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Chapter 5
Biomedical signal filtering___________________
5.1 Introduction

The electrocardiogram (ECG) is a graphic recording of the electrical potentials 

produced by cardiac tissue. The heart is unique among the muscles of the body in that 

it possesses the properties of automatic impulse formation and rhythmic contraction.

Traditionally, a large number of algorithms for noise reduction in ECG's use either 

spatial or temporal averaging techniques [1 ]. Temporal averaging method requires a 

large number of beats or frames for effective noise reduction. Moreover, the 

averaging causes considerable errors particularly when the time alignment of beats is 

not accurately known, or especially when premature beats are present [2], The main 

drawback of spatial averaging is the physical limitations to placement of a large 

number of electrodes at the same region.

Chapter provides a comprehensive study of the work done by the researchers using 

conventional techniques for the signal filtering. The ANN models for the signal 

filtering are developed and their performance is compared with conventional 

techniques

5.2 Classical Methods

The section gives overview of proposed techniques for detecting and filtering artifacts 

generated due to various sources.

5.2.1 Power line interference

Power line interference is the most common of all unwanted artifacts [3], It causes 

problems in recording ECG. The cause of this interference may be magnetic 

induction, displacement current in lead or patient’s body. It may also be due to 

imperfection in the equipment. Proper grounding or using twisted wire pairs can 

minimize them. Apart from the amplifier design methods, various signal processing 

procedures for its suppression or elimination were proposed, mostly for the 

electrocardiogram signal [4-8], Adaptive noise cancellation techniques are also 

proposed [9],

A dynamic interference subtraction procedure totally preserves the original signal 
frequency components [10-13], Short signal segments are investigated for linearity.
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by comparison of differences between samples taken at 2k intervals of the power line 
interferences, to a selected threshold value M.

When linear segment is detected, averaging the samples in one interference period, 
thus obtaining interference-free data. The formula of the averaging (comb) filter is:

Y(n+i)/2== ............... ......................................... (5.1)
n

Where x is the signal before filtration, Y is the filtered one and n is the number of 
samples in one interference period. In case when the sampling rate is an even multiple 
of the interference frequency, following correction is introduced [8]:

Y n / 2 (5-2)

Once the interference-free data is obtained, the interference amplitudes are calculated 
for every sample by subtraction of the filtered signal data from the original ones. .

In nonlinear segments (QRS complex and some turning points in sharp T waves of 
high amplitude) the interference can be eliminated by sample-by-sample subtraction 
of the interference amplitudes computed from corresponding nearest linear segments.

The threshold value M has been chosen as a result of empirical tests [7-10] at 150 pV.

The subtraction procedure was proven to be very efficient, even with changing 
amplitude and frequency of the interference [12, 13]. Its performance is slightly 
reduced in cases of continuous well-expressed tremor (electrocardiogram (EMG) 
interference). This is due to the decreased number of linear segments detected. It 
results:

(i) In preservation of some of the tremor noise as a part of the ‘pure’ 
electrocardiogram (ECG) signal in nonlinear segments, where the subtraction is 
applied, and

(ii) in relatively infrequent re-calculation of the interference amplitude are present, 
where these corrections do not fully correspond to the already changed signal.
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The purpose of the work in [3] was to improve the subtraction method in order to 
enhance its efficiency in the presence of non-powerline interference noise and to 
widen its application to other than ECG biological signals, for example impedance- 
cardiogram, plethysmogam, electrocephalograph (EEG), etc.

This was achieved by dynamic adaptation of the linearity criterion as a compromise 
between two contradictory requirements; (i) noise elimination (reduction) and (ii) 
preservation of the original signal components.

5.2.2 Singular Vale Decomposition

The level of contamination due to artifacts may be such that the ECG signals are 
completely hidden. A singular value decomposition technique decomposes signal in 
to two time-orthogonal signal subspaces. One subspace will contain ECG component 
while artifacts such as base line wander or EMG are in other subspace.

5.2.2.1 Orthogonalization Method

An orthogonalization method can be used to eliminate unwanted signal components in 
standard 12-lead exercise ECGs [14]. The algorithm developed adapts itself to 
variation in ECG or unwanted signal components due to artifacts [14].

The cardiac signal morphologies in standard 12-lead ECG signals are highly 
correlated. Eight channels out of 12 are independent and orthogonalization is applied 
to these eight channels. They are named VI-V6.

Figure 5.1 Block Diagram of the Process



Chapter 5: Biomedical signal filtering 64

M is data matrix with each row corresponds to input channel and columns correspond 
to successive sampling instances in time. The algorithm is based on the online 
approximation of SVD of the data matrix M C R pxn. SVD of M is [15]:

M==U2Vt ....................................................... (5.3)

UUT = UTU = Ip , VVT = VTV = In .......................................................(5.4)

U and V are left and right singular vectors. S is a diagonal matrix whose diagonal 
entries are the singular values of M. If the rank of M is r then

Ur =span(ul,...,ur) .................................................. .........(5.5)

spans range of M and Ur T projects M onto that subspace. The relation between the 

eigenvalue decomposition and SVD can be established from (5.3) as

S2“UtMMtU ............................................................. (5.6)

M is available completely only at the end of test. During test each column of of M is 
received one after the other. The proposed algorithm approximates (3) at every 
sampling instance.

Algorithm is described as follows:

U0=I, Co=0 

For I = 1 to n

si=t/Lmi
Bi=a2Cj.i + Si 5^

Ci=fiB,Qi

UrUi-iQi

mi = Uj.i5i

mj = ith column of M 

r=rank(M)

S = [S[ ...Sr 0 ...0]

U=[Drf/n]
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Qi = Jacobi rotation matrix

Matrix U corresponds to the left singular matrix. The matrix C is an approximation to 
S2 , whereas the matrix B is an intermediate matrix and is an updated version of C in 

each step. C converges to £2 in (5.6). Convergence is determined by a, which should 

be selected carefully. Its choice describes preference between stability of the 

algorithm and its adaptability to the variations in the morphology of the beat. Q, is 

Jacobi rotation matrix that nullifies an off diagonal element of Bj , whose absolute 

value is maximum, is chosen to be made zero at each step in the algorithm. Hence at 

each step, correlation between the most correlated two output channel is decreased. 

Effectively (5.8) is performed incrementally:

Mi = [aHlm(ti),a''2m(t2), ...mft)] ........................................................... (5.7)

Crg; - (jf Mi MiT Qi ..'Qi  (5.8)

Ui =Qi ...Qi  (5.9)

Ui is closer to Uj than Ui _i

Where ......................................................... (5.10)

Mi = [m(ti) ...m(ti)] ......................................................(5.11)

Reconstruction is given by (13). U r corresponds to high singular values and spans 

the signal space. U n is its orthogonal component and spans the noise space.

[14] Considers exercise ECG data from 23 patients with record length between 9:00 

and 21:00 was recorded with sampling rate of 500 samples/s per charnel at 12 bit 

resolution under Bruce protocol. The data of 8 independent channels in standard 12- 

lead ECG were acquired simultaneously. SVD is sensitive to the average value of 

input signals. When the derivations contain a non-zero average or very low-frequency 

components, SVD algorithm decomposes these as orthogonal components. Such low 

frequency components increase rank of the data matrix and dimensions of the signal 
spaces. Hence high passed input signals with a filter of cutoff frequency 0.7 hz are 

used to remove these low frequency components. The decomposition coefficients 

obtained on this signal are applied to the input signals that are high pass filtered with a 

first order filter of cutoff frequency 0.05 hz . 0.05 hz is the allowed cutoff frequency 

in order to preserve all of the clinical data in ECG.

The difficulty in the technique is that data in one or more channels may be lost. 
However redundancy may be used to recover important part of data using same
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decomposition algorithm. Another difficulty is that the record for longer time is 
required.

5.2.3 Stimulus artifacts

Several adaptive filtering methods have been proposed for detection and identification 
of the component waves from noisy ECGs , particularly adaptive Gaussian filter for 
detection of the QRS component from noisy ECG’s [7]. Advantage of adaptive signal 
processing is that conventional operating systems operate in open-loop fashion while 
adaptive processors operate in a closed loop fashion [8]. Adaptive filtering of the 
EMG artifact was attempted with limited success. When the QRS complex disturbs 
the adaptation process, re-adaptation occurs and artifact appears [10]. Modification of 
algorithm was carried out in [11] but at the cost of reduction of sharp ECG 
amplitudes. Luo and Tompkins [12] could obtain better results with faster conversion 
using additional EMG channel. Rossi R. Casteli [13] proposed a low pass comb filter 
with reduced lobes in the frequency band above 50 Hz by cascading three averaging 
filters.

5.2.3.1 Adaptive filtering of Stimulus Artifact

Noninvasive measurements of somatosensory evoked potentials have both clinical 
and research applications [16]. The electrical artifact which results from the stimulus 
is an interference which can distort the evoked signal, and introduce errors in response 
onset timing estimation. Given that this interference is synchronous with the evoked 
signal, it cannot be reduced by the conventional technique of ensemble averaging. The 
technique of adaptive noise canceling has potential in this regard however, and bas 
been used effectively in other similar problems, An adaptive noise canceling filter 
which uses a neural networks as the adaptive element is investigated in this 
application. In [13] the filter is implemented and performance determined in the 
canceling of artifact for in vivo measurements on the median nerve. A technique of 
segmented neural network training is proposed in which the network is trained on that 
segment of the record time window which does not contain the evoked signal. The 
neural network is found to generalize well from this training to include the segment of 
the window containing the evoked signal. Both quantitative and qualitative measures 
show that significant stimulus artifact reduction is achieved.

Somatosensory evoked potentials (SEP’s) are used widely in clinical and research 
applications, and include peripheral spinal, and cortical potentials. For reasons of 
convenience, comfort, and safety the preferred measurement techniques are 
noninvasive using surface electrical stimulation and recording electrodes. The 
recorded SEP is thus small in amplitude-typically on the order of a microvolt peak.
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[17] While an electrical stimulus evokes the desired response from the nervous 
process of interest, it also results in an interfering potential referred to as the stimulus 
artifact (SA).

The stimulus artifact is a particularly troublesome form of interference. The 
amplitude of the SA is typically orders of magnitude larger than the SEP, [18] SA is a 
synchronous or coherent with the SEP and thus cannot be reduced by ensemble 
averaging - the common method of reducing other forms of interference, [19] In most 
cases the SA overlaps the SEP in both the time and frequency domain, such that 
conventional time windowing and frequency filtering are not capable of removing the 
SA without distortion of the SEP, [20] The mechanisms by which the electrical 
stimulus is coupled into the recording are varied complex and distributed, making 
minimization of the SA at the source problematic [21].

ANC (Figure 5.2) can be used for effective reduction of stimulus artifact. An estimate 
of the SA is obtained via an adaptive filter and the estimate subtracted from the 
composite SA plus SEP signal. ANC filters have been used in other biological signal 
acquisition applications. Ye and choy [22] used such a filter for the reduction of 
respiratory artifact in rhneopneumography measurements. Sadasivan and Narayana 
[23] developed an ANC filter for the reduction of electroculogram in 
electroencephalography measurements. Thakor and Zhu [6] have used an ANC filter 
for the removal of the QRS complex in ECG in order to improve detection of the P- 
wave; Suzuki et al. [24] developed a real time ANC filter for suppression of ambient 
noise in lung sound measurements.

