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Chapter: 6
Biomedical signal compression_______________
6.1 Introduction

Need for ECG signal compression exists in many transmitting and storage 
applications. Transmitting the ECG signal through telephone lines, for example, may 
save a crucial time and unnecessary difficulties in emergency cases. Effective storage 
is required of large quantities of ECG information in the intensive coronary care unit, 
or in long-term (24-28 hours) wearable monitoring tasks [l].

Removing redundancy performs the compression of the signal. The redundancy 
exhibits itself in terms of statistical dependence between adjacent samples and the 
non-uniformity of the amplitude probability of the quantized signals [2]. Linear 
correlation between neighboring samples may be removed, for example by various 
delta modulation methods or by linear prediction methods [3], while the non-uniform 
amplitude probability may be handled by entropy coding [3].

Biomedical signal compression methods can be divided into three functional groups:

• Direct methods: where the samples of the signal are directly handled to 
provide the compression.

• Transformation methods: where the original samples are subjected to a 
(Linear) transformation and the compression is performed in the new domain.

• Parameter extraction method: where a preprocessor is employed to extract 
some features that are later used to reconstruct the signal.

Several recent ECG data compression strategies have been proposed which exploit 
prior information on the locations in time of the heart bit subtraction with residual 
differencing, long term prediction with entropy coding, cycle pool based compression 
and vector quantization. Most of these methods utilize pseudo periodic behavior of 
ECG signals. Vector Quantization is extensively used in data compression systems 
[4]-[6].

The distortion measures used for evaluating the reconstructed signal includes 
percentage RMS difference (PRD) and Weighted Diagnostic Distortion (WDD). The 
WDD is based on comparing the PQRST complex features of the two ECG signals, 
the original ECG signal and the reconstructed one. The WDD measures the relative
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preservation of the diagnostic information in the reconstructed signal: the location, 
duration, amplitudes, and shapes of the waves and complexes that exist in every beat 
(PQRST complex). Figure 6.1 shows some of the diagnostic features:

Figure 6.1 Diagnostic Features of ECG wave 

6.1.1 Definitions of terms used in the waveform

The P wave is caused by atrial depolarization. The P wave is usually smooth and 
positive. The P wave duration is normally less than 0.12 sec.

The PR interval is the portion of the EKG wave from the beginning of the P wave 
(onset of atrial depolarization) to the beginning of the QRS complex (onset of 
ventricular depolarization). It is normally 0.12 - 0.20 seconds.

The PR segment is the portion on the EKG w'ave from the end of the P wave to the 
beginning of the QRS complex. The PR segment corresponds to the time between the 
end of atrial depolarization to the onset of ventricular depolarization. It is an 
isoelectric segment, during which the impulse travels from the AV node through the 
conducting tissue (bundle branches, and Purkinje fibers) towards the ventricles.

The QRS complex represents the time it takes for depolarization of the ventricles due 
to ventricular depolarization. The normal QRS interval range is from 0.04 sec - 0.12 
sec measured from the first deflection to the end of the QRS complex.

The ST Segment represents the period of ventricular muscle contraction before 
repolarization. The ST segment is normally isoelectric (no electrical activity is 
recorded). However, the ventricles are contracting.
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The QT interval begins at the onset of the QRS complex and to the end of the T 
wave. It represents the time of ventricular depolarization until venticular 
repolarization.

The T wave is due to ventricular repolarization The wave is normally rounded and 
positive.
In ECG signal compression algorithms the goal is to achieve a minimum information 
rate, while retaining the relevant diagnostic information in the reconstructed signal.

Chapter provides a comprehensive study of the work done by the researchers for the 
signal compression. The ANN models for the signal compression are developed and 
their performance is compared with other conventional statistical, Vector quantization 
as well as transformed based techniques

6.2 Classical methods

This subsection gives brief overview of traditional methods for compression.

6.2.1 Adaptive Correlation Technique

A time domain transformation in real time may be used for the data compression of a 
highly correlated signal such as the ECG.

Several schemes have been proposed [7] for data compression in the past. Nearly all 
of them employ heuristic approaches to obtain data compression. The methods based 
on polynomial approximation calls for a predetermined subdivision of the signal into 
intervals that make optimal use of the polynomial base function. Transform methods 
such as the DCT or the Haar transform, through exploit a priori information such as 
periodicity of the signal, are not suitable for non periodic signals and signals received 
at high data rates. As ECG signals are quasi-periodic and have high inter sample 
correlation a method of data compression using inter sample correlations of the ECG 

signal are highly efficient.

Analysis in [8] is built on choosing an initial frame of samples in one beat, in which 
the signal is assumed to possess stationary characteristics. A frame by frame approach 
is then restored to for achieving the goal. The idea of constructing a linearly 
correlated signal of lower range has been introduced and the least square solutions 
have been arrived at for constructing the transform domain data in a recursive manner. 
It turns out that a one to one relationship is obtained between the original data domain 
sequence and the transform domain sequence.



Chapter 6: Biomedical signal compression 129

6.2.2 Coding Techniques

Average bit subtraction and residual differencing [9] Hoffman coding is applied to the 
difference signal. On detection of average beat it is aligned and subtracted from the 
signal. The detected beat is then used to update the average bit estimate. After beat 
subtraction the residual signal is first differenced. The difference signal is Huffman 
encoded and stored along with a record of the best locations. Sample rate and 
quantization level are chosen to yield maximum fidelity at data rates of 
approximately 200 bits per second (bps) per channel. Figure 6.2 depicts 
compression algorithm.
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Figure 6.2 Compression Algorithm

Figure 6.3 depicts block diagram of the decompression operations. The residual 
signal is decoded and first summed to undo the first differencing. The beat locations 
are also decoded, and average beats are added to the residual signal as indicated by 
the stored beat locations. As beats are reconstructed they are used to update the 
average beat estimate. As long as the average beat is initially equal to the average beat 
used in compression, the quantized ECG will be correctly reproduced.

Coded

Figure 6.3 Decompression algorithm
[2] is a parameter extraction method based on linear prediction coding (LPC) based 
on the sub auto regression (SAR) model. In the conventional LPC method, the nth
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sample of a signal is predicted by its p past samples. The error between the predicted 
and actual samples is sent or stored instead of the sample itself.

Since the variance (dynamic range) of the error is less than that of the original signal, 
it may be represented by fewer bits per sample. It has been suggested in [10], to use a 
long term prediction (LTP) method where the prediction of the nth sample is made 
using samples of past beats. It is worthwhile noting that the beat correlation was 
recently used in a different type of algorithm [11]. The idea of long term correlation is 
also used in speech analysis for pitch detection. The LTP residual (error) signal is 
quantized and further compressed using the Huffman code [12]. The residual 
quantization size is an important parameter of the compression algorithm This lowers 
the CR (but still maintains higher CR than most CR’s reported in the literature). With 
very low reconstruction errors.

