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Chapter 3
Biomedical signal processing________________
Due to growing complexity of the biomedical examinations, comprehensive 
documentation and need for automation to reduce costs acquisition and processing of 
biomedical signals has become more and more important for the physician [l]. 
The high quality measurement techniques and mathematical tools are responsible for 
the progress in bio medical signal processing.

Model-based signal processing techniques based on a biophysical model of the 
underlying physiological process have been developed. Traditional signal processing 
techniques, like time-frequency domain or wavelet analysis are applied to bio 
molecular data for classification and pattern recognition.

The important processes are Filtering, averaging, compression and detection. The 
chapter gives a brief summary of traditional techniques for each of these processes.

3.1 Filtering:

Numbers of researchers were working independently on different applications of 
adaptive filters in late 1950s. The least-mean-square (LMS) algorithm emerged as 
a simple algorithm for the operation of adaptive transversal fdters. Widrow and Hoff 
devised the LMS algorithm in 1959 in their study of a pattern recognition scheme 
known as the adaptive linear threshold logic element (Widrow and Hoff, I960 
Widrow, 1970). The LMS algorithm is a stochastic gradient algorithm.

It iterates each tap weight in the transversal filter in the direction of the gradient of the 
squared amplitude of an error signal with respect to that tap weight. As such, the LMS 
algorithm is closely related to the concept of stochastic approximation developed by 
Robbins and Monroe in statistics for solving certain sequential parameter estimation 
problems (Robbins and Monroe, 1951). The primary difference between them is that 
the LMS algorithm uses a fixed step-size parameter to control the correction applied 
to the tap weight from one iteration to the next, whereas in stochastic approximation 
method the step size parameter is made inversely proportional to time n or to a power 
of n. Another algorithm, closely related to the LMS algorithm, is the gradient adaptive 
lattice (GAL) algorithm (Griffiths, 1977, 1978); the difference between them is 
structural in that the GAL algorithm is lattice-based, whereas the LMS algorithm uses 
a transversal filter.
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Godard made another major contribution to the development of adaptive filtering 
algorithms in 1974. He used Kalman filter theory to propose a new class a 
transversal filter to their optimum settings (Godard, 1974). Although, prior to this 
date, several investigators had applied Kalman filter theory to solve the adaptive 
filtering problem, Godard’s approach is widely accepted as the most successful. This 
algorithm is referred to in the literature as the Kalman algorithm or Godard algorithm.

3.1.1 Filtering: General issues

The design of a Wiener filter requires a prior information about the statistics of the 
data to be processed. The filter is optimum only when the statistical characteristics of 
the input data match a prior information on which the design of the filter is based. A 
more efficient method is to use an adaptive filter. It is self designing in that the 
adaptive filter relies for its operation on a recursive algorithm, which makes it 
possible for the filter to perform satisfactorily in an environment where complete 
knowledge of the relevant signal characteristics is not available for example, in case 
of biomedical signals. The algorithm starts from some predetermined set of initial 
conditions, representing complete ignorance about the environment. Yet, in a 
stationary environment, one finds that after successive iterations of the algorithm, it 
converges to the optimum Wiener solution in some statistical sense. In a non­
stationary environment, the algorithm offers a tracking capability, whereby it can 
track time variations in the statistics of the input data, provided that the variations are 
sufficiently slow.

Application of a recursive algorithm, whereby the parameters of an adaptive filter are 
updated from one iteration to the next, the parameters become data dependent. This, 
therefore, means that an adaptive filter is a non-linear device in the sense that it does 
not obey the principle of superposition. However, an adaptive filter is often referred 
to as linear in the sense that the estimate of a quantity of interest is obtained 
adaptively (at the output of the filter) as a linear combination of the available set of 
observations applied to the filter input.

The choice of a finite-duration impulse response (FIR) or an infinite duration impulse 
response (IIR) for the filter is dictated by practical considerations. The choice of a 
statistical criterion for optimizing the filter design is influenced by mathematical 
tractability.

An FIR filter is inherently stable, because its structure involves the use of forward 
paths only. In other words, the only mechanism for input-output interaction in the
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filter is via forward paths from the filter input to its output. This form of signal 
transmission through the filter limits its impulse response to a finite duration.

An HR filter involves both feed forward and feedback paths. The presence of 
feedback path means that portions of the filter output and possibly other internal 
variables in the filter are fed back to the input. Consequently, unless it is properly 
controlled, feedback in the filter can make it unstable with the result that the filter 
oscillates; this kind of operation is clearly unacceptable when the requirement is for 
stability. By itself, the stability problem in HR filters is manageable in both theoretical 
and practical terms. However, when the filter is adaptive, bringing with it stability 
problems of its own, the inclusion of adaptivity combined with feedback that is 
inherently present in an HR filter makes a difficult problem that much more difficult 
to handle. Hence in the majority of applications requiring the use of adaptively, the 
use of an FIR filter is preferred over an HR filter even though the latter is less 
demanding in computational requirements.

3.1.2 Cost Functions
The filter design is optimized by minimizing a cost function, or index of 
performance, it can be:

, 1. Mean-square value of the estimation error
2. Expectation of the absolute value of the estimation error
3. Expectation of third or higher powers of the absolute value of the estimation error.

First has advantage over the others that it leads to tractable mathematics. In; particular, 
the choice of the mean-square error criterion results in second-order dependence for 
the cost function on the unknown coefficients in the impulse response of the filter.

A coefficient vector (that is called a tap weight vector as in a transversal filter, or a 
vector of reflection coefficients as in a multistage lattice filter) characterizes a discrete 
time filter. A cost function defines a transformation from a vector space spanned, by 
the elements: of the coefficient vector into the space of a real scalar.

The mean square error Criterion can work as cost function. It is defined as the mean 
square value of an estimation error, e (n). e (n) is defined by the difference between 
desired response d (n) and the actual filter output y (n),

e(n) - d(n) - y(n) .(3.1)
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Transversal filter is characterized by the tap - weight vector W. The filter output is 
given by the inner product of tap-weight vector w and the tap input vector x(n).