In the application of noise canceling to SA reduction Me Gill et. al[20] estimated the 
artifact waveform sub threshold stimulation and subtracted the estimate from the 
suprathreshold stimulus response. Nonlinear adaptive ANC filters were not 
considered in this study. Work by one of the present authors investigated the 
application and performance of linear and nonlinear finite impulse response (FIR) 
ANC filters for SA reduction in SEP measurements [25], [26]. The performance of 
linear FIR ANC filters was found to be rather poor [25] suggesting that the input - 
output relationship of tissue to electrical stimulus is nonlinear. Indeed the source of 
this nonlinearity is at least in part, the nonlinear voltage-current characteristic of the 
skin [27] A second order truncated Volterra series nonlinear FIR ANC filter was 
shown to have substantially improved performance [25].
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input Xr=Ar+nr
Error e

Figure 5.2 Configuration: Adaptive Noise Cancellation (ANC) Filter

The limitations of this method are:
1) It cannot model nonlinearities of order higher than two and
2) The number of filter coefficients grows as the square of the FIR filter length.

• Event Synchronous Cancellation (ESC): ESC pursues the concepts of the 
“event synchronous adaptive interference canceller” (ESAIC)”. It uses a simple 
adaptive gain control (AGC) instead of the complex adaptive filter of the ANC 
[28].

5.2.4 Electromyogram artifacts

Electromyogram (EMG) artifacts often contaminate the electrocardiogram (ECG). 
They are more difficult to suppress or eliminate compared for example to the power 
line interference, due to their random character and to the considerable overlapping of 
the frequency spectra of ECG and EMG signals obtained from the same pair of 
electrodes[29]. The usually applied low-pass filtering (cutoff frequency of minimum 
35 Hz) results in limited suppression of the EMG artifact and considerable reduction 
of sharp Q, R and S ECG wave amplitudes. A solution to this problem is proposed by 
applying approximation filtering with dynamically varied number of samples and 
weighting coefficients, depending on the ECG signal slope. The slope measure used is
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the absolute value of the product of the tilts of two adjacent 10 ms segments sliding 
along the signal. The results obtained show a slight widening of some sharper QRS 
complexes, but a virtual preservation of their amplitudes and a considerable reduction 
of the EMG artifact

Various artifacts often contaminate electrocardiogram (ECG) recording, of which the 
most common are powerline interference and baseline drift. They were subjected to 
extensive research and many successful solutions have been found and applied.

The electromyogram (EMG) artifacts, as obtained from the same electrodes as the 
ECG are difficult to remove, due to considerable overlapping of the frequency spectra 
of these two types of signals. EMG artifacts in ECG are quite common in subjects 
with uncontrollable tremor. In disabled persons having to exert efforts in maintaining 
position of their extremities or a body posture, in children, etc.

Attempts at filtering out the EMG were only partially successful. Therefore, a 
compromise was universally accepted and postulated in standards and 
recommendations, namely , the applications of a low pass filter with a cut off 
frequency of minimum 35 Hz [30], The result is a limited suppression of the EMG 
artifact and a reduction in the amplitudes of sharp ECG waves, such as Q,R and S. 
This fact precludes accurate ECG diagnostic measurements if the EMG filter was 
applied [31].

Adaptive filtering of the EMG artifact was attempted with limited success. When the 
QRS complex disturb the adaptation process, re adaptation occurs and the artifact 
appears [6]. A modification of the algorithm could deal with this inconvenient, but the 
price again is a reduction of the sharp ECG amplitudes [32], Better results with a 
faster convergence were obtained by Luo and Tompkins [33], but at the price of using 

an additional EMG channel.

Rossi etal. [34] proposed a low pass comb filter with reduced lobes in the frequency 
band above 50 Hz by cascading three averaging filters. In order to improve the 
reduced frequency response, they added a compensating filter gradually enhancing 
components from 10 to 100 Hz and having first zero at 200 Hz. The goal was to 
obtain the 3 db cutoff at 35 Hz, as required by the standard. Unfortunately, no data on 
the compensating filter were given and no results with real signals were presented.
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Levkov [35] also tried to use comb filters for simultaneous suppression of 50 Hz 

interference and EMG artifacts. However, reaching -3 db at 35 Hz resulted in an 

enhanced lobe with a maximum of 95% at 70 Hz.

5.2.4.1 Approximation Filtering

To improve the traditional compromise between efficient EMG artifact suppression 

and preservation of the ECG waveform, approximation filtering, adds dynamic 

modification of the approximation function parameters depending on the ECG signals 

slew rate.

The characteristics of dynamic filter are dynamically changed depending on signal 

slope. For this purpose a function called “wings’" [36] is applied. A wing function is 

formulated by multiplying slopes of two adjacent segments of equal length having 

common point. A relationship between the slopes and number of samples is 

established.

The advantage of this method is that the drift problem is eliminated, as the base line 

fluctuations do not exceed 0.5Hz. The backward filtering [13] can be used to remove 

drift if required. The method improves the compromise between EMG suppression 

and preservation of ECG waveform.

5.2.5 Direct Cosine Transform

The filter Proposed in [37] assumes the noisy electrocardiography to be modeled as a 

signal of deterministic nature, corrupted by additive muscle noise artifact. The muscle 

noise component is treated to be stationary with known second-order characteristics.

Noise-free ECG is shown to possess a narrow-band structure in discrete cosine 

transform (DCT) domain. The second order statistical properties of the additive noise 

component is preserved due to the orthogonality property of DCT, noise suppression 

is easily accomplished via subspace decomposition in the transform domain. The 

subspace decomposition is performed using singular value decomposition (SVD)

Method [37] uses the properties of the discrete cosine transform (DCT) in conjunction 

with conventional smoothing algorithms using singular value decomposition (SVD) 

for enhancement of the SNR This method uses a single lead information with a 

limited amount of data for processing.

The order of the transform domain SVD filter required to achieve the desired degree 
of noise suppression is compared to that of a suboptimal Wiener filter using DCT.
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Since the Wiener filter assumes both the signal and noise structures to be statistical, 
with a priori known second order characteristics, it yields a biased estimate of the 
ECG beat as compared to the SVD filter for a given value of mean square error 
(MSE). The filter order required for performing the subspace smoothing is shown to 
exceed a certain minimal value for which the MSE profile of the SVD filter follows 
the minimum mean square error (MMSE) performance warranted by the suboptimal 
Wiener filter. The effective filter order required for reproducing clinically significant 
features in the noisy ECG is than set by an upper bound derived by means of a finite 
precision linear perturbation model. A significant advantage resulting from the 
application of the proposed SVD filter lies in its ability to perform noise suppression 
independently on a single lead ECG record with only a limited number of data 
samples.

ECGs recorded under exercise conditions are often corrupted by extraneous 
disturbances due to muscular activity (electromyographic (EMG) noise) and 
respiration. The EMG noise is random in nature and has a frequency content existing 
over a wide range. Under exercise conditions, the level of these interfering signals, 
particularly the muscle noise component become large enough thereby mutilating the 
signal characteristics which are clinically significant. For example, the small 
amplitude P-wave are hidden by the larger amplitude muscle artifacts and render it 
difficult for the physician to locate the presence or absence of these waves, which in 
turn provides significant clinical information required to diagnose certain 
abnormalities associated with the functioning of the heart. Moreover, since the 
spectral content of muscle noise overlaps that of the ECG, improvement of signal to 
noise ratio (SNR) solely by means of digital filtering is not possible without 
introducing considerable distortion in the ST segment regions. In most situations the 
approximate shape of the component wave, expected to be present in the noisy signal, 
may be known and the requirement is to estimate its time of occurrence and its exact 
shape. The two different approaches used to solve this problem are those which 
employ the structural features of the component wave and secondly the method that 
use template matching technique [38] Algorithm based on the first approach are of 
heuristic nature and are selective to the particular type of component wave being 
searched for (for example, the QRS complex) In the second approach. The 
approximate knowledge on the shape of the component wave is used to generate a 
template which is determined by means of correlation, matched filtering, or other 
pattern recognition techniques.
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Traditionally, a large number of algorithms for noise reduction in ECG’s use either 
spatial or temporal averaging techniques. Assuming the noise to be random and 
stationary, the noise reduction by the temporal averaging method is proportional to 
the square root of the number of frames or beats averaged [39],[40]. As is evident, the 
temporal averaging method requires a large number of beats or frames for effective 
noise reduction. Moreover, the averaging may cause considerable errors particularly 
when the time alignment of beats beats is not accurately known, or especially when 
premature beats are present [41] In the spatial averaging method, potentials from 4-16 
independent electrode pairs are acquired and averaged Initial work using spatial 
averaging was attempted by flowers et al [42] and EL Sherif et al. [43] The main 
drawback of spatial averaging is the physical limitation to placement of a large 
number of electrodes at the same region.

Several adaptive filtering methods have been proposed for detection and identification 
of the component waves from noisy ECG’s of particular interest is the adaptive 
Guassian filter for detection of the QRS component from noisy ECG’s [44] The 
adaptive tuning is performed on the frequency response of the Gaussian filter in order 
to minimize the distortion of the undisturbed signal by the filter. A second method for 
adaptive noise cancellation of ECG recordings has been cited in [6] and works on the 
principal that EMG noise recorded using two different orthonormal limb leads are 
uncorrelated. The inherent limitation of this scheme is the requirement of generating a 
signal whise noise component is orthonormal to that in the noisy ECG.

Single lead ECG’s are more common in an exercise testing than in resting ECG’s and 
the one leadedness of the method is an additional feature suitable for its application to 
exercise ECG’s in particular. The method does not require a prior knowledge of onset 
and offset points or temporal alignment of beats as required in other methods based on 
signal averaging. [37] describes the formulation of noise removal problem and SVD 
smoothing algorithm.

The performance of the SVD filter was evaluated [37] using simulated signals and 
compared to that of a suboptimal Wiener filter using DCT, The choice of a minimal 
filter order is decided by choosing the minimum value of the matrix size which results 
in a MSE performance close to the MMSE of the suboptimal Wiener filter using 
DCT: The transform domain SVD filter is capable of reproducing clinically 
significant morphological features from ECG waveforms with an SNR of up to 10 dB 
by using a filter order exceeding the minimal value and bounded by an upper limit 
decided by the linear perturbation model. The superiority of the proposed method lies
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in the fact that it does not require any prior information about the onset and offset 
points or the knowledge of beat intervals for its satisfactory performance. Moreover, 
the capability of the method to work with a limited amount of data is an added 
advantage.

5.2.6 Multi reference Adaptive Noise Cancellation

Noise cancellation using LMS adaptive filters often leads to large steady-state 
residual noise, as the desired signal impedes the estimation procedure. In a recent 
paper, the knowledge of the desired signal statistics has been exploited to formulate a 
whitening mechanism which reduces the residual noise variance. In [45] is shown 
how proposed algorithm could be unstable in the absence of a strictly positive real 
condition on the whitening filter, suggest a globally stable modification, prove its 
convergence, and demonstrate its efficacy through simulation.

Adaptive identification with the LMS and related algorithm has become a popular 
solution to many problem [46-53]. Consider echo cancellation [48-50]. The received 
signal contains not only the incoming message, but also the weighted and delayed 
versions of the outgoing signal. If we estimate these weights and apply them to a copy 
of the outgoing signal, we have an estimated echo. If we subtract this synthetic echo 
from the received signal, we are more likely to understand the incoming message. The 
quality of the estimated echo improves with more accurate weight estimates. Similar 
ideas can be applied to the general problem of noise removal [46], [51-53] by treating 
the noise in the same manner as one treats echoes in the above problem.

The LMS algorithm is used to adaptively estimate the weights. Exact convergence of 
the estimated weights to their modeled values is possible, provided the parameter 
update is guided by the precise residual noise (echo) However, this noise is not 
directly measurable, so the system output (the desired signal plus residual noise) is 
generally used in its place. Therefore, when the errors get sufficiently small, the 
desired signal becomes the dominant component of the system output and obstructs 
further improvement of the weight estimates. The result is a steady state error 
variance proportional to the update gain and desired signal energy [58].

