List of Figures | 2.1 | Functional Evaluation of Mechanical Spring and Electrical Spring | 18 | |------|---|----| | 2.2 | System of ES, Comprising of Smart Load and Critical Load | 19 | | 2.3 | System of ES Considered Considered as a Network for the Execution of | | | | Mathematical Model | 21 | | 2.4 | Frequency Response Plot of the LC Filter, Tested Against the Prospective | | | | Loads of ES | 29 | | 2.5 | Absolute Spectrum of Results Gathered from Test-Bench(0-6s) | 29 | | 2.6 | Results Associated with R_1 - L Load | 30 | | 2.7 | Results Associated with R_2 - L Load | 30 | | 2.8 | Results Associated with R_1 - C Load | 31 | | 2.9 | Results Associated with R_2 - C Load | 31 | | 2.10 | Results Associated with R_1 Load | 32 | | 2.11 | Results Associated with R_2 Load | 32 | | 2.12 | Spectrum of Results showing the Ripples | 33 | | 2.13 | FFT spectrum of Results Associated with Inverter | 33 | | 2.14 | Simulation Test Bench of the system of Electric Spring | 34 | | 2.15 | Results of the Simulation Test Bench, without the Presence of Electric | | | | Spring | 35 | | 3.1 | Standar Structure of a Phase-Locked-Loop (PLL) | 37 | | 3.2 | Experimental Test System, for Checking the Robustness of PLL | 42 | | 3.3 | T/3 Delay PLL , using Clarke's Transformation | 43 | | 3.4 | Results of the $T/3$ -Delay PLL , amidst (a) Presence of 3^{rd} and 5^{th} Har- | | | | monics, (b) Change in signal Magnitude and Phase Jump, and (c) Change | | | | in Frequency. | 44 | LIST OF FIGURES xxi | 3.5 | SOGI-PLL Structure Employing a Lead Compensator | 46 | |------|--|----| | 3.6 | Performance Analysis of $SOGI$ through (a) Bode Plot of u'/u , and (b) Bode | | | | Plot of qu/u | 48 | | 3.7 | Performance Analysis of $SOGI$ through Step Response Employing u'/u | 49 | | 3.8 | Performance Analysis of $SOGI$ through Instantaneous Variation of u, u' | | | | and qu | 49 | | 3.9 | Performance Analysis of $SOGI$ through (a) u and qu in the presence of 3^{rd} | | | | and 5^{th} Harmonics, and (b) FFT of u and qu in the presence of 3^{rd} and 5^{th} | | | | Harmonics | 50 | | 3.10 | Frequency Response of Controller Employing $Lead$ Compensator | 52 | | 3.11 | Absolute Spectrum of the Results Fached through $SOGI\text{-}PLL$ | 52 | | 3.12 | Results of SOGI-PLL Showing Start-up Delay | 53 | | 3.13 | Performance of $SOGI-PLL$ in the Presence of Harmonics | 53 | | 3.14 | Performance of $SOGI\text{-}PLL$ Amidst Step Change Applied in the Magnitude | | | | of the Input Signal | 54 | | 3.15 | Performance of $SOGI\text{-}PLL$ Amidst Step Change Applied in the Phase of | | | | the Input Signal | 54 | | 3.16 | $E ext{-}PLL$ Structure | 56 | | 3.17 | Absolute Spectrum of E - PLL Results | 58 | | 3.18 | Spectrum of $E ext{-}PLL$ Results Showing Start-up Delay | 58 | | 3.19 | Spectrum of $E ext{-}PLL$ Results Showing Frequency Jump | 59 | | 3.20 | Spectrum of $E\text{-}PLL$ Results Showing Step Change in the Amplitude | 59 | | 3.21 | Spectrum of E - PLL Results Showing Phase Jump | 60 | | 3.22 | Performance of $E\text{-}PLL$ in the Presence of Harmonics in the Input | 60 | | 3.23 | E-PLL Results Showing the FFT Spectrum of the Input and Output Signals. | 61 | | 3.24 | Absolute Spectrum of Comparative Results associated with u and y for (a) | | | | Instantaneous Per Unit Values, (b) Instantaneous Phase Variation, (c) Am- | | | | plitude Variation and (d) Frequency Variation, of input and corresponding | | | | output of E - PLL and $SOGI$ - PLL | 63 | | 3.25 | Magnified View of the Comparative Results Showing Start-up Delay. $\ \ . \ \ .