Figure3.1 Transversal filter

If u(n) and w are complex valued,

y(n) = wHx(n) ........... ...........................................(3.2)

Where the superscript H indicates Hermitian transposition (i.e., conjugate 
transposition). The use of Hermitian transposition is preferred over ordinary 
transposition as it simplifies the appearance of the equations that define the 
characterization of optimum filters. A cost function for the optimum design of the 
transversal filter is

J (W) = E [ | e(n)f]
= E [ | d(n) - wHx(n) f] .................................. ...................... (3.3)

Where E is the expectation operator. Finding the tap - weight vector that minimizes 
the cost function J, optimizes the filter. Such an approach is the minimum mean- 
square error criterion, which forms the basis of Wiener filters.

The cost function defined in Equation (3.3) is probabilistic in nature as it involves 
ensemble averaging represented by the expectation operator E.

Continuing with the example of a transversal filter, for given set of observations 
represented by the tap-input vector x(i), where the time index i = 1, 2 . . . , n. It is
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assumed that the tap-weight vector w of the transversal filter is held constant for the 
entire observation interval. At time i, the estimation error is

e(i) = d(i) - w"x(i) ............................................. (3.4)

Where d(i) is the corresponding value of the desired response. In this case, the cost 
function may be defined as

$ (W,n) = I| e(i)|2

=Zl d(i) - w^i) |2 ................................. ..........(3.5)

Whereas the ensemble averaged cost function J(w) in Equation (3.3) depends only on 
the tap-weight vector w, the time-averaged cost function £, (W,n) depends on w and 

the observation interval n. Accordingly, the minimization E, (W,n) with respect to w 
yields a solution for the tap-weight vector that varies with the observation interval.

, This second approach is the basis of the method of least squares.

The cost function J(w) and E, (W,n) are both convex with a unique minimum point. 
Their use yields a unique solution for the tap-weight vector of the transversal filter.

Limitation of second-order statistics (e.g., the mean-square-error criterion) is that they 
are phase blind. This limitation can be overcome by the use of a non-linear cost 
function. By so doing, the filter is enabled to extract information (particularly phase 
information) from the input signal in a more efficient manner. For this to be possible, 
however, the input signal must have non-Gaussian statistics.1 The use of such an 
approach provides the basis for an important class of nonlinear adaptive filtering 
algorithms that can perform blind de-convolution.

3.1.3 Adaptive Filters
i ;

There is no unique solution to the adaptive filtering problem but there are a variety of 
recursive algorithms, each of which offers desirable features of its own [2]. 
Basically, there are three distinct methods for deriving recursive algorithms for the 
operation of [adaptive filters: Wiener Filter, [Kalman Filter and Method of Least 

Squares

A tapped delay line or transversal filter is used as the structural basis for 
implementing the adaptive filter. For the case of stationary inputs, the mean-squared 
error is a second-order function of the tap weights in the transversal filter. The 
dependence of the mean-squared error on the unknown tap weights is in the form of a
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multidimensional paraboloid (i.e., punch bowl) with a uniquely defined bottom or 
minimum point. This paraboloid is known as the error performance surface. The tap 
weights corresponding to the minimum point of the surface define the optimum 
Wiener solution.

To develop a recursive algorithm for updating the tap weights of the adaptive 
transversal filter, there are two steps:

Step: 1 Modifying the system of Wiener Hop equations (i.e., the matrix equation 
defining the optimum Wiener solution) through the use of the method of steepest 
descent. It is a well-known technique in optimization theory.
This modification requires the use of a gradient vector. Its value depends on two 
parameters: The correlation matrix of the tap inputs in the transversal filter and cross-, 
correlation vector between the desired response and the same tap inputs.

Step 2: Using instantaneous values for these correlations: Instantaneous values 
for these correlations, are used to derive an estimate for the gradient vector. The 
resulting algorithm is known as the least mean square (LMS) algorithm, which is a 
stochastic gradient algorithm. It iterates each tap weight in the transversal filter in 
the direction of the gradient of the squared amplitude of an error signal with respect to 
that tap weight.' It is;similar to the stochastic approximation developed by Robbins 
and Monroe (Robbins and Monroe, 1951) the step size parameter is made inversely 
proportional to time n or to a power of n except that LMS uses a fixed step-size 
parameter to control the correction applied to the tap weight during the iterations.. In a 
non-stationary environment, the orientation of the error-performance surface varies 
continuously. The LMS algorithm uses a transversal filter structure, whereas the 
gradient lattice algorithm (GAL) uses a lattice structure. ' ;

Classically, filter design problem can be stated as:
“Design a Umar discrete time filter whose output y(n) provides an estimate of a 
desired response,, given a set of input samples u(0), u(l), u(2) . . . such that the mean 
square value of the estimation error e(n), defined as the difference between the 

desired response. d(n) and the actual response y(n), is minimized. ” is based on 

statistical theory of Wiener and Kalman filtering.

3.1.3.1 Method of least squares

It involves the use of time averages. The index of performance that consists of the 
sum of weighted error squares is minimized, where the error is defined as the 
difference between some desired response and the actual filter output. The method of



Chapter 3: Biomedical signal processing 21

least squares can be formulated with block estimation or recursive estimation. In 
block estimation the input data stream is arranged in the form of blocks of equal 
length (duration), and the filtering of input data proceeds on a block-by-block basis. 
In recursive estimation, on the other hand, the estimates of interest (e.g., tap weights 
of a transversal filter) are updated on a sample-by-sample basis. Generally, a recursive 
estimator requires less storage than a block estimator. There are three basically 
different classes of adaptive filtering algorithms that originate from the method of 
least squares:

• Recursive least squares algorithm:

As with adaptive filtering algorithms derived from the Wiener and Kalman filters, the 
recursive least-squares (RLS) algorithm filter also assumes the use of transversal 
filters as the structural basis of the adaptive filter. The derivation of the algorithm 
relies on the matrix inversion lemma. The RLS algorithm is a special case of the 
Kalman algorithm for adaptive transversal filters. The Kalman or RLS algorithm 
usually provides a much faster rate of convergence than the LMS algorithm at the 
expense of increased computational complexity.

