List of Figures

2.1	Functional Evaluation of Mechanical Spring and Electrical Spring	18
2.2	System of ES, Comprising of Smart Load and Critical Load	19
2.3	System of ES Considered Considered as a Network for the Execution of	
	Mathematical Model	21
2.4	Frequency Response Plot of the LC Filter, Tested Against the Prospective	
	Loads of ES	29
2.5	Absolute Spectrum of Results Gathered from Test-Bench(0-6s)	29
2.6	Results Associated with R_1 - L Load	30
2.7	Results Associated with R_2 - L Load	30
2.8	Results Associated with R_1 - C Load	31
2.9	Results Associated with R_2 - C Load	31
2.10	Results Associated with R_1 Load	32
2.11	Results Associated with R_2 Load	32
2.12	Spectrum of Results showing the Ripples	33
2.13	FFT spectrum of Results Associated with Inverter	33
2.14	Simulation Test Bench of the system of Electric Spring	34
2.15	Results of the Simulation Test Bench, without the Presence of Electric	
	Spring	35
3.1	Standar Structure of a Phase-Locked-Loop (PLL)	37
3.2	Experimental Test System, for Checking the Robustness of PLL	42
3.3	T/3 Delay PLL , using Clarke's Transformation	43
3.4	Results of the $T/3$ -Delay PLL , amidst (a) Presence of 3^{rd} and 5^{th} Har-	
	monics, (b) Change in signal Magnitude and Phase Jump, and (c) Change	
	in Frequency.	44

LIST OF FIGURES xxi

3.5	SOGI-PLL Structure Employing a Lead Compensator	46
3.6	Performance Analysis of $SOGI$ through (a) Bode Plot of u'/u , and (b) Bode	
	Plot of qu/u	48
3.7	Performance Analysis of $SOGI$ through Step Response Employing u'/u	49
3.8	Performance Analysis of $SOGI$ through Instantaneous Variation of u, u'	
	and qu	49
3.9	Performance Analysis of $SOGI$ through (a) u and qu in the presence of 3^{rd}	
	and 5^{th} Harmonics, and (b) FFT of u and qu in the presence of 3^{rd} and 5^{th}	
	Harmonics	50
3.10	Frequency Response of Controller Employing $Lead$ Compensator	52
3.11	Absolute Spectrum of the Results Fached through $SOGI\text{-}PLL$	52
3.12	Results of SOGI-PLL Showing Start-up Delay	53
3.13	Performance of $SOGI-PLL$ in the Presence of Harmonics	53
3.14	Performance of $SOGI\text{-}PLL$ Amidst Step Change Applied in the Magnitude	
	of the Input Signal	54
3.15	Performance of $SOGI\text{-}PLL$ Amidst Step Change Applied in the Phase of	
	the Input Signal	54
3.16	$E ext{-}PLL$ Structure	56
3.17	Absolute Spectrum of E - PLL Results	58
3.18	Spectrum of $E ext{-}PLL$ Results Showing Start-up Delay	58
3.19	Spectrum of $E ext{-}PLL$ Results Showing Frequency Jump	59
3.20	Spectrum of $E\text{-}PLL$ Results Showing Step Change in the Amplitude	59
3.21	Spectrum of E - PLL Results Showing Phase Jump	60
3.22	Performance of $E\text{-}PLL$ in the Presence of Harmonics in the Input	60
3.23	E-PLL Results Showing the FFT Spectrum of the Input and Output Signals.	61
3.24	Absolute Spectrum of Comparative Results associated with u and y for (a)	
	Instantaneous Per Unit Values, (b) Instantaneous Phase Variation, (c) Am-	
	plitude Variation and (d) Frequency Variation, of input and corresponding	
	output of E - PLL and $SOGI$ - PLL	63
3.25	Magnified View of the Comparative Results Showing Start-up Delay. $\ \ . \ \ .$	64
3.26	Magnified View of the Comparative Results Showing Step Change in the	
	Magnitude	64

LIST OF FIGURES xxii

3.27	Magnified View of the Comparative Results Showing Step Change in Fre-	
	quency	65
3.28	Magnified View of the Comparative Results Showing Phase Jump	66
3.29	Magnified View of the Comparative Results Showing Simultaneous Step	
	Change in Amplitude and Frequency	66
3.30	Magnified View of the Comparative Results for Harmonically Molested	
	Signal	67
4.1	Control Block of ES Employing PI Controller	71
4.2	Frequency Response Plot and Step Response of System of ES Employing	
	PI Controller	73
4.3	Instantaneous and RMS Variations in the System Parameters at the Wake	
	of Step Changes in Load and Grid Voltage	74
4.4	Instantaneous and RMS Variations in the System Parameters with R_1 - L	
	Load, at the Wake of Step Change in v_g	75
4.5	Instantaneous and RMS Variations in the System Parameters with R_2 - L	
	Load, at the Wake of Step Change in v_g	75
4.6	Instantaneous and RMS Variations in the System Parameters with R_1 - C	
	Load, at the Wake of Step Change in v_g	76
4.7	Instantaneous and RMS Variations in the System Parameters with R_2 - C	
	Load, at the Wake of Step Change in v_g	76
4.8	Instantaneous and RMS Variations in the System Parameters with R_1	
	Load, at the Wake of Step Change in v_g	77
4.9	Instantaneous and RMS Variations in the System Parameters with R_2	
	Load, at the Wake of Step Change in v_g	77
4.10	Control Block of ES Employing Loop-in-Loop Controller	78
4.11	Frequency Response Plots of the loop gains employing (a) PI_i , (b) PI_v	
	Controllers	80
4.12	Results of Cascade Control having Step Changes Applied to \boldsymbol{v}_g and Load	81
4.13	Results of Cascade Control having Step Changes in $v_{cr},$ for $R_1\text{-}L$ Load	82
4.14	Results of Cascade Control having Step Changes in $v_{cr},$ for $R_2\text{-}L$ Load	82
4.15	Results of Cascade Control having Step Changes in $v_{cr},$ for $R_1\text{-}C$ Load	83
4.16	Results of Cascade Control having Step Changes in v_{cr} , for R_2 -C Load	83

