
Chapter 4

Basic of SFRA

4.1 Introduction

Sweep Frequency Response Analysis (SFRA) is a tool that can give an indication of core or 

winding movement in transformers. This is done by performing a measurement, a simple 

one, looking at how well a transformer winding transmits a low voltage signal that varies in 
frequency. Just how well a transformer does this is related to its impedance, the capacitive 

and inductive elements of which are intimately related to the physical construction of 

the transformer. Changes in frequency response as measured by SFRA techniques may 
indicate a physical change inside the transformer, the cause of which then needs to be 

identified and investigated. In order to understand the practical implementation of SFRA, 

at first, basic theory of SFRA has to be explained in detail and same is the objective of 

this chapter.

4.2 Circuit Theory of SFRA

The primary objective of SFRA is to determine how the impedance of a test specimen 
behaves over a specified range of applied frequencies. The impedance is a distributed 

network of active and reactive electrical components. The components are passive in 

nature, and can be modeled as resistors, inductors,' and capacitors. The reactive properties 
of a given test specimen are dependent upon and sensitive to changes in frequency. The 

change in impedance versus frequency can be dramatic in many cases. This behavior 
becomes apparent when we model the impedance as a function of frequency. The result
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is a transfer function representation of the ELC network in the frequency domain [32], 

Frequency response analysis is the response characteristics of the system when subject 

to sinusoidal inputs.- The input frequency is varied, and the output characteristics are 

computed or represented as a function of the frequency. Frequency response analysis 
provides useful insights into performance characteristics of the system [6].

The system is subject to an input of the form 
x(t) — A sin (tot)

and the output is also a sinewave of the form 
y(t) — B sin(u;£ + <f>)

The amplitude and phase are changed by the system, but the frequency remains the 

same as shown in Figure 4.1. Output wave lags behind the input by an angle tj> defined as 

the phase lag. Phase angle $ can be capacitive also and in that case it will be leading with 

respect to input signal. Similarly every time the frequency of the input signal is changed 

in a predefined interval .keeping the amplitude to the input signal same constant value A 

and output signal is computed. In this process frequency is swept from low frequency to 
high frequency and this method is known as Sweep frequency response analysis-(SFRA).

Figure 4.1: Frequency response of a sytem

There are a number of ways to represent the frequency response of a process and one 
of them is Bode plots. A Bode plot is a plot of the amplitude ratio (AR) and the phase lag 

as a function of the frequency of the input line wave (which is the same as the frequency 

of the output wave). Logarithmic scales are used for the frequency axis. The y-axis is
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Figure 4.2: Logarithmic SFRA Plotting

plotted using the units of decibels, which is 20log(AR) as shown in Figure 4.2.

4.2.1 RLC Networks and Resonant Frequency

The series RLC circuit is mentioned in Figure 4.3 and the Frequency response plot of the 

series RLC circuit is shown in Figure 4.4. Parallel RLC circuit is mentioned in Figure 4.5. 
For the Series RLC circuit the impedance (Z) is:

Z = Z£4> = R + j{coL-~^

z-F+(“i-^)2

4> = arctan
loL - (1 /uC)

At resonance of series or parallel circuit (ujL — the resonant frequency /o is defined 

as below:

/0 “ 2trSLC

Hence, at the resonant frequency the imaginary part of the impedance vanishes.
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Figure 4.3: Series RLC circuit

Figure 4.4: SFRA Plot for Series Resonance RLC circuit

Frequency response analysis-is generally applied to a complex network of passive ele­
ments [8]. For practical purposes, we will only consider resistors, inductors, and capacitors 

as passive circuit elements, and they should be assumed ideal. These three fundamental 
elements are the building blocks for various physical devices, such as transformers, motors, 

generators, and other electrical apparatus.
It is important to understand the difference between the physical device and the math­

ematical model we intend to use. When large and complex systems are electrically ana­
lyzed, we are often faced with a poorly defined distributed network. A distributed network 
contains an infinite amount of infinitely small RLC elements. For example, transmission 

lines are generally distributed in nature. It is practical to model such distributed systems
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Figure 4.5: Parallel RLC circuit

by lumping the basic RLC components together, resulting in a lumped network. Lumping 

elements together for a single frequency is a easy task. However, when system modeling 

requires spanning over a significant frequency interval, then producing a suitable lumped 
model becomes difficult.