• QR - decomposition based recursive least-squares (QRD-RLS) algorithm:

This class of adaptive filtering algorithms is based on the QR-decomposition of the 
data matrix; Two well-known techniques for performing this decomposition are the 
Householder transformation and the Givens rotation. These are data adaptive 
transformations that involve orthogonal triangularization of the incoming data matrix. 
They are both highly popular in modem numerical analysis. At this point in the 
discussion, the important point to note is that a recursive least-squares algorithm 
based on the Householder transformation or Givens rotation is numerically stable and 
robust. Use of Givens rotations is that it is amenable to recursive computation, with 
the rotation parameters being updated on a sample-by-sample basis. The latter form of 
computation leads to the use of systolic arrays for implementing recursive least-

, squares estimation.

• Fast algorithms:

. The standard RLS algorithm (using a transversal structure) and its counterpart based 
on the QR-decomposition (using a systolic array) have a computational complexity 
that increases as the square of M, where M is the number of adjustable weights which 
represent the number of degrees of freedom) in the algorithm. Such algorithms are O 
(M2) algorithms. On the other hand, the LMS algorithm is an O(M) algorithm. When 
M is large, the computational complexity of the O (M2) algorithms may be come 

objectionable from a hardware implementation point of view. There is therefore a
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strong motivation to modify the formulation of recursive linear least-squares 
algorithms in such a way that the computational complexity assumes an O (M) form. 
This objective is achievable (i) by virtue of the inherent redundancy in the Toeplitz 
structure of the input data matrix, and (ii) by exploiting this redundancy through the 
use of linear least-squares estimation with an 0(M) computational complexity. Three 
types of fast algorithms are identified, depending on the filter structure or technique 
employed:

a) Fast transversal filters (FTF) algorithm: This algorithm involves a parallel 
combination of four transversal filters, each one of which has an assigned task to 
perform.

b) Recursive least squares lattice (LSL) algorithms: relies on the use of a lattice 
structure to perform the forward and backward forms of linear least-squares 
prediction. There are four distinct forms of the recursive LSL algorithm.

c) QR-decomposition based least squares lattice (QRD-LSL) algorithm: The 
forward and backward forms of linear least-squares prediction are exploited for 
the purpose of reducing the computational complexity in performing the recursive 
QR-decomposition of the input data matrix.

The QR-decomposition based least-squares lattice (QRD-LSL) algorithm is 
numerically stable because of the good numerical properties inherently associated 
with the QR-decomposition method.

3.1.3.2 Method of Steepest Descent

The method,of steepest descent is recursive. Starting from some initial (arbitraiy) 
value for the tap-weight vector, it improves with the increased number of iterations. 
The final value so computed for the tap-weight vector converges to the Wiener 
solution. Deterministic control system finds the minimum point of the ensemble- 
averaged error-performance surface without knowledge of the surface itself. 
Accordingly, it provides heuristics for writing the recursions that describe the least- 
mean-square (LMS) algorithm.

The steps to find the minimum value of the mean-squared erroif ./mm, by the steepest 
descent algorithm are described below:

1) Begin with an initial arbitrary value w(0) for the tap: weight vector to provide an 
initial guess as to where the minimum point of the error-performance surface may 
be located. Typically, w(0) is set equal to the null vector.
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2) Using this initial or present guess, computer the gradient vector is computed, the 
real and imaginary parts of which are defined as the derivative of the mean 
squared error J(n), evaluated with respect to the real and imaginary parts of the 
tap-weight vector w(n) at time n(i.e., the nth iteration).

3) Computer the next guess at the tap weight vector by making a change in the initial 
or present guess in a direction opposite to that of the gradient vector.

4) Go back to step 2 and repeat the process.

3.1.3.3. Least-Mean-Square Algorithm:

The operation of the least-mean-square (LMS) algorithm is descriptive of a feedback 
control system. Basically, it consists of a combination of two basic processes:

1) An adaptive process, which involves the automatic adjustment of a set of tap 
weights.

2) A filtering process, which involves (a) forming the inner product of a set of tap 
inputs and the corresponding set of tap weights emerging from the adaptive 
process to produce an estimate of a desired response, and (b) generating an 
estimation error by comparing this estimate with the actual value of the desired 
response. The estimation error is in turn used to actuate the adaptive process, 
thereby closihg the feedback loop.

For the convergence to hold, the step-size parameter p has to satisfy different 
conditions related to the eigen values of the correlation matrix of the tap inputs.

The difference between the final value J(qo) and the minimum value Jmin is called the 
excess mean squared error Jex(oo). The ratio of Jex(oo) to Jmin is called the mis- 
adjust men t, which is a measure of how far the steady state solution computed by the 

LMS algorithm is away from the Wiener solution.

3.2 Signal Compression

Signal compression is used to achieve a low bit rate in the digital representation of the 
i signals with a minimum loss of the signal quality. Compression is usually referred to 
as low bit rate coding or coding, for short. Signal compression has found a wide use in 
many respect of signal communications, signal storage and message encryption. A 
good compromise involving quality, complexity and compression ratio has not yet 
been reached.

An electrocardiogram (ECG) data is very useful for cardiac disease diagnostic. 
Modem computerized ECG recording systems produce vast amount of sampled
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heartbeat data. Storing sampled ECG data of many patients requires a huge storage 
capacity. For efficient storage of such large data records, effective data compression 
methods are of interest. The aim of ECG compression is to reduce the amount of 
digitized ECG data as much as possible with a reasonable implementation complexity 
while maintaining clinically acceptable signal quality.

The techniques compression techniques can be classified as: Direct methods and 
Transform methods.