LIST OF FIGURES xxiii

4.17	Results of Cascade Control having Step Changes in v_{cr} , for R_1 Load	84
4.18	Results of Cascade Control having Step Changes in v_{cr} , for R_2 Load	84
4.19	Performance Comparison of Cascade Control having feedback through i_{lf}	
	and I_{cf} and Corresponding variation in i_{lf} and I_{cf}	85
4.20	Comparison of Results of Cascade Control having feedback through I_{lf} and	
	I_{cf}	85
4.21	Comparison of Results, Achieved from Two Control Strategies, Pertaining	
	to (a) Voltage Signals, (b) Current Signals and Power	89
5.1	Frequency Response plot of Lead-Lag Controller, while Evolving through	
	its Design	94
5.2	Step Response of the Uncontrolled System, and that being Controlled by	
	a Lead-Lag Compensator	96
5.3	SPWM Controled $ES.$	96
5.4	Results of $Lead\text{-}Lag$ (SPWM) Control having Step Changes Applied to v_g	
	and Load	98
5.5	Results of $Lead\text{-}Lag$ (SPWM) Control having Step Changes in v_{cr} , for $R_1\text{-}L$	
	Load	99
5.6	Results of $Lead\text{-}Lag$ (SPWM) Control having Step Changes in v_{cr} , for $R_2\text{-}L$	
	Load	99
5.7	Results of $Lead$ - Lag (SPWM) Control having Step Changes in v_{cr} , for R_1 - C	
	Load	100
5.8	Results of $Lead$ - Lag (SPWM) Control having Step Changes in v_{cr} , for R_2 - C	
	Load	100
5.9	Results of Lead-Lag (SPWM) Control having Step Changes in v_{cr} , for R_1	
	Load	101
5.10	Results of Lead-Lag (SPWM) Control having Step Changes in v_{cr} , for R_2	
	Load	101
5.11	Comparison of Results of $Lead$ - Lag Controlled ES and that with no ES ,	
	under the influence of Step Changes in v_g and Load	102
5.12	SVPWM Controlled ES using $Lead$ - Lag Compensator	104
5.13	Results of Lead-Lag (SVPWM) Control having Step Changes Applied to	
	v_a and Load	106

LIST OF FIGURES xxiv

5.14	Results of Lead-Lag (SVPWM) Control having Step Changes in v_{cr} , for
	R_1 -L Load
5.15	Results of Lead-Lag (SVPWM) Control having Step Changes in v_{cr} , for
	R_2 -L Load
5.16	Results of Lead-Lag (SVPWM) Control having Step Changes in v_{cr} , for
	R_1 -C Load
5.17	Results of Lead-Lag (SVPWM) Control having Step Changes in v_{cr} , for
	R_2 -C Load
5.18	Results of Lead-Lag (SVPWM) Control having Step Changes in v_{cr} , for
	R_1 Load
5.19	Results of Lead-Lag (SVPWM) Control having Step Changes in v_{cr} , for
	R_2 Load
5.20	Results (RMS values) of $SVPWM$ Controlled ES , using $Lead\text{-}Lag$ Com-
	pensator, being Compared with the Scenario of Absence of ES , in the
	presence of Step Changes Applied to v_g and Load
5.21	Control Parameters (Instantaneous Values) of $SVPWM$ Controlled ES 110 $$
5.22	Magnified Spectrum of the Control Parameters (Instantaneous Values) of
	$SVPWM$ Controlled ES , Showing R_1 Load and Step Changes Applied to
	v_g
5.23	FFT Spectrum of Results presented in Fig:5.22
5.24	Comparative Results (RMS values of Voltages) of $SVPWM$ and $SPWM$
	Controlled ES , using $Lead$ - Lag Compensator, having Step Changes Ap-
	plied to v_g and Load
5.25	Comparative Results (RMS values of Currents and Power) of $SVPWM$
	and $SPWM$ Controlled ES , using $Lead\text{-}Lag$ Compensator, having Step
	Changes Applied to v_g and Load
6.1	Schema of State Feedback controlled ES , using LQI controller 120
6.2	The control block of ES , with LQI control
6.3	Bode plot of the system under various system conditions
6.4	Step response of uncontrolled system, LQR controlled system and LQI
	controlled system