It may be possible to reduce the steady state error with out significantly reducing the 
value of the update gain, and thus slowing convergence. One way to do so is to 
subtract an estimate of the desired signal from the output, to get a better estimate of 
the residual noise. This requires prior information about the desired signal.
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In [54], the technique of multi reference adaptive noise canceling MRANC (Figure 
5.3) is applied to enhance transient nonstationaries in the electroencephalogram 
(EEG) with the adaption implemented by means of a multilayer-perception artificial 
neural network (ANN).

Figure 5.3 Multi Reference ANC

The method was applied to recorded EEG segments and the performance on 
documented nonstationarities recorded. The result show that the neural network 
(nonlinear) gives an improvement in performance (i.e. signal to-noise ratio (SNR) of 
the nonstationarities) compared to a linear implementation of MRANC. In both cases 
an improvement in the SNR was obtained. The advantage of the spatial filtering 
aspect of MRANC is highlighted. Performance of MRANC is compared to that of the 
inverse auto successive filtering of the EEG.

The electroencephalogram EEG can be considered to consist of an underlying 
background process (assumed stationary and ergodic) with superimposed transient 
nonstationarities (TNS’s) such as spike and sharp-waves (SSW’s) electrode “pop” 
eye-blinks, and muscle artifacts. The detection of SSW’s in the EEG is of particular 
importance in the diagnosis of epilepsy.

Methods for detecting SSW’s nave included mimetic methods [55],[56] and the use of 
template matching [57]. The lack of any definition of a SSW other than “transient
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clearly distinguished from background activity with pointed peaks at conventional 
paper speeds” [58] means that what constitutes the “ideal” SSW can vary amongst 
researchers. Instead of matching a single template, several authors have employed an 
artificial neural network (ANN) by training the ANN on a large number of known 
SSW’s [59],[60] Lopes da silva et al. [61] used the method of modeling the stationary 
background EEG with an autoagressive (AR) prediction filter and detecting TNS’s by 
examining the rediction error; the AR filter was calculated from a segment of the 
background EEG which is assumed to be stationary. The major drawback is that the 
stationary assumption may not always hold true, leading to a large number of false 
detections.

The method described in [54] comprises the first stage of a ANN based system 
designed to detect SSW’s in the interictal EEG. The system makes use of multi 
reference adaptive noise canceling (MIRANC) as described by widrow et al [62], The 
background EEG on other channels in the multi channel EEG recording is used to 
adaptively cancel the background EEG on the channel under investigation. The use of 
a multilayer ANN to implement the MRANC filter provides the opportunity to model 
the EEG spatial distribution as nonlinear and leads to improved performance over the 
linear case.

The EEG signal is assumed to consist of a signal s0 (here, modeling the TNS) 
contaminated by noise n0 (here, modeling the background EEG) which is assumed to 
be uncorrelated with the signal. Each reference input Eref(k) contains a noise signal m 
which is uncorrelated with so, but correlated with no. The adaptive filter adapts its 
parameters so as to produce an output signal which is as close as possible to no. This 
output is then subtracted from the primary input, canceling the noise content n0 but 
leaving signal So intact. The adaptive filter continuously adjusts to minimize the 
output z. Any suitable adaptive algorithm which minimizes the output can be used; in 
particular, the least mean square (LMS) adaptive algorithm [62] can' be used if the 
system is assumed to be linear. The LMS algorithm is employed in the: work reported 
here to compare with the nonlinear ANN described below. The reference inputs to the 
adaptive noise canceller may contain some signal components, which are correlated to 
the signal at the primaiy input (Figure 5.3).

5.2.7 Optimal Multichannel Filtering

The artifacts presented by precordial compressions during cardiopulmonary 
resuscitation (CPR) could be removed from the human electrocardiogram (ECG) 
using a filtering approach [63]. This study was to allow analysis and defibrillator 
charging during ongoing precordial compressions yielding a very important clinical
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improvement to the treatment of cardiac arrest patients. In this investigation authors 
started with noise-free human ECG with ventricular fibrillation (VF) and ventricular 
tachycardia (VT) records. To simulate a realistic resuscitation situation, they added a 
weighted artifact signal to the human ECG, where the weight factor was chosen to 
provide the desired signal -to-noise ratio (SNR) level. As artifact signals they used 
ECG’s recorded from animals in asystole during precordial compressions at rates 
60,90, and 120 compressions/min. The compression depth and the thorax impedance 
were also recorded.

An adaptive multichannel Wiener filter was used to construct an estimate of the 
artifact signal. The estimate was subtracted from the noisy human ECG signal. The 
method was used for CPR artifact and it improves SNR and rhythmic classification.

Early defibrillation is the most important factor for restoration of spontaneous 
circulation (ROSC) in settings of sudden deaths, in which the .majority of instances 
are due to ventricular fibrillation (VF) [64], [65]. In the current operation of 
automated external defibrillators, substantial time is consumed in the “hands-off’ 
interval during which precordial compressions are discontinued to allow for 
automated rhythm analysis before delivery of the electric counter-shock. Current 
guidelines for cardiopulmonary resuscitation require that chest compression and 
ventilation must be interrupted prior to any shock, to avoid the effects of artifacts on 
the electrocardiogram (ECG) analysis [66],[67], During this period, there is no 
circulation of heart muscle or brain with a rapid deterioration of the metabolic state of 
the tissues [68],[69], which can be partially reversed by chest compressions and 
ventilations [70],[71]. In agreement with this, Sato et al. found that the interruption of 
chest compressions before a defibrillation attempt reduced the defibrillation success 
rate 24-h survival was significantly reduced with a 20-s delay [72]. They concluded 
that automated defibrillators are likely to be maximally effective if they are 
programmed to secure minimal “hands-off” delay before delivery of the electric 
counter-shock. Furthermore, the removal of cardiopulmonary resuscitation (CPR) 
artifacts in VF would make it possible to assess the CPR effect on the myocardium as 
indicated, by VF changes. In a study of 883 shocks in patients during out of hospital 
resuscitation, these episodes were of that duration with a median of 20 s [73]. In the 
clinical study only 10% of the shock given to patients with VF or VT resulted in a 
rhythm with a pulse and the patients received median six shocks with significantly 
fewer shocks given to survivors than non survivors [73]. Others have reported median 
3-6 shock/patient with fewer shocks given to survivors than non survivors [74-77]. 
Thus, most patients with VF and VT have many episodes where chest compressions



Chapter 5: Biomedical signal filtering 77

and ventilation cannot be administered due to signal analysis of the ECG and 
defibrillator charging. This can also be seen in connection with the fact that the 
success rate for a defibrillation attempts depends on the frequency configuration of 
the VF [78]-[79], and this configuration is affected by the CPR [80]. In agreement 
with this Cobb et al [92] have recently reported an improved success rate when a 
period of chest compressions and ventilations were given before a defibrillation 
attempt in patients.

In [75] hypothesis was that artifact removal by filtering would allow the maintenance 
of precordial compressions during automatic rhythm analysis. Without interrupting 
the sensitivity of simultaneous rhythm classification, artifact removal has been done 
successfully on animal ECGs applying high pass digital filters with fixed coefficients 
[78],[79]. In human ECG however, the frequency component of the artifacts overlap 
with the frequency components of the desired signal, which renders separation by 
such filters infeasible.

In an attempt to solve this problem, the following strategy was put forward in [81]: 
The ECG artifact is modeled as a sum of several sources; the main source being the 
mechanical stimulation of the heart itself. For each source the idea is to obtain a 
reference signal correlated to the associated artifact component. In case of artifacts 
due to chest compressions one such reference is the compression depth. The reference 
signal facilitate removal of the artifact component using an adaptive, digital filter.

Animal experiments were carried out in [81] for collection reference signals and the 
corresponding ECG artifact signals. Collection of artifact information was performed 
on well-established pig model [82],[83]. During precordial compression on domestic 
anaesthetized pigs in cardiac arrest, the ECG with artifacts and corresponding 
references were continuously recorded during different compression rates with 
constant compression depth. Data were collected at different compression rates 60,90 
and 120 min4 - the latter because evidence favors a compression rate up to 120 min'1 

[84].

The setup in [81] was used for signal collection. The data was combined with human 
ECG in order to stimulate an artifact contaminated human ECG signal. The algorithm 
[63] was tested for SNR improvement and sensitivity.

5.3 Artificial Neural Network based filtering

An Artificial Neural Network (ANN) is an attempt to mimic the action of the brain 
using simple structure. The ANN is built up using a class of adaptive machine that



Chapter 5: Biomedical signal filtering 78

perform computation through process of learning. The large number of artificial 
neurons are interconnected to form the network. Thus neural network consists of 
massively parallel distributed processors which have a neural propensity for storing 
experienced knowledge and making it available for use. ANN can be programmed or 
trained to store, recognize and associatively retrieve patterns or database entries; to 
solve combinational optimization problems, in summary, to estimate sampled 
functions when we do not know the form of the functions. The overall network 
behaves as an adaptive function estimator. This can be useful to carry out signal 
processing task like filtering, averaging, compression, detection etc.

An adaptive filter automatically adjusts its own impulse response. In [85] adaptive 
noise canceller and adaptive signal enhancer systems are implemented using feed 
forward and recurrent neural networks using back propagation algorithm and real time 
recurrent learning algorithm respectively for training. Their performances are 
compared with conventional adaptive filtering techniques using LMS and RLS 
algorithms. The recurrent neural network employing RTRL algorithm which functions 
better than the other algorithms is studied further by varying the number of nodes, 
adding a bias tp the neurons, adding a momentum term for learning and varying the 
momentum term and learning rate for better convergence.

Conventional signal processing systems operate in an open-loop fashion. Adaptive 
processors operate in a closed-loop fashion. The adaptive filter estimates the static of 
the incoming signal and adjusts its own response in such a way that some cost 
function is minimized. This cost function may be derived in different ways based on 
the application. Adaptive filters find wide applications in different fields such as 
communications, control, radar and seismology. In this paper adaptive noise 
cancellation and adaptive signal enhancement systems are considered for 
implementation.

Artificial neural networks are parallel computational models comprised of 
interconnected adaptive processing ants. A very important characteristic of these 
networks is their adaptive ability where “learning by example” replaces 
“programming” in solving problems. Neural networks can offer the computational 
power of non-linear techniques. Signal processing techniques have been improved by 
the application of artificial neural networks [86] Neural network based adaptive filters 
find wide applications in biomedical signal processing [87-88] In this section feed 
forward and recurrent neural networks are used to implement adaptive noise canceller 
and adaptive signal enhancer. Their performances are compared with those
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implemented using conventional LMS (Least Mean Square) and RLS (Recursive 
Least square) algorithms.

A new global optimization strategy for training adaptive systems such as neural 
networks and adaptive filters with finite or infinite impulse response (FIR or HR) is 
proposed [89]. Instead of adding random noise to the weights as proposed in the past, 
additive random noise is injected directly into the desired signal. Experimental results 
show that this procedure also speeds up greatly the back propagation algorithm. The 
method is very easy to implement in practice, preserving the back propagation 
algorithm and requiring a single random generator with a monotonically decreasing 
step per output channel. Hence, this is an ideal strategy to speed up supervised 
learning and avoid local minima entrapment when the noise variance is.appropriately 
scheduled.