• Direct methods: The compression is directly done on the ECG samples. 
Commonly used methods are: Amplitude Zone Time Epoch Coding (AZTEC),

. Turning Point (TP), Coordinate Reduction Time Encoding (CORTES), Scan
* i

Along Polynomial Approximation (SAPA), Peak peaking, cycle-to-cycle and 
Differential Pulse Code Modulation (DPCM).

• Transform Methods: The original samples are transformed to another 
domain in the hope of achieving better compression performance. Commonly 
used methods include: Fourier Descriptors, Walsh Transforms, Karhunen - 

Loeve Transform; (KLT), Discrete Cosine Transforms (DCT), and Wavelet 
Transform. ,;

Direct methods are better than transform methods with respect to system complexity; 
and the error control mechanism. Transform methods achieve higher compression 
ratios and are insensitive to presence of noise in the original ECG signals. :

Since ECG are non-stationary, the error control problem for a reconstructed ECG 
signal is an important issue. In direct methods the error limit for a reproduced ECG 
signal is easily controlled by adjusting a user-specified error threshold. Since in 
transform techniques the distortion of each reconstructed segnient of the ECG signal 
varies with the complex pattern of the segment and it is difficult to find a 
predetermined optimal quantization size for good quality reconstructed ECG signal at 

every segment the error control is difficult.

A compression algorithm can be evaluated in terms of relative complexity, memory 
requirement, speed of execution, and amount of compression and reconstruction error.

Performance of compression algorithm is measured as compression ratio, which is 
the ratio of the number' of bits required to represent the data before compression to 
the number of bits required to represent the data after compression. It can also be
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represented by expressing the reduction in the amount of data required as a 
percentage of the size of the original data or rate which is the average number of bits 
required to represent a single sample.

Difference between the original and the reconstruction is called the distortion. 
Because human responses are difficult to model mathematically, many approximate 
measures of distortion are used to determine the quality of the reconstructed 
waveforms.

3.2.1 Compression Techniques
Based on the requirements of reconstruction, data compression schemes is divided 
into two broad classes: (a) lossless compression schemes, in which Y(Reconstructed) 
is identical to X(Original), and (b) lossy compression schemes, which generally 
provide much higher compression than lossless compression but allow Y to be 
different from X.

• Lossless compression techniques involve no loss of information. If data 
have been losslessly compressed, the original data can be recovered exactly 
from the compressed data. Lossless compression is generally: used for, 
applications that cannot tolerate any difference' between the original and 
reconstructed data. Text compression is an important area for lossless 
compression. It is very important that the reconstruction is identical;to the text 
original, as very small differences can result in statements with very different 

meanings.

• Lossy compression techniques involve some loss of information, and data 
that have been compressed using lossy techniques generally cannot be recovered 
or reconstructed exactly. In return for accepting, this distortion in the 
reconstruction, higher compression ratio is possible as compared to lossless 

compression.

In many applications, lack of exact reconstruction is not a problem. Depending on the 
quality required‘of the reconstructed speech, varying amounts of loss of information 
about the value of each sample can be tolerated. [ !

3.2.2 Modeling and Coding
Compression scheme depends on a number of different factors. Some of the most 
important factors are the characteristics of the data that heed to be compressed. A 

compression technique that will work well for the compression of text may not work 
well for compressing images. Each .application presents a different set of challenge's.
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The development of data compression algorithms for a variety of data can be divided 
into two phases. The first phase is modeling. In this phase information about any 
redundancy that exists in the data is extracted and the redundancy is described in the 
form of a model. The second phase is coding. A description of the model and a 
description of how the data differ from the model are encoded, generally using a 
binary alphabet. The difference between the data and the model is called the residual.

3.2.2.1 Huffman Coding Algorithm

It is a very popular coding algorithm. The codes generated using this technique or 
procedure is called Huffman codes. These codes are prefix codes and are optimum 
for a given model.

The Huffman procedure is based on two observations regarding optimum prefix 
codes.

1. In an optimum code, symbols that occur more frequently (have a higher 
probability of occurrence) will have shorter code words than symbols that 
occur less frequently.

2. In an optimum code, the two symbols that occur least frequently will have the 
same length.

The Huffman procedure is obtained by adding a simple requirement to these two 
observations. This requirement is that the code words corresponding to the two 
lowest probability symbols differ only in the last bit. That is, if y and 8 are the two 
least probable symbols in an alphabet, if the codeword for y was m * 0, the codeword 
for 8 would be m * 1. Here m is a string of Is and Os, and * denotes concatenation.

Applications of Huffman coding include lossless image compression, text 

compression, audio compression etc.

3.2„2.2. Arithmetic Coding

Arithmetic coding is especially useful when dealing with sources with small 
alphabets, such as binary sources, and alphabets with highly skewed probabilities. It 
is also a very useful approach when, for various reasons, the modeling and coding 
aspects of lossless compression is to be kept separate. A variation of the arithmetic 
code is the coding method used in the Joint Bi-level Experts Group (JBIG) standard 

for encoding binary images.
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3.2.2.3 Dictionary Techniques

Dictionary techniques - both static and adaptive (or dynamic)-build a list of 
commonly occurring patterns and encode these patterns by transmitting their index in 
the list. They are most useful with sources that generate a relatively small number of 
patterns quite frequently, such as text sources and computer commands.

A very reasonable approach to encoding such sources is to keep a list, or dictionary, 
of frequently occurring patterns. When these patterns appear in the source output, they 
are encoded with a reference to the dictionary. This technique to be effective, the class 
of frequently occurring patterns, and hence the size of the dictionary, must be much 
smaller than the number of all possible patterns.

One of the more common forms of static dictionary coding is diagram coding. 
Where all letters of the source alphabet followed by as many pairs of letters, called 
digrams, as can be accommodated by the dictionary.

The digram encoder reads a two-character input and searches the dictionary to see if 
this input exists in the dictionary. If it does, the corresponding index is encoded and 
transmitted. If it does not, the first character of the pair is, encoded. The second 
character in the pair then becomes the first character of the next digram. The encoder 
reads another'character to completethe digram, and the search;procedure isrepeated.