For multi channel ECG data [13] the samples at the same instant may be extracted 
from all the N channels and treated as a vector of dimension N. A codebook 
consisting of such vectors is formed using the Linde-Buzo-Gray algorithm [1]. 
Coding of a vector is done by transmitting the index of that codebook entry, to which 
the incoming vector will map, with the mapping based on a minimum distortion 
criterion. The reconstructed output of each channel is extracted from these coded 
vectors without appreciable distortion. Compression ratios of 18:1 and 16.4:1 have 
been achieved at an acceptable signal quality. This technique was evaluated on the 15 
channel data from 7 subjects independently. To evaluate the performance of 
technique, four different measures of error are calculated. The performance of the 
proposed method improves as the number of channel is increases.

An efficient data compression may be achieved only with lossy compression 
techniques (which allow reconstruction error.) In ECG signal compression algorithms 
the goal is to achieve a minimum information rate, while retaining the relevant 
diagnostic information in the reconstructed signal.Zingle, Amon and Katz [1] 
developed a new ECG compression algorithm called analysis by synthesis ECG 
compressor (ASEC) based on analysis by synthesis coding. It consists of a beat 
codebook, long and short term predictors, and (an adaptive residual quantizer. The 
compression algorithm uses a defined distortion measure in order to efficiently 
encode every heartbeat, with minimum bit rate, while maintaining a predetermined 

distortion level.
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The ECG signal may be considered a quasi periodic signal. The main redundancies in 
the ECG signal exist in the form of correlation between adjacent or past beats (inter 
beat correlation) and correlation between adjacent samples (intra beat correlation) [2], 
The frequent existence of abnormal beats in some pathological cases suggests using a 
beat codebook. The codebook is used to store “typical” past beats. The intrabeat 
correlation suggests using a short-term predictor, STP. With LTP, STP and a beat 
codebook, a predicted beat can be estimated, and a residual signal, which has lower 
variance, can be calculated. The analysis by synthesis model is used to efficiently 
code the residual signal, with minimum bit rate, while maintaining a predetermined 

error.

Figure 6.4 General Scheme of ASEC

Figure 6.4 shows the general scheme of the ASEC. The ECG signal is first classified 
as regular or irregular. However irregular signals, in general are less probable than the 
regular PQRST signal. The algorithm of irregular signal detection and compression is 

described in [14].

The ASEC algorithm consists of three main subsystems:

1) preprocessing,

2) coding: codebook matching and long-term prediction (LTP), residue coding, error 

analysis, and

3) decoding.
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The ECG signal is processed beat by beat. The incoming beat is segmented into three 
time regions (Figure 6.4), which are then coded separately. The beat is matched with 
the Codebook to find the best matching stored beat (“codeword”). LTP coding is 
performed using the chosen codeword to produce the LTP estimated (predicted) 
signal. The difference between the original signal and the LTP estimated signal is 
defined as the residue. The residue undergoes STP coding and adaptive quantization 
to produce the coded signal. Prior to transmission, the signal to be transmitted is 
decoded, and the quality of the reconstructed signal is tested (by means of WDD or 
PRD measure). The residual signal is re-encoded with higher bit rate till the quality of 
the reconstructed signal is satisfied (below a predetermined distortion threshold).

The decoding system is shown in Figure 6.5. This system exists at the transmission 
side as well as the receiver side. The decoding system consists of bit decoding, beat 
codebook, and LTP decoding (which consists of an LTP coefficients codebook), 
which are identical to these elements in the encoder. For every heartbeat (complex), 
the decoder decodes the bits, and estimates the predicted signal with the LTP and beat 

codebook.

Figure 6.5 Decoding System

The residual signal is reconstructed by residual decoding as shown in Figure 6.6. 
The predicted signal is added to the reconstructed residual and the reconstructed 
signal is calculated. The reconstructed signal is also used for beat codebook 

adaptation.

Scan along algorithms may be used to produce compressed data in real time.
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Ishijima, Shin, Hostetter and Sklansky [15] used polygonal approximation (SAPA) 
for digitized curve to restrict maximum error within a specified limit. A compression 
ratio of 10/11 on 5 and 3 beat ECG respectively. [66] uses m-SAPA algorithm which 
exploits inter channel correlation that exists among standard ECG leads for a Two 
channel data base and 8 channel ECG recording to achieve a compression ratio of 
13.6 with PRD of less than error limit of 15%.

6.3 Transformed Methods

In transform methods the original samples are transformed to another domain in the 

hope: of achieving better compression performance, examples include Fourier 
descriptors, Walsh transform, Karhunen - Loeve transform (KLT), discrete cosine 
(DCT) [16]-[20] and the recently developed wavelet transform [21]-[24]. In most 
cases, direct methods are superior to transform methods with respect to system 
complexity and the error control mechanism; however, transform methods usually 
achieve higher compression ratios and are insensitive to the noise contained in 
original ECG signals [25].

ECG signals are usually non stationary and if the quality of a reconstructed ECG 
signal is not guaranteed so the compression process itself will become less useful. In 
the case of the direct methods, such as the polygonal approximation methods, the 
error limit for a reproduced ECG signal is easily controlled by adjusting a user 
specified error threshold.

The section describes use of methods using orthogonal, non-orthogonal and Wavelet 
transforms. In [17] the results of an initial study to determine the feasibility of 
securing electrocardiograph (ECG) data compression via orthogonal transforms such 
as Haar transform and discrete cosine transforms are discussed.
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6.3.1 Wavelet Transforms

The wavelet transform has good localization in both frequency and time domains, 
having fine frequency resolution and coarse time resolution at lower frequency, and 
coarse frequency resolution and fine time resolution at higher frequency. Since this 
matches the characteristic of most signals, it makes the wavelet transform suitable for 
time-frequency analysis. In data compression, the wavelet transform is used to exploit 
the redundancy in the signal. After the original signal is transformed into the wavelet 
domain, many coefficients are so small that no significant information is lost in the 
signal reconstructed by setting these coefficients to zero.

The technique in [26] is based on a new class of non-orthogonal discrete wavelet 
transform (DWT). The performance of ECG compression algorithm is measured by 
its ability to minimize distortion while retaining all clinically significant features of 
the signal. The percent root-mean square difference (PRD) is used as an accepted 
standard for measuring the signal distortion. However, there is no standard for 
measuring the clinically significant features retained after signal reconstruction. The 
coefficients of DWT are calculated such that the square of the difference between the 
original signal and the reconstructed one is minimum in least mean square sense. The 
resulting transforms deal with signals of arbitrary lengths; that means the signal length 
is not restricted to be multiple of power 2. The results in [27] show that, independent 
of signal length, the decomposition of the signal up to the fourth level is sufficient for 
getting minimum PRD.

[28] presents a method based on orthonormal wavelet transform and an adaptive 
quantization strategy, by which a predetermined percent root mean square difference 
(PRD) can be guaranteed with high compression ratio and low implementation 
complexity. Segment of the ECG signal varies with the complex pattern of the 
segment and one cannot find a predetermined optimal quantization bin size by which 
the quality of the reconstructed ECG signal is guaranteed at every segment.

[29] describes a discrete orthonormal wavelet transform (DOWT)-based ECG coding 
system by which a user-specified PRD of the reproduced ECG segments is guaranteed 
at the minimum entropy as shown in Figure 6.7.

