufficient to be implemented in the test bench (Figure.2.14) possessing limited

parametric uncertainties (considering the variation in Load and grid voltage only), but it

proves non-sufficient in terms of robustness in the case where all the uncertainties (also
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including the variation in Zg and Vdc) is required to be considered and to be implemented

in test bench (subject matter of the Chapter:7). The plot also shows the loop gain of the

system with state feedback gain (6.18), using Ki2 = 2.5× 103, exhibiting a slightly higher

P.M. of 89.5585◦ and a much larger G.M. of 122.6678×103db (when being compared with

that achieved through Ki1), showing a greater bandwidth and hence robustness. The cost

of additional gain and bandwidth is to be paid in terms of sluggish response, and the

same can be depicted from the step response of the system (Fig:6.4). Looking at the
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Figure 6.3: Bode plot of the system under various system conditions.

Bode plots, it is evident that the set aside design goals (of larger G.M. and P.M.) have

been achieved through the designed controller.

6.6.2 Step Response Analysis

Figure. 6.4 shows the step response of the system, with three distinct situations, named

as (a) system under the influence of disturbance input, i.e., when vg is acting alone in

the system (in the absence of ES), (b) system with LQR control and (c) system with

LQI control. Furthermore, based on the demanded robustness and speed, two distinct

scenarios have been presented through the step response analysis, by varying the Integral

gain Ki, i.e., G of the LQI controller, keeping the gain associated with the state feedback,

i.e., F constant. It shows nice and stable output, with both the SFC gains, without any

overshoot. As far as the performance of the step response is concerned, it has been swiftly
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Figure 6.4: Step response of uncontrolled system, LQR controlled system and LQI con-

trolled system.

achieving the unity gain with Ki = 25000 (ts < 5ms) as that compared to Ki = 2500

(ts = 60ms). The faster response is being compromised with inferior bandwidth, and the

same is evident from the frequency response plot of Fig:6.3.

Looking at the frequency response plot and the step response, it has been decided to

implement the state feedback gain (6.17) using Ki = 25000 for the implementation with

simulation test-bench (Fig: 2.14), for limited parametric excursions, and the correspond-

ing results have been presented in the following section.

6.6.3 Performance Analysis of Test-Bench

The system is shown in Figure. 2.14, using the parameters exhibited in TABLE. 6.1, has

been simulated to validate the results of the Bode plot and Step response. The critical

load has been varied by switching it in a specific configuration, by keeping the non-critical

load fixed at 2.2 Ω. The same has been mentioned in TABLE. 6.2 with the corresponding

time instances. The scenario of the absence of ES has not been presented here asit has

already been presented in Table:2.3. The results associated with the variation of the

parameters have been assimilated here, in the form of Figures (Fig:6.5 through Fig:6.12),

and tabulated in the abstract form in Table: TABLE. 6.2. Change in the load and

the perturbations in vg can also be witnessed from the presented figures, mimicking the
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intermittency in the grid voltage inflicted by RES. Reference Phase angle δ of vref(t) (6.2)

has been extracted from vg, through Enhanced Phase Locked Loop (E-PLL) structure

designed and presented in Sec:3.6.3. Fig:6.5 and Fig:6.12 presents the absolute spectrum

of the perturbing parameters. Fig:6.6 through Fig:6.11 shows the magnified view of the

the Fig:6.5, depicting perturbations in the parameters in the presence of a typical load

variant, in the presence of changing grid voltage.

Table 6.2: Variation of Parameters, with Optimal LQI Control, with Respect to Time
T ime(s) LoadΩ Vg(V ) Vnc(V ) Ves(V ) Ig(A) Inc(A) Icr(A) Iinv(A) Power(W ) Vcr(V ) %Reg. Vcr % Imp. In Reg.