They can be connected in series, parallel or combination of series and parallel to 
produce the desired model. As the model increases in complexity, these forms can be 

combined.

4.2.2 Time and Frequency Domains

System responses can be represented either in the time domain or in the frequency domain 
and it is explained in reference [4], Voltage and current signals can be observed over 

time, thus resulting in a signal versus time or time domain response. Any signal can 
be represented by a sum of harmonically related sinusoids, at varying magnitudes and 
phases. When a signal is represented by a sum of sinusoids, the result is dispkwed and 

represented in the frequency domain. Various tools and techniques can be applied in either 

case for analyzing the responses. Differential equations and convolutions are applied to 

nth order linear systems in the time domain, while Fourier and Laplace methods are used 

extensively for linear systems in the frequency domain.
The time domain and frequency domain are related collectively by the transform- 

pair relationship. Using the Fourier relationship as an example, the function F(ju>) is 
the Fourier transform of /(f), and /(f) is the inverse Fourier transform of F(juj). The
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transform parr is defined by Equation 4.1.

/
■oo 1 tooejwf(t)dt ^ ,f(t) = — / e^F(joj)<Lj (4.1)

The energy associated with f(£) is proportional to the energy associated with F(jio).To 

better understand the relationship between the domains, the energy correlation should be 

examined closely. The energy of a signal can be represented by the sum of its individual 

orthogonal components, where inversely, the sum of such components, creates an equiv­

alent time domain representation. The energy of a signal or system can be obtained by 
either f\t) over time or by integrating F2(juj) multiplied by 1 /(27t) over all frequencies.

This relationship is known as Parseval’s theorem, which compares the total energy of 

a time domain system to a frequency domain system. Parseval’s theorem is represented 
by Equation 4.2.

/■OO 1 /-CO/ f(t)dt=— \F{ju)?du> (4.2)
•/—oo 27T J— oo

o

Often, it is difficult to analyze system responses displayed in the time domain, while 

the frequency domain equivalent may prove to be much easier. Identifying predominant 

system features, such as resonance, by time domain methods is not easily accomplished. 
When the same resonance is displayed using frequency domain techniques, the resonance 

characteristics are identified with clarity and confidence. Noise and harmonic content are 

other examples of where the frequency domain analysis is beneficial.

4.2.3 Two Port Networks

When a transformer is subjected to SFRA testing, the leads are configured in such a 

manner that four terminals are used. These four terminals can be divided into two unique 

pairs, one pair for the input and the other pair for the output. These terminals can be 
modeled in a two-terminal pair or a two-port network configuration as shown in Figure 

4.6.
Zu, z22, z12, and z2i are the open-circuit impedance parameters, and can be determined 

by setting each current to zero and solving Equation 4.3.

' V. ' ~11 212 ' h '

_ V2 . . 221 222 .

(4.3)
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Figure 4.6: Two-Port Network

where

These impedances are formed by the complex RLC network of the specimen. It is as­

sumed here that transformers are tested through the transformer tank. The transformer 

tank is common for both negative or lower terminals in figure 4.6. The transformer tank 

and lead ground shields must be connected together to achieve a common-mode measure­

ment. This assures that no external impedance is measured. Applying the connection 

in this manner helps reduce the effects of noise. It is very important to obtain a zero 

impedance between the lower or negative terminals to assure a repeatable measurement.