A wavelet electrocardiogram (ECG) data based on the set portioning trees (SPIHT) 
compression algorithm is proposed in [27] The SPIHT algorithm [30] has achieved 
notable success in still image coding. The algorithm is modified for the one­
dimensional case and applied to compression of ECG data.
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Figure 6.7 A generalized DOWT-based coding system

Experiments on selected records from the MIT-BIH arrhythmia database revealed that 
the proposed codec is significantly more efficient in compression and in computation 
than previously proposed ECG compression schemes. The coder also attains exact bit 
rate control and generates a bit stream progressive in quality or rate.

The fast-forward and inverse wavelet transforms are implemented as tree-structured, 
perfect- reconstruction filter banks. The input signal is divided into contiguous, non­
overlapping blocks of samples called frames and is transformed frame by frame for 
the forward transform. Within each frame, the analysis filter pair to generate low-pass 
and high-pass signals, which are then down sampled by a factor of two, filters the 
input signal. Then this analysis filter pair is applied to the down sampled low-pass 
signal recursively to generate layered wavelet coefficients.

In implementation, the frame size, number of layers of the wavelet transforms, and the 
filter pair needs to be appropriately selected. The number of layers determines the 
coarsest frequency resolution of the transform and should be at least four for adequate 
compression. The frame size is taken to be a power of two that exceeds the number of 
layers. The frame should contain several periods of the ECG signal, but should still be 
short enough for acceptable coding delay and memory usage. Six layers of wavelet 
decomposition; and 1024 sample frames are selected to fulfill the requirements. 
Among the potential perfect reconstruction filter pairs, ther is selected a bi orthogonal 
9/7 tap filters [31], whose coefficients are in Table 6.1, have been chosen, because 
they have proved to offer the best compression performance for wavelet coding of 
ECG signals among all filters tested in [23]. Since these filters are symmetric, a 
symmetric (reflective) data extension scheme at the boundaries of the frames to obtain 
perfect reconstruction at the boundaries in the absence of coding is employed.
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Table 6.1: The coefficients of the biorthogonal 9/7 tap filters

Low pass 0.852699 0.377403 -0.11062 -0.023849 0.037829
High pass 0.788485 0.418092 -0.04069 -0.064539

After the wavelet transform, the SPIHT algorithm is used to encode the wavelet 
coefficients. The SPIHT algorithm has received widespread recognition for its notable 
success in image coding [30]. It has also been implemented in the case of one 
dimension for coding wavelet packet transforms of audio signals and obtained very 
good compression performance [32]. The SPIHT algorithm may be applied to the 
wavelet (purely dyadic) transform of ECG signals. The diagram of the encoder and 
decoder is shown as in Figure 6.8.

Input

Figure 6.8 Proposed Encoder-Decoder

The principles of the SPIHT algorithm are partial ordering of the transform 
coefficients by magnitude with a set partitioning sorting algorithm, ordered bit plane 
transmission and exploitation of self-similarity across different layers. By following 
these principles, the encoder always transmits the most significant bit to the decoder.

Hybrid algorithm based on wavelet transformation of the linearly predicted error is 

proposed in [33]

Data compression of ECG signals allows long term digital storage and archiving of 
ECG recordings. The use of linear prediction after wavelet transformation has been 
shown [33] to improve the overall performance of the ECG wavelet compression 
method, giving a lower reconstruction error for the same compression ratio. With
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PRD less than 4%, an average compression ratio of 20:1 has been achieved when the 
proposed algorithm is applied to different normal and abnormal signals from the MIT- 
BIH arrhythmia database. Figure 6.9 shows operation of the hybrid method.

ECG Raw Wavelet Residual
signal Coefficient Coefficients

Figure 6.9 Hybrid Compression scheme

This has resulted in a substantial reduction in ECG signal bandwidth in the 
telemedicine applications and an increased storage capacity of the digital ambulatory 
records.

[33] describes wavelet packet based algorithm for the compression of single lead 
ECG. The algorithm combines the efficiency and flexibility of wavelet packet 
expansions with the methodology of the Karhunen-Loeve transform (KLT).

Associated with each library of wavelet packet is a pair of quadrature mirror filters 
(QMFs), one designed as a low pass filter, the other as a high pass filter. The wavelet 
packet transform of a finite sampled signal is computed by successively applying the 
QMF projections to generate a binary tree of transform coefficients.

Associated with each coefficient are three location parameters level within the tree, 
vertex along a level, and entry within a vertex- which determine the scale, frequency 
and position respectively of the underlying wavelet packet pattern.

Any collection of vertices, which satisfies the property that each path from the root to 
a leaf contains exactly one vertex from the collection, constitutes an orthogonal 
expansion of the original signal. So for a signal length of n, more than 2" such 

expansions exist.

Selection of the one de composition which is to be utilized for further processing is 
accomplished by first assigning a cost to each vertex in the tree and then determining 
the orthonormal collection which attains the minimum total cost. The templates,
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which comprise the chosen representation, are in some sense beat adapted to the 
features contained in the signal and, accordingly, are referred to as the best wavelet 
packet basis.

Given a set of vectors in RN with N as integer power of 2, the mean vector is 

computed and subtracted from each member of the set. The resulting residual vectors 
are individually expanded into wavelet packet trees. The squares of the coefficients 
contained in these trees are accumulated into a separate tree of variances, upon which 
a best basis search is performed to determine the joint, or statistical, best basis for the 
ensemble. The components in the joint best basis are stored in order of the decreasing 
contribution to the total variance, and the basis is then truncated. Each residual is 
expressed in terms of the truncated basis to achieve a first stage of compression. 
Further compression is achieved by performing a KLT on the retained joint best basis 
coefficients.

6.4 Vector Quantization techniques

Vector quantization (VQ) is another technique that has been used extensively in data 
compression systems [34]-[36]. VQ has proved to be an effective scheme for image 
data reduction and it has also been very successful in coding speech parameters. The 
rate-distortion theory [37] establishes that compression performance can be improved 
by coding vectors instead of scalars; but this technique up to now has not been 
extensively applied to compress ECG signals, Examples of the application of the 
method on ECG signals can be found in [37],[38] and [12], [39], [40]. VQ in [39] 
follows the finite state VQ approach and the authors report data rates around 200 bps 
for an acceptable distortion level. The highest CR reported was 150, but is restricted 
to highly repetitive pattern and requires the additional task of QRS detection [32], VQ 
can be employed in conjunction with any of the previously mentioned methods, 
mainly as a way of quantizing the resulting data [37],[38], [39]. However this 
technique can also combine redundancy removal with quantization in a single 
processing stage [12].

The gold washing (GW) adaptive vector quantization (AVQ) (GW-AVQ) [41], 
adaptive nature of the algorithm provides the robustness for wide variety of the 
signals. However, the performance of GW-AVQ is highly dependent on a preset 
parameter called distortion threshold (dth) which must be determined by experience 
or trial-and-error.