3.2.2.4 Predictive Coding

I These techniques make use of the past history of the data being encoded to provide 
more efficient compression. Number of schemes is principally used for the 
compression,of text and images.

It is learned that we get more compression when the message that is being coded has 
a more skewed set of probabilities. There are several ways to achieve this situation. 
We can transform the sequence (in an invertible fashion) into another sequence that 
has the desired property. Or, we can use a different probability distribution for each 
symbol, such that in the probability distribution used with high likelihood the symbol

i ; i : , 1 jr < ! . I ;

being coded is a high-probability symbol. In both approaches we also, need to let the 
decoder know the transformation or the distribution function being used. If the 

transformation or distribution is based on the history of the sequence, history that is 
available to both encoder and decoder, then there might not he any need to transmit 
the additional information. Because we use the history of the sequence in a predictive
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manner to determine its encoding, such schemes are called predictive coding 
schemes.

A different kind of prediction is used when encoding non numerical data such as text. 
When encoding a particular symbol, one would like to use the probability distribution 
in which the symbol one is trying to encode has a high probability. One can then use 
adaptive arithmetic coding to encode that symbol at a low rate. However, if one is 
going to use a different probability model to encode each symbol, for each symbol 
one need to let the receiver know which probability model is being used. One way to 
do this with no cost is to use the preceding symbols to predict the probability model. 
In other words, the preceding symbols form the context in which the symbol is being 
encoded.

Some of the best performing text compression algorithms are variants of the 
prediction with partial match (ppm) algorithm. The new JPEG standard for lossless 
image compression is a predictive coding algorithm.

3.2.2.5 Scalar Quantization

In many lossy compression applications one is required to represent each source 
output using one of a small number of codeword. The number of possible distinct 
source output values is generally much larger than the number of codewords 
available to represent them. The process of representing a large-possibly infinite-set 
of values with a much smaller set is called quantization.

The set of inputs and outputs of a quantizer can be scalars or vectors. If they are 
scalars, they are called scalar quantizers. If they are vectors, they are called vector 
quantizers.

3.2.2.6 Vector Quantization

Grouping source outputs together and encoding them as a single block can obtain 
efficient lossy as well as lossless compression algorithms. Many of the lossless 
compression algorithms that are looked at take advantage of this fact. Blocks of data 
are also called vectors, hence called "vector Quntization."

Even when the input is random, encoding sequences of samples instead of encoding 
individual samples separately provides a more efficient code. Encoding sequences of 
samples is more advantageous in the lossy compression framework as well. By 
"advantageous" we mean a lower distortion for a given rate, or a lower rate for a 
given distortion.
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Source

Figure 3.2 Vector Quantization

Consider a block of L pixels from an image and treat each pixel value as a 
component of a vector of size or dimension L. This vector of source outputs forms 
the input to the vector quantizer. A set of L-dimensional vectors at both the encoder 
and decoder of the vector quantizer are called the codebook. The vectors in this 
codebook, known as code-vectors are generated from the source output. Each code­
vector is assigned a binary index. At the encoder, the input vector is compared to 
each code-vector to find the code-vector closest to the input vector. The elements of 
this code-vector are the quantized values of the source output. In order to inform the 
decoder about which code-vector was found to be the closest to the input vector, 
Binary index of the code-vector is transmitted or stored. As the decoder has exactly 
the same codebook, it can retrieve the code-vector given its binary index as in Figure 
3.2.

Although the encoder may have to perform a considerable amount of computations in 
order to find the closest reproduction vector to the vector of source outputs, the 
decoding consists of a table lookup. This makes vector quantization a very attractive 
encoding scheme for applications in which the resources available for decoding are 
considerably less than the resources available for encoding. However, if the decoding 
is to be done in software, the amount of computational resources available to the 
decoder may be quite limited.

3.2.2.7 Differential Encoding

Sources such as speech and images have a great deal of correlation from sample to 
sample. We can use this fact to predict each sample based on its past and only encode
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and transmit the differences between the prediction and the sample value. Differential 
encoding schemes are built around this premise. Because the prediction techniques 
are rather simple, these schemes are much easier to implement than other 
compression schemes.

3.2.2.8 Modified Huffman Coding

The implementation of Huffman coding requires a translation table, where each 
source symbol is mapped to unique code word. For example, if the original data were 
quantized into 16-bit numbers, the table would need to contain 216 records. A table of 

this size creates memory problems and processing inefficiency.

In order to reduce the size of the translation table, the modified Huffman coding 
scheme partitions the source symbols into a frequent set and an infrequent set. For all 
the symbols in the frequent set, we form a Huffman code as in the static scheme. One 
then need to use a special code word as a prefix to indicate any symbol from the 
infrequent set and attach a suffix corresponding to the ordinary binary encoding of the 
symbol.

3.2.2.9 Adaptive Coding

Huffman coding requires a translation table for encoding and decoding. It is necessary 
to examine the entire data set or portions of it to determine the data statistics. The 
translation table must also be transmitted or stored for correct decoding.

An adaptive coding scheme attempts to build the translation table as data are 
presented. A dynamically derived translation table is sensitive to the variation in local 
statistical information. It can therefore alter its code words according to local statistics 
to maximize the reduction ration. It also achieves extra space saving because there is 

no need for a static table.

An example of an adaptive scheme is the Lempel-Ziv-Welch (LZW) algorithm. The 
LZW algorithm uses a fixed-size table. It initializes some positions of the table for 
some chosen data sets. When it encounters new data, it uses the uninitialized so that 
each unique data word is assigned its own position. When the table is full, the LZW 
algorithm reinitializes the oldest or least-used position according to the new data. 
During data reconstruction, it incrementally reconstruction, it incrementally rebuilds 

the translation table from the encoded data.
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3.2.2.10 Residual differencing

Typically, neighboring signal amplitudes are not statistically independent. 

Conceptually one can decompose a sample value into a part that is correlated with 

past samples and a part that is uncorrelated. Since the inter sample correlation 

corresponds to a value predicted using past samples, it is redundant and removable. 