$ | 64 | | 3.26 | Magnified View of the Comparative Results Showing Step Change in the | | | | Magnitude | 64 | LIST OF FIGURES xxii | 3.27 | Magnified View of the Comparative Results Showing Step Change in Fre- | | |------|---|----| | | quency | 65 | | 3.28 | Magnified View of the Comparative Results Showing Phase Jump | 66 | | 3.29 | Magnified View of the Comparative Results Showing Simultaneous Step | | | | Change in Amplitude and Frequency | 66 | | 3.30 | Magnified View of the Comparative Results for Harmonically Molested | | | | Signal | 67 | | 4.1 | Control Block of ES Employing PI Controller | 71 | | 4.2 | Frequency Response Plot and Step Response of System of ES Employing | | | | PI Controller | 73 | | 4.3 | Instantaneous and RMS Variations in the System Parameters at the Wake | | | | of Step Changes in Load and Grid Voltage | 74 | | 4.4 | Instantaneous and RMS Variations in the System Parameters with R_1 - L | | | | Load, at the Wake of Step Change in v_g | 75 | | 4.5 | Instantaneous and RMS Variations in the System Parameters with R_2 - L | | | | Load, at the Wake of Step Change in v_g | 75 | | 4.6 | Instantaneous and RMS Variations in the System Parameters with R_1 - C | | | | Load, at the Wake of Step Change in v_g | 76 | | 4.7 | Instantaneous and RMS Variations in the System Parameters with R_2 - C | | | | Load, at the Wake of Step Change in v_g | 76 | | 4.8 | Instantaneous and RMS Variations in the System Parameters with R_1 | | | | Load, at the Wake of Step Change in v_g | 77 | | 4.9 | Instantaneous and RMS Variations in the System Parameters with R_2 | | | | Load, at the Wake of Step Change in v_g | 77 | | 4.10 | Control Block of ES Employing Loop-in-Loop Controller | 78 | | 4.11 | Frequency Response Plots of the loop gains employing (a) PI_i , (b) PI_v | | | | Controllers | 80 | | 4.12 | Results of Cascade Control having Step Changes Applied to \boldsymbol{v}_g and Load | 81 | | 4.13 | Results of Cascade Control having Step Changes in $v_{cr},$ for $R_1\text{-}L$ Load | 82 | | 4.14 | Results of Cascade Control having Step Changes in $v_{cr},$ for $R_2\text{-}L$ Load | 82 | | 4.15 | Results of Cascade Control having Step Changes in $v_{cr},$ for $R_1\text{-}C$ Load | 83 | | 4.16 | Results of Cascade Control having Step Changes in v_{cr} , for R_2 -C Load | 83 | LIST OF FIGURES xxiii | 4.17 | Results of Cascade Control having Step Changes in v_{cr} , for R_1 Load | 84 | |------|--|-----| | 4.18 | Results of Cascade Control having Step Changes in v_{cr} , for R_2 Load | 84 | | 4.19 | Performance Comparison of Cascade Control having feedback through i_{lf} | | | | and I_{cf} and Corresponding variation in i_{lf} and I_{cf} | 85 | | 4.20 | Comparison of Results of Cascade Control having feedback through I_{lf} and | | | | I_{cf} | 85 | | 4.21 | Comparison of Results, Achieved from Two Control Strategies, Pertaining | | | | to (a) Voltage Signals, (b) Current Signals and Power | 89 | | 5.1 | Frequency Response plot of Lead-Lag Controller, while Evolving through | | | | its Design | 94 | | 5.2 | Step Response of the Uncontrolled System, and that being Controlled by | | | | a Lead-Lag Compensator | 96 | | 5.3 | SPWM Controled $ES.