An algorithm is proposed in [41] that allows to assign an initial dth arbitrarily and 
then automatically progress toward a desired dth according to a specified quality
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criterion such as the percent of root mean square difference (PRD) for 
electrocardiogram (ECG) signals. A theoretical foundation of the algorithm is also 
presented. This algorithm is particularly useful when multiple GE-AVQ codebooks 
and, thus multiple dth’s are required in a sub band coding framework. Four sets of 
ECG data with entirely different characteristic are selected from the MIT/BIH 
database to verify the proposed algorithm. Both the direct GW-AVQ and a wavelet 
based GW-AVQ are tested. The result show that a user specified PRD can always be 
reached regardless of the ECG waveforms, the initial selection of dth or whether a 
wavelet transform is used in conjunction with the GW-AVQ. An average result of 6% 
in PRD and 410 bits/s in compressed data rate is obtained with excellent visual 
quality.

A direct waveform mean-shape vector quantization (MSVQ) is proposed in [42] as an 
alternative for electrocardiographic (ECG) signal compression. The mean values for 
short ECG signal segment are quantized as scalars and compression of the single-lead 
ECG by average beat subtraction and residual differencing their wave shapes coded 
through a vector quantizer. An entropy encoder is applied to both, mean and vector 
codes, to further increase compression without degrading the quality of the 
reconstructed signals. The fundamentals of MSVQ are discussed in [42], along with 
various parameters specifications such as duration of signal segments, the word length 
of the mean-value quantization and the size of the vector codebook. CR’s in excess of 
39 have been achieved, yielding low data rates of about 140 bps. This compression 
factor makes this technique especially attractive in the area of ambulatory monitoring.

Parameter extraction methods extract a set of parameters from the original signal 
which are used in the reconstruction process. The idea is to quantize a small set of 
extracted signal features, finely enough to render an almost imperceptible distortion. 
Among the methods that can be classified in this group Are : peak peaking methods 
[12], cycle pool-based compression (CPBC) algorithms [43], linear prediction 
methods [2], [44] and neural network methods [45], [46].

Karhunen - Loeve transform (KLT) [51], Fourier transform (FT) [52], [53] Cosine 
transform (CT), walsh transform (WT) Legendre transform (LT) [60], the optimally 
warped transform [61], subband coding [64], and in recent years the wavelet 
transform (WT)[55-56], [23],[24] has received great attention. However, these 
techniques, which are relatively insensitive to noise, generally rely on accurate QRS 
detection.
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Table 6.2 summarizes reported performance of a number of ECG compression 
methods

Mehtod CR PRD(%) SF (Hz) ADC(bits)
TP[47] 2.0 5.3 200 12
AZTEC[48] 10.0 28.0 500 12
CORTESflO] 4.8 7.0 250 12
FAN/SAPA [49] 3.0 4.0 250 -

MSAPA/CSAPA[49] 5.0 3.5 250 8
ALZ77[50] 13.38 - 250 12
Dual application of KLT [51] 12.0 - 250 12
Fourier descriptors[52] 7.4 7.0 250 12
Adaptive Fourier coefficient 
estimation [53]

16.0 3.0 500 -

Sub-band coding with extensive 
Markov system [54]

25.0 - 500 12

Wavelet Transform[55] 9.9 - 500 -

VQ of Wavelet coefficients  ̂6] 10.0 5.5 360 11
Wavelet packet compression[23] 8.06 - 200 12
Peak Peaking(spline) with
entropy encoding [57]

10.0 14.0 500 8

Cycle pool based compression 
algorithms[58]

12.0 11.0 200 12

BP and NN/PCA neural networks
[46]

20.0 13.0 360 11

Classified VQ [59] 8.6 24.5 200 12

Long term Prediction[2] 28.17 10.0 250 8

6.5 ANN based techniques

6.5.1 MLPANN for ECG signal compression

6.5.1.1 Introduction
Artificial Neural Network is a massively parallel-distributed processor made up of 
simple processing units, called neurons, which has a natural characteristic of storing 
experiential knowledge and making it available for use.

Prior to storage and transmission of representative data in speech, video or 
multimedia applications of neural networks, the network parameters must be 
quantized. Basically two approaches can be employed [62] In scalar quantization [63,
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64], each network parameter is separately quantized: the quantizer observes a single 
parameter and selects the nearest approximating value from the predetermined finite 
set of allowed numerical values. In vector quantization, the parameters of the network 
prior to quantization are grouped into a vector which is a generic input to the vector 
quantizer Q comprised of a vector encoder and a vector decoder. The former maps its 
generic input to a finite set of indexes, each of which is associated with a vector. The 
set of vectors isomorphic to the set of of indexes comprises the code book of Q. This 
code book serves as the reproduction set for the vector decoder, which maps the finite 
set of indexes to this reproduction set. The codebook vectors (code vectors) are 
designed to be representative of the population of input vectors. An input vector to the 
encoder is compared with each element of the codebook to produce at the output an 
index that is associated with the code vector which is the closest, according to a pre 
selected measure, to the input vector. The elements of this code vector represent the 
parameters of the network after quantization. To alert the decoder about a code vector 
closest to the input vector, one either transmits or stores the index associated with the 
code vector. As the decoder has exactly the same code book as the encoder, it can 
receive the unique code vector from its index. VQ has the ability to exploit the linear 
and nonlinear dependencies among the vector components, and is highly versatile in 
the selection of multidimensional quantizer cell shapes. For a given resolution, use of 
VQ typically results in a lower distortion than scalar quantization.

Adding a quadratic term to the activation function of linear neurons can greatly 
enhance the representation ability of multilayer perceptrons without inflating their VC 
dimensions [63]. Circular back propagation (CBP) networks support both surface- 
based and prototype-based representations in classification problems; it has been 
shown that CBP is a unifying model for MLP’s and Radial Basis Function (RBF) 
networks [64], [65] proves that CBP encompasses vector quantization paradigms as 
well. Thus one can plug VQ prototypes in a CBP network, with the same number of 
neurons and supporting the same mapping. The fact that CBP structure can repeat the 
winner-takes-all (WTA) behaviour enables one to switch safely from one 
representation to the other, while preserving a network’s mapping function. This 
property is exploited in [63] to initialize BP training.

6.5.1.2 Proposed ANN Implementation for Compression
d

The technique described here exploits the redundancy that naturally exists in most 
signals for efficient storage and transmission purpose. Smaller number samples are 
required to store a particular segment of ECG waveform than the number of analog 
samples required to represent original signal segment. At the receiver end, encoded 
compressed signal is decoded into full size segment.
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Constructing a Multi Layer Perceptron (MLP) Artificial Neural Network (ANN) 
carries out ECG signal compression. The method takes definite number of samples as 
input and produces less number of hidden node outputs, which represent compressed 
signal samples. Reconstruction is possible at output layer nodes, which are in equal in 
number as nodes in input layer nodes, so that signal segment is recovered. Any 
performance criterion used to evaluate an ECG compression algorithm must include 
two factors: Amount of compression and Resultant reconstruction error. The error 
associated with ECG compression algorithm (percent RMS difference (PRD)) given 
by:

PRD '5>(o-*'(/)> 2
1/2

I*2(0
11100 .(6.1)

where x(i) is ith sample of input signal and x’(i) is the ith sample of reconstructed 
signal. A neural net architecture suitable for solving the ECG signal compression 
problem is shown in figure 6.10. This ANN can give Compression Ratio (Ratio of 
number of bits required to represent original signal to the number of bits required to 
represent compressed signal) of 2 as ratio of number of input layer nodes and hidden 

layer nodes is 2.

