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Chapter 3
Biomedical signal processing

Due to growing complexity of the biomedical examinations, comprehensive
documentation and need for automation to reduce costs acquisition and processing of
biomedical signals has become more and more important for the physician [1].
The high quality measurement techniques and mathematical tools are responsible for

the progress in bio medical signal processing.

Model-based signal processing techniques based on a biophysical model of the
underlying physiological process have been developed. Traditional signal processing
techniques, like time-frequency domain or wavelet analysis are applied to bio

molecular data for classification and pattern recognition.

The important processes are Filtering, averaging, compression and detection. The

chapter gives a brief summary of traditional techniques for each of these processes.
3.1 Filtering:

Numbers of researchers were working independently on different applications of
adaptive filters in late 1950s. The least-mean-square (LMS) algorithm emerged as
a simple algorithm for the operation of adaptive transversal filters, Widrow and Hoff
devised the LMS algorithm in 1959 in their study of a pattern recognition scheme
known as the adaptive linear threshold logic element (Widrow and Hoff, 1960
Widrow, 1970). The LMS algorithm is a stochastic gradient algorithm.

It iterates each tap weight in the transversal filter in the direction of the gradient of the
squared amplitude of an error signal with respect to that tap weight. As such, the LMS
algorithm is closely related to the concept of stochastic approximation developed by
Robbins and Monroe in statistics for solving certain sequential parameter estimation
problems (Robbins and Monroe, 1951). The primary difference between them is that
the LMS algorithm uses a fixed step-size parameter to control the correction applied
to the tap weight from one iteration to the next, whereas in stochastic approximation
method the step size parameter is made inversely proportional to time n or to a power
of n. Another algorithm, closely related to the LMS algorithm, is the gradient adaptive
lattice (GAL) algorithm (Griffiths, 1977, 1978); the difference between them is
structural in that the GAL algorithm is lattice-based, whereas the LMS algorithm uses

a transversal filter.
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Godard made another major contribution to the development of adaptive filtering
algorithms in 1974. He used Kalman filter theory to propose a new class a
transversal filter to their optimum settings (Godard, 1974). Although, prior to this
date, several investigators had applied Kalman filter theory to solve the adaptive
filtefing problem, Godard’s approach is widely accepted as the most successful. This
algorithm is referred to in the literature as the Kalman algorithm or Godard algorithm.

3.1.1 Filtering: General issues

The design of a Wiener filter requires a prior information about the statistics of the -
data to be processed. The filter is optimum only when the statistical characteristics of
the input data match a prior information on which the design of the filter is based. A
more efficient method is to use an adaptive filter. It is self designing in that the
adaptive filter relies for its operation on a recursive algorithm, which makes it
possible for the filter to perform satisfactorily in an environment where complete
knowledge of the relevant signal characteristics is not available for example, in case
of biomedical signals. The algorithm starts from some predetermined set of initial
conditions, representing complete ignorance about the environment. Yet, in a
stationary environment, one finds that after successive iterations of the algorithm, it
converges to the optimam Wiener solution in some statistical sense. In a non-
stationary environment, the algorithm offers a tracking capability, whereby it can
track time variations in the statistics of the input data, provided that the variations are
sufficiently slow. ‘ '

Application of a recursive algorithm, whereby the parameters of an adaptive filter are
updated from one iteration to the next, the parameters become data dependent. This,
therefore, means that an adaptive filter is a non-linear device in the sense that it does
not obey the principle of superposition. However, an adaptive filter is often referred
to as linear in the sense that the estimate of a quantity of interest is obtained
adaptively (at the output of the filter) as a linear combination of the available set of
observations applied to the filter input.

The choice of a finite-duration impulse response (FIR) or an infinite duration impulse
response (IIR) for the filter is dictated by practical considerations. The choice of a
statistical criterion for optimizing the filter design is influenced by mathematical
tractability.

An FIR filter is inherently stable, because its structure involves the use of forward
paths only. In other words, the only mechanism for input-output interaction in the
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filter is via forward paths from the filter input to its output. This form of signal
transmission through the filter limits its impulse response to a finite duration.

An TIR filter involves both feed forward and feedback paths. The presence of
feedback path means that portions of the filter output and possibly other internal
“variables in the filter are fed back to the input. Consequently, unless it is properly
-controlled, feedback in the filter can make it unstable with the result thaf the filter
. oscillates; this kind of operation is clearly unacceptable when the requirement is for
. stability. By itself, the stability problem in TIR filters is manageab!e in both theoretical
and practical terms. However, when the filter is adaptive, bringing with it stability
;pr'oblems of 'its own, the inclusion of adaptivity combined with feedback that is
inherently présent in an IR filter makes a difficult prob]ém that much mote difffcult '
to handle. Hence in the majority of applications requlrmg the use of adaptively, the
use of an FIR filter is preferred over an IIR filter even though the latter is- léss
demanding in computational requirements. ’

3. 1. 2 Cost Functions

‘The filter desngn is optimized by minimizing a cost functmn, or index of
: performance it can be:-
. 1. - Mean-square value of the estimation error
. 2‘., Expectatibn ef theiabsolute value of the estimation error

3. Expectation of third or higher powers of the absolute value of the estima;tion error.

 First has advantage over the others that it leads to tractable methematics. In;particular,
.. the-choice of the mean-square error criterion results in second-order dependence for
* ‘the cost functioh_on the unknown coefficients in the impulse response of the filter.

A coefficient vector (that is called a tap weight vector as in a transversal filter, ora
véctor of reﬂectlon coefﬁments as in a multistage lattice filter) characterizes a discrete
' . time filter. A cost functxon defines a transformation from a vector space spanned by
the elements of the coefficient vector info the space cf a real scalar

' The mean square error crxterlon can work as cost function. It is’ defined as the mean

- ‘square value of an estlmatlon error, e (n). ¢ (n) is defined by the dlfference between
~ desired response d (n) and the actual filter output y (n),

e(n):d(n)—y(n) : ceerne (3.;)
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Transversal filter is characterized by the tap — weight vector W. The filter output is
given by the inner product of tap-weight vector w and the tap input vector x(n).