4.2.4 Transfer Function

The transfer function of a RLC network is the ratio of the output and input frequency 

responses when the initial conditions of the network are zero. Both magnitude and the 

phase relationships can be extracted from the transfer function. The transfer function 

helps us better understand the input/output relationship of a linear network. The transfer 

function also represents the fundamental characteristics of a network, and is a useful tool 

in modeling such a system The transfer function is represented in the frequency domain 

and is denoted by the Fourier variable where (jw) denotes the presence of a

frequency dependent function. The Fourier relationship for the input./output transfer 

function is given by Equation 4.4.

(4.4)
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When a transfer function is reduced to its simplest form, it generates a ratio of two 

polynomials. The main characteristics, such as resonance, of a transfer function occurs 

at the roots of the polynomials. The roots of the numerator are referred to as ’’zeros” 

and the roots of the denominator are ’’poles”. Zeros produce an increase in gain, while 

poles cause attenuation. The goal of SFRA is to measure the impedance model of the 

test specimen. The Bode Diagram plots the magnitude and phase as follows:

A(dB) = 20logm(H(juj)) .

A(9) — tan.~1(H{juj))

The Bode Diagram takes advantage of the asymptotic symmetry by using a logarithmic 

scale for frequency. The Bode method is the effective way to estimate a transfer function. 

The frequency scale is plotted by decades, such as 1, 10, 100, lk, 10k, etc. The effect of 

poles and zeros are very unique to the Bode Diagram. Poles and zeros create a 20 dB per 

decade change for a single root.
Poles cause -20 dB per decade deficit, while zeros produce a gain of -20 dB per 

decade.Plotting the phase relationship with the magnitude data will help determine 

whether the system is resistive, inductive, or capacitive. It is often useful to compare 

resonance in the magnitude plots with the zero crossings in the phase relationship. It is 
more advantageous to plot H(s) logarithmically over large frequency spans. The Logarith­

mic plot helps to maintain consistent resolution. Plots ranging from 10 Hz to 2 MHz can 
be displayed as a single plot if they are formatted logarithmically. However, when zooming 

in closely, a linear plot may help to simplify the plot interpretation in high frequency by 

having evenly spaced frequency scale. Figure 4.2 and Figure 4.7 compares a logarithmic 

plot to a linear plot over a substantial frequency range for the same measurement.

The measured response is usually shown graphically by plotting the logarithmic ampli­
tude ratio of the output voltage to the input voltage in dB (y scale) against the frequency 

(x scale). The frequency scale can be logarithmic or linear. Both are used, although the 

logarithmic often shows the complete frequency range more clearly. The linear scale is use­
ful for looking at discrete frequency bands and to compare small differences at particular 

frequencies.
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Figure 4.7: Linear SFRA Plotting

4.3 Application of SFRA in Power Transformers
Power transformers are specified to withstand the mechanical forces arising from both 

shipping and subsequent in-service events, such as faults and lightning. Transportation 
damage can occur if the clamping and restraints are inadequate; such damage may lead to 

core and winding movement. The most severe in-service forces arise from system faults, 
and may be either axial or radial in nature. If the forces are excessive, radial buckling or 
axial deformation can occur [49]. With a core form design the principal forces are radially 

directed, whereas in a shell form unit they are axially directed, and this difference is likely 
to influence the types of damage found.

Once a transformer has been damaged, even if only slightly, the ability to withstand 

further incidents or short circuits is reduced. There is clearly a need to effectively identify 

such damage. A visual inspection is costly and does not always produce the desired 

results or conclusion. During a field inspection, the oil has to be drained and confined 

space entry rules apply. Since so little of the winding is visible, often little damage is seen 
other than displaced support blocks. Often, a complete tear down is required to identify 
the problem. An alternative method is to implement field-diagnostic techniques that are 
capable of detecting damage, such as SFRA [41].