It is well known that the two major problems associated with back propagation 
learning are the slow convergence for complex problems and local minima 
entrapment. For the first problem, several improvements such as quick prop, 
momentum learning adaptive step sizes, etc. have been proposed [90],[91]. Local 
minimum entrapment can be solved by simulated annealing or related techniques 
which include the Langevin algorithm and the diffusion optimization method 
[92],[93],[94]

The common point of these methods is the injection of a noise term of controlled 
variance into each weight vector. These methods have a very slow convergence but 
they can theoretically overcome local minima. Another weakness is that one has to 
control a lot of internal variables (noise terms for each weights) which is not very 
efficient during learning one wishes to adjust only the external variables such as input, 
desired signal, and step size. From a pragmatic point of view on line algorithms, i.e., 
algorithms where the weights are updated with every sample are highly desired but in 
simulated annealing due to the stochastic nature of the updates on-line methods 
cannot be efficiently implemented. Motivated by these results, we propose here to add 
noise to the desired signal and experimentally investigate the advantages of such 

procedure.

Noise has been used with gradient descent procedures. Holmstrom analyzed the 
generalization ability of the static back propagation (BP) algorithm [95] when random 
noise was injected into the external signals. They showed that the generalization can 
be improved using additive noise in the training data. Bishop shows that injection of
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noise in the input is equivalent to regularization [96] several other papers also showed 
that noise injection into the input and weights can also improve the generalization 
[97],[98],[99],[100],[101]. All of these papers concentrate mostly on the network 
generalization ability and did not study the effect of noise in the learning speed and 
the ability of escaping from local minima. We will address this issue in this paper and 
propose to inject the noise in the desired response, not at the input, due to the linearly 
of the dual network. A theoretical and experimental performance study of a method 
for time delay estimation (TDE) based on the signal integral (TDS-SI) is presented in 
[102] The TDE-SI method considers the delay between two transient signals as the 
difference between the centers of mass of these signals. Estimations are validated by 
stimulation result with artificially generated signals and by real so called QRS 
complex waves (ventricular activity) from an electrocardiographic (ECG) signal.

The Hopfield, MPLNN and RBFNN model have been proposed for 
filtering.

5.3.1 Hopfield Neural Network based filtering (LS Algorithm)

5.3.1.1 Filter Design

The basic promise behind optimal filtering is that we must have knowledge of both 
the signal and noise characteristics. Building adaptive digital filters can perform noise 
cancellation and signal extraction. Adaptive techniques are advantageous because 
they do not require a prior knowledge of the signal or the . noise characteristics. 
Adaptive filters employ a method of learning through an estimated synthesis of a 
desired signal and error feedback to modify the filter parameters.

In adaptive filtering, it is absolutely necessary to compute the weight coefficients of 
the filter in real time so as to make the corresponding transform function trace the 
characteristics of the input signals in the desired way. However the computational 
complexity of the available algorithms for computing the weight coefficients is very 
intensive. Although many methods have been proposed to decrease the computational 
complexity, it is still difficult to deliver the desired real - time performance if 
conventional digital and sequential methods are used. Continuous time Hopfield 
Neural Networks is used to solve the above problem. The principle of an adaptive 

filter is shown in figure 5.4.

5.3.1.2 Least Square Algorithm

The Least Squares (LS) algorithm for computing the weight coefficients of the 
adaptive filter is regarded as
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M

Min I [d(n)-XT(n)W]2 ............................................................ (5.12)

W n=l

The problem (5.12) is written in a matrix form

Min 11 d- XW| j2 ...............................................................(5.13)

w

The solution of (5.13) is

WLS= X+d = lira (XTX + ociy^d. ................................................. ......... (5.14)
cc->0

Where X+ is the pseudo inverse of X.

Because (5.14) involves a matrix pseudo inversion, the computational complexity is 

intensive. Hopfield Neural Network can be employed to solve for the complexity. 

Such model is presented in figure 5.5. Comparing with figure 5.4, let connection 

strength matrix, T = available noisy signal matrix, X and bias current vector, B = 

noisy signal matrix, d. For simplification, let f(u) = Kju and g(u)=K2U.
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In terms of Kirchhoff s laws, one can have the following relationship for the proposed 
model

M N

C dui.m = S Tj i/( Z Tj kok(t) - b j) - ui (t) .................... ................................. .(5.15)
dt j=1 w R

For this model, we define an energy function as follows:

M N N ui(t)

E(t) = Z F( Z TjjOi(t) - bj) + Z I J g''(o)du..................................................(5.16)
j=l i=l i=l £ 0

Where F(.) is the indefinite integral of the function /(u).
By writing (5.16) in matrix form and making these simplifications, we have,

CdUfl) = -U£t) - XTQ(t) ......................................................... (5.17)

d(t) R

Where, Q(t) = K,(XV(t)-d)

= Ki(K2XU(t)-d) .................................... ................... (5.18)

Also,
dU(t)

dt
= - (1/RC +KiK2XTX/C)U(t) + KiXTd/C .(5.19)

The input vector Uf and the output vector Vf in the stationary state can be obtained by 

letting

dU(t)
dt

- 0 for all i.

Uf = lim U(t) = Ki(I/R + K,K2XtX ) XTd 

t->a

(5.20)

Vf = lim V(t) = (I/RKiK2 + XTX) ”' XTd ....................... ............................... (5.21)

t->a
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Figure 5.5 Hopfield Model for Least Square Algorithm

Equation (5.21) is an approximation of the LS solution W. It is implemented using 
MATLAB. Since there are N weights, N equations are required to be solved. For M 
samples dimension of the matrix is M x N.

5.3.1.3 Terminology

dfll. d(2).......dCIVD : set of known quantities and dimension: M X 1

XfnV= lxi(n!.x->ln)........x^nfi1 fn = 1.2......Ml: vectors that stand for the input

samples of the filter dimension : M X N
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Xl(l) X2(l)... Xn(1)

X,(2) X2(2)... Xn(2)

Xi(M) X2(M)... Xn(M)

W = IWi. W?.......WnIt : N X 1 unknown weight coefficient vector of the filter.

g(u) and f(u): The input-output relationship of the neurons in the left and right parts 

of network

N: Number of neurons in the left part 

M: Number of neurons in the right part

Ri and Ci (fot i = 1,2,.....N) : The input resistance and capacitance of the i’th neuron 
in the left part, respectively (for Mathematical convenience , here we let Ri = R and 

Ci =C).

T = fTjd (for j = 1,2,..,M; i = 1,2,.. .,N) is the connection strength matrix.

U(f) = fin ft). u2(f)........ u*jftYI T = input voltage vector of the left part

Off) = rqiffl. q?(t),.......qNff)l T = input voltage vector of the right part

B = fbi,b?......b\ilT : The bias current vector of right part

Ui(f) and Qi(f) (for i = 1,2,...,N; i = 1,2,....Ml : The neuron output of the left and 

right parts of the network, respectively.

5.3.1.4 ECG data

The samples of biosignals used in all algorithms consist of two ECG records and one 

EMG (noise) records. These are 8 channel records of two peripheral and 6 precordial 

leads, taken with respect to the left leg electrode. Sampling rate is 400 Hz, 12 bit 

ADC records (one byte least significant bits; 1 byte (half- full) most significant bits), 

with resolution of 4.88 mV/bit.

EMG signals were obtained from one ECG electrodes placed on one forearm. The 

ECG amplifier was used and the recordings were made during sustained voluntary 

effort. The artifacts thus obtained were weighted and additively mixed with the 

different ECG signals subjected to processing.

5.3.1.5 MATLAB code for filter

The steps followed to implement filter are:
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1. The ECG data file created through ADC add-on card for patient is read.
2. From the knowledge of data structure for ECG storage, data items for 

segments are separated.
3. The EMG data file is also read. Step 2 is repeted for the EMG signal.
4. The EMG noise is added to ECG to obtain corrupted signal.
5. The signals are plotted.
6. The filtering LS filtering algorithm is used.
7. Filtered signal are plotted.

5.3.1.5(A) MATLAB code for reading ADC Data and store in files

This MATLAB code for reading ECG/EMG Data is common for all the applications
developed and hence will not be repeated again.
fid = fopenCN0001.adc..adc','r'); %one of the ECG file
text=fread(fid,2048,'char');
d=ffead(fid,'intl 6');
1=3200; % length of a lead
%------------------------------------------------------------------------ ---------------------------

Lecg=d(l :1); % 3200 length first piece is LECG
Recg=d(l+1:2*1); % Similarly next 3200 samples are for RECG
Clecg=d(2*l+l:3*l);
C2ecg=d(3*l+l:4*l);
C3ecg=d(4*l+1:5*1);
C4ecg=d(5 * 1+1:6* 1);
C5ecg=d(6*l+l:7*l);
C6ecg=d(7*l+1:8*1);
Recg=Recg*0.00488; %Multiplication with 1 bit value for all samples
Lecg=Lecg*0.00488;
Clecg=Clecg*0.00488;
C2ecg=C2ecg*0.00488;
C3ecg=C3ecg*0.00488;
C4ecg=C4ecg*0.00488;
C5ecg=C5ecg*0.00488:
C6ecg=C6ecg*0.00488;
%-------------------------------------------------------------------------------------------------------------
fid = fopen('emg01 .adc..adc','r'); 
text=fread(fid,2048,'char'); 
d=fread(fid,'intl 6');
1=3200; % length of a lead
%------------------------------------------------------------------------------------------------------------
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Lemg=d(l :1) ; %Similar to ECG signals, first 3200 samples are for LEMG

Remg=d(l+l:2*l);

Clemg=d(2*l+l:3*l);

C2emg=d(3*l+1:4*1);

C3emg=d(4*l+1:5*1);

C4emg=d(5*l+l:6*l);

C5emg=d(6*l+1:7*1);

C6emg=d(7*l+l:8*l);

%-------------------------------------------------------------------------------------------------------------
Remg=Remg*0.00488;

Lemg=Lemg*0.00488;

Clemg=Clemg*0.00488;

C2emg=C2emg*0.00488;

C3emg=C3emg*0.00488;

C4emg=C4emg*0.00488;

C5emg=C5emg*0.00488;

C6emg=C6emg*0.00488;
%--------------------j-----------------------------------------------------------------------------------------------------------------------------

Recgn= [Recg;0;0]+[0;0;Remg];%+ [0;0;0;0;0;Rp;0;0;0;0;0]; %Signal and noise 

are mixed up

Lecgn= [Lecg;0;0]+[0;0;Lemg];%+ [0;0;0;0;0;Lp;0;0;0;0;0];

Clecgn= [Clecg;0;0]+[0;0;Clemg];%+[0;0;0;0;0;Clp;0;0;0;0;0];

C2ecgn= [C2ecg;0;0;]+[0;0;C2emg];%+[0;0;0;0;0;C2p;0;0;0;0;0];

C3ecgn= [C3ecg;0;0]+[0;0;C3emg];%+[0;0;0;0;0;C3p;0;0;0;0;0];

C4ecgn= [C4ecg;0;0]+[0;0;C4emg];%+[0;0;0;0;0;C4p;0;0;0;0;0];

C5ecgn= [C5ecg;0;0]+[0;0;C5emg];%+[0;0;0;0;0;C5p;0;0;0;0;0];

C6ecgn= [C6ecg;0;0]+[0;0;C6emg];%+[0;0;0;0;0;C6p;0;0;0;0;0];