LIST OF FIGURES xxv

6.5	Absolute Spectrum of LQI Control having Step Changes Applied to v_g and
	Load
6.6	Results of LQI Control having Step Changes in v_{cr} , for R_1 - L Load 130
6.7	Results of LQI Control having Step Changes in v_{cr} , for R_2 - L Load 131
6.8	Results of LQI Control having Step Changes in v_{cr} , for R_1 - C Load 131
6.9	Results of LQI Control having Step Changes in v_{cr} , for R_2 - C Load 132
6.10	Results of LQI Control having Step Changes in v_{cr} , for R_1 Load 132
6.11	Results of LQI Control having Step Changes in v_{cr} , for R_2 Load 133
6.12	Comparison of Results of LQI Controlled ES and that with no ES , under
	the influence of Step Changes in v_g and Load
6.13	Phasors of LQI controlled system, with (a) R Load when $v_g < v_{ref}$, (b) R
	Load when $v_g > v_{ref}$, (c) R - C Load when $v_g < v_{ref}$, (d) R - C Load when
	$v_g > v_{ref}$, (e) R - L Load when $v_g < v_{ref}$, and (f) R - L Load when $v_g > v_{ref}$. 134
7.1	Results (RMS values) of having Step Changes Applied to V_g and Load, and
	corresponding V_{cr} in the absence of ES
7.2	Variation in V_{cr} in the Presence of PI , $SPWM_{LL}$, $Cascaded$ - PI , $SVPWM_{LL}$
	, and optimal- LQI Controlled $ES,$ having Step Changes Applied to ${\cal V}_g$ and
	Load
7.3	Variation in V_{nc} in the Presence of PI , $SPWM_{LL}$, $Cascaded$ - PI , $SVPWM_{LL}$
	, and optimal- LQI Controlled $ES,$ having Step Changes Applied to ${\cal V}_g$ and
	Load
7.4	Variation in V_{es} in the Presence of PI , $SPWM_{LL}$, $Cascaded$ - PI , $SVPWM_{LL}$
	, and optimal- LQI Controlled $ES,$ having Step Changes Applied to ${\cal V}_g$ and
	Load
7.5	Variation in I_g in the Presence of PI , $SPWM_{LL}$, $Cascaded\text{-}PI$, $SVPWM_{LL}$
	, and optimal- LQI Controlled $ES,$ having Step Changes Applied to ${\cal V}_g$ and
	Load
7.6	Variation in I_{nc} in the Presence of PI , $SPWM_{LL}$, $Cascaded$ - PI , $SVPWM_{LL}$
	, and optimal- LQI Controlled $ES,$ having Step Changes Applied to ${\cal V}_g$ and
	Load

LIST OF FIGURES xxvi

7.7	Variation in I_{cr} in the Presence of PI , $SPWM_{LL}$, $Cascaded$ - PI , $SVPWM_{LL}$, and optimal- LQI Controlled ES , having Step Changes Applied to V_g and
	Load
7.8	Variation in I_{inv} in the Presence of $PI, SPWM_{LL}, Cascaded-PI, SVPWM_{LL}$
	, and optimal- LQI Controlled ES , having Step Changes Applied to V_g and
	Load
7.9	Variation in $Power$ in the Presence of $PI, SPWM_{LL}, Cascaded\text{-}PI, SVPWM_{LL}$
	, and optimal- LQI Controlled ES , having Step Changes Applied to V_g and
	Load
7.10	Simulation Test Bench for Testing the Performance of ES and hence Con-
	troller
7.11	Variations Applied to V_g , Z_g , V_{dc} and Critical Load (Z_c)
7.12	Performance Evaluation of $Cascaded$ - PI Controlled ES (inner loop feed-
	back from i_{lf}), through V_{cr} , having Step Changes Applied to V_g , Z_g , V_{dc}
	and Z_c
7.13	Performance Evaluation of PI Controlled ES , through V_{cr} , having Step
	Changes Applied to V_g , Z_g , V_{dc} and Z_c
7.14	Performance Evaluation of $Lead\text{-}Lag$ compensated and $SPWM$ Controlled
	$ES,$ through $V_{cr},$ having Step Changes Applied to V_g,Z_g,V_{dc} and $Z_c.$ 147
7.15	Performance Evaluation of $Lead\text{-}Lag$ compensated and $SVPWM$ Con-
	trolled ES , through V_{cr} , having Step Changes Applied to V_g , Z_g , V_{dc} and
	Z_c
7.16	Performance Evaluation of Optimal LQI Controlled ES , through V_{cr} , hav-
	ing Step Changes Applied to V_g,Z_g,V_{dc} and $Z_c.\ldots\ldots\ldots148$
7.17	Performance Evaluation of $Cascaded\text{-}PI$ Controlled ES (inner loop feed-
	back from i_{cf}), through V_{cr} , having Step Changes Applied to V_g , Z_g , V_{dc}
	and Z_c