X
k - Xk—l
z-1

Figure3.1 Transversal filter
If u(n) and w are complex valued,
ymy=wx@ .. e —————— (3.2)

Where the superscript H indicates Hermitian transposition (i.e., conjugate
transposition). The use of Hermitian transposition is preferred over ordinary
transpositibn as it simplifies the appearance of the equations that define the
characterization of optimum filters. A cost function for the optimum design of the
transversal filter is

J(W)=E[|e()]
=E[]dm)-wRMF] = SN (3.3)

Where E is the expectation operator. Finding the tap — weight vector that minimizes
the cost function J, optimizes the filter. Such an approach is the minimum mean-
square error criterion, which forms the basis of Wiener filters.

The cost function defined in Equation (3.3) is probabilistic in nature as it involves

ensemble averaging represented by the expectation operator E.

Continuing with the example of a transversal filter, for given set of observations
represented by the tap-input vector x(i), where the time index i=1,2 ..., n. It is
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assumed that the tap-weight vector w of the transversal filter is held constant for the
entire observation interval. At time i, the estimation error is

e =d@)-w'x({) e B (3.4)

Where d(i) is the corresponding value of the desired response. In this case, the cost
- function may be defined as '

E(Wm)=3e@P - . - ‘
=Z|d(i)-wa(i)[2 i (3.5)

' Whereas the ensemble averaged cost function J(w) in Equatlon (3.3) depends only on
the tap«wmght vector w, the time-averaged cost function § (W,n) depends on w and
the observation interval n Accordingly, the mlmmlzatlon & (W,n) with respect to w
yields a solution for the tap-welght vector that varies with the observanon interval.
.This second approaeh is the baSlS of the method of least squares.

" The cost function J(w) and E(W, n) are both convex with a unique minimum point.
Their use ytelds a unique solution for the tap-weight vector of the transversal filter.

Lxmxtatxon of second-order statistics (e.g., the mean-square—error crxterlon) is'that they
‘are phase blmd This limitation can be overcome by the use of a non-lmear cost
,functlon By so doing, the filter is enabled to extract mformatlon (partlcularly phase
1nfonnat10n) from the 1nput signal in a more efficient manner. For this to be possible,
however, the mput signal must have non-Gaussian statxstlcs The use of such an
approach provxdes the basxs for an important class of nonlinear adaptwe filtering
algorithms that can perform blind de-convolutlon

3. 1.3 Adaptlve Filters

; ,There isno umque solutlon to the adaptive ﬁltermg problem but there are a variety of
recursive algorlthms each of which offets desirable features of 1ts own [2}
"Basxcally, there are three distinct methods for deriving recurswe algonthms for the

'operatlon of gadaptlve ﬁlters Wiener Fllter, ‘Kalman Fllter and Method of Least
: Squares '

A tapped de_lay line or transversal filter 'is used as the structural - basis for
- implementing the adaptive filter. For the case of stationary inputs, the mean-squared
error is a second-order function of the tap weights in the trans‘fersal"filter. The
‘ ’dependence of the mean-squared er:ror on the imknown tap weights is in the form of a
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multidimensional paraboloid (i.e., punch bowl) with a uniquely defined bottom or
minimum point. This paraboloid is known as the error performance surface. The tap
weights corresponding to the minimum point of the surface define the optimum
Wiener solution. '

To develop a recursive algorithm for updating the tap ‘weights of the adaptrve
transversal filter there are two steps:

Step: 1 Modifying the system of Wiener Hop equations (i.e., the matrix equation
defining the optimum Wiener solution) through the use of the method 'of steepest "
. descent. It is a well-known technique in optimization theory.
This modification req{xires the use of a gradient vector. Its-value depends on two -
parameters: The cprrelation matrix of the tap inputs in the transversal filter and cross- .
correlation vector between the desired response and the same tap inputs.

Step 2 Using instantaneous values for these correlations: Instantaneous values
for these c‘orreletions‘are used to derive an estimate for the grjadient vector. The
‘resulting algoriihm is known as the least mean square (LMS) algorithm, which is a
. stochastic gradie&nt"algorit‘hm It iterates each tap weight in the transversal filter in
the direction of the gradrent of the squared amphtude of an error srgnal with respect to
that tap weight. It is similar to the stochastic approxrmatron developed by Robbms
~and Monroe (Robbms and Monroe, 1951) the step size parameter is made inversely
proportronal to time n or to a power of n except that LMS uses-a fixed step—srze
A parameter to control the correction applied to the tap weight durmg the 1teratlons Ina
non-statronary envxronment the orientation of the error-performance surface varies
continuously. The LMS algorithm uses a transversal ﬁlter structure whereas the
: {gradlent lattice algorrthm (GAL) uses a lattice structure.

Classically, filter design problem can be stated as:

““Design a lmear dzscrete time filter whose output y(n) provzdes an -estimate of a
desired response gtven a set of mput samples u(0), u(l), u(2) . such that the mean
square value of the estzmatzon error e(n), defi ined as the d ﬁ%rence between the
- desired response d(n) and the actual response y(n), is mtmmzzed is based on’
' statlstrcal theory of Wrener and Kalman filtering. ' '

3.1.31 Method of least squares

"It involves the use of trme averages. The 1ndex of performance that consists of the
sum of welghted error squares rs mihimized, where the error is defined as the
. difference between some desired response and the actual fi Iter output. The method of
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least squares can be formulated with block estimation or recursive estimation. In

block estimation the input data stream is arranged in the form of blocks of equal

length (duration), and the filtering of input data proceeds on a block-by-block basis.