%-------------------------------------------------------------------------------------------------------------
fid=fopen('Recg.datVw’); %Records are written in respective files, which will be read 

later

fprintf(fid,'%f\n',Recg);

fclose(fid);

fid=fopen('Recgn.dat','w');

fprintf(fid,'%f\n',Recgn);

fclose(fid);

fid=fopen('Remg.dat','w');

fjprintf(fid,'%f\n',Remg);
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fid=fopen('Lecg.datVwr); 
fprintf(fid,'%f\n',Lecg); 
fclose(fid);
fid=fopen('Lecgn.dat','w');
fprintf(fid,'%f\n',Lecgn);
fclose(fid);
fid=fopen('Lemg.dat','w!);
fprintf(fid,'%f\n',Lemg);
felose(fid);
fid=fopen('C 1 ecg.dat’.'w'); 
fprintf(£id,'%f\n',C lecg); 
fclose(fld);
fid=fopen('C 1 ecgn.dat','w'); 
fprintf(fid,'%f\n',C 1 ecgn); 
fclose(fid);
fid=fopen('C 1 emg.daty w'); 
fprintf(fid,’%f\n',C lemg); 
fclose(fid);
fid=fopen('C2ecg.dat,,V);
fprintf(fid,'%f\n',C2ecg);
fclose(fid);
fid=fopen('C2ecgn.datyw');
fprintf(fid,'%f\n',C2ecgn);
fclose(fid);
fid=fopen('C2emg.datyw');
fprintf(fid,'%f\n',C2emg);
fclose(fid);
fid=fopen('C3 ecg.dat’,'w');
fprintf(fid,'%f\n',C3ecg);
fclose(fid);
fid=fopen('C3ecgn.datyw');
fprintf(fid.'%f\n',C3ecgn);
fclose(fid);
fid=fopen('C3emg.datyw');
fprintf(fid,'%f\n',C3emg);
fclose(fid);
fld=fopen('C4ecg.dat','w');
fprintf(fid,'%f\n',C4ecg);
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fclose(fid);
fid=fopen('C4ecgn.datVw');
fprintf(fid,'%f\n',C4ecgn);
felose(fid);
fid=fopen('C4emg.datVw');
fprintf(fid,'%f\n',C4emg);
fclose(fid);
fid=fopen('C5ecg.dat','w');
fprintf(fid,'%f\n',C5ecg);
fclose(fid);
fid=fopen('C5ecgn.datVw');
fprintf(fid,'%f\n',C5ecgn);
fclose(fld);
fid=fopen('C5 emg.dat','w');
fprintf(fid,'%f\n',C5emg);
fclose(fid);
fid=fopen('C6ecg.dat','w');
fprintf(fid,'%f\n',C6ecg);
fclose(fid);
fid=fopen('C6ecgn.datVw');
fprintf(fid,'%f\n',C6ecgn);
fclose(fid);
fid=fopen('C6emg.dat',V);
fprintf(fid,'%f\n',C6emg);
felose(fid);
fid = fopenCNOOO 1 .adc..adc','r'); %one of the ECG file
text=fread(fid,2048,'char'); 
d=fread(fid,'intl 6');
1=3200; % length of a lead

Lecg=d(l :1); % 3200 length first piece is LECG
Recg=d(I+l :2*1); % Similarly next 3200 samples are for RECG
Clecg=d(2*l+l:3*l);
C2ecg=d(3*l+1:4*1);
C3ecg=d(4*l+1:5*1);
C4ecg=d(5*l+l:6*l);
C5ecg=d(6*l+1:7*1);
C6ecg=d(7*l+1:8*1);
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Recg=Recg*0.00488; % Multiplication with 1 bit value for all samples
Lecg=Lecg*0.00488;
Clecg=Clecg*0.00488;
C2ecg=C2ecg*0.00488;
C3ecg=C3ecg*0.00488;
C4ecg=C4ecg*0.00488;
C5ecg=C5ecg*0.00488;
C6ecg=C6ecg*0.00488;
%-------------------------------------------------------------------------------------------------------------
fid = fopen('emg01.adc..adcVr'); 

text=fread(fid,2048,'char'); 
d=fread(fid,'intl6');
1=3200; % length of a lead
%-------------------------------------------------------------------------------------------------------------
Lemg=d(l:l); %Similar to ECG signals, first 3200 samples are for LEMG

Remg=d(l+l:2*l);
C1 emg=d(2* 1+1:3 * 1);
C2emg=d(3 * 1+1:4* 1);
C3emg=d(4 * 1+1:5 * 1);
C4emg=d(5*l+l:6*l);
C5emg=d(6*l+l:7*l);
C6emg=d(7*l+l:8*l);
%--------------------------- ---------------------------------------------------------------------------------

Remg=Remg*0.00488;
Lemg=Lemg*0.00488;
Clemg=Clemg*0.00488;
C2emg=C2emg*0.00488;
C3emg=C3emg*0.00488;
C4emg=C4emg* 0.00488;
C5emg=C5emg*0.00488;
C6emg=C6emg*0.00488;
%-------------------------------------------------------------------------------------------------------------
Recgn= [Recg;0;0]+[0;0;Remg];%+ [0;0;0;0;0;Rp;0;0;0;0;0]; %Signal and noise 
are mixed up
Lecgn= [Lecg;0;0]+[0;0;Lemg];%+ [0;0;0;0;0;Lp;0;0;0;0;0];
Clecgn= [Cleeg;0;0]+[0;0;Clemg];%+[0;0;0;0;0;Clp;0;0;0;0;0];
C2ecgn= [C2ecg;0;0;]+[0;0;C2emg];%+[0;0;0;0;0;C2p;0;0;0;0;0];
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C3ecgn= [C3ecg;0;0]+[0;0;C3emg];%+[0;0;0;0;0;C3p;0;0;0;0;0];
C4ecgn= [C4ecg;0;0]+[0;0;C4emg];%+[0;0;0;0;0;C4p;0;0;0;0;0];
C5ecgn= [C5ecg;0;0]+[0;0;C5emg];%+[0;0;0;0;0;C5p;0;0;0;0;0];
C6ecgn= [C6ecg;0;0]+[0;0;C6emg];%+[0;0;0;0;0;C6p;0;0;0;0;0]; 
fid=fopen('Recg.dat',V); %Records are written in respective files, which will be 
read later
fprintf(fid,'%f\n',Recg);
fclose(fid);
fid=fopen('Recgn.datVw'); 
fprintf(fid,'%f\n',Recgn); 
fclose(fid);
fid=fopen('Remg.dat','w');
fprintf(fid,'%f\n',Remg);
fid=fopen('Lecg.dat','w');
fprintf(fid,'%f\n',Lecg);
fclose(fid);
fid=fopen('Lecgn.datVw');
fprintf(fid,'%f\n',Lecgn);
fclose(fid);
fid=fopen('Lemg.datVw');
fprintf(fid,'%f\n',Lemg);
fclose(fid);
fid=fopen('C 1 ecg.daty w'); 
fprintf(fid,'%f\n',C 1 ecg); 
fclose(fid);
fid=fopen('Clecgn.datyw'); 
fprintf(fid,'%f\n',C 1 ecgn); 
fclose(fid);
fid=fopen('C 1 emg.dat','w'); 
fprintf(fid,'%f\n',C 1 emg); 
fclose(fid);
fid=fopen('C2ecg.datyw');
fprintf(fid,'%f\n',C2ecg);
fclose(fid);
fid=fopen('C2ecgn.datyw');
fprintf(fid,'%f\n',C2ecgn);
fclose(fid);
fid=fopen('C2emg.datyw');
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fprintf(fid,'%f\n',C2emg);
fclose(fid);
fid=fopen(’C3ecg.dat','w');
fprintf(fid,'%f\n',C3ecg);
fclose(fid);
fid=fopen('C3ecgn.dat','w');
fprintf(fid,'%f\n',C3ecgn);
fclose(fid);
fid=fopen('C3emg.datVw'); 
fprintf(fid,'%f\n',C3emg); 
fclose(fid);
fid=fopen('C4ecg.datVw');
fprintf(fid,'%f\n',C4ecg);
fclose(fid);
fid=fopen('C4ecgn.daty w');
fprintf(fid,'%f\n',C4ecgn);
fclose(fid);
fid=fopen('C4emg.datVw');
fprmtf(fid,'%f\n',C4emg);
fclose(fid);
fid=fopen('C5ecg.dat',’w');
fprintf(fid,'%f\n',C5ecg);
fclose(fid);
fid=fopen('C5ecgn.datyw');
fprintf(fid,'%f\n',C5ecgn);
fclose(fid);
fid=fopen('C5emg.datVw');
fprintf(fid,'%f\n',C5emg);
fclose(fid);
fid=fopen('C6ecg.dat','w');
lprintf(fid,'%f\n',C6ecg);
fclose(fid);
fid=fopen('C6ecgn.datyw');
fprintf(fid,'%f\n',C6ecgn);
fclose(fid);
fid=fopen('C6emg.dat',V);
fprintf(fid,'%f\n',C6emg);
fclose(fid);
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5.3.1.5(B) MATLAB code for filtering noise removal from actual ECG 

signal

% MATLAB Script for filtering 
close all; 
clear all;
M=1000 %number of taps
fid = fopen('recg.dat','r');
[xl,count]= fscanf(fid, 
fclose(fid);
%time = 0:0.01:2;
%xl=sin(5*time); .
figure(l);
plot(xl);
ylabel(' information signal');
title ('Plot for ECG Signal(Training):');
%d=sin(50*time); 
fid = fopen('remg.datVr');
[d,count]= fscanf(fid, 
fclose(fid); 
figure(2); 
plot(d);
ylabel('noise:');
title('PIot for EMG noise signaI(T raining):');
xl=xl';
d=d';
x2=1.0*xl+ 8*d;
x3=l.l*xl+7*d;
x4=1.2*xl+6*d;
x5=1.3*xl+4*d;
x6=1.4*xl+5*d;
figure(3)
plot(x2);
ylabelf noisy signal');
title ('Plot for noisy signal(Training):');
x=[x2;x3;x4;x5;x6]'; 
r=10000;
c=0.00000000001;
kl=l;
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k2=l;
y=x'*x;
z=eye(5,5)/(r*kl *k2);

p= z+y;
vf= (eye(5,5)/p)*(x'*d');
disp(d);
s=(x*vf)'-d;
figure(4)
plot(s);
ylabel('Filtered recovered signal'); 
title('pIot for recovered signal(Training):');
%---------------------------------------------------------

%Testing:
fid = fopen('lecg.dat','r');
[xl,count]= fscanf(fid, '%f,M);
fclose(fid);
figure(5);
plot(xl);
ylabel(’information signal'); 
title('Plot for ECG Signal(Testing):'); 
fid = fopen('lemg.datVr');
[d,count]= fscanf(fid, '%f ,M); 
fclose(fid); 

figure(6); 
plot(d);
ylabel('noise:');
title('Plot for EMG noise signal(Testing):');
xl=xl';
d=d';
x2=1.0*xl+ 8*d;
x3=l.l*xl+ 7*d; 
x4=1.2*xl+6*d; 
x5=1.3*xl+ 4*d; 
x6=1.4*xl+ 5*d; 
figure(7) 
plot(x2);
ylabel('noisy signal');
title('Plot for noisy signaI(Testing):');
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x=[x2;x3;x4;x5;x6]'; 
r=10000;
c=0.00000000001;
k 1 = 1;
k2=l;
s=(x*vf)'-d; %LS segment
figure! 8)
plot(s);
ylabel('Filtered recovered signal');
TITLE('plot for recovered signal(Testing):');

5.3.1.6 Results of filtering

The results of LS filtering algorithm using are shown in the figures 5.6
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Figure 5.6 (a) ECG signal used for training
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Plot for EMG noise signal(Training):
1 ------------ 1------------ 1------------- 1------------ 1-------------1------------ 1------------ 1-------------r

-1 -

] 5___________ i___________ i____________i___________ i____________i___________ i___________ i____________i___________ i____________
0 100 200 330 400 500 600 700 800 900 1000

Figure 5.6 (b) Noise signal used to train Hopfield NN

Figure 5.6 (c) Corrupted ECG signal (Actual input): Training phase



Chapter 5: Biomedical signal filtering 96

plot for recovered signal(Training):