We are then left with the uncorrelated part which represents the prediction error or 

residual signal. Since the amplitude range of the residual signal is smaller than that of 

the original signal, it requires less bits for representation. One can further reduce the 

data by applying Huffman coding to the residual signal.

3.2.2.11 Run length encoding

It is used extensively in the facsimile technology, run-length encoding exploits the 

high degree of correlation that occurs in successive bits in the facsimile bit streams. A 

bit in the facsimile output: may either be 1 or 0, depending on whether it is a black or 

white pixel. On a typical document, there are clusters of black and white pixels that 

give rise to this high correlation. Run-length encoding simply transforms the original 

bit stream into the string {vj, h, V2, b,---} where v* are the values and 1, are lengths. 

The observant reader will quickly recognize that both AZTEC and the Fan algorithm 

are special cases of run-length encoding.

3.2.3 Biomedical Signal Compression Algorithms
' , 1 ; ‘ i 1

The section describes compression algorithms for biomedical signals.

3.2.3.1 Turning point algorithm

The original motivation for the turning point (TP) algorithm was to reduce the 

sampling frequency of an, ECG signal from 200 to 100 samples/s (Mueller, 1978). The 

algorithm developed from the observation that, except for QRS complexes with large 

amplitudes and slopes, a sampling rate of 100 samples/s is adequate.

TP is based on the concept that ECG signals are normally over sampled at four or five 

times faster; that the highest frequency present. For; example, an ECG used in 

• monitoring may have a bandwidth of 50 Hz and be sampled at 200 sps in order to 

easily visualize the higher-frequency attributes of the QRS complex. Sampling the 

signal is done at reduced effective sampling rate (by half): of 100 sps by selectively 

saving important signal points (i.e., the peaks and valleys or turning points.)

The algorithm processes three data point at a time. It stores the first sample point and 

assigns it as the reference point X0. The next two consecutive points become Xi and
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X2. The algorithm retains either Xi or X2, depending on which point preserves the 

turning point (i.e., slope change) of the original signal.

The TP algorithm is simple and fast, producing a fixed reduction ratio of 2:1. After 

selectively discarding exactly half the sampled data, the original resolution can be 

restored by interpolating between pairs of saved data points.

A second application of the algorithm to the already reduced data increases the 

reduction ration to 4:1. Using data acquired at a 200-sps rate, this produces 

compressed data with a 50-sps effective sampling rate. If the bandwidth of the 

acquired ECG is 50 Hz, this approach violates sampling theory since the effective 

sampling rate is less than twice the highest frequency present in the signal. The 

resulting reconstracted signal typically has widened QRS complex and sharp edges 

that reduce its clinical acceptability. Another disadvantage of this algorithm is that the 

saved points do not represent equally spaced time intervals. This introduces short­

term time distortion. However, this localized distortion is not visible when the 

reconstructed signal is viewed on the standard clinical monitors and paper recorders.

3.2.3.2 AZTEC algorithm
i

, Originally developed, to preprocess ECGs for rhythm analysis, the AZTEC 

(Amplitude Zone Time Epoch Coding) data reduction algorithm decomposed raw 
ECG sample points into plateaus and slopes (Cox et al., 1968). It provides a sequence 

of line segments that form a piecewise-linear approximation to the ECG.

The reconstruction process produces and ECG signal with step like quantization, 

which is not plinically acceptable. The AZTEC-encoded signal heeds post processing 

with curve smoothing algorithm or a low-pass filter to remove its jagged appearance 

and produce more acceptable output.

3.2.3.3 CORTES algorithm

The CORTES (Coordinate Reduction Time Encoding System)-algorithm is a hybrid 

of the TP and; AZTEC algorithms (Abenstein and Tompkins, : 1982; Tompkins and 

Webster, 1981). It attempts to exploit the strengths of each vyhile sidestepping the 

weaknesses. CORTES; uses , AZTEC to discard clinically insignificant data in the 

isoelectric region with high frequency ; regions (QRS complexes). It executes the 

AZTEC and TP algorithms in parallel on the incoming ECG data.

Whenever an AZTEC ;line is produced, the CORTES algorithm decides, based on the 

length of the line, whether the AZTEC data or the TP data are to be saved. If the line
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is longer than an empirically determined threshold, it saves the AZTEC line. 
Otherwise it saves the TP data points. Since TP is used to encode the QRS complexes, 
only AZTEC plateaus, not slopes, are implemented.

The CORTES algorithm reconstructs the signal by expanding the AZTEC plateaus 
and interpolation between each pair of the TP data points. It then applies parabolic 
smoothing to reduce discontinuities.

3.2.3.4 Fan algorithm

Originally used for ECG telemetry, the Fan algorithm draws lines between pairs of 
starting and ending points so that all intermediate samples are within some specified 
error tolerance, e (Bohs and Barr, 1988). It starts by accepting the first sample Xo as 
the non redundant permanent point. It functions as the origin and is also called the 
originating point. It then take the second sample Xi and draw two slopes {Up Li}, Ui 
passes through the point (X0+Xi+£-), and Li passes through, the point (X0-X2- s). If 
the third sample X2 falls, within the area bounded by the two slopes, it generates two 
new slopes {U2, L2} that pass through points (Xo, X2+ s) arid (Xo, X2- e). It compares 
the two pairs of slopes and retains the most converging (restrictive) slopes (i.e., {Ui, 
L2} in this example). Next it assigns the value of X2 to Xj and read the next sample 
into X2. As a result, X2 always holds the most recent sample and Xi holds the sample 
immediately preceding X2. It repeats the process by comparing X2 to the values of the 
most convergent slopes. If it falls outside this area, we save the length of the line T 
and its final amplitude Xi which then becomes the new originating point X0, and the 
process begins anew. The sketch of the slopes drawn from the origination sample to 
future samples forms a set of radial lines similar to a fan, giving this algorithm its 

name.