$ | 96 | | 5.4 | Results of $Lead\text{-}Lag$ (SPWM) Control having Step Changes Applied to v_g | | | | and Load | 98 | | 5.5 | Results of $Lead\text{-}Lag$ (SPWM) Control having Step Changes in v_{cr} , for $R_1\text{-}L$ | | | | Load | 99 | | 5.6 | Results of $Lead\text{-}Lag$ (SPWM) Control having Step Changes in v_{cr} , for $R_2\text{-}L$ | | | | Load | 99 | | 5.7 | Results of $Lead$ - Lag (SPWM) Control having Step Changes in v_{cr} , for R_1 - C | | | | Load | 100 | | 5.8 | Results of $Lead$ - Lag (SPWM) Control having Step Changes in v_{cr} , for R_2 - C | | | | Load | 100 | | 5.9 | Results of Lead-Lag (SPWM) Control having Step Changes in v_{cr} , for R_1 | | | | Load | 101 | | 5.10 | Results of Lead-Lag (SPWM) Control having Step Changes in v_{cr} , for R_2 | | | | Load | 101 | | 5.11 | Comparison of Results of $Lead$ - Lag Controlled ES and that with no ES , | | | | under the influence of Step Changes in v_g and Load | 102 | | 5.12 | SVPWM Controlled ES using $Lead$ - Lag Compensator | 104 | | 5.13 | Results of Lead-Lag (SVPWM) Control having Step Changes Applied to | | | | v_a and Load | 106 | LIST OF FIGURES xxiv | 5.14 | Results of Lead-Lag (SVPWM) Control having Step Changes in v_{cr} , for | |------|--| | | R_1 -L Load | | 5.15 | Results of Lead-Lag (SVPWM) Control having Step Changes in v_{cr} , for | | | R_2 -L Load | | 5.16 | Results of Lead-Lag (SVPWM) Control having Step Changes in v_{cr} , for | | | R_1 -C Load | | 5.17 | Results of Lead-Lag (SVPWM) Control having Step Changes in v_{cr} , for | | | R_2 -C Load | | 5.18 | Results of Lead-Lag (SVPWM) Control having Step Changes in v_{cr} , for | | | R_1 Load | | 5.19 | Results of Lead-Lag (SVPWM) Control having Step Changes in v_{cr} , for | | | R_2 Load | | 5.20 | Results (RMS values) of $SVPWM$ Controlled ES , using $Lead\text{-}Lag$ Com- | | | pensator, being Compared with the Scenario of Absence of ES , in the | | | presence of Step Changes Applied to v_g and Load | | 5.21 | Control Parameters (Instantaneous Values) of $SVPWM$ Controlled ES 110 $$ | | 5.22 | Magnified Spectrum of the Control Parameters (Instantaneous Values) of | | | $SVPWM$ Controlled ES , Showing R_1 Load and Step Changes Applied to | | | v_g | | 5.23 | FFT Spectrum of Results presented in Fig:5.22 | | 5.24 | Comparative Results (RMS values of Voltages) of $SVPWM$ and $SPWM$ | | | Controlled ES , using $Lead$ - Lag Compensator, having Step Changes Ap- | | | plied to v_g and Load | | 5.25 | Comparative Results (RMS values of Currents and Power) of $SVPWM$ | | | and $SPWM$ Controlled ES , using $Lead\text{-}Lag$ Compensator, having Step | | | Changes Applied to v_g and Load | | 6.1 | Schema of State Feedback controlled ES , using LQI controller 120 | | 6.2 | The control block of ES , with LQI control | | 6.3 | Bode plot of the system under various system conditions | | 6.4 | Step response of uncontrolled system, LQR controlled system and LQI | | | controlled system | LIST OF FIGURES xxv | 6.5 | Absolute Spectrum of LQI Control having Step Changes Applied to v_g and | |------|---| | | Load | | 6.6 | Results of LQI Control having Step Changes in v_{cr} , for R_1 - L Load 130 | | 6.7 | Results of LQI Control having Step Changes in v_{cr} , for R_2 - L Load 131 | | 6.8 | Results of LQI Control having Step Changes in v_{cr} , for R_1 - C Load 131 | | 6.9 | Results of LQI Control having Step Changes in v_{cr} , for R_2 - C Load 132 | | 6.10 | Results of LQI Control having Step Changes in v_{cr} , for R_1 Load 132 | | 6.11 | Results of LQI Control having Step Changes in v_{cr} , for R_2 Load 133 | | 6.12 | Comparison of Results of LQI Controlled ES and that with no ES , under | | | the influence of Step Changes in v_g and Load | | 6.13 | Phasors of LQI controlled system, with (a) R Load when $v_g < v_{ref}$, (b) R | | | Load when $v_g > v_{ref}$, (c) R - C Load when $v_g < v_{ref}$, (d) R - C Load when | | | $v_g > v_{ref}$, (e) R - L Load when $v_g < v_{ref}$, and (f) R - L Load when $v_g > v_{ref}$. 