There is a direct relationship between the geometric configuration of the winding and 

core within a transformer and the distributed network of resistances, inductances, and
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capacitances parameter of transformer as shown in Figure 4.8. This RLC network can be 
identified by its frequency dependent transfer function[6] .Changes in the geometric con­

figuration alter the impedance network, and in turn alter the transfer function. Changes 

in the transfer function will reveal a wide range of failure modes. SFRA allows detec­

tion of changes in the transfer function of individual windings within transformers and 

consequently indicate movement or distortion in core and windings of the transformer.

-wv- it

p <f [ 1
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Figure 4.8: Equivalent circuit model for two winding Transformer

Where

Lik— Primary inductance 
Lm — Leakage inductance 

Cp = Primary winding capacitance 

Cs — Secondary winding capacitance 

Cm — Inter winding capacitance 

Rp = Primary winding resistance 
R„ = Secondary winding resistance

4.3.1 Self Inductance

From Maxwell’s first equation (on integral form) we may obtain the magnetic contribution 
along a circular loop carrying current (due to the applied electrical field)

(4.5)
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Assuming B is proportional to H (only linear materials) the flux through the loop is 

proportional to the total current carried by the loop. The proportionality is described by 
the self inductance of this loop. Assuming the loop is placed in vacuum (no ferromagnetic 

materials included), the inductance of the loop is depending on its geometry only. The 

total flux through the loop is expressed as:

= j J (B ■ n)dA = j>{A- ds) = L-I (4.6)

In the latter only the external inductance is considered, due to the fact that the internal 
inductance is depending on the current distribution within the conductor (which in turn 

is determined by the skiu-effcct/frequency). For a circular' conductor the flux through the 

loop is determined by:

Figure 4.9: Integration paths to find seif inductance

(p — Pouter

and then:

T ~ Louter

Mo -I / dsi 
4n Jci r

Mo f f dsi ■ ds2 
47t fi h r

d,S‘2 ; Mo -1
47rr££ dsi ■ ds2 (4.7)

(4.8)

The two paths of integration to find the inductance is shown in Figure4.9, where dsi 
the unity vector quantity along the centre-line of the loop, and ds2 is the unity vector 
along a closed curve on the surface of the conductor .
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4.3.2 Mutual Inductance
Mutual inductance is calculated using the same approach as the initial considerations for 
self inductance, where the mutual inductance between two parallel conducting filaments 

is calculated. This integral can be expressed as:

Mi 2 fto f2n ri(a-i) • r2(a2) • cos(ai - a2) . ,
= L :«2)

(4.9)

The integral is also used for calculating the inductances of deformecl/buckled windings. 

The approach, by assuming filaments of negligible cross-section, is rather coarse if the 

dimensions of the cross-section are appreciable compared to the distance d, between the 

filaments as indicated in Figure 4.10 and Figure 4.11.

Figure 4.10: Two parallel conducting filaments

4.3.3 Series Capacitance
There are several types of windings but some of the main types of windings are listed 

here:
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Figure 4.11: Mutual coupling between two circular filaments

Figure 4.12: Helical winding (single layer, single-start)

• Helical winding (single- or multi-layer)

• Disc winding (conventional, interleaved or in-wound shields)

• Layer winding (conventional or interleaved)

Helical winding is shown in Figure 4.12 and the equation for computing the series 
capacitance is mentioned below.

, d2 — d2
Cs = (4.10)

4a

Where
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Figure.4.13: Ordinary (continuously wound) disc winding

Figure 4.14: Equivalent circuit for disc winding

d: distance between turns.
d0:~ d0 + d: outer diameter + interturn distance (accounting for fringing) 
/ •df. inner diameter - distance between turns.

The series capacitance for the whole winding is; 

1
-Th - 1

-C,

Where

(4.11)

nt: number of turns
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For conventional disc windings is shown in Fi'gure4.13, and the related capacitance of 

the winding is explained in Figure 4.14.

Figure 4.15: Interleaved disc winding

In Figure 4.15, an interleaved disc winding is shown. There are also other possibilities 
of interleaving, such as a 4 disc interleaving, but then the voltage between strands will be 

higher.