3.3 Signal averaging
i '

One predominant application area of signal averaging is in electroencephalography 
[3].,The EEG recorded from scalp electrodes is difficult to interpret in part because it 
consists of a summation of the activity of the billions of brain cells. It is impossible to 
deduce much about the activity of the visual or auditory parts of the brain from the 
EEG. However, if one stimulates a part of the brain with a flash of light or an 
acoustical click, an evoked response occurs in the region of the brain that processes 
information for the sensory system being stimulated. By surriming the signals that are 
evoked immediately following many stimuli and dividing by the total number of 
stimuli, we obtain an averaged evoked response. This signal can reveal a great deal 
about the performance'of a sensory system.
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Signal averaging sums a set of time epochs of the signal together with the 
superimposed random noise. If the time epochs are properly aligned, the signal 
waveforms directly sum together. On the other hand, the uncorrelated noise averages 
out in time. Thus, the signal-to-noise ration (SNR) is improved.

Signal averaging is based on the following characteristics of the'signal and the noise:
1. The signal waveform must be repetitive (although it does not have to be 

periodic). This means that the signal must occur more than once but not 
necessarily at regular intervals.

2. The noise must be random and uncorrelated withi the signal. In this 
application, random means that the noise is not periodic and that it can only be 
described statistically (e.g. by its mean and variance).

3. The temporal position of each signal waveform must be accurately known.

It is the random nature of noise that makes signal averaging useful. Each time epoch 
(or sweep) is intentionally aligned with the previous epochs so that the digitized 
samples from the. new epoch are added to the corresponding samples from the 
previous epochs. Thus the time-aligned repetitive signals S in each epoch are added 
directly together so that; after four epochs, the signal amplitude is four times larger 
than for one epoch (45). If the noise is random and has a mean of zero and an average 
RMS value N, the RMS value after four epochs is the square root of the sum of squres 
(i.e., (4N2)m OR 2N). In general after n repetitions the signal amplitude is mS and the 
noise amplitude is (m)mN. Thus, the SNR improves as the ratio of rn to m112.

Signal averaging is a kirid of digital filtering process. The Fourier transform of the 
transfer of the transfer function of an averager is composed of a series of discrete 
frequency components. Each of these components has the same spectral characteristic 
and amplitude. Because of the appearance of its amplitude response, this type of filter 
is called a comb filter.

The width of each tooth,decreases as the number of sweeps repetitions increases. The 
desired signal has a frequency spectrum composed of discrete frequency components, 
a fundamental and harmonics. Noise, on the other hand, has continuous; distribution. 
As the bandwidth of each of the teeth of the comb decreases, this filter more 
selectively passes the : fundamental and harmonics of the signal while rejecting the 
random noise frequencies that fall between the comb teeth. The signal averager, 
therefore, passes.the signal while rejecting the noise.
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Figure 3.3 Shows the block diagram of a typical averager. To average a signal such 
as the cortical response to an auditory stimulus, the system is simulated (in this case, 
human subject) with an auditory click to the stimulus input. Simultaneously, a trigger 
is provided which is derived from the stimulus that enables the summation of the 
sampled data (in this case, the EEG evoked by the stimulus) with the previous 
responses (time epochs or sweeps) stored in the buffer. When the averager receives 
the trigger pulse, it samples the EEG waveform at the selected rate, digitizes the 
signal, and sums the samples with the contents of a memory location corresponding to 
that sample interval (in the buffer). The process continues, stepping through the 
memory addresses until all addresses have been sampled. The sweep is terminated at 
this point. A new sweep begins with the next trigger and the cycle repeats until the 
desired number of sweeps have been averaged. The result of the averaging process is, 
stored in the buffer, which can then be displayed on a CRT as the averaged evoked 

response.

Figure 3.3 Block diagram of a typical signal averager.

An important assumption made in signal averaging theory is that the noise is 
Gaussian. This assumption is not usually completely valid for biomedical signals. 
Also, if the noise distribution is related to the signal, misleading results can occur. If 
the fiducial point is derived from the signal itself, care must be taken to ensure that 
noise is not influencing the temporal location of the fiducial point. Otherwise, slight 
misalignment of the signal waveforms will lead to a low-pass filtering effect in the 

final result.

3.4 Feature Extraction
It is the process of studying and locating the areas and objects on the ground and 

deriving useful information from signals.
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3.4.1 ECG: Power spectrum

The power spectrum of the ECG signal can provide useful information about the QRS 
complex. The power spectrum (based on the FFT) of a set of 512 sample points that 
contain approximately two heartbeats results in a series of coefficients with a maximal 
value near a frequency corresponding to the heart rate.

The heart rate can be determined by multiplying together the normalized frequency 
and the sampling frequency. One can also get useful information about the frequency 
spectrum of the QRS complex. In order to obtain this information, the QRS complex 
of the ECG signal must be selected as a template and zero-padded prior to the power 
spectrum analysis. The peak of the frequency spectrum obtained corresponds to the 
peak energy of the QRS complex.

The ECG waveform contains, in addition to the QRS complex, P and T waves, 60-Hz 
noise from power line interference, EMG from muscles, motion artifact from the 
electrode and skin interface, and possibly other interference from electro surgery 
equipment in the operating room. Many clinical instruments such as a cardio 
tachometer and arrhythmia monitor require accurate real-time QRS i detection. It is 
necessary to extract -the signal of interest, the QRS complex, from (the other noise 
sources such as the P and T waves. Figure 3.4 summarizes the relative power spectra 
of the ECG, QRS complexes, P and T waves, motion artifact, and muscle noise based 
on bur previous research.
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3.4 Relative power spectra of QRS complex, P and T waves, muscle nofee and 
motion artifacts based on an average of 150 beats.
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Figure 3.5 Plots of the signal-to-noise ratio (SNR) of the QRS complex referenced 
to all other signal noise based on 3875 heartbeats. The optimal bandpass filter 
for a cardio tachometer maximizes the SNR.