Figure 5.6 (d) Filtered ECG (Output): Training phase

Plot for ECG Signal(Testing):
1.5--------- 1--------- 1--------- 1--------- 1--------- 1--------- 1--------- 1--------- 1----

Figure 5.6 (e) ECG signal used for testing
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Plot for EMG noise signal(Testing):

-0 4 -

_q 5iIiiIiiii
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 5.6 (f) Noise signal used to test Hopfield NN

Figure 5.6 (g) Corrupted ECG signal (Actual input): Testing phase
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Figure 5.6 (h) Filtered ECG (output): Testing phase 
Figure 5.6 Training and testing waveforms for ECG signal fdtering using

Hopfield NN

5.3.2 Hopfield Neural Network based filtering (Recursive LS Algorithm)

The recursive least-squares (RLS) algorithm is used to minimize recursively the 
time-indexed sum of squares. This means that the available samples in the RLS 

algorithm are time-increasing. The LS solution of (5.13) at time n is:

WLS(n) = X+ndn = lim (X‘X+aiylXTndn
a — »() v n n / n n

.(5.22)

Where

r Xi(l) x2(l) ..............xN( 1) ^

xi(2) x2(2) .............. xn(2)
Xn

Vxi(n) x2(n) xN(n) J

dn =

d(l)
d(2)

Ld(n)J

x 10-4 plot for recovered signal(Testing):
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At time n+1, the LS solution of (5.13) is

Wls (n+1) = X„V„+1 = alim0(Al+1AH+1 +aiy'Xlld„,l

And the corresponding sample matrix and vector become

^Xi(l) x2(l) ..............xN(l)

xi(2) x2(2) ............. xn(2)

xi(n) x2(n)...............xN(n)

.xi(n+l) x2(n+l)...........xN(n+l) ^

r dCD^d(2)

d(n)
d(n+l)

v- J

.(5.23)

.(5.24)

.(5.25)

One can write (5.24) and (5.25) in the following form

Xn+i
•Xn-

Zn+1

dn+1-

' dn~~~ 

d(n+l) .(5.26)

Where Zn+i = [xi(n+l), x2(n+l),....,xN(n+l)].

Based on (5.26) fast and efficient RLS can be proposed. These algorithm can provide 
the LS solution Wls (n+1) at time n+1 by using only W[,s(n) , Xn+i, and d(n+l). 
Although these RLS algorithm have greatly reduced the computational complexity of 
solving equation(5.22), the computation required in these RLS algorithm is still 
intensive, and hence it is difficult to provide WL$(n+l) in real time.

Let there be continuos time Hopfield neural network in figure 5.7, having neurons 
with a linear input-output relationship function g(u) = Kiu
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Figure 5.7 Hopfield Model for recursive least square algorithms

At time n, the connection strengths and bias currents of the network are computed 
from network are computed from the expression

Tn = XTnXn and
Bn = -JKT„d„ ......................................................(5.27)

Lyapunov stability theorem can be used to prove the stability of this neural network. 
The output vector Vn>f in the stationary state is computed by letting dU(t)/dt = 0, that 

is,

Vn-r- = ................................................(5.28!

Which is an approximation of (5.22). Consequently, at time n+1, the connection 
strengths and bias currents of the network are computed by
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Tn+i = Ktix„+i and
Bn+I -^"n+l^n+I > ....................................... ;............(5.29)

And the network provides the solution:

v»«,f= M„m=(jpi+xL,x^rxi,d^„............................... (5-30)

Which approximates the exact solution (5.23).

Equation (5.30) is an approximation of the RLS solution W. As the implementation 
of Algorithm is in real time, with no other difference, we will have same code and 
waveform quality for filtered ECG. Hence algorithm remains same as for LS Solution.

5.3.3 Multilayer Perceptron (MPLNN) based Model for filtering

5.3.3.1 Introduction

In order to successfully remove noise from biomedical signals, adaptive filter should 
be implemented to track the noise signal characteristics. Most adaptive noise removal 
techniques are based on the least mean squares (LMS) principal or on the recursive 
least square (RLS) principal.

Electromyogram (EMG) is one type of artifact, which contaminate ECG signal 
resulting into considerable amount of reduction in sharp Q, R and S ECG wave 
amplitudes. Even with the high accuracy of the instrument, EMG is a very common 
signal produced from disable persons having to keep on maintaining a position in 
body posture or in children or in shivering patients. From the Table 5.1 it can be seen 
that there is a considerable overlapping of frequency spectra of ECG and EMG. 
Because of considerable overlap of the frequency spectra of ECG and EMG artifacts, 
it is difficult to remove EMG artifacts from ECG signal using solely traditional linear 
adaptive filters. So it is required to remove the artifacts by other nonlinear filtering 
method.

Table 5.1: Comparison: Amplitude and Frequency Range of ECG and EMG

Signal Amplitude range Frequency range
Electrocardiogram (ECG) 10 }iV-5mV 0.05 - 500 Hz
Electromyogram (EMG) 25 -5000pV 5-2000 Hz
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Filtering of EMG can be carried out by constructing adaptive filtering by means of a 
Multi Layer Perceptron (MLP) Artificial Neural Network (ANN). Such filter is 
constructed here with varying number of input nodes depending on the phase 
difference between separately recorded EMG artifacts and part of EMG artifact mixed 
with the ECG signal. This is done based on measurement of cross correlation between 
noisy ECG and EMG. This makes this Algorithm work for providing very robust 
solution.

It is utilizing present sample and number of past samples to be given to input layer of 
MLP ANN to generate present time estimate .of the artifact value present in corrupted 
ECG signal. This way MLPANN works as temporal processing unit.

Noise removal is complicated by the fact that the characteristics like local spectrum of 
all biomedical signals vary with time. For ECGs, it varies quasi periodically, with 
each period corresponding to one heartbeat. Shape of ECG varies slowly or abruptly 
in time. For successful noise removal for biomedical signals, procedure must be 
adaptive to track the changing signal characteristics. Due to considerable overlap of 
the frequency spectra of ECG and EMG artifacts, it is difficult to remove EMG 
artifacts from ECG signal using solely traditional linear adaptive filters.

In the frequency range of biomedical signals such as ECGs, the body can be treated as 
a volume conductor that is, purely resistive. Therefore, an EMG signal originating in 
the arm, for example, is instantaneously superimposed on a signal originating in the 
heart. However, the difference of phase can occur because of transmission through 
different conductor paths for ECG and EMG signals. So such linear filter is only 
partially successful because of phase difference between separately recorded EMG 
and part of EMG mixed with ECG. It is required to remove the artifacts by other 
nonlinear, supervised adaptive filtering method.

5.3.3.2 Filter Design

A nonlinear adaptive filter (Figure 5.8) can be constructed considering noisy ECG as 
primary input to the filter and separately recorded EMG channel as reference input to 
the filter and the difference between primary signal and estimate of noise signal 
derived from reference signal is made minimum. The resultant output is desired pure 
ECG signal.

Figure 5.9 shows architecture ofMPLNN used for implementing a nonlinear filter.
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Figure 5.8 Block diagram for MPLNN Based Adaptive filter (Dotted portion 
shows training phase using Back propagation algorithm)

Input layer X(n) Xfn-11 Xfn-2) Xtn-Kl

Hidden layer

Output layer

e(n)
Figure 5.9 MLPANN to estimate noise value at time n, with K+l number of input 

nodes, H number of hidden nodes and one output node
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The units at the top in Figure 5.9 are input units. Input layer is given total K+l 
number of samples from recorded EMG. Out of which K. number of past samples at 
sampling time n-1, n-2... n-K and a present sample at time instant n are taken, to 
predict the part of EMG artifact that is present in the ECG signal at present instant n 
of time. Intermediate level is hidden layer and units at the bottom in figure 5.9 is 
output units. All the units at the lower layer are connected to each unit at the upper 
layer by the connection strength called weights. All the weights are initialized to small 
random values at the beginning. MLPANN becomes a temporal processing unit, with 
its taps connected to the synapses of a neuron. Outputs of the neuron i in hidden layer 
at time instant n can be described as:

yi(n) = <|>h( Vi(n)) ....................................................................(5.31)

K
Vj(n) = S wu(l)x(n-l) + bi) ........................................................ (5.32)

1=0

Similarly, output of the j* output node is,

ej(n)==cpo(yj(n)) (5.33)

Where
H

yj(n) = EWj,y1 + bi .................. :..................................... (5.34)

Where q>h(.) and cp0(.) are the activation functions of neuron in hidden and output layer 
respectively. The activation function for the hidden as well as output layer is 
hyperbolic tangent which is one type if sigmoid nonlinear function, utilized to 
introduce non-linearity. The range of the function is (-1,1) so that it can represent 
output signal of both polarity, bj and bj are called bias input at ith and jth nodes 

respectively.

The expression for the activation function for the neuron i in hidden layer is:

9h(Wj, Xi, b.) =

1 - exp C-WiXi -b, 1 
1 + exp (-WiXi -bj)

(5.35)
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Where
Xj: Input vector of size IXM
I: Number of input layer neurons
M: Number of test patterns for training of MLPANN
Wj: Matrix for Synaptic weights for input layer size: HXI
H: Number of hidden layer neurons.
bi is the bias term for ith hidden node

Similarly, the expression for the activation function for output layer neuron is:

<p0(Wo,Xo,b0) =

1 - expf-WoXo - bn! .....................................................(5.36)
1 + exp(-WoXo - b0)

Where
Xo: Output vector of size HXM
Wo: Matrix for Synaptic weights for hidden layer size: OXH 
O: Number of output layer neurons (Here 1). 
b0: bias term for oth output node.

S.3.3.3 Back propagation algorithm

is used as training algorithm for the MLPANN with I number of input layer nodes, H 
number of hidden nodes and one output node. It is a gradient descent algorithm 
designed to minimize the mean square error between the actual computed output and 
the desired output. Training by the back propagation algorithm consists of two passes:

(1) During propagation pass, the input for output is known is presented to the 
network and multiplied by the weights. All these weighted inputs to each unit of the 
next layer (hidden layer) are summed and produce output according to the activation 
function. These outputs of hidden layer become input to the output layer. They are 
multiplied by weights and weighted inputs are summed and produce output according 
to activation function.

(2) Outputs at the output layer are compared to desired output resulting error signals. 
During backward pass (As shown dashed in the figure 5.8, the error signals are 
propagated backward through each unit of the network in output as well as hidden 
layer, and appropriate weight changes are made according to gradient descent 
technique, as described by following equations:
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Weight Update for jth output node:

Weight update equation at time n+1 is:

Wji(n+1) = Wji(n)+r) 8j(n)yi(n) +aAWji(n-l) .......................................................(5.37)

Where 6j(n) = <t>j’(Vj(n))ej(n) ....................................................... (5.38)

Where

<j>j’(vj(n)): is the derivative of the activation function at the input of the j!h node vj(n).

ej(n) : is the difference between actual output and expected output at the jth node, at 
instant n.

yi(n): is the input from i,h hidden neuron to the neuron j at output layer at time 

instant n.

a: Momentum factor 

r|: Learning rate

Similarly, Weight Update for ith hidden node:

Weight update equation at time n is:

wik(n+l) = Wjk(n) + r|8j(n)xk(n) +aAWj;(n-l) ..................................................... (5.39)

Where
O

5i(n) =<j>i’(Vi(n))E8j(n)Wjj(n) ............................................................(5.40)
j=l

Where

<f>j’(Vj(n)): is the derivative of the activation function at the input of the jth node Vj(n). 

§j(n) : is value of 8 calculated at jth output node .

Wji(n): is the value of synaptic weight from ith hidden node to j* output node.

Xk : input from the kth input node.