In recursive estimation, on the other hand, the estimates of interest (e.g., tap weights

of a transversal filter) are updated on a sample-by-sample basis. Generally, a recursive

estimator requires less storage than a block estimator. There are three basically

different classes of adaptive filtering algorithms that originate from the method of .
least squares: |

s Recursive least squares algorithm:

As with adaptive filtering algorithms derived from the Wiener and Kalman filters, the

‘recursive least-squares (RLS) algorithm filter also assumes the use of transversal
filters as the structural basis of the adaptive filter. The derivation of the algorithm
relies on the matrix ~inyersion‘ lemma. The RLS algorithm is a special case of the
Kalman algorithm for adaptive transversal filters. The Kalman or RLS algorithm
usually provides a much faster rate of convergence than the LMS algorithm at the
expense of increased computatlonal complexity.

e QR -~ déc’om'positiim bdsed recursive least-squares (QRD-RLS) algorithm:

: ‘This class of adapti\re ﬁltering algorithms is based on the QR-decomposition of the
¢ data matrix. Two well-known techniques for performing this decomposition are the
), Hauseholder transformatmn and the Givens rotation. These are data adaptive
; transformations that involve orthogonal trlangularrzatron of the i mcommg data matrix.
They are both highly popular in modern numerical analysis. At this pomt in the
' discussion, the 1mportant point to note is that a recursive least-squares algorithm
based on the Householder transformation or Givens rotation is numerically stable and
robust. Use of Giyene rotations is that it is amenable to recursive computation, with
the rotation parametervs'being updated on a sample—by—sample basis. The latter form of
computation leads to the use of systohc arrays for 1mp1ement1ng recursive least-

. squares estrmatron

. Fast algorltth‘ o

. The standard RLS algorrthm (usmg a transversal structure) and its counterpart based

- on the QR-decomposmon (using a systohc array) have a computatronal complexity

- that increases as the square of M, where M is the number of ad)ustable werghts which
N represent the number of degrees of freedom) in the algorlthm Such algorlthms are O
. (Mz) algorithms. On the other hand, the LMS algorithm is an O(M) algorrthm When

T ~Mis Iarge, the computatlonal complexrty of the O (M) algorithms may be come

objectlonabie from a hardware implementation point of view. There is therefore a
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Strong motivation to modify the formulation of recursive linear least-sduares
algorithms in such a way that the computational complexity assumes an O (M) form.
This objective is achievable (i) by virtue of the inherent redundancy in the Toeplitz
structure of the input data matrix, and (ii) by exploiting this redundancy through the
* use of linear least-squares estimation with an O(M) computational complexity. Three
types of fast algorithms are identified, depending on the filter structure or technique
employed: "~

a) Fast transversal filters (FTF) algorithm: This algorithm involves a parallel -

combination of four transversal filters, each one of which has an assigned task to

- perform. ‘

'b) Recursnve least squares lattice (LSL) algorithms: relies on the use of a lattice
structure to perform' the forward and backward forms of linear least- -squares
predxct;on There are four distinct forms of the recursive LSL algorithm.

¢) QR-decomposition based least squares lattice (QRD-LSL) algonthm The

- forward and backward forms of linear least-squares predlctlon are explmted for
the purpose Qf reducmg the computational complexity in performing the recursive
QR—d'ecompds'ition of the input data matrix.

The QR—decomposmon based least-squares lattice (QRD-LSL) - algorithm s
numerxcally stable because of the good numerical propemes mherently associated
' With the QR—decomposxtxon method.: ‘

3. 13.2 Method of Steepest Descent

The method of steepest descent is recursive. Startmg from some mmal (arbltrary)
. value for the tap-weight vector, it improves with the increased- ‘number of iterations.
The final value so computed for the tap-weight vector converges to the Wlener
solution. Determmlstlc control system finds the minimum pomt of the ensemble-
averaged error—performanee surface without knowledge of the surface itself.
h Accordingly, it provxdes heuristics for writing the recursxons that describe the least-
‘mean-square (LMS) algorlthm ' '

~The steps to ﬁnd the mihimum value of the mean-squared error, Jmm, by the steepest
. descent algorlthm are ‘described below: ‘

1) Begin with an initial arbitrary value vw(O) for the tap‘Weigh’t vector to provide an
initial guess as 10 where the minimum point of the error-performance surface may
be located. Typically, w(O) is set equal to the null vector.
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2) Using this initial or present guess, computer the gradient vector is computed, the
real and imaginary parts of which are defined as the derivative of the mean
squared error J(n), evaluated with respect to the real and imaginary parts of the
tap-weight vector w(n) at time n(i.e., the nth iteration). :

3) Computer the next guess at the tap weight vector by making a change in the initial

- or present guess ina direction opposite to that of the gradient vector

4) Go back to step 2 and repeat the process. -

- 3.1.3.3. Least-Mean-Square Algorithm:

The operation of the least-mean-square (LMS) algorithm is descriptive ofa feedback '
control system. Basically, it consists of a combination of two basic processes:

1) An adaptive process, whlch involves the automatic adjustment of a set of tap
weights. '

2) A filtering process, which involves (a) forming the inner product of a set of tap
inputs and the correspondmg set of tap weights emerging from the adaptlve'
process to produce an estimate of a desired response, and (b) generating an
estimation error by comparing this estimate with the actual value of fhe: desired
response The estimation error is in turn used to actuate the adaptlve process,

~ thereby closmg the feedback loop.

For the convergence to hold, the step-size parameter ' p has to - satisfy diffejrent :
conditions related to the eigen values of the correlation matrix of the tap inputs. '

The difference between the final value J(e0) and the minirn‘um value Jmin is called the
- excess mean sqilared error Jex(x0). The ratio of Jex(eo) to Jmin is called the mis-
adjustment whlch isa measure of how far the steady state solution computed by the
IMS algonthm is away from the Wiener solution.

3 2 Slgnal Compress:on

Slgnal compressmn is used to achieve a low bit rate in the: dlgltal representatxon of the
sxgnals w;th a mmlmum loss of the signal quality. Compressxon is usually referred to
‘as low bit rate codmg or codmg, for short. Signal compresslon has found a w1de use in
many respect of sxgnal communications, signal storage and message encryption A
good compromxse mvclvmg quallty, complex1ty and compressmn ra‘ao has not yet
been reached ‘ '

An electrocardiogram (ECG) data is very useful for cardiac disease jdiagnestie.
Modem computerized ECG recording systems produce vast amount of sampled
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heartbeat data. Storing sampled ECG data of mény patients requires a huge storage
capacity. For efficient storage of such large data records, effective data compression
methods are of interest. The aim of ECG compression is to reduce the amount of
digitized ECG data as much as possible with a reasonable implementation complexity
while maintaining clinically acceptable signal quality.