Input layer
xm xra X(3) XfNl

Figure 6.10 MLPANN for ECG signal compression



Chapter 6: Biomedical signal compression 143

This type of structure in which input layer with a large number of input nodes are 
feeding into a small number of hidden layer nodes, which then feeds into a large 
number of output nodes in output layer is referred to as a bottleneck type network. 
The neural net shown in figure 6.10 is trained to implement the identity map. A signal 
presented to the network as input would appear exactly same at the output layer. In 
this case, the network is used for ECG signal compression by breaking it in two. The 
transmitter encodes and then transmits the output of the hidden layer. The receiver 
receives and decodes the hidden layer outputs and generates outputs. Since the 
network is implementing an identity map, the output at the receiver is an exact 
reconstruction of the original signal.

A three layer MLPANN is used. Input layer is given total N number of samples from 
recorded ECG. Hidden layer is Intermediate level and units at the bottom in figure 
6.10 are output units. All the units at the lower layer are connected to each unit at the 
upper layer by the connection strength called weights. All the weights are initialized 
to small random values at the beginning. Training sets are prepared taking 6 samples 
at a time. Expected output is same as input. Compression is available at hidden layer. 
Hence in implementation input to hidden layer becomes part of transmitter and hidden 
to output layer becomes receiver.

6.5.1.3 MATLAB code

%------------------------------------------------------------------------------------------------------------
% TRAINING PHASE:
%------ -----------------------------------------------------------------------------------------------------

close all; 
clear all;
M=500; %Number of training sets
TST=500;
1=6;
H=3;%hidden nodes 
0=6;%output nodes
Time=5; %No. of Epochs

eta= 0.1; %Learning Rate 
el=l;
e2=l;
tst=3000; %Number of samples for testing
xbi=ones(I,M);
xbo=ones(H,M);
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Wi=0.5*ones(H,I);%Wi=eye(H,I);
Wo=0.5*ones(O,H);%Wo=eye(O,H);
Wbi=zeros(H,I);
Wbo=zeros(0,H); %For biasing
%------------------------------------------------------------- _---------------------------------------
fid = fopen('recg.datVr');

[Xl,count]= fscanf(fid, 
fclose(fid);
X1=X1/100; 
for P = 0:M-1
Up(:,P+l) = X1(1+P*I :(P+1)*I); %Up is training input to the MLP
end

Yp=Up; .
%------------------------------------------------------------- -----------------------------------------

% Reading one more data set for testing: UpliLECG
%------------------------------- -----------------------------------------------------------------------

fid = fopen('C3ECG.daf ,¥);
[Xl,count]= fscanf(fid, '%f,I*TST); 
fclose(fid);
X1=X1/100; 
for P = 0:TST-1
Upl(:,P+l) = X1(1+P*I :(P+1)*I); %Up is training input to the MLP
end
Ypl=Upl;
%------------------------------------------------------------------------------------------------ -------

MSE=zeros(Time, 1);
momo(O,H)=0;
momi(H,I)=0;
alfa=0;
for T=1 :Time
T
fork = 1:M
xbii=xbi(:,k);
xboo=xbo(:,k);
di=Wi;
do=Wo;
x=Up(:,k);
xl=(l .0-exp(-el *Wi*x-e2*Wbi*xbii))./(l .0+exp(-el*WPx-e2*Wbi*xbii));
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y 1 =(1.0-exp(-e 1 * Wo*xl -e2* Wbo*xboo))./(l .0+exp(-el * Wo*xl -e2* Wbo*xboo));
erro=Yp(:,k)-yl;
tmp = sum(erro.*erro);
MSE(T,1)= MSE(T,l)+tmp;
diffo=(1.0~yl.*yl);
do= 0.5* erro.*diffo;
diffi=(1.0-xl.*xl);
dll=Wo'*do;
dl=dll.*diffi;
for kl=l:H
Wo(:,kl)=Wo(:,kl)+eta*do.*xl(kl,l);
% Wbo(:,kl )=Wbo(:,k l)+eta*do. *x 1 (k 1,1); 
end
for kl=1:1
Wi(:,kl)=Wi(:,kl)+eta*dl*x(kl,l);
%Wbi(:,kl )=Wbi(:,kl )+eta*d 1 *x(kl, 1);
end
end
% MSE = MSE/M; 
end
% Test the MLP WITH Up:
%------------------------------------------------------------------------------------------------------------

for k = 1 :M 
u = Up(:,k); 
xbii=xbi(:,k); 
xboo=xbo(:,k);
xl=:(1.0-exp(-el*Wi*u-e2*Wbi*xbii))./(1.0+exp(-el*Wi*u-e2*Wbi*xbii));
yl—(1.0-exp(-el* Wo*xl-e2* Wbo*xboo))./(l .0+exp(-el * Wo*x 1 -e2 * Wbo*xboo)):
Yn(:,k)=yl;
end
k=0;
fori=l:M
forj=l:0
k=k+l;
x(k)=Up(j,i);
dexp(k)=Yn(j,i);
end
end
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xl 1 = [0 0 0 0 0 dexp];
x22 = [0 0 0 0 dexp 0];
x33 = [000 dexp 0 0];
x44 = [0 0 dexp 0 0 0];
x55 = [0 dexp 0 0 0 0];
x66= [dexpOOOOO];
y = (xl 1 + x22 + x33 +x44 +x55 + x66)/6;
y=y(l:M*0);
figure(l)
titlef Waveforms during training');
subplot(4,1, l);plot(x,'r');grid;ylabel('Expected ECG');
subplot(4,l,2);plot(dexp,'g');grid;ylabel('Recovered');
err=x-dexp';
subplot(4, l,3);plot(err5'b');grid;ylabel('Error'); 
subplot(4,l,4);plot(y,'r');grid;ylabel('Averaged*); 
sum = 0; 
den = 0; 
for i = 1:M*I
sum(l,:) = sum(l,:) + err(i,:).*err(i,:); 
den(l,:) = den (1,:) + x(i,:).*x(i,:); 
qty(l,:) = sum(l,:)./den(l,:); 
prd(l,:) = sqrt(qty(l,:)); 
prd( 1 ,:)=prd(l, :)* 100; 
end
%----------------------------------------------------------------------------------------------------------
Test the MLP WITH Upl:
%--------- ------------------------------------------------------------ ------------ ------------
xbi=ones(I,TST); 
xbo=ones(H,TST); 
for k = 1 :TST 
u = Upl(:,k); 
xbii=xbi(:,k); 
xboo=xbo(:,k);
xl=(1.0-exp(-el*Wi*u-e2*Wbi*xbii))./(1.0+exp(-el*Wi*u-e2*Wbi*xbii));
yl= (1.0-exp(-el!i5Wo!,:xl-e2*Wbo*xboo))./(1.0+exp(-el*Wo*xl-e2*Wbo*xboo));
Yn(:,k)=vl;
end
k=0;
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for i=l:TST
forj=l:0
k=k+l;
xl(k)=Upl(j,i);
dexpl(k)=Yn(j,i);
end