5.3.3.4 Training set

Input to the MLPANN is K+l number of noise (EMG) signal samples. The output is 
compared with present sample of noisy ECG. The difference is taken as error signal, 
for computation of weight update equation. Number of past samples to consider (K) 
and hence number of input layer nodes (I = K + 1) is variable and is automatically
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decided by the MATLAB program depending upon the relative phase difference 
between EMG and part of EMG mixed in desired ECG signal.

Number of patterns (M) for training and number of time epochs (T) are selected as 
different values and results were noted down.

53.3.5 MATLAB Code

%-

%TRAINING PHASE:
%-

close all; 
clear all; 
N=10; 
M=1000; 

H=2;
0=1;

TST=3000; 
Time=50; 
eta= 0.1;

%reading data to decide correlation 
%Training sets 
%hidden nodes 
%output nodes 
%Testing sets 
%No. of Epochs 
%Learning Rate

fid = fopen('remg.datyr'); %Reading reegm and remg to decide phase difference 
in terms of %number of samples
[Xl,count]= fscanf(fid, '%f,N); 
fclose(fid);
fid = fopen('recgn.datVr');
[X2,count]= fscanf(fid, %f,N); 
fclose(fid);
C2=xcorr(X 1 ,X2); 
figure
plot(C2);grid 
tmp = 0; 
i2=0; 
indx=0;
forn = 1: 2*N-1 

i2=i2+l; 
if tmp< C2(i2) 

tmp = C2(i2); 
indx2=i2; 

end
end
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indx2=abs(indx2-N);
I=indx2+1; % Number of input nodes = phase difference +1

xbi=ones(I,M); 
xbo=ones(H,M); 
el=l; 
e2=l;
%-------------------------------------------------------------------------------------------

rand('seed',0);
Wi=2.0*rand(H,I)-1.0;
Wo=2.0*rand(O,H)-l -0;
%Wi=0.5*ones(H,I);%Wi=eye(H,I);
%Wo=0.5*ones(O,H);%Wo=eye(O,H);

Wbi=zeros(H,I);
Wbo=zeros(0,H); %For biasing
%------------------------------------------------------------------------------ --------------

fid = fopen('remg.dat','r'); % reading training data
[X,count]= fscanf(fid, ’%f,M+I); 
for j =1 :M 

for i =j:I+j-l 
n=i-(j-l);
Up(nj)= X(i,l); 

end
end %Up is training input to the MLP
fclose(fid);

fid = fopen('recgn.datVr');
[Xl,count]= fscanf(fid, ’%f,M+I); 
for j =1:M

Yp(l j)= Xl(j+I-I,l);%+1 for next sample 
end

fclose(fid);
%...---------------------------------------------------------------------------------------------------------------

% Reading one more data set for testingrUpl:
%--------------------------------------------------------------------------------------------
fid = fopen('clemg.dat’,'r');
[X2,count]= fscanf(fid, ’%f,TST+I); 
for j =1 :TST 

for i =j:I+j-l 
n=i-(j-l);
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Upl(nj)=X2(U);
end

end
fclose(fid);

fid = fopen('clecgn.datVr');
[X3,eount]= fscanf(fid, %f,TST+I); 
forj =1:TST
Ypl(l J)= X3(j+I-1,!);%+! for next sample 
end
fclose(fid);
%------------------------------------------------------------------------------------------------------
MSE=zeros(Time, 1); 
momo(O.H)=0; 
momi(H,I)=0; 
alfa=0; 
for T=1 :Time 

T
for k = 1 :M %no. of cols of datae 

xbii=xbi(:,k); 
xboo=xbo(:,k); 
di=Wi; 
do=Wo; 
x=Up(:,k);
xl=(l .0-exp(-el * Wi*x-e2* Wbi*xbii))./(1.0+exp(-el * Wi*x-e2* Wbi*xbii)); 

y 1=(1.0-exp(-e 1 * Wo*xl-e2* Wbo*xboo))./( 1.0+exp(-e 1 * Wo*xl- 
e2*Wbo*xboo)); 

erro=Yp(:,k)-yl; 
tmp = sum(erro.*erro);
MSE(T,1)= MSE(T,l)+tmp; 
diffo=(1.0-yl.*yl); 

do = 0.5* erro.*diffo; % 
diffi=(1.0-xl.*xl); 

dll=Wo'*do; 
dl=dll.*diffi; 
for kl=l:H

Wo(:,kl)=Wo(:,kl)+eta*do.*xl(kl,l)+ momo(:,kl);
%Wbo(:,kl)=Wbo(:,kl)+eta*do.*xl(kl,l);

end
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for kl=l:I
Wi(:,kl)=Wi(:,kl)+eta*dl*x(kl,l)+momi(:,kl);
%Wbi(:,kl)=Wbi(:,kl)+eta*dl*x(kl,l);

end
momo=alfa*(Wo-do);
momi=alfa*(Wi-di);

end
%MSE = MSE/M; 

end
%-----------------------------------------------------------------------------------------------------------

%Test the MLP WITH SAME INPUT PATTERNS Up:
%-----------------------------------------------------------------------------------------------------------

fid = fopen('recgn.datVr');
[Xl,count]= fscanf(fid, ’%f,M+I); 
forj =1:M

Yp(l,j)= Xl(j+I-I,l);%+1 for next sample 
end

fclose(fid); 
for k = 1 :M 

u = Up(:,k); 
xbii=xbi(:,k); 
xboo=xbo(:,k);
xl=(l .0-exp(-el * Wi*u-e2* Wbi*xbii))./(1.0+exp(-el * Wi*u-e2* Wbi*xbii)); 
yl=(1.0-exp(-el*Wo*xl-e2!i!Wbo*xboo))./(1.0+exp(-el*Wo*xl-e2*Wbosi!xboo)); 
Yn(:,k)=yl; 

end
fid = fopen('recg.datVr');
[X4,count]= fscanf(fid, '%f ,M+I); 
forj =1:M

ecgip(l j)= X4(j+I-l,l); %for next sample 
end
fclose(fid);

k=0;
for HUM 

forj=l:0 
k=k+l;
xl(k)=Up(j,i); %noise:EMG input
dll(k)=Yp(l,i);
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dexp(k)=Yn(j,i); %Expectation of noise in ECG available at ANN output 
act_ecg(k)=ecgip(l,i); 

end 
end
filterop=dl l'-dexp;
xll = [0 0 0 0 0 filterop];
x22 = [0 0 0 0 filterop 0];
x33 = [000 filterop 0 0];
x44 = [0 0 filterop 0 0 0];
x55 = [0 filterop 0 0 0 0];
x66= [filterop 0 0 0 0 0];

y = (xl 1 + x22 + x33 +x44 +x55 + x66)16;

y=y(l:M);
1=1 :k;
%perr=(act_ecg-y)./act_ecg* 100; 
perr=(act_ecg-filterop)/act_ecg* 100; 
figure(l) 
plot(MSE);
ylabel('Mean Square error); 
title('MSE during Training"); 
figure(2)
titie('WAVEFORMS DURING TRAINING');

subplot(2,1,1 );plot(l,xl );grid
ylabel('Noise');
subp!ot(2,1,2);plot(l,perr);grid
ylabel('Percent Error');
figure(3)
title('WAVEFORMS DURING TRAINING');
subplot(4,1, l);plot(Yp);
ylabel('Noisy ECG');grid
subplot(4,1,2);plot(l,act_ecg);grid
ylabel('Expected output');
subplot(4,1,3);plot(l,filterop);grid
ylabelf output of the filter');
subplot(4,1,4);plot(l,y);grid
ylabel('averaged & improved');

%■
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%Test the MLP WITH DIFFERENT INPUT PATTERNS Upl:
%-----------------------------------------------------------------------------------------------------------
fid = fopen('clecgn.datyr');
[X3,count]= fscanf(fid, '%f,TST+I); 
for j =1:TST
Ypl(l j)= X3(j+l-l,l);%for next sample 

end
fclose(fid); 
xbi=ones(I,TST); 
xbo=ones(H,TST); 
fork= 1:TST 

xbii=xbi(:,k); 
xboo=xbo(:,k); 

u = Upl(:,k);
xl=(1.0-exp(-el*Wi*u-e2*Wbi*xbii))./(1.0+exp(-el*Wi*u-e2*WbfKxbii)); 
yl=(l .0-exp(-el*Wo*xl-e2*Wbo*xboo))./(l .0+exp(-el * Wo*xl -e2* Wbo*xboo)); 
Ynl(:,k)=yl; 

end
fid = fopenCcleeg.datyr1);
[X5,count]= fscanf(fid, '%f ,TST+I); 

forj =1:TST
ecgipl(l j)= X5(j+I-l,l);%for next sample 
end

fclose(fid);
k=0;
for i=l:TST 

forj-l:0 
k=k+l;
x2(k)=Up 1 (j,i);%noise:EMG input 
d22(k)=Ypl(l,i);
dexpl(k)=Ynl(j,i); %Expectation of noise in ECG available at ANN output 

act_ecg 1 (k)=ecgip 1 (1, i); 
end 

end
filteropl =d22-dexpl; 
xl 1 = [0 0 0 0 0 filteropl];% 
x22 = [0 0 0 0 filteropl 0]; 
x33 = [000 filteropl 0 0];
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x44 = [0 0 filteropl 0 0 0];
x55 = [0 filteropl 0 0 0 0];
x66= [filteropl 0 0 0 0 0];
yl = (xl 1 + x22 + x33 +x44 +x55 + x66)/6;
yl=yl(l:TST);
1=1 :k;
perr 1 =(actecgl -filterop l)./act_eeg 1*100; 
figure(4)
title(’ WAVEFORMS DURING TESTING’); 
subplot(2,1, l);pIot(l,x2);grid 
ylabel('Noise');
subpIot(2,1,2);plot(I,perr 1 );grid 
ylabel('Percent Error'); 
figure(5)
title('WAVEFORMS DURING TESTING');
subpIot(4,1, l);plot(Ypl);
ylabel('noisy ECG');grid
subplot(4.1,2);plot(l,act_ecg 1 );grid
ylabel('desired output');
subplot(4,1,3);plot(l,filterop 1 );grid
ylabel('output of filter');
subplot(4,1,4);plot(l,yl);grid
ylabel('averaged & improved');

5,3.3.6 Results:

During training as described earlier, value of error is noted down. Also, during 
training, mean square error is stored as variable and plotted as a function of time 
epochs. Figure 5.10 shows how it decreases as number of iterations increases. After 
training phase is over, the network is tested for 3000 number of samples and results 
are presented in figure 5.11. Figure 5.11(a) shows noisy ECG signal, corrupted by 
EMG signal. Figure 5.11(b) shows the pure ECG. Figure 5.11(c) shows the ECG 
signal after filtering. Though the signal to noise ratio is improved, the quality of the 
filtered signal is not acceptable from the medical inspection viewpoint. So averaging 
of the signal is done and averaged signal is shown in figure 5.11(d). Figure 5.12 
shows the amount of error for all 3000 samples.