. The techniques compression techniques can be classified as: Direct methods and
. Transform methods. ' '

o Direct methods: The compression is directly done on the ECG samples.
Commonly used methods are: Amplitude Zone Time Epoch Coding (AZTEC)

. Turning Point (TP), Coordinate Reduction . Time Encodmg (CORTES), Scan
Along Polynomlal Approximation (SAPA), Peak peaking, cycle-to-cycle and
Differential Pulse Code Modulation (DPCM).

o Transform Methods: The original samples are transformed to -another
domain in the hope of achieving better compressmn performanee Commonly,
used methods include: Fourier Descriptors, Waish Transforms Karhunen —

: Loeve Transform (KLT), Discrete Cosine Transforms (DCT) and Wavelet

~ Transform. :

Diréct methods are better than transform methods thh respect to system complexxty .
and the error control mechanism. Transform methods achxeve hlgher compressxon
: yratlos and are insensitivé to presence of noise in the orlgmal ECG signals.

Since ECG are non- -stationary, the error control probiem for a reconstmcted ECG
" signal is an 1mportant issue. In direct methods the error hmlt for a reproduced ECG
signal is easily controlled by adJustmg a user-specified error threshold Since in
transform teohmques the distortion of each reconstructed. segment of the ECG sngnal
varies w1th the eomplex pattern of. the segment and it 1s difficulf .to ﬁnd a
" predetermmed opt:mal quantization size for good quahty reeonstrueted ECG sxgnal at
; every segment the error control is difficult. L

; R . Cd -
‘A compression algorithin can be evaluated in terms of relative complexity, memory
~ requirement, speed of e)f(ecution, and amount of compressioﬁf and reconstruction efror.

~ Performance of compregsion algorithm is measured as ‘con‘lpr:es)sion ratio, which is
‘the ratio of the number’ of bits required to represent the data before compression to
.. the number of bits required to represent the data after compression. It can also be .
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represented by expressing the reduction in the amount of data required as a
percentage of the size of the original data or rate which is the average number of bits
required to represent a single sample.

Difference between the original and the reconstruction is called the distortion.
Because human responses are difficult to model mathematically, many approximate
measures of distortion are used to determine the quality of the reconstructed
waveforms.

3.21 Compressioh Techniques

Based on the, requirements of reconstruction, data compression schemes is divided
into two broad classes: (a) lossless compression schemes, in which Y(Reconstructed)
is identical to X(Original), and (b) lossy compression : schemes, which generally
~provide much higher compression than lossless compressxon but allow Y to be
different from X '

. Lossiess compression techniques involve no loss of mformatlon lf data
have been losslessly compressed, the original data can be recovered exactly‘
from the compressed data. Lossless compressmn is ‘generally. used for
appllcatlons that cannot tolerate any difference ' ‘between the original and

- reconstructed data. Text compression is an 1mportant area for lossless
compression. lt is very important that the reconstructlon is 1dent1ca1 to the text
ongmal as very small differences can result in statements with very different
meanmgs

e Lossy compression techniques mvolve some loss of mformatxon and data
that have been compressed using lossy techmques generally cannot be recovered
or reconstructed exactly. In return for acceptmg this distortion in the
reconstructlon, higher compression ratio is p0531ble as compared o lossless
compression. ' '

' In many apphcatlons lack of exact reconstruction is not a problem Dependmg on the

quality requlred of the reconstructed speech, varying amounts of loss of mformatlon

~ aboiut the value of each sample can be tolerated. l

3.2.2 Modeling and Coding o v |
‘Compressmn scheme depends on a number of dlfferent factors. Some of the most

‘ 1mportant factors are the characteristics of the data that need to be compressed A
)compressmn techmque that will work well for the compress:on of text may not work
ol well for compressing lmages Each application presents a different set of challenges
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The development of data compression algorithms for a variety of data can be divided
into two phases. The first phase is modeling. In this phase information about any
redundancy that exists in the data is extracted and the redundancy is described in the
form of a model. The second phase is coding. A description of the model and a
description of how the data differ from the model are encoded, generaﬂy using a
binary alphabet. The difference between the data and the model is called the residual.

3.2.2.1 Huffman Coding Algorithm

It is a very popular coding algorithm. The codes generated using this technique or
procedure is called Huffman codes. These codes are prefix codes and are optimum
for a given model.

The Huffman procedure is based on two observations regarding optimum prefix
codes.

1. In an optimum code, symbols that occur more frequently (have a higher
probability of occurrence) will have shorter code words than symbols that
occur less frequently.

2. In an optimum code, the two symbols that occur least frequently will have the
same length.

The Huffman procedure is obtained by adding a simple requirément to these two
observations. This requirement is that the code words corresponding to the two
lowest probability éymbols differ only in the last bit. That is, if y and d are the two
least probable symbols in an alphabet, if the codeword for y was m * 0, the codeword
for 8 would be m * 1. Here m is a string of 1s and 0s, and * denotes concatenation.

Applications of Huffman coding include lossless image compression, text
compression, audio compression etc.

3.2.2.2. Arithmetic Coding

Arithmetic cbding is especially useful when dealing with sources with small
alphabets, such as binary sources, and alphabets with highly skewed probabilities. It
is also a very useful approach when, for various reasons, the modeling and coding
aspects of lossless compression is to be kept separate. A variation of the arithmetic
code is the coding method used in the Joint Bi-level Experts Group (JBIG) standard
for encoding binary imagés.
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3.2.2.3 Dictionary Techniques

Dictionary techniques - both static and adaptive. (or dynamic)-build a list of
commonly occurring patterns and encode these patterns by transmitting their index in
the list. They are most useful with sources that generate a relatively small number of
patterns quite frequently, such as text sources and computer commands..

A very reasonable approach to encoding such sources is to keep a list, or dictionary,
of frequently occurring patterns. When these patterns appear in the source output, they
are encoded wnth a reference to the dictionary. This technique to be effective, the class
- of frequently occumng patterns, and hence the size of the dictionary, must be much -

smaller than the number of all possible patterns. ' ‘

One of the more common forms of static dictionary codmg is dlagram coding,
Where all letters of the source alphabet followed by as. many pairs of letters called
digrams, as can be accommodated by the dictionary.

