LIST OF FIGURES

Figure No.	Caption	Page No.	
1.1	Evaluation of phase-to-phase and phase- to earth overvoltages (ref.8),	6	
1.2	Typical switching surge wave shapes (ref. 1).	7	
1.3	Breakdown voltage of rod-plane spark- gap in air, influence of wave shape (ref. 8.).	7	
2.1	50% disruptive discnarge voltage U ₅₀ expressed as a function of time-to crest T for various distances 'd' of a point-plane gap. Results coming from various laboratories (ref. 17).	28	
2.2	Variation of CSOV versus distance: experimental points and estimated curve (ref. 52)	28	
2.3	Eftect of ground clearance on flash- over voltage (ref. 46)	•••33	
2.4	Switching surge sparkover cnaracte- ristics as a function of the impul- se front time (ref. 118)	33	
2.5	Switching impulse bias test results of norizontal rod-rod gaps. 50% flashover voltage ($U^+ + U^-$) as a function of ∞ (ref. 37) 50	47	
2.6	Lightning impulse bias test results for horizontal rod-rod gaps. 50% flasho ver vol tage (U ⁺ + U ⁻) ₅₀ as a		
	function of ∞ (ref.87).	47	
2.7	Investigated longitudinal gap confi- gurations (ref. 87).	•••52`	
2.8	Switching impulse bias test results for the circuit breaker simulation. 50% flashover voltage $(U^+ + U^-)_{50}$ as a function of CC (ref. 87)	52	
	randeron or courter, on	••••	

figure No.	Caption	Page No.
2.9	Positive switching impulse bias test, com- parison between circuit-breaker simulation and actual circuit breaker test results. Related 50 % flashover voltage $(U^+ + U^-)_{50}$ $U_{\infty=0}$ as a function of ∞ (ref. 87).	•••53
2.10	Lightning impulse bias test, controlled breaker simulation. 50% flashover voltage $(U^+ + U^-)_{50}$ as a function of \propto (ref.87).	53
2.11	Effect of humidity on breakdown voltage for different gap spacings (ref. 97)	62
2.12	Effect of humidity on breakdown voltage for different gap spacings (ref. 97)	62
3.1	Photograph of damping resistor and grad- ing capacitor	77
3.2	Various circuit configurations used to study the severity of the chopped wave on transformer insulation.	80
3.3	Aerial view of bias test set-up	82
3.4	Typical oscillographic records of switch- ing impulse waves at different points of the Bias test circuit for rod-rod gap.	83
3.5	Typical oscillographic records of light- ning impulse voltage wave at different points of the Bias test circuit.	84
3.6	Typical oscillographic records of AC voltage when flashover occurs across the open gap.	85
3.7	Typical oscillographic records of SI for open gap flashover.	86
3.8	Typical oscillographic records of app- lied voltage U_A (top wave) and voltage drop across the transformer terminal, U_B (Bottom wave).	89
3.9	Voltage distribution across 500 kV unit as a function of front time of the im- pulse wave.	91

-

×

Figure No.	Caption	Page No.
3.10	Wave form of transient voltage U_2 on ext- inction of flashover (ref. 144).	94
3.11	Typical oscillographic records of impulse and AC wave taken for the measurement of voltage distortion.	98
3.12	Equivalent circuit of bias test set-up	
3.13	Typical oscillographic records of light- ning impulse voltage wave using Haefely make damped Capacitive voltage divider and New divider.	104
4.1	Circuit layout for the measurement of transferred impulse voltage at termi- nals 'A' and 'B'.	113
4.2	Test circuit for conducting bias voltage test.	116
4.3	Test circuit for conducting bias test on rod-rod gap (ref. 75).	118
4. 4	50% flashover voltage as a function of gap spacing for rod-rod gap electrodes configuration (ref. 75).	118
4.5	Test circuit for bias test (ref. 81),	119
4.6	Wave shapes of test voltage-to-ground during phase-to-phase test (ref. 81).	119
4.7	Circuit arrangement for the tests with bias voltage (ref. 122).	121
4.8	Impulse bias test circuit used by Hochspannugsfabrik, Oberentfelden	
4.9	Different electrode configurations used for the measurement of voltage drop and U ₅₀ voltage.	122
4.10	Variation of transferred impulse voltage $U_{\rm B}({\rm LI})$ as a function of supporting capacitance C_2 .	127
4.11	Variation of transferred impulse voltage U_B (LI) as a function of damping resistance, $C_1 = 600 pF$.	128

,

1

•

xvi

.

.