3.4.3 Two pole recursive filter
A simple two-pole recursive filter can be implemented to bandpass the ECG signal. 
The difference equation for the Filter is

y(nT) = 1.875y(nT-T) - 0.9219y(nT-2T) + x(nT) - x(nT-2T) .(3.6)

This filter design assumes that the ECG signal is sampled at 500 samples/s. The 
values of 1.875 and 0.9219 are approximations of the actual design values of 1.87635 
and 0.9216 respectively. Since the coefficients are represented as powers of two, the 
multiplication operations can be implemented relatively fast using the shift operators.

3.4.4 Integer filter
QRS detectors for cardio tachometer application frequently band pass the ECG signal 
using a center using a center frequency of 17 Hz. The denominator of the general 
form of the transfer function allows for poles at 60°, 90° and 120°, and these

0,8

3.4.2 Band pass filtering

From the power spectral analysis of the various signal components in the ECG signal, 
a filter can be designed which effectively selects the QRS complex from the ECG. 
Another study that we performed examined the spectral plots of the ECG and the QRS 
complex from 3875 beats. Figure 3.5 shows a plot of the signal-to-noise ratio (SNR) 
as a function of frequency. The study of the power spectra of the ECG signal, QRS 
complex, and other noise also revealed that a maximum SNR value is obtained for a 
band pass filter with a center frequency of 17 Hz and a Q of 3.
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correspond to center frequencies of a band pass filter of T/6, T/4, and T/3 Hz, 
respectively. The desired center frequency can thus be obtained by choosing an 
appropriate sampling frequency.

3.4.5 Differentiation techniques

Differentiation forms the basis of many ORS detection algorithms. Since it is 
basically a high-pass filter, the derivative amplifies the higher frequencies 
characteristic of the QRS complex while attenuating the lower frequencies of the P 
and T waves.

An algorithm based on first and second derivatives originally developed by Baida et 
al. (1977) was modified for use in high-speed analysis of recorded ECGs by Ahlstrom 
and Tompkins (1983). Friesen et al. (1990) subsequently implemented the algorithm 
as part of a study to compare noise sensitivity among certain types of QRS detection 
algorithms.

3.4.6 Template matching techniques

In this section techniques for classifying patterns in the ECG signal that are quite 
related to the human recognition process are described.

3.4.6.1 Template cross correlation

Signals are said to be correlated if the shapes of the waveforms of two signals match 
one another. The correlation coefficient is a value that determines the degree of match 
between the shapes of two or more signals. A QRS detection technique designed by 
Dobbs et al. (1984) usds cross correlation.

This technique of correlating one signal with another requires that the two signals be 
aligned with one another. In this QRS detection technique, the template of the signal 
that one is trying to match stores a digitized form of the incoming signal; the signal 
should be aligned with the template. Dobbs ct al. describes two ways of implementing 

this: , .

The, first way of aligning the template and the incoming signal is by using the fiducial 
point on each signal. This fiducial point has to be assigned to the signal by some 
external process. If the; fiducial points on the template and signal are aligned, then the
correlation can be performed. '

' ' ' >1 , '
i‘

Another implementation involves continuous correlation between a segment of the 
incoming signal and I the template. Whenever a new signal data point; arrives, the
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oldest data point in time is discarded from the segment (a first-in-first-out data 
structure). A correlation is performed between this signal segment and the template 
segment that has the same number of signal points. This technique does not require 
processing time to assign fiducial points to the signal. The template can be thought of 
as a window that moves over the incoming signal one data point at a time. Thus, 
alignment of the segment of the signal of interest must occur at least once as the 
window moves though the signal.

The value of the cross correlation coefficient always falls between +1 and -1. A value 
of +1 indicates that the signal and the template match exactly. As mentioned earlier, 
the value of this coefficient determines how well the shapes of the two waveforms 
under consideration match. The magnitude of the actual signal samples does not 
matter. This shape matching, or recognizing process of QRS complexes, conforms 
with our natural approach to recognizing signals.

3.4.6 .2 template subtraction

This is a relatively simple QRS detection technique. The algorithm begins by saving 
a segment of the incoming ECG signal that corresponds to the QRS waveforms. This 
segment or template is then compared with the incoming ECG signal at each point in 
the template. Wheii the template is aligned with a QRS waveform in the signal, the 
subtraction results in a value very close to zero. This algorithm, uses only as many 
subtraction operations as there are points in the template.

3.4.6 .3 Automata-based template matching

Furno and Tompkins (1982) developed a QRS detector that is based on concepts from 
automata theory. The algorithm uses some of the basic techniques that are common in 
many pattern recognition systems. The ECG signal is first reduced into a set of 
predefined tokens, which represent certain shapes of the ECG waveform.

3.4.6.4 A QRS detection algorithm

Over the past few years, there has been an increased trend toward processing of the 
electrocardiogram j (ECG) using microcomputers. A survey of literature in this 
research area indicates that systems based on microcomputers can perform needed 
medical services In an extremely efficient manner. In fact, many systems have already 

been designed and implemented to perform signal processing; tasks such as 12-lead 
off-line ECG analysis, Holter tape analysis,, and real-time patient monitoring. All 
these applications require and accurate detection of the QRS complex of the ECG: For 
Example, arrhythmia monitors for ambulatory patients analyze the ECG in real time 
(Pan and Tompkins, 1985), and when an arrhythmia occurs, the monitor stores a time
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segment of the abnormal ECG. This kind of monitor requires an accurate QRS 
recognition capability. Thus, QRS detection is an important part of many ECG signal 
processing systems.

A real-time QRS detection algorithm developed by Pan and Tompkins (1985) was 
further described by Hamilton and Tompkins (1986). It recognizes QRS complexes 
base on analyses of the slope, amplitude and width.

Figure 3.6 shows the various filters involved in the analysis of the ECG signal. In 
order to attenuate noise, the signal is passed through a band pass filter composed of 
cascaded high-pass and low-pass integer filters. Subsequent processes are 
differentiation, squaring and time averaging of the signal.

Figure 3.6 Filter stages of the QRS detector. Z (n) is the time-averaged signal. Y 
(n) is the band passed ECG, and x (n) is the differentiated ECG.