The digrém encoder read§ a two-character input and searches the dictionary to see if
’ thlS input exists in the dlctlonary If'it does, the correspondmg mdex is encoded and
" transmitted. If it does not the first character of the pair 1s encoded The second
character in the pa1r then becomes the first character of the next dlgram The encoder
* reads another’ character to complete the digram, and the search procedure is. repeated ’

: ,3.2.2.4 Predictive Coding

' These techniques make use of the past history of the data being encoded to provide
" more efficient compressmn Number of schemes is prmctpally used for the
‘ compression of text and lmages

It is learned that we get more compression when the message that is being coded has
a more skewed set of probabilities. There are several ways to a_chie\}e this situation.
We can transforin the sequence (in an invertihle fashion) into another ‘sequence that
. has the desired property Or, we can use a different probab;hty dlstnbutlon for each
= symbol, such that m the probab;hty distribution used with high. hkehhood the symbol
* being coded is. a hxgh-probabxhty symbol. In both approaches we also need to let the

. decoder know the transformatlon or the distribution function being used. If the

- transformation or dlstnbunon is based on the history of the sequence, hlstory that is
available to both encoder and decoder, then there might not he any need to transmit
the additional information. Because we use the history of the sequence ina predictive
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manner to determine its encoding, such schemes are called predictive coding
schemes.

A different kind of prediction is used when encoding non numerical data such as text. '
When encoding a particular symbol, one would like to use the probability distribution
in which the symbol one is trying to encode has a high probability. One can then use
adaptive arithmetic coding to encode that symbol at a low rate. However, if one is
going to use a different probability model to encode each symbol, for each symbol
one need to let the receiver know which probability model is being used. One way to
do this with no cost is to use the preceding symbols to predict the probability model. -
In other words, the preceding symbols form the context in which the symbol is being
encoded.

Some of the best performing text compression algorithms are variants of the
prediction with partial match (ppm) algorithm. The new JPEG standard for lossless
image compression is a predictive coding algorithm.

3.2.2.5 Scalar Quantization

In many lossy compression applications one is required to represent each source
output using one of a small number of codeword. The number of possible distinct
source output values is generally much larger than the number of codewords
available to represent them. The process of representing a Iarge—p0551bly infinite-set
of values with a much smaller set is called quantization.

The set of inputs and outputs of a quantizer can be scalars or vectors. If they are
scalars, they are called scalar quantizers. If they are vectors, they are called vector
quantizers.

3.2.2.6 Vector Quantization

Grouping source outputs together and encoding them as a single block can obtain
efficient lossy as well as lossless compression algorithms. Many of the lossless
compression algorithms that are looked at take advantage of this fact. Blocks of data
are also called izectors, hence called "vector Quntization."

Even when the input is random, encoding sequences of samples instead of encoding
individual samples separafely provides a more efficient code. Encoding sequences of
samples is more advantageous in the lossy compression framework as well. By
"advantageous" we mean a lower distortion for a given rate, or a lower rate for a
given distortion.
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Figure 3.2 Vector Quantization

Consider a block of L pixels from an image and treat each pixel value as a
component of a vector of size or dimension L. This vector of source outputs forms
the input to the vector quantizer. A set of L-dimensional vectors at both the encoder
and decoder of the vector quantizér are called the codebook. The vectors in this
codebook, known as code-vectors are generated from the source output. Each code-
vector is assigned a binary index. At the encoder, the input vector is compared to
each code-vector to find the code-vector closest to the input vector. The elements of
this code-vector are the quantized values of the source output. In order to inform the
decoder about which code-vector was found to be the closest to the input vector,
Binary index of the code-vector is transmitted or stored. As the decoder has exactly
the same codebook, it can retrieve the code-vector given its binary index as in Figure
3.2

Although the encoder may have to perform a considerable amount of computations in
order to find the closest reproduction vector to the vector of source outputs, the
decoding consists of a table lookup. This makes vector quantization a very attractive
encoding scheme for applications in which the resources available for decoding are
considerably less ﬁhan the resources available for encoding. However, if the decoding
is to be done in software, the amount of computational resources available to the
decoder may be quite limited.

3.2.2.7 Differential Encoding

Sources such as speech and images have a great deal of correlation from sample to
sample. We can use this fact to predict each sample based on its past and only encode



Chapter 3: Biomedical signal processing 30

and transmit the differences between the prediction and the sample value. Differential
encoding schemes are built around this premise. Because the prediction téchniques
are rather simple, these schemes are much easier to implement than other
compression schemes.

3.2.2.8 Modified Huffman Coding

The implementation of Huffman coding requires a translation table,” where each
source symbol is mapped to unique code word. For example, if the original data were
quantized into 16-bit numbers, the table would need to contain 2'° records. A table of
this size creates memory problems and processing inefﬁciency.

In order to reduce the size of the translation table, the modified Huffman coding
scheme partitions the source symbols into a frequent set and an infrequent set. For all
the symbols in the frequent set, we form a Huffman code as in the static scheme. One
then need to use a special code word as a prefix to indicate any symbol from the
infrequent set and attach a suffix corresponding to the ordinary binary encoding of the
symbol.

3.2.2.9 Adaptive Coding

Huffman coding requires a translation table for encoding and decoding. It is necessary
to examine the entire data set or portions of it to determine the data statistics. The
translation table must also be transmitted or stored for correct decoding.

An adaptive coding scheme attempts to build the translation table as data are
presented. A dynamically derived translation table is sensitive to the variation in local
statistical information. It can therefore alter its code words according to local statistics
to maximize the reduction ration. It also achieves extra space saving because there is
no need for a static table.