end
xl 1 = [0 0 0 0 0 dexpl];
x22 = [0 0 0 0 dexpl 0];
x33 = [000 dexpl 0 0];
x44 = [0 0 dexpl 0 0 0];
x55 = [0 dexpl 0 0 0 0];
x66= [dexpl 0 0 0 0 0];
yl = (xl 1 + x22 + x33 +x44 +x55 + x66)/6;
yl=yl(l:TST*0);
figure(2)
title('Waveforms during testing'); 
subplot(4,l,l);plot(xl,'r');grid;ylabel('Expected ECG'); 
subplot(4,1,2);plot(dexpl,'g');grid;ylabel('Recovered'); 
errl=xl-dexpl';
subplot(4,1,3);plot(errl ,'b');grid;ylabel('Error');
subplot(4,1,4);plot(y 1 ,'r');grid;ylabel(' Average');
suml=0;
deni =0;
for i = 1:TST*I
suml(l,:) = suml(l,:) + errl(i,:).*errl(i,:); 
denl(l,:) = denl(l,:)+xl(i,:).*xl(i,:); 
qtyl(l,:) = suml(l,:)./denl(l,:); 
prdl(l,:) = sqrt(qtyl(l,:)); 
prdl(l,:)=prdl(l,:)*100; 
end

6.5.1.4 Results

During training as described earlier, value of error is computed and printed. Error is 
plotted as a function of time epochs, along with input as well as reconstructed 
waveform. PRD is calculated on line during training. Figure 6.10 and Figure 6.11 
are the waveforms during training and recall phase respectively with 1 = 0 = 6, H = 3 
(and hence Compression ratio = 2:1),
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WAVEFORMS DURING TRAINING
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6.5.2 Competitive learning and VQNN for compression 

6.5.2.1 Introduction

In competitive learning the output neurons of a neural network compete among 
themselves to become active. It is this feature that makes competitive learning highly 
suited to discover statistically salient features that are used to classify a set of input 
patterns. In the simplest form of competitive learning, the neural network has a single 
layer of output neurons, each of which is fully connected to the input nodes. The 
network is called Vector Quantization Neural Network, as illustrated in Figure 6.13. 
The input vector is constructed from a L-dimensional space. K output neurons are 
designed to compute the vector quantization codebook. As the neural network is being 
trained, all the coupling weights will be optimized to represent the best possible 
partition of all the input vectors.

Input Vector

Output codebook

Xi X2.....................  XL

Figure 6.13 Vector Quantization Neural Network

6.5.2.2 Training and Testing Algorithm

To train this network, a group of data samples known to both encoder and decoder is 
designated as the training set, and the first K input vectors of the training data set are 
used to initialize all the neurons. With this general structure, various learning 
algorithms are already designed and developed. Some of them are Kohonen's self­
organizing feature mapping , competitive learning , frequency sensitive competitive 
learning, etc. Frequency sensitive competitive learning algorithm is used.

For a neuron k to be the winning neuron, its induced local field S/; for a specified input 
pattern x must be the largest among all the neurons in the network. The output signal 
Zk of winning neuron k is set equal to one; the output signals of all the neurons that 
lose the competition are set equal to zero. We thus write
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Zk= { 0 if Sk > Sj for all j,j * k
otherwise (6.2)

where the induced local field 5* represents the combined action of all the inputs to 
neuron k.

A neuron then learns by shifting synaptic weights from its inactive to active input 
nodes. If a neuron does not respond to a particular input pattern, no learning takes 
place in that neuron. If a particular neuron wins the competition, each input node of 
that neuron relinquishes some proportion of its synaptic weight, and the weight 
relinquished is then distributed equally among the active input nodes. According to 
the standard competitive learning rule, the change Awy applied to synaptic weight 
Wjj is defined by

where r\ is the learning-rate parameter. This rule has the overall effect of moving the 
synaptic weight vector Wij of winning neuron i toward the input pattern x.

When the synaptic weights are properly scaled they form a set of vectors that fall on 
the same N-dimensional unit sphere. However, for this function to be performed in a 
"stable" fashion the input patterns must fall into sufficiently distinct groupings to 
begin with. Otherwise the network may be unstable because it will no longer respond 
to a given input pattern with the same output neuron.

Under-utilization problem occurs in competitive learning in which some of the 
neurons are left out of the learning process and never win the competition. Frequency 
sensitive competitive learning algorithm solves the problem by keeping a record of 
how frequent each neuron is the winner to maintain that all neurons in the network are 
updated an approximately equal number of times. To implement this scheme, the local 
field of the neuron is factored by frequency, which gets incremented some numbers 
every time that neuron wins.

The above mentioned procedure can be put in form of algorithm as follows:

r|( xj - Wjj) if neuron k wins the 
competition

0 if neuron k loses the 
competition

(6.3)
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/ - ’ :

Step 1: Set L, q, time epochs(t), number of tests(T). internal time epochs(tin)..’'
Step 2: Find total number of samples to read from file of samples. \y; ■>•<

Step 3: Initialize random values to weights. '•< ’ /. ' '
Step 4: Form group of L samples as training Set. "s'~ '
Step 5: For time = 1 to t:
Step 6: For tests = 1 to T

a. Find Euclidian sum of distances between input vectors and weight vectors
b. Determine winning output node and modify weight according to (4) for tin 

times.
c. Increase frequency of that winner node 

Step 7: End tests
Step 8: End time

6.5.2.3 Codebook Generation

Proposed algorithm is used for competitive learning of Vector Quantization Neural 
Network, which is used to generate a codebook for the Vector Quantization of ECG 
signal. The Competitive Learning Algorithm can successfully group the sample group 
to generate codebook and reproduce at the time of reconstruction.

A block of L samples are taken from ECG signal and treated each sample value as a 
component of a vector of size or dimension L. This vector of source outputs forms 
the input to the vector quantizer. At both the encoder and decoder of the vector 
quantizer, there is a set of L-dimensional vectors called the codebook of the vector 
quantizer. The vectors in this codebook, known as code-vectors, are selected to be 
representative of the vectors generated from the source output. Each code-vector is 
assigned an index. At the encoder, the input vector is compared to each code-vector 
in order to find the code vector closest to the input vector. The elements of this code­
vector are the quantized values of the source output. In order to inform the decoder 
about which code vector is the closest to the input vector, there is transmitted index 
of the code vector. Because the decoder has exactly the same codebook, it can 
retrieve the code vector given its binary index. A pictorial representation of this 
process is shown in Figure 6.14.