Filtering using MLP ANN is successfully carried out with phase shifted signal as well 
as with DC offset available in noise signal.
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MSE

Figure 5.10: Mean square error for time epochs 50 during MLPANN training

WAVEFORMS DURING TRAINING

Figure 5.11 Results of the filtering using MLPANN during training (a) noisy 

ECG samples contaminated by EMG signal (b) Expected ECG (c) Recovered 

ECG (d) averaged signal by the adaptive filter with number of test inputs M = 

1000, number of time epochs, T = 50,1 = 3, H = 2, O = 1, eta = 0.1.
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ERROR DURING TRAINING

Figure 5.12 Errors associated in filtering using MLPANN during training

Following are the waveforms during testing with a different set of ECGs:

WAVEFORMS DURING TESTING
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Figure 5.13 Results of the filtering using MLPANN during testing (a) noisy ECG 

samples contaminated by EMG signal (b) Expected ECG (c) Recovered ECG (d)

averaged signal
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ERROR DURING TESTING
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Figure 5.14 Errors in filtering using MLPANN during testing 

5.3.4 Radial Basis Function Neural Network for filtering 

5.3.4.1 Introduction

RBFNN is designed to perform Input-Output mapping trained by examples ( xKdK), K = 

\2... p. It is based on the concept of locally tuned and overlapping receptive field 
structure. It is a hybrid network, and uses the hybrid supervised and 

unsupervised learning scheme. The hidden nodes have Gaussian activation function

Z = <pq(x) 1R/X)
K

exp[-l X - niq I2 / 2.0q 2 ]

= ........................................... .........................................................(5.41)
£ exp [ -1 x - rriq I2 / 2.oq 2 ]

k

Where x is input vector. The hidden node q gives maximum response to input 

vectors close to rriq Each hidden nodes q is said to have its own response field Rq(x) in 

input space, which is centered on rr^ with size proportional to oq., which are mean 
and variance of qm Gaussian function, which is an example of RBF.

The output of RBFN is the weighted sum of the hidden node output:

i = a, [I wiq.zq+ 6,] ......................................................... (5.42)

Training for RBFNN is carried out by hybrid learning rule. i.e. unsupervised 

learning in input layer and supervised one in output layer.

5.3.4.2 Filter Design

As an effort to remove this EMG artifact, a nonlinear adaptive filter Figure 5.15 can be 
constructed considering noisy ECG as primary input to the filter and separately
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recorded EMG channel as reference input to the filter and the difference between 

primary signal and estimate of noise signal derived from reference signal is made 
minimum. The resultant output is desired pure ECG signal.

The RBFNN is used to create temporal unit for nonlinear filter. Figure 5.16 represents 

structure used for the application. Input layer is given total (K+l) number of samples 
from recorded EMG. Out of which K number of past samples at time n-1, n-2... n-K and a 
present sample at time instant n are taken, to predict the part of EMG artifact that is 
present in the ECG signal at present instant n of time. Intermediate level is called 
hidden layer and units at the bottom in figure 5.16 are called output units, and the layer 

is called output layer.

input Jayar X<ni Xtn-i) X(n-2) Xfn-KJ



Chapter 5: Biomedical signal filtering 118

All the units at the lower layer are connected to each unit at the upper layer by the 
connection strength called weights. All the weights are initialized to small random 
values at the beginning. This way, this RBFNN becomes a temporal processing unit, 
with its taps connected to the synapses of a neuron.

S.3.4.3 Training RBFNN

5.3.4.3(A) Training output layer
A generalized delta rule is used for updating weights assuming linear output
units.

wij = ri(di-ei).zq ....................................................... (5.43)

When averaged over p training pairs, it minimizes MSE cost function

E(Wjq ) = */2 Z I [ di k - Z Wiq. (pq(Xk) ] 2 ...................................................(5.44)
K I q

5.3.4.3(B) Training input layer:

Learning involves the determination of centers [mq], and widths [wq] for q = 1, 
using VQ, CPL or SOM approach.

Closest =T1 ( X - mc]0sest ) .......................................................(5.45)

niciosest is the respective field closest to input vector. The approach is to adjust all 
centers with the update value tuned by relative distance via control of effective radius 
of the receptive fields.

Number of past samples to consider (K) and hence number of input layer nodes (I = K 
+ 1) is variable and is automatically decided by the MATLAB program depending 
upon the phase difference between EMG and part of EMG mixed in desired ECG 
signal. "NEWRB" function in Artificial Neural Network toolbox of MATLAB is 
used. NEWRB returns a new radial basis network. This function adds neurons to 
the hidden layer of a RBFNN basis network until it meets the specified mean 
squared error goal.

NEWRB creates two layer network. First layer has RADBAS newrons and calculates 
its weighted inputs with DIST and its net input with NETPROD. Second layer has 
PURELIN neurons which calculate its weighted inputs with DOTPROD and its net 
inputs with NETSUM. Both layers have biases.
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S.3.4.4 MATLAB Code

%---------------------------------------------------------------------------------------------------------
%TRA1MNG PHASE

%---------------------------------------------------------------------------------------------------------
close all; 

clear all;

N=100;

fid = fopen('remg.daf ,¥);

[Xl,count]= fscanf(fid, ’%f,N); 

fclose(fid);

fid=fopen('recgn.daf,V);

[X2,count]= fscanf(fid, %f,N); 

fclose(fid);

C2=xcorr(Xl,X2);

figure

plot(C2);grid 

tmp = 0; 

i2=0; 

indx=<);

forn= 1:2*N-1

i2=i2+l;

iftmp<C2(i2)

tmp = C2(i2);

indx2=i2;

end

end

indx2=abs(indx2-N);

I=indx2+1;

M=100; %Trainingsefs

0=1; %output nodes
tst=3000; %Testing sets

%-------------------------------- ------------------------------------------------------------------------------
fid=fopen('remg.dat',’r1);

[X,count]= fscanfifid, ’%f,M+l); 

for j =1 :M 

fori =j:I+j-l 

n=i-(j-l);

Up(n.j)=X(U);
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end

end %Up is training input to the MLP 

fclose(fid);

fid = fopen('recgn.datYr');

[Xl,countj= fscanfffid, %f,M+I); 

forj=lM

Yp(y>= Xl(j+I-l,l); %+l for next sample 

end

fclose(fid);

%--------------------------------- :-------------------------------------------------------------------------
% Reading one more data set for testing:Upl:

%-----------------------------------------------------------------------------------------------------------
fid=fopen('lemg.datVr');

[X2,count]= fscanf(fid, %f,tst+I);

for j =1.1st

fori=j:I+j-l

n=i-(j-l);

Upl(nJ)= X2(i,l);

end

end

fclose(fid);

fid=fepen(,lecgn.dat','r’);

[X3,count]= fscanf(fid, '%f,tst+I); 

forj =l:tst

Yp 1 (1 .j)= X3(j+I-1,1); %+l for next sample

end

fclose(fid);

%------------------------------- :-------------------------------------------------------------------------

eg=0.01;
sc=800;

net=newrb(Up,Yp,eg,sc);

%------------------------------------------------------------------------------------------:--------------

%Test the MLP WITH SAME INPUT PATTERNS Up:
%---------------------------------------------------------------------- :--------------------- ;------------

fid=fopen('recgn.dat',V); 

pCfcountj^ fscanf(fid, ’%f,M+I); 

forj=l:M

Yp(lj)= Xl(j+I-l,l); %+l for next sample
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end

fclose(fid);

fork=l:M

u=Up(:,k);

Yn(:,k)=sim(net,u);

end

fid = fbpen('recg.dat',V);

[X4,count]= fscanf(fid, '%f,M+I); 

forj=l:M

ecgip(lj)=X4(j+I-l,l); %for next sample 

end

fclose(fid);

k=0;

fori=l:M

forj=l:0

k=k+l;

xl(k)=Up(j,i); %noise:EMG input

dll(k)=Yp(l,i);

dexp(k)=Yn(i,i); %Expectation of noise in ECG available at ANN output

act_ecg(k)=ecgip(l,i);

end

end

filterop=dll-dexp;

xl 1 = [0 0 0 0 0 filterop];

x22 = [00 0 0 filterop 0];

x33 = [0 0 0 filterop 0 0];

x44 = [00 filterop 0 0 0];

x55 = [0 filterop 0 0 0 0 ];

x66= [filterop00000];

y=(xl 1 + x22+x33 +x44 4x55 4- x66)/6;
y=y(l:M);

I=l:k;

%pem=(actecg-y)yact_ecg* 100; 

perr=(actecg-filterop)yactecg* 100; 

efr=act_ecg-filterop; 

figure(l)

title(‘Waveforms during training’); 

subplot(3,l,l);plot(l,xl);grid
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ylabel('Noise');

subplot(3,1,2);plot(l.perr);grid

ylabel('% Error1);

subplot(3,1,3);plot(l,err);grid

ylabel(’Error');

figuie(2)

title(‘Waveforms during training’); 

subplot(4,l,l);plot(Yp); 

ylabelCnoisv ECGr);grid 

subplot(4,1,2);plot(l,act_ecg);grid 

ylabel('desired output'); 

subplot(4,1,3);plot(l.filterop);grid 

ylabel('ffiter output'); 

subplot(4,1,4);plot(l,y);grid 

ylabel('averaged');

%---------------- :--------------------------------------------------------------
%Test the MLP WITH DIFFERENT INPUT PATTERNS Upl:

%-------------------------------------------------------------------------------
fid=fopen('lecgn.datVr');

[X3,count]= fscanf(fid, '%f,tst+I); 

for j =11st

Ypl(lj)=X3(j+I-l,l); %for next sample 

end

fclose(fid);

fork=l:tst
u=Upl(:,k);

Y n 1 (:,k)=sim(net,u); 

end

fid=fopen('lecg.datVr');

[X5,count]= fscanf(fid, ’%f,tst+I); 

forj=l.1st

ecgipl(l j)= X5(j+I-l,l);%for next sample 

end

fclose(fid);

k=0;

for i= 1 rtst 

forj=l:0
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k=k+l;

x2(k)=Upl(j,i); %noise:EMG taput 

d22(k)=Ypl(l,i);

dexp 1 (k)=Ynl (j,i); % Expectation of noise in ECG available at ANN output

actecgl (k)=ecgipl(l,i);

end

end

filterop 1 =d22-dexp 1;

xl 1 = [0 0 0 0 0 filteropl];%

x22 = [00 0 Ofilteropi 0J;

x33 = [000 filteropl 0 0];

x44 = [00 filteropl 000];

x55 = [Ofilteropi 0000];

x66= [filteropl 00000];

y 1 = (xl 1 + x22+x33 +x44 +x55 + x66)/6;

yl=yl(l:tst);

1=1 :k;

%perrl={act_ecgl-yl)yactecgl *100; 

perrl =(act_ecgl -filteropl )./act__ecgl * 100; 

errl=act_ecgl -filteropl; 

figure(3)

title(‘Waveforms during testing’);

subplot(3,l,l);plot(l,x2);grid

ylabel(rNoise');

subplot(3,1,2);plot(l,perrl );grid

ylabel(’Percent Error');

subplot(3,l,3);plot(l,errl);grid

ylabel('Error');

figure(4)

title(‘Waveforms during testing’); 

subplot(4,l,l);plot(Ypl); 

ylabelCnoisy ECG');grid 

subplot(4,1,2);plot(l,act_ecgl);grid 

ylabel(’desired output'); 
subplot(4,1,3);plot(l,filterop 1 );grid 

ylabel(’fflter output’); 
subplot(4,1,4);plot(l,y 1 );grid 

ylabel('averaged');
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5.3.4.5 Results

Training is carried out with 100 number of input patterns (Figure 5.17). After 
training phase is over, the network is tested for 3000 number of samples and 
results are presented in figure 5.18

WAVEFORMS DURING TRAINING

Figure 5.17 (a) Error response for 100 samples of training

WAVEFORMS DURING TRAINING

Figure 5.17 (b) Output of filter shown for 100 samples of training. 
Figure 5.17 Training phase with 100 input samples (RBFNN)
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Figure 5.18 (a) Error response for 3000 samples of testing

WAVEFORMS DURING TESTING

Figure 5.18(b) Output of filter shown for 3000 samples of testing. 
Figure 5.18 Testing phase with 3000 input samples (RBFNN)

The comparison of response of ANN filtering models and training algorithm is carried 
out in Chapter 9.