An example of an adaptive scheme is the Lempel-Ziv-Welch (LZW) algorithm. The
LZW algorithm uses a fixed-size table. It initializes some positions of the table for
some chosen data sets. When it encounters new data, it uses the uninitialized so that
each unique data word is assigned its own position. When the table is full, the LZW
algorithm reinitializes the oldest or least-used position according to the new data.
During data reconstruction, it incrementally reconétruqtion, it ihcrementally rebuilds
the translation table from the encoded data.
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3.2.2.10 Residual differencing

Typically, neighboring signal amplitudes are not statistically independent.
Conceptually one can decompose a sample value into a part that is correlated with

past samples and a part that is uncorrelated. Since the inter sample correlation |
corresponds to a value predicted using past samples, it is redundant and removable.
"We are then left with the uncorrelated part which represents the prediction eITor Or
residual signal. Since the amplitude range of the residual signal is smaller than that of
the original signal, it requires less bits for representation. One can further reduce the
data by applying Huffman coding to the residual sigaal. '

3.2.2.11 Run length encoding

It is used extensively in the facsimile technology, run~length encodlng exploits the
high degree of correlation that occurs in successive bits in the facsimile bit streams. A
bit in the facsimile output:may either be 1 or 0, depending on whether it is a black or
-white pixel. On a typieal document, there are clusters of black and white pixels that
give rise to this high corfelation Run-length encoding slmply transforms the original
bit stream into the string {vi, 11, v, k.. } where v; are the values and |; are lengths :
The observant reader will qulckly recognize that both AZTEC and the Fan algonthm '
are specxal cases of run—length encodmg :

3.23 Blomedlcal Slgnal Compress:on Algonthms
'The section desenbes eompressmn algorithms for bxomed;cal signals.
- 3.2.31 Tummg pomt algorithm |

- The originalt motiv’ati'on" for the turning point (TP) algorithm was to reduce the

. sampling frequency of an ECG signal from 200 to 100 samples/s (Mueller, 1978). The

' algorithm developed from the observation that, except for QRS complexes with large
amplitudes and slopes, a samplmg rate of 100 samples/s is adequate

TP is based on the concept that ECG sxgnals are normally over sampled at four or ﬁve

: _' times faster’ that the hlghest frequency present. For example an ECG used in

o momtormg may have a bandwxdth of 50 Hz and be sampled at 200 sps in order to

.. easily v1suahze the hlgher—frequency attributes of the’ QRS complex Sampling the

© signal is done at reduced effective sampling rate (by hall) of 100 sps by selectively
savmg important sxgnal pomts (ie., the peaks and valleys or tummg pomts )

'The algorithm processes three data point at a time. It stores the first sample point and
assigns it as the reference point X,. The next two consecutive points become X; and
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X5. The algorithm retains either X; or X, depending on which point preserves the
turning point (i.e., slope change) of the original signal.

The TP algorithm is simple and fast, producing a fixed reduction ratio of 2:1. After.
selectively discarding exactly half the sampled data, the original resolution can be
 restored by interpolating between pairs of saved data points.

A second application of the algorithm to the already reduced data increases the
reduction ration to 4:1." Using data acquired at a 200-sps rate, this produces

compressed data with a 50-sps effective sampling rate. If the bandwidth of the » |

acquired ECG is 50 Hz, this approach violates sampling theory since the effective
sampling rate is less than twice the highest frequency present in the signal. The
resulting reconstructed signal typically has widened QRS complex and sharp edges
that reduce its chmcal acceptabrhty Another drsadvantage of this algorithm is that the
saved points do not represent equally spaced time intervals. This mtroduces short-
term time dlstortlon However, this localized distortion is’ not visible when the
reconstructed srgnal is vrewed on the standard clinical monitors and paper recorders.

3.2.3.2 AZTEC algorlthm

, Orlgmally developed to preprocess ECGs _ for rhythm analysxs ‘the AZTEC
- (Amplitude Zone Time Epoch Coding) data reduction algorlthm decomposed raw’
. ECG sample pomts into plateaus and slopes (Cox et al., 1968). It provides a sequence

of line segments that form a p;ecewrse -linear approximation to the ECG. '
. The reconstruction process produces and ECG signal with step like quantization,

which is not clmtcally acceptable The AZTEC-encoded srgnal needs post processmg
with curve smoothmg algonthm or.a low~pass filter to remove lts jagged ¢ appearance
~ and produce more acceptable output. ’

3233 comes algonthm

i The CORTES (Coordmate Reductlon Time Encodmg System) algonthm is a hybrid
of the TP and AZTEC algonthms (Abenstem and Tompkins,' 11982; Tompklns and
f.,Webster 1981) Tt attempts to exploit the strengths of each whtle SIdesteppmg the
: weaknesses CORTES uses. AZTEC to dlscard chmcally msxgmﬁcant data in the
isoelectric reglon w1th high frequency regions (QRS complexes) it executes the
- AZTEC and TP algortthms in parallel on the i mcommg ECG data

, Whenever an AZTEC;;lirielis produced, the CORTES algorithm decides, based on the
o lerlgth of the line, whether the AZTEC data or the TP data are to be saved, If the line
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is longer than an empirically determined threshold, it saves the AZTEC line.
Otherwise it saves the TP data points. Since TP is used to encode the QRS complexes,
only AZTEC plateaus, not slopes, are implemented. ‘

The CORTES algorithm reconstructs the signal by expanding the AZTEC plateaus
and interpolation between each pair of the TP data points. It then applies parabolic
smoothing to reduce discontinuities.

3.2.3.4 Fan algorithm

Originally used for ECG telemetry, the Fan algorithm draws lines between pairs of
starting and ending points so that all intermediate samples are within some specified
error tolerance, & - (Bohs and Barr, 1988). It starts by accepting the first sample X as
the non redundant'pennanent point. It functions as the 'origin and is also called the
originating po’int. It then take the second sample X; and draw two slopes {U; L1}, U,
passes through the point (Xo+X;+¢), and L, passes through;'t'he point (Xo-Xy-¢). If
. the third sample X, falls within the area bounded by the two slopes, it generates two
‘new slopes {U,, 1.2} that pass through points (Xo, Xo+¢) and (Xo; X»-£ ). It compares
the two pairs of slopes and retains the most converging (restrictive) slopes (i.e., {Uj,
Lo} in this example) Next it assigns the value of X, to X and read the next sample
~into X,. As aresult, X always holds the most recent sample and Xy holds the sample
xmmedlately preceding X,. It repeats the process by comparing X; to the values of the
. most convergent slopes. If it falls outside this area, we save the length of the line T
and its final amplitude X; which then becomes the new orlgmatmg point Xo, and the
process begms anew. The sketch of the slopes drawn from the orlgmatlon sample to
future samples forms a set of rad1a1 lines srrmlar to a fan, giving thrs algorithm its
name. '

33 Slgnal averagmg |

One predommant applrcauon area of signal averaging is in electroencephalography
" [3]. The EEG recorded from scalp electrodes is difficult to interpret in part because it
©  consists of a summatlon of the activity of the billions of brain cells. It i is impossible to

- deduce much about the activity of the visual or auditory parts of the brain from the

‘EEG However, 1f one stimulates: a part of the brain withi a flash of light or. an
acoustical chck an evoked response occurs in the region of the brain that processes
'mformatlon for the sensory system being stimulated. By summing the signals that are
evoked 1mmed1ate1y following many stimuli and dividing by the total number of

' stimuli, we obtam an averaged evoked response. This signal can reveal a great deal
about the performanee of a sensory system.
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Signal averaging sums a set of time epochs of the signal together with- the
superimposed random noise. If the time epochs are properly aligned, the signal
-waveforms directly sum together On the other hand, the uncorrelated noise averages
out in time. Thus, the signal-to-noise ration (SNR) is improved.