4.3.4 Shunt capacitance
These are capacitances between windings and between winding and ground. Some of 

these values are calculated with simplified geometrical formulas, and some are calculated 

on a semi-empirical basis.

Capacitance between windings where the windings are concentrically arranged around 

the core and can be treated as cylindrical capacitors given by:

C„
2irere0h!

(4.12)

where h’ = h+d is to compensate for fringing of the field at the ends, di is the inner 
diameter and dO is the outer diameter, d is the distance between them as indicated figure 

4.16.
Capacitance between phases: The following formula applies for capacitance between
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Figure 4.16: Dimensions of a single disc

windings on adjacent legs.

ere0 nti (4.13)

where b is the distance between adjacent windings (centre-centre) and dB is the diam­
eter of the windings as indicated in Figure 4.17.

Figure 4.17: Dimensions between adjacent windings and between windings and tank

Capacitance between phase and the tank: The capacitance between centre phase and 
the tank for the winding configuration shown in Figure 4.17, is calculated as mentioned 

below.

Ct = 0.25 • — 
In

ereo ith! (4.14)
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4.3.5 Low and High Frequency model

Equivalent circuit of transformer when considered for low frequency application, is repre­

sented by leakage inductance, winding resistance and series inductance as represented in 

Figure 4.18.

Figure 4.18: Equivalent circuit of Transformer winding at Low frequency

The same is different when considered in high frequency applications as shown in 

Figure 4.19. An element of capacitance becomes dominant as frequency increase and it is 

because of its reactance which is inversely proportional to the frequency.
As the frequency increases, the capacitance between successive coils of the windings 

and the coupling between them becomes more dominant. Thus a more accurate model 

for higher bandwidth operations would include capacitance of the primary winding, ca­

pacitance of the secondary winding and a capacitance representing the coupling between 

the primary and secondary windings. The inductive reactance of both windings increases 
with frequency and become a high impedance in parallel with the capacitive reactance of 

the windings as shown in Figure 4.19.

Thus for more higher frequencies it is the LC circuit which is more sensitive than mere 

L alone as shown in Figure 4.20. Elements Inductance L and capacitance C are mainly 
Geometry dependant. They are governed by dimensions: height, diameter, Length, width 

and thickness. For transformer windings, once made these parameters like inductance 
formed by number of turns and dimensions , capacitance between turns or discs, between 

windings, between leads remains constant for years together unless changed by external 
forces, such as electromagnetic forces due to short circuit currents in winding, shocks 

while transports or insulation failures.
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Figure 4.19: Equivalent circuit of Transformer winding at high frequenncy

As it is mentioned above that the LC circuit is very sensitive to frequency, the benefit 
of this sensitivity is efficiently used in a technique called Sweep Frequency Response 

Analysis SFRA. Any L — C circuit has its own frequency vs Impedance characteristic. In 
other words, for a given LC circuit if the frequency vs impedance characteristics change 

from its initial characteristics then it is only due to some change in values of L and C 
and any change in L and C means a change in their dimensions if other parameters such 
as permittivity and permeability remains constant which is normally true for equipment 
like power transformer.

Figure 4.20: Model LC Circuit for very high frequency response
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4.4 Methods of SFRA Measurement

4.4.1 Voltage Transfer Measurement:

The transformer winding can be regarded as a passive, linear two-port network com­

posed of resistance, inductance and capacitance. After the deformation of windings the 

parameters, mainly the inductance and the capacitance, have a change and so does the 
performance of the network. The changes of transfer function can be adopted as the 

criterion of the winding deformation.

Connections of the instrument to the transformer using three coaxial test leads are as 

shown in Figure 4.21. It can be seen from the diagram that the swept frequency sinusoidal 

signal output (S) of approximately 10 Vpp from the measurement unit of the Analyzer and 

one measuring input (R) are connected to the one end of a winding, while the other end 
of the winding is connected to the other measuring input (T). The voltages are applied 

and measured with respect to the earthed transformer tank.