The amount of compression will be described in terms of bits per sample. For a 
codebook of size K, and the input vector is of dimension L. In order to inform the 
decoder of which code-vector was selected, we need to use log 2 K bits. Thus, the 
number of bits per vector is logaK bits.
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Fig 6.14: Vector Quantization

As each code vector contains the reconstruction values for L source output samples, 
the number of bits per sample would be [log2 K]/L.
Hence Compression Ratio,

‘Bits per Sample’ rate 
= B/{(log2K)/L}
= B*L/ logzK .......................................................(6.4)

The percent RMS difference (PRD) given by equation 6.1

6.5.2.4 MATLAB Code and waveforms

(a) considering difference of adjacent samples

If we keep as reference first sample and then take difference of adjacent samples, as 
difference is smaller value than signal itself, it will take less number of bits to code 
the signal. It requires that first reference sample also be sent to receiver. In this and 
next algorithm, number of competing nodes and number of training patterns are taken 
same so that each node can have a chance to win and hence to be associated to that 
pattern through one unique index.

% VECTOR QUANTIZATION NEURAL NETWORK: Difference of adjacent 
%samples
close all; 
clear all;
%------------------------------- --------------------------------------------------------------------------
I=20;% Better training for 1=20 
H=100;
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eta=0.01;
time=1000;
tests=50;
N=I*tests+l;
fid = fopen('R.dat','rr);
[x,count]= fscanf(fid, '%f ,N); 
fclose(fid);
%--------------------------------------------------------

% Initialize weights:
%--------------------------------------------------------

w=0.1*ones(H,I) 
first=x(l,l); 
for j = 1 : tests 
n=l;
m=(Q-m+iy,
for i = m +1: Fj +1 
Up(nj)=x(U)-x(i-l,l); 
n = n+l; 
end
end %Up is training input to the MLP
decode=zeros(I,H); 
fort= l:time 

t
f=ones(H,l);
z = zeros(H,l);
for 1 = 1 :tests
max = w(l,:)*Up(:,l)/f(l);
loc=l;
%._-----^------------------------------------------------

%find loc:
%------- ------------------------ --------- --------------

for k = 1:H
if max <= w(k,:)*Up(:,l)/f(k) 
max = w(k,:)*Up(:,I)/f(k); 
loc = k; 
else
loc=loc; %nothing to do
end %of if
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end %ofk
%------------------------- --------------------------

decode(:,loc)=Up(:,l);%store the vector
%----------------------------------------------------

z(loc) = 1; 
f(loc)=f(loc)+l; 
for j = 1:1
w(loc,j)=w(loc,j)+eta*(Up(j,i)-w(locj)'); 
end %ofj 
end %of t
end %of tests
%----------------------------------------------------

%testing for the same input pattems:Up:
%-------------------- --------------------------------

code=zeros(tests, 1); 
ztest = zeros(H,tests); 
for i = 1: tests 
max=w( 1, :)*Up(:,i); 
rank= 1; 
forj = 1:H
op(j,i) = w(j,:)*Up(:,i);
if max<op(j,i)
max=op(j,i);
rank=j;
else
rank = rank; 
end%ofif 
code(i,l)=rank; 
end %OF J 
ztest(rank,i)=l;
Upl (:,i)=decode(:,rank); 
end
xl(l,l)=first; 
forj = 1 : tests 
n= 1;
m=(G-i)*i+i);
for i = m +1: I*j +1 
xl(i,l) =Upl(n,j) + xl(i-l,l);
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n = n+l; 
end 
end
figure(l);
subplot(2,1, l);plot(x,'r');ylabel('source signal'); 
subplot(2,1,2);plot(xl ,'g');ylabel('reconstructed'); 
perror=((x-xl)./x)*100; %percentage error 
figure(2);
plot(perror,'r');ylabel('% error');
err=x-xl;
sum = 0;
den = 0;
for i = l:I*tests
sum(l,:) = sum(l,:) + err(i,:).*err(i,:); 
den(l,:) = den (1,:) + x(i,:).*x(i,:); 
qty(l»0 = sum(l,:),/den(l,:); 
prd(l,:) = sqrt(qty(l,:)); 
prd(l,:)=prd(l,:)*100; 
end
%--------------------------------------------------------------
%testing for the different input pattems:Upl 1:
%--------------------------------------------------------------

tests=2000/I;
clear x xl
N=Ptests+l;
fid = fopen('R.datVr’);
[x,count]= fscanf(fid, '%f ,N);
fclose(fid);
first=x(l,l);
for j = 1 : tests
ri= 1;
rn=(G-i)*m);
fori = m +l: I*j +1
Up(nj)= x(i,l)-x(i-l,l);
n = n+1;
end
end
code=zeros(tests, 1);
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ztest = zeros(H,tests); 
for i = 1: tests 
max=w(l,:)*Up(:,i); 
rank= 1; 
forj = l:H
opG,i) = w(j,:)*Up(:,i); 
if max<op(j,i) 
max=op(j,i);
rank=j;
else
rank = rank; 
end%of if 
code(i,l)=rank; 
end %OF J 
ztest(rank,i)=l;
Upl(:,i)=decode(:,rank);
end
xl(l,l)=first; 
for j = 1 : tests 
n = 1;
m=(0-l)*l+i);
for i = m +1: I*j +1
xl(i,l) = Upl(nj) + xl(i-l,l);
n = n+l;
end
end
figure(3);
subplot(2,1,1 );plot(x,'r');ylabel('source signal’);
subplot(2,1,2);plot(x 1 ,'g');ylabel('reconstructedr);
perror=((x-xl)./x)*100; %percentage error
figure(4);plot(perror,'r'); ylabel('% error');
err=x-xl;
sum = 0;
den = 0;
for i = l:I*tests
sum(l,:) = sum(l,:) + err(i,:).*err(i,:); 
den(l,:) = den (1,:) + x(i,:).*x(i,:); 
qty(l,:) = sum(l,:)./den(l,:);
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Figure 6.16 Waveforms for Testing Phase for VQANN (Difference of adjacent
samples)
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Figure 6.15 Waveforms for Training Phase for VQANN (Difference of 
adjacent samples)

Waveforms during testing
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prd 1(1,:) = sqrt(qty( 1,:)); 

prdl (1 ,:)=prdl (1 ,:)* 100; 
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If the source output is correlated, vectors of source output values will tend to fall in 
clusters. More accurate representation of the source output during training and testing
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phase can be obtained by selecting the quantizer output points to lie in these clusters. 
Figure 6.15 and Figure 6.16 support this.