Signal averaging is based on the following characteristics of the signal and the noise:

1. The signal waveform must be repetitive (although it does not have to be
periodic). This means that the signal must occur more than once but not
necessarrly at regular intervals. (

2. The noise must be random and uncorrelated with: the signal. In this
application, random means that the noise is not periodic énd that it can only be
described statistically (e.g. by its mean and variance). '

3. The temporal position of each signal waveform must be accurately known.

It is the random nature of noise that makes signal averaging useful. Each time epoch

(or sweep) is intentionally aligned with the previous epochs so that the digitized

samples from the new epoch are added to the corresponding samples from the:
previous epochs. Thus the time-aligned repetitive 51gnals § in each epoch are added

directly together s0 that aﬁer four epochs, the signal amphtude is four times larger

than for one epoch 4S). If the noise is random and has a mean of zero and an average
RMS value N, the RMS value after four epochs is the square root of the sum of squres

’(1 e., (ANH2 OR2N). In general after n repetitions the signal amphtude is mS and the

noise amplltude is (m)”zN Thus, the SNR improves as the ratio of m to m"

Srgnal averaging is a kmd of digital filtering process. 'The Fourier transform of the

" transfer of the transfer function of an averager is composed of a serres of discrete
| 'frequenoy componcnts Each of these components has the same spectral characteristic
and amplitude. Because of the appearance of its amphtude response, this type of filter
is called a comb filter. ‘

The width of each tooth decreases as the number of sweeps repetmons increases. The
desired 51gna1 has a frequency spectrum composed of dlscrete frequency components
a fundamental and harmomcs Noise, on the other hand has continuous’ distribution.
"As the bandwrdth of each of the teeth of the comb decreases, thxs filter more
'selectrvely passes the ﬁmdamental and harmonics of the srgnal while rejectmg the
' random norse frequencres that fall between the comb teeth The srgnal averager,
therefore passes the srgnal while rejecting the noise. '



Chapter'_S: Biomedical signal processing A 35

Figure 3.3 Shows the block diagram of a typical averager. To average a signal such
as the cortical response to an auditory stimulus, the system is simulated (in this case,
human subject) with an auditory click to the stimulus input. Simultaneously, a trigger
is provided which is derived from the stimulus that enables the summation of the
sampled data (in this case, the EEG evoked by the stimulus) with the previous
responses (time epochs or sweeps) stored in the buffer. When the av‘erager receives
the trigger pulse, it samples the EEG waveform at the selected rate, digitizes the
signal, and sums the samples with the contents of a memory location éorresponding fo
that sample interval (in the buffer). The process continues, stepping through the
memory addresses until all addresses have been sampled. The sweep is terminated at
this point. A new sweep begins with the next trigger and the cycle repeats until the
desired number of sweeps have been avefaged. The result of the averaging process is.
stored in the buffer, which can then be displayed on a CRT as the averaged evoked
response.

Stimulus o g Response
ystem after time
Triggef Sum of
DWUUI-JD
A -

Y

Buffer

Enable

Figure 3.3 Block diagram of a typical signal averager.

An important assumption made in signal averaging theory is that the noise is
Gaussian. This assumption is not usually completely valid for biomedical signals.
~ Also, if the noise distribution is related to the signal, misleading results can occur. If
the fiducial point is derived from the signal itself, care must be taken to ensure that
noise is not influencing the temporal location’of the fiducial point. Otherwise, slight
misalignment of the signal waveforms will lead to a low-pass filtering effect in the
final result.

3.4 Feature Extraction

It is the process of studying and locating the areas and objects on the ground and
deriving useful information from signals.
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3.4.1 ECG: Power spectrum

The power spectrum of the ECG signal can provide useful information about the QRS
complex. The power spectrum (based on the FFT) of a set of 512 sample points that
contain approximately two heartbeats results in a series of coefficients with a maximal
value near a frequency corresponding to the heart rate.

The heart rate can be determined by multiplying together the normalized frequency
and the sampling frequency. One can also get useful information about the frequency
spectrum of the QRS complex. In order to obtain this information, the QRS complex
of the ECG signal must be selected as a template and zero-padded prior to the power
spectrum analysis. The péak of the frequency spectrum obtained corresponds to the
peak energy o‘f the QRS complex.

The ECG waveform contains, in addition to the QRS complex, P and T waves, 60-Hz
. noise from power line interference; EMG from muscles, motion aﬁifact from the
electrode. and ‘skin intérfaéc, and possibly other interference from glectro surgery
- equipment in the operating room..v Many . clinical instruments suqfh as a cardio
tachometer and arrh'yihniia monitor require accurate real-time QRS}deteétion Tt is
N necessary to extract: the sxgnai of mterest the QRS complex, from’ the other n01se
5; sources such as the P and T waves. Figure 3.4 summarizes the relative power spectra
" of the ECG, QRS complexes P and T waves, motion artifact, and muscle nmse based
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3.4 Relative power spectra of QRS complex, P and T waves, muscle noise and

motion artlfacts based on an average of 150 beats.
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3.4.2 Band pass filtering

From the power spectral analysis of the various signal components in the ECG signal,
“a filter can be designed which effectively selects the QRS complex from the ECG.
Another study that we performed examined the spectral plots of the ECG and the QRS
complex from 3875 beats. Figure 3.5 shows a plot of the signal-to-noise ratio (SNR)
as a function of frequency. The study of the power spectra of the ECG signal, QRS
complex, and other noise also revealed that a maximum SNR value is obtained for a
band pass filter with a center frequency of 17 Hz and a Q of 3.
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Figure 3.5 Plots of the signal-to-noise ratio (SNR) of the QRS complex referenced

“to all other signal noise based on 3875 heartbeats. The optimal bandpass filter
for a cardio tachometer maximizes the SNR. '

3.4.3 Two pole recursive filter
A simple two-pole recursive filter can be implemented to bandpass the ECG signal.
The difference equation for the Filter is

y(oT) = 1.875y(nT-T) - 0.9219y(nT-2T) + x(nT) - X(T-2T)  evrreerne (3.6)

This filter désign assumes that the ECG signal is sampled at 500 samples/s. The
values of 1.875 and 0.9219 are approximations of the actual design values of 1.87635
and 0.9216 respecfively. Since the coefficients are represented as powers of two, the
multipliéation operations can be implemented relatively fast using the shift operators.