Figure No.	Caption	Page No.
4.12	Variation of transferred impulse voltage U_B (SI) as a function of supporting capacitance, C = 600pF. 1	134
4.13	Variation of transferred impulse volt- age $U_B(SI)$ as a function of damping resistance, $C_1 = 600$ pF.	135
4.14	Variation of transferred impulse voltage U_A (SI) as a function of supporting capacitance, $C_1 = 600 \text{pF}$.	136
4.15	Variation of transferred impulse voltage $U_{A}(SI)$ as a function of damping resist- ance. C. = 600pE	
4.16	Variation of transferred impulse volt- age U _B (LI) as a function of supporting capacitance, rod-rod gap	138
4.17	Variation of transferred impulse volta- ge U _B (LI) as a function of damping re- sistance, rod-rod gap.	141
4.18	Variation of transferred impulse volt- age $U_{\mathbf{A}}$ (LI) as a function of support- ing capacitance, rod-rod gap.	•••143
4.19	Variation of transferred impulse volt- age U_{50} (LI) as a function of damping resistance, rod-rod gap	145
4.20	Variation of transferred impulse volt- age U _B (SI) as a function of supporting capacitance, rod-rod gap.	145
4.21	Variation of transferred impulse volt- age U _B (SI) as a function of damping resistance, rod-rod gap.	•••147
4.22	Variation of transferred impulse vol- tage $U_{\mathbf{A}}(SI)$ as a function of support- ing capacitance, rod-rod gap.	149

~

.

.

Figure No.	Caption	Page No.
4.23	Variation of transferred impulse voltage U_A (SI) as a function of damping resistance, rod-rod-gap.	150
5.1	Typical example of 30 shots applied according to the modalities of the 'Up and Down' method (ref. 149),	158
5.2	Variation of variance co-efficients G and H for the 'Up and Down' method (ref. 149).	160
5.3	$U_{50}(LI)$ as a function of damping re- sistance, $C_1 = 600$ pF.	164
5.4	$U_{50}(LI)$ as a function of damping re- sistance, $C_1 = 1200 pF_1$	165
5.5	Percentage increase of U ₅₀ voltage (LI and SI) as a function of damp- ing resistance, $C_1 = 600$ pF.	166
5.6	U_{50} (SI) as a function of damping resistance, $C_1 = 600 \text{pF}$.	168
5.7	$U_{50}(SI)$ as a function of damping resistance, $C_1 = 1200 pF$.	•••169
5.8	U ₅₀ (LI) as a function of damping re- sistance, rod-rod gap	171
5.9	Percentage increase of U ₅₀ voltage (LI and SI) for rod-rod gap as a function of damping resistance.	173
5.10	U ₅₀ (SI) as a function of damping re- sistance, rod-rod gap	175
5.11	Calculated and measured U_{50} voltage for a capacitive controlled gap, $C_1=600pF$.	178
5.12	Calculated and measured U_{50} voltage for capacitive controlled gap, $C_1 =$	
	1200pF.	179

.

۱

xi	x

Figure No.	Caption	Page No.
5.13	Calculated and measured U ₅₀ voltage for horizontal rod-rod gap.	181
5 .14	Variation of transferred voltage $U_A(LI)$ as a function of damping resistance, $C_1 = 600pF_1$	183
5. 15	Variation of transferred voltage U_A calculated based on U_{50} as a function of damping resistance, C_1 =600 pF.	185
5.16	Variation of transferred voltage $U_{A}(SI)$ as a function of damping resistance, C_{1} =600 pF.	187
5.17	Variation of transferred voltage U _A (LI and SI) as a function of damp- ing resistance, rod-rod gap.	•••189
5.18	Variation of transferred voltage U_A calculated based on U_{50} as a funct- ion of damping resistance, rod-rod gap	190
5.19	Variation of transferred voltage U _B as a function of damping resistance ^C 1=600 pF	193
5.20	Percentage variations of transferr- ed voltage U_B as a function of damp- ing resistance, rod-rod gap.	195
5.21	Circuit layout to study the effect of capacitance C_3 on the flashover voltage U_{50} of the test object.	205
6.1	Sphere-rod and rod-rod gap assembly.	216
6.2	Uncorrected U ₅₀ voltage as a function of humidity for sphere-rod and rod-rod gap under positive switching impulse.	220
6.3	K_d corrected (U_{SI50}^+) voltage as a fun- ction of absolute humidity.	222

Figur No.	e Caption		Page No.
6.4	K_{d} corrected $(U^{+} + U^{-})_{SI}$ function of absolute humiding	voltage as a tv.	222
6.5	IEC corrected $(U_{SI}^+ + U_{AC})_{50}$ function of absolute humidi- tive switching impulse volt	voltage as a ty under posi- ages.	225
6.6	Percentage error as a funct lute humidity when U ₅₀ is c	ion of abso- orrected as	
	per IEC publication-60.	ч.	227
6.7	Humidity correction factor i ion of absolute humidity	K as a funct-	230
6.8	U ₅₀ voltage as a function of midity for sphere-rod and re opposite terminal is ground	f absolute hu- od-rod gap when ed.	232
6.9	U ₅₀ voltage as a function of U- AC .	f ratio æand	235
6.10	50 per cent discharge volta ssed as a function of time-	ge U ₅₀ expre- to-crest T _{cr}	
	for a rod-rod gap	_	237
6.11	Typical oscillographic reco ing impulse waves.	rds of switch-	239
6.12	Results of tests on sphere- 250/2600 ALS, waves , U ₅₀ vol At for UAC equal to 107. 215.0 kV _p .	rod gap with tage versus O kV _p and	243
6.13	Results of tests on sphere-	rod gap	
	with 250/2600 µs waves when of AC voltage and time shift	peak value t is varied.	247
A 1	Circuit for measurement of tance of transformer,	self capaci-	280

٠

.

xx

~