The voltage transfer function T/R is measured for each winding for standard fre­

quency scans from 10Hz to 2MHz, and amplitude and phase shift results are recorded 
for subsequent analysis [42].

Figure 4.21: Basic circuit for SFRA measurement

It is ensured that the winding which is not under test is terminated in open condition in 

order to avoid response difference among the three phases. The same procedure is followed 

on subsequent tests on the same or similar transformer, to ensure that measurements
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are entirely repeatable. The voltage transfer function is measured for each winding as 

indicated in Figure 4.22.

Winding measurements realistically consist of five categories. The winding categories 
are high-voltage, low voltage, inter-winding , series, and common. Inter-winding measure­

ment is not a true winding measurement, but rather the transfer impedance between two 

windings. The series and common winding measurements describe the SFEA application 

as it is applied to auto-transformers. Regardless, certain expectations can be made for 

each.
These five measurement types produce a few predictable characteristics and properties 

.Understanding these properties will minimize measurement error and identify problems. 

The following features exist for each of the following categories.

4.4.1.1 High-Voltage Winding

High-voltage winding measurements have greatest attenuation as compared to the other 

categories. Most traces start between -30 dB and -50 dB and are initially inductive. High- 

voltage windings are much larger in overall size, which contributes to greater complexity in 
its distributive network. High-voltage winding measurements generally produce steeper 
resonances and more of them as compared to its low voltage counterpart. Figure 4.23 

illustrates these features.

gat** 25-

Figure 4.22: Parameters to be measured for SFRA
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Figure 4.23: HV winding plot

4.4.1.2 Low-Voltage Winding

Low-voltage winding measurements have' least attenuation as compared to the other cate­

gories, Most traces start between —5dB and —15dB and are also initially inductive; This 

characteristic is due to the low impedance property of the LV winding of the transformer. 

The first peak after the core resonance generally approaches —5dB to 0dB and is concave 

and smooth. As compared to the high-voltage winding response, the low-voltage winding 
has fewer fluctuations and is slightly smoother. Figure 4.24 illustrates these features.

2]...........................................................
^ • 'xriMs. ■ 'Mm*.

Figure 4.24: LV Star winding plot



CHAPTER4 Basic of SERA 80

4.4.1.3 Inter-Winding

Inter-winding measurements always start with high attenuation, between —60dB and 
—90dB, and are capacitive. If electrostatic interference is present, it will show up50Hz 
and at the associated harmonics of 50Hz during this measurement.. These traces are 
very common, most inter-winding traces adhere to one of the basic shapes shown in 
Figure 4.25. It should be noted that inter-winding measurements, are capacitive in nature 

at low frequency.

-'-0-
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Figure 4.25: Inter winding plot of 132 kV/33 kV Transformer

4.4.1.4 Series and Common Winding

The series and common winding measurements are grouped together because of their 

similarities. These measurements are associated with auto-transformer. The naturally 

low turns ratio of an autotransformer cause the series and common measurements to be 

similar. However, if a LTC is associated with either winding, the similarities will be 

somewhat jeopardized. The common winding always exhibits less attenuation then the 
series winding. Figure 4.26 illustrates these features, and were obtained from a 440MVA 
345 kV/138 KV auto-transformer.

The lower resonant frequencies for the series winding are due to the fact that the 

interleaved disc series winding has a higher values of series capacitance than both the
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Figure 4.26: Series (blue) and Common winding (red) plot of Auto Transformer

common and tertiary windings.

4.4.2 Impedance Measurement
It is the same measurement as the voltage transfer method and indicates the effect of fre­

quency variation on impedance of a winding due to its inter-turn and ground capacitance, 
self and mutual reactance as indicated in Figure 4.27.
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Figure 4.27: Impedance plot of LV windin