134 | | 7.1 | Results (RMS values) of having Step Changes Applied to V_g and Load, and | | | corresponding V_{cr} in the absence of ES | | 7.2 | Variation in V_{cr} in the Presence of PI , $SPWM_{LL}$, $Cascaded$ - PI , $SVPWM_{LL}$ | | | , and optimal- LQI Controlled $ES,$ having Step Changes Applied to ${\cal V}_g$ and | | | Load | | 7.3 | Variation in V_{nc} in the Presence of PI , $SPWM_{LL}$, $Cascaded$ - PI , $SVPWM_{LL}$ | | | , and optimal- LQI Controlled $ES,$ having Step Changes Applied to ${\cal V}_g$ and | | | Load | | 7.4 | Variation in V_{es} in the Presence of PI , $SPWM_{LL}$, $Cascaded$ - PI , $SVPWM_{LL}$ | | | , and optimal- LQI Controlled $ES,$ having Step Changes Applied to ${\cal V}_g$ and | | | Load | | 7.5 | Variation in I_g in the Presence of PI , $SPWM_{LL}$, $Cascaded\text{-}PI$, $SVPWM_{LL}$ | | | , and optimal- LQI Controlled $ES,$ having Step Changes Applied to ${\cal V}_g$ and | | | Load | | 7.6 | Variation in I_{nc} in the Presence of PI , $SPWM_{LL}$, $Cascaded$ - PI , $SVPWM_{LL}$ | | | , and optimal- LQI Controlled $ES,$ having Step Changes Applied to ${\cal V}_g$ and | | | Load | LIST OF FIGURES xxvi | 7.7 | Variation in I_{cr} in the Presence of PI , $SPWM_{LL}$, $Cascaded$ - PI , $SVPWM_{LL}$, and optimal- LQI Controlled ES , having Step Changes Applied to V_g and | |------|--| | | Load | | 7.8 | Variation in I_{inv} in the Presence of $PI, SPWM_{LL}, Cascaded-PI, SVPWM_{LL}$ | | | , and optimal- LQI Controlled ES , having Step Changes Applied to V_g and | | | Load | | 7.9 | Variation in $Power$ in the Presence of $PI, SPWM_{LL}, Cascaded\text{-}PI, SVPWM_{LL}$ | | | , and optimal- LQI Controlled ES , having Step Changes Applied to V_g and | | | Load | | 7.10 | Simulation Test Bench for Testing the Performance of ES and hence Con- | | | troller | | 7.11 | Variations Applied to V_g , Z_g , V_{dc} and Critical Load (Z_c) | | 7.12 | Performance Evaluation of $Cascaded$ - PI Controlled ES (inner loop feed- | | | back from i_{lf}), through V_{cr} , having Step Changes Applied to V_g , Z_g , V_{dc} | | | and Z_c | | 7.13 | Performance Evaluation of PI Controlled ES , through V_{cr} , having Step | | | Changes Applied to V_g , Z_g , V_{dc} and Z_c | | 7.14 | Performance Evaluation of $Lead\text{-}Lag$ compensated and $SPWM$ Controlled | | | $ES,$ through $V_{cr},$ having Step Changes Applied to V_g,Z_g,V_{dc} and $Z_c.$ 147 | | 7.15 | Performance Evaluation of $Lead\text{-}Lag$ compensated and $SVPWM$ Con- | | | trolled ES , through V_{cr} , having Step Changes Applied to V_g , Z_g , V_{dc} and | | | Z_c | | 7.16 | Performance Evaluation of Optimal LQI Controlled ES , through V_{cr} , hav- | | | ing Step Changes Applied to V_g,Z_g,V_{dc} and $Z_c.\ldots\ldots\ldots148$ | | 7.17 | Performance Evaluation of $Cascaded\text{-}PI$ Controlled ES (inner loop feed- | | | back from i_{cf}), through V_{cr} , having Step Changes Applied to V_g , Z_g , V_{dc} | | | and Z_c |