3.4.4 Integer filter

QRS detectors for cardio tachometer application frequently band pass the ECG signal
using a center using a center frequency of 17 Hz. The denominator of the general
form of the transfer function allows for poles at 60°, 90° and 120° and these
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correspond to center ‘frequencies of a band pass filter of T/6, T/4, and T/3 Hz,
respectively. The desired center frequency can thus be obtained by choosing an
appropriate sampling frequency.

3.4.5 Differentiation techniques

Differentiation forms the basis of many ORS detection algorithms. Since it is-
basically a high-pass filter, the derivative amplifies the higher frequencies
characteristic of the QRS complex while attenuating the lower frequencies of the P
and T waves. ‘

An algorithm based on first and second derivatives originally developed by Balda et
al. (1977) was modified for use in high-speed analysis of recorded ECGs by Ahlstrom
“and Tompkins (1983). Friesen et-al. (1990) subsequently implemented the algorrthm »
as part of a study to compare noise sensitivity among certain types of QRS detection

algorithms. '

3.:4.6 Template m'afching téchniques

In this section techniciues for classifying patterns in the ECG signal that are quite
related to the human recogmtxon process are descnbed

3.4. 6.1 Template cross correlatlon

. Signals are said to be correlated if the shapes of the waveforms of two s:gnals match
one another. The correlatlon eoefﬁ01ent is a value that determines the degree of match
between the shapes of two or more signals. A'QRS detection technique desxgned by-
" Dobbs et al. (1984) uses cross correlation.

' This techmque of correlatmg one signal with another requlres that the two signals be
© aligned with one another In this QRS detection technique, the template: of the srgnal
_ that one is trymg to match stores a digitized form of the incoming 51gnal the sxgnal
~ should be ahgned w1th the template Dobbs ct al describes two ways of 1mplementmg

thls

. The first way of ahgmng the template and the incoming signal is by usmg the ﬁducxa]
".pomt on each’ signal. Thxs ﬁduelal point has to be assigned to the s1gna1 by some
external process If the ﬁducral poxnts on the template and signal are ahgned then the

’ Another 1mp1ementatlon mvoives continuous correlation between a segment of . the
r mcommg signal and! the template Whenever a new signal data point arrives, the
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oldest data point in time-is discarded from the segment (a first-in-first-out data
structure). A correlation is performed between this signal segment and the template
segment that has the same number of signal points. This technique does not requtre
processing time to assign fiducial points to the signal. The template can be thought of
as a window that moves over the incoming signal one data point at a time. Thus,
alignment of the segment of the signal of interest must occur at least once as the
window moves though the signal.

The value of the cross correlation coefficient always falls between +1 and —1. A value
of +1 indicates that the signal and the template match exactly. As mentioned earlier,

the value of this coefficient determines how well the shapes of the two waveforms

‘under consideration match. The .magnitude of the actual signal samples does not
matter. This shape matching, or recognizing process of QRS complexes, conforms
with our natural approach to recognizing signals.

3.4.6 .2 Template subtraction

" This is a relatively srmple ‘QRS detection technique. The algorxthm begins by saving
a segment of the i mcommg ECG signal that con‘esponds to the QRS waveforms. This

- segment or template is then compared with the i incoming ECG signal at each point in’
the template.. When the template is aligned with a QRS waveform in the 51gnal the

. subtraction results in a value very close to zero. This algorlthm uses only as many .
subtraction operattons as there are points in the template ‘

: 3.46.3 Automata-based template matching

Furno and Tompkins (1982) developed a QRS detector that is based on concepts from
~ automata theory. The algorxthm uses some of the basic techmques that are common in
many pattern recogmtlon systems. The ECG signal 1s ﬁrst tediced into a set of

" predefined tokens, whrch represent certain shapes of the ECG gvaveform. ,

- 3.4.6.4A QRS detectton algorithm

Over the past few years, there has been an increased trend toward processmg of the
) electrocardlogram (ECG) using mlcrocomputers A survey of literature in . this
" research area mdrcates that systems based on mlcrocomputers can perform needed
medtcal services ln an extremely efficient manner. In fact many systems have alrcady
been designed and 1mplemented to perform signal processmg tasks such ‘as 12-lead
off-line ECG analysxs Holter tape analysis, and real~t1me pattent monitoring. All
. these apphcatlons requu'e and accurate detection of the QRS complex of the ECG For

‘ Example, arrhythmla monitors for ambulatory patients analyze the ECG in real tlme
j" (Pan and Tompkms, 1985), and when an arrhythmia occurs, the momtor stores a time
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segment of the abnormal ECG. This kind of monitor'requires an accurate QRS
recognition capability, Thus, QRS detection is an important part of many ECG signal
processing systems.

A real-time QRS detection algorithm developed by Pan and Tompkins (1985) was
fmfther described by Hamilton and Tompkins (1986). It recognizes QRS complexes
base on analyses of the slope, amplitude and width.

Figure 3.6 shows the various filters involved in the analysis of the ECG signal. In
order to attenuate noise, the signal is passed through a band pass filter composed of
cascaded high-pass and low-pass integer filters. Subsequent processes are
differentiation, squaring and time averaging of the signal.

X(n)
P d() L—»
dt
Y(n)
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filter filter @ 32~ (o)

Figui'e 3.6 Filter stages of the QRS detector. Z (n) is the time-averaged signal. Y
(n) is the band passed ECG, and x (n) is the differentiated ECG.