0.00-0.33 6.6 + j5.78 183.85 250.48 475.25 90.59 113.86 26.23 113.81 20147.90 230.00 0.00 37.43

0.33-0.66 6.6 + j5.78 229.81 54.52 276.69 3.39 24.78 26.21 24.69 159.01 229.95 -0.02 21.76

0.66-1.00 6.6 + j5.78 275.77 149.78 81.89 90.60 68.08 26.21 68.21 -20089.00 229.89 -0.05 6.10

1.00-1.33 50 + j5.78 183.85 210.03 438.62 90.90 95.47 4.57 95.50 20248.40 230.20 0.09 35.53

1.33-1.66 50 + j5.78 229.81 14.46 242.85 3.91 6.57 4.57 7.26 266.82 230.12 0.05 19.35

1.66-2.00 50 + j5.78 275.77 188.60 70.58 90.24 85.73 4.57 85.90 -19992.20 230.05 0.02 3.18

2.00-2.33 6.6 - j5.78 183.85 241.59 471.99 91.43 109.81 26.27 109.90 20381.30 230.41 0.18 37.05

2.33-2.66 6.6 - j5.78 229.81 65.38 281.12 3.73 29.72 26.26 30.15 365.20 230.36 0.16 21.24

2.66-3.00 6.6 - j5.78 275.77 172.10 122.08 89.71 78.23 26.26 78.51 -19916.80 230.29 0.13 5.43

3.00-3.33 50 - j5.78 183.85 209.70 438.48 90.92 95.32 4.57 95.35 20254.70 230.17 0.07 35.50

3.33-3.66 50 - j5.78 229.81 15.80 243.02 3.95 7.18 4.57 7.87 274.51 230.13 0.06 19.33

3.66-4.00 50 - j5.78 275.77 189.18 72.29 90.21 85.99 4.57 86.17 -19986.60 230.05 0.02 3.16

4.00-4.33 6.6 + j0.00 183.85 276.33 505.52 91.12 125.60 34.89 125.60 20282.50 230.25 0.11 38.82

4.33-4.66 6.6 + j0.00 229.81 79.60 309.59 3.15 36.18 34.88 36.31 263.20 230.18 0.08 23.48

4.66-5.00 6.6 + j0.00 275.77 125.44 125.77 90.05 57.02 34.87 57.30 -20009.30 230.13 0.06 8.13

5.00-5.33 50 + j0.00 183.85 210.00 438.69 90.92 95.46 4.60 95.49 20252.70 230.17 0.07 35.51

5.33-5.66 50 + j0.00 229.81 15.21 243.07 3.92 6.91 4.60 7.60 271.69 230.12 0.05 19.35

5.66-6.00 50 + j0.00 275.77 188.75 71.51 90.22 85.80 4.60 85.97 -19989.20 230.05 0.02 3.18

Fig: 6.5 through Fig: 6.12, shows the variation of vg (184V to 276V RMS) and the

corresponding variation of vcr, in the absence of ES (141V to 223V). This drop in the

voltage is due to the impedance of the conductor (Zg), connecting the load to the grid, and

variation in the same due to variation in the connecting point (as mentioned in Sec:2.6) is

acting as a miscreant and debilitates the stability in the absence of non-robust controller

design.

Fig:6.5 through Fig: 6.11 shows the variation of vcr in the case when it is being

controlled by LQI controller (229.89V to 230.41V) at the wake of change in the load

and changing grid voltage (as presented in Table:6.2), and corresponding % regulation is

seen to be varying in the range of ”−0.05” to ”+0.18” % which refers to a variation of

only 0.23%. The results show quite precise and excellent voltage regulating capabilities

of the LQI controller, further justifying the controller design’s efficacy, robustness, and
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Figure 6.5: Absolute Spectrum of LQI Control having Step Changes Applied to vg and

Load.
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Figure 6.6: Results of LQI Control having Step Changes in vcr, for R1-L Load.

precision.

Fig:6.5 through Fig: 6.11 also exhibit the variation in icr without ES (2.96A to 32A),

and with ES (4.57A to 34.89A with LQI control). It also shows the variation in the

current of non-critical load (inc), without ES (6.5A to 102.1A), and with ES (7.16A to

127.7A with LQI control). These results also reveal that ES damps out current alterations

due to variation in vg (for a specific load type) at the cost of variation in non–critical load
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Figure 6.7: Results of LQI Control having Step Changes in vcr, for R2-L Load.