(b) Considering absolute samples

% VECTOR QUANTIZATION NEURAL NETWORK: modified algorithm:
% absolute samples
close all; 
clear all;
%---------------------------------------------------------------------------------------------------------

I=4;% Better training for 1=20 
H=128;%Hidden nodes 
eta=0.05;
time=8;%time epoches 
tests=128;
N=I*tests;
fid = fopen('lecg.dat','r');
[x,count]=fscanf(fid,'%f,N);
fclose(fid);
%-----------------------------------------------------------------------------------------------------------

% Initialize weights:
%-----------------------------------------------------------------------------------------------------------

w=randn(H,I);
%w=ones(H,I)/I;
%-----------------------------------------------------------------------------------------------------------

first=x(l,l); 
for j = 1 : tests 
n = 1;
m=((j-l)*I+l); 
for i = m+l: I*j +1
Up(aj)= x(i-l,l);%no difference of samples
n = n+l;
end
end
decode=zeros(I,H);
%---------------------------------------------------------------------------------------------------------  ■

fort= l:time 
t
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f = ones(H, 1 );%frequency of winning 
z = zeros(H,l); 
fori = l:tests
min = sum(abs(Up(:,l)-w(l,:)'))*f(l);%abs(w(l,:))*abs(Up(:,l))/f(l);

loc=l;
%----------------------------------------------------------------

%find loc:
%----------------------------------------------------------------
for k= 1:H
if min> sum(abs(Up(:,l)-w(kp)'))*f(k)%abs(w(k,:))*abs(Up(:,l))/f(k); 
min= sum(abs(Up(:,l)-w(k,:)'))*f(k);%abs(w(k,:))*abs(Up(:,l))/f(k); 
loc = k; 
else
Ioc=loc; %nothing to do
end %of if 
end %ofk

decode(:,loc)=Up(:,l);%store the vector
%----------------------------------------------------------------------

z(loc) = 1; 
f(loc)=f(loc)+30; 
for tin =1:4 
forj = 1:1
w(locj)=w(locj)+eta*{Up(j,l)-w(locj)');
end %ofj
end %of tests
end%tin
end%oft

%testing for the same input patternsrUp:
%------- ---------------------------------------------------------------------

code=zeros(tests, 1); 
ztest = zeros(H,tests); 
for i = 1: tests
min = sum(abs(Up(:,i)-w(l,:)’));%max=w(l,:)*Up(:,i); 

rank= 1; 
forj = 1:H
op(j,i) = sum(abs(Up(:,i)-w(j,:)'));%w(j,:)*Up(:,i);
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if min>op(j,i) %max<op(j,i)
min=op(j,i);
rank=j;
else
rank=rank; 
end%ofif 
code(i,l)=rank; 
end %OF J 
ztest(rank,i)=l;
Up 1 (:,i)=decode(:,rank); 
end %tests 
xl(l,l)=first; 
for j = 1 : tests 
n= 1;
m=((j-l)*I+l); 
for i = m +1: I*j +1 
xl(i-l,l) = Upl(n,j); 
n = n+l; 
end
end %Up is testing input to the MLP 
figure(l);
subplot(3,l,l);plot(x,’r’);ylabel('originar); 
subpIot(3,l,2);plot(xl,’g’);ylabel('RecoverecT); 
perror=((x-xl)./x)* 100; %percentage error 
subplot(3,l,3);plot(perror,’b’); ylabel('% error'); 
diff = sum(((x-xl)./l).A2)/sum(x.A2); 
prdl=diff*100;
%-------- ....----------------------- -------------------------

%testing! for the different input patterns:Upl 1:
%—----------------------------------------------------
clear x,Up,Upl,rank,op,first;
N=Ptestsl;
fid = fopen('lecg.datVr');
[x,count]= fscanf(fid, ’%f,N);
fclose(fid);
f irst=x( 1,1);
for j = 1 : tests 1
n= 1;
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m=((H)*i+i);
fori = m+l: I*j+1
Up(nj)=x(i-l,l);
n = n+1;
end
end
code=zeros(tests 1,1); 
ztest = zeros(H,testsl); 
for i = 1: tests 1
min = sum(abs(Up(:,i)-w(i,:)'));%max=w(l,:)*Up(:,i); 
rank= 1; 
for j = 1 :H
op(j,i) = sum(abs(Up(:,i)-w(j,:)'));%w(j,:)*Up(:,i); 
if min>op(j,i) 

min=op(j,i); 
rank =j; 
else
rank = rank; 
end %of if 
code(i,l)=rank; 
end %OF J 
ztest(rank,i)=l;
Upl(:,i)=decode(:,rank);
end
xl(l,l)=first; 
for j = 1 : tests 1 
n= 1;
m=((j-l)*I+l); 
for i = m+l: I*j +1 
xl(i-l,l) = Upl(nj);
n = n+l; 
end
end %Up is testing input to the MLP 

figure(2);
subplot(3,l,l);plot(x,,r’);ylabel('originar); 
xll = [0 0 00 0x11; 
x22 = [0 0 0 0 xl' 0]; 
x33 = [0 0 0 xl' 0 0];
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Figure 6.17 Waveforms for Training Phase for VQANN (absolute samples)

As can be seen from the waveforms of Figure 6.17 during training and waveforms of 
Figure 6.18 during testing, there is generated a code book at transmitter where group 
of L samples (having certain waveshape) is given a unique index. All such possible 
shapes are identified during training and assigned unique index. Instead of real signal, 
now sequence of such index is transmitted which takes less number of bits giving high 
value of CR. Also, as can be seen from these figures, there is a perfect reconstruction. 
Hence, PRD is also very low value. Better results can be obtained by keeping size of 
codebook larger.

x44 = [OOxl'OOO];
x55 = [0 xl' 0 0 0 0 ];
x66= [xl’0 0000];
y = (xl 1 + x22 + x33 +x44 +x55 + x66)/6;
y=y(l:N);
subplot(3,l,2);plot(y,’g’);ylabel('Recovered'); 
perror=((x-y')./x)*100; %percentage error 
subplot(3,l,3);plot(perror,’b’); ylabel('percentage error'); 
diff = sum(((x-y')./l).A2)/sum(x.A2); 
prd2=diff* 100;

WAVEFORMS DURING TRAINING
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Figure 6.18 Waveforms for Testing Phase for VQANN (Absolute samples)

6.6 Extended backpropogation

The neural network models are used as models for the real brain functions or as 

computation devices. MLP employing back propagation LMS training technique is 

popular. Conventional BKP algorithm assumes that there is no correlation between 

parameters used for the evaluation of net function. Section describes an extension 

using Sugeno Integral to evaluate net function rather than linear function to capture 

relationship between parameters. The technique is applied for ECG signal 

compression.

6.6.1 Algorithm Development

The net value of netj is obtained by aggregating all inputs to the neuron i . This 

depends on the Sugeno’s Fuzzy Integral. Let

Xj e [0,1 ] c where j = 1,...., n0 and

All network weights Wy(1) [0,1] c 3\, where 1 = 1,2.

Also,
P(j): be the power set of the set J of network inputs, where : Jy is the jlh input of the i* 

Neuron.

WAVEFORMS DURING TESTING
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Let
g: P(J) -> [0,1] be a function defined for layer 1 ; as follows:

g(0) = 0 ; g(Jij)= wy® ; n0>j> 1 ............................. (6.5)

Also
g ( Jy i, Jy 2.......Jijr)= Wiji(1) VWij2 (1) V .......VWijr(1)

where { j1;j2, } t= { 1,2, ...,n0 }
And
g (Jii, Ji2.......Jj n o ) = 1 • [ A -> MIN operation, while

V -> MAX operation in the unit interval [0,1] c: 91. ]
.......................................................(6-6)

It is proved that function { g } is a fuzzy measure on P(j) , hence the functional 
assumes the form of Sugeno integral over the finite reference set J . Let

h : P(I) -> [0,1] be a similarly defined function for layer 2.

The net evaluation for the layers will take the form:

Hidden Layer:
net;(h) = V | A xp| A g(G) ,

GsP(