Figure 6.8: Results of LQI Control having Step Changes in vcr, for R1-C Load.

current. Constant icr for a typical load, in the presence of perturbing vg, has been an

indicator of the efficacy of ES in terms of its voltage regulating abilities.

Fig: 6.12 exhibit the variation of Power that is being exchanged between the grid and

with ES (−20 KW to 20 KW with LQI control) which otherwise varies in the range of

8.6 KW to 28 KW, in the absence of ES. Here, ” + V e” sign signifies the flow of power

from ES to load, and ” − V e” sign signifies the flow of the same from the grid. The

presence of ES reveals a formidable peak power shaving (of about 8 KW).
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Figure 6.9: Results of LQI Control having Step Changes in vcr, for R2-C Load.

Figure 6.10: Results of LQI Control having Step Changes in vcr, for R1 Load.

Instantaneous variation of vg, vcr, vnc, ig, icr, and inc through the graphical results

reveal the smooth transition of voltage and current signals, at the wake of perturbing

load and grid supply. At the wake of such transitions, voltages and currents settle quick

enough (in less than one-half cycle) to validate the claims presented in the step response

(Figure. 6.4). Smooth transition and absence of large overshoot, at the transition, proves

the worth of feed-forward path (Figure. 6.2).

All the possible and diverse scenarios of load and voltage perturbations (of LQI



Chapter 6. SFC of ES: LQR-LMI ... Compensated Approach 133

5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6
-100

0
100 Vg

Vcr without ES
Vcr

5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6
-100

0
Vcr
Vnc
Ves

5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6
-100

0
100 vcr

vnc
ves

5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6
-100

0

100
Ig
Inc
Icr

5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6
Time (s)

-200

0

200 ig
inc
icr

Figure 6.11: Results of LQI Control having Step Changes in vcr, for R2 Load.
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Figure 6.12: Comparison of Results of LQI Controlled ES and that with no ES, under

the influence of Step Changes in vg and Load.

controlled ES) have been presented through phasors in Figure. 6.13, as mentioned in

TABLE.6.2. These phasors have been drawn to the scale (1:1), from the data of simula-

tion results using AutoCAD. vg has been considered a reference phasor, having its origin

(of all the cases) placed on a vertical dotted line. All the cases (associated with a typical

load type) reveal the locus of the vcr falling on the circles with the magnitudes mentioned

in TABLE. 6.2 (all these circles touching on the other dotted line, spaced apart at a
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Figure 6.13: Phasors of LQI controlled system, with (a)R Load when vg < vref , (b) R

Load when vg > vref , (c)R-C Load when vg < vref , (d) R-C Load when vg > vref , (e)R-L

Load when vg < vref , and (f) R-L Load when vg > vref .

distance of vref (230V )), indicates excellent voltage regulating capability of ES. It also

shows that a second-generation ES can support active as well as reactive power (power

being delivered when vg < vref and same being absorbed when vg > vref), so as to track

the reference voltage (vref).
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6.7 CONCLUSION

Custom power device, ES provides an opportunity for the non-critical load to act as a

part of smart load, managing the voltage regulation across the critical load in a very tight

band by manipulating and utilizing voltage across it (ves and vnc), with no extra overhead

of communication interface. ES reduces the fluctuation in current icr, by smartly ma-

nipulating inc, in the presence of greater excursions in grid voltage and grid impedance,

conditions commonly experienced in most of the rural and even some of the urban In-

dian distribution grid in the presence of RES. Design of control system of ES having

considerably larger bandwidth and small control effort, with shortest possible settling

time, is a task having conflicting control requirements, under the wake of large scale and

vivid excursions in load and grid conditions. The results reveal the superior performance

of the designed state feedback-based optimal LQI controller compared to that of a PI

controller, exhibiting robustness against parametric excursions and good response speed

(ts < 10 ms), and small demand for control energy. The onerous task of negotiating

with the conflicting controller requirements has significantly been satisfied, thanks to nu-

merical convex optimization of state feedback controller gain, being carried out through

a simple method of LMIs. Electric Spring controlled by the proposed LQI controller

comprehensively ensures the desired constant voltage across the critical load, with peak

power shaving and hence commensurating with the concept of demand-side management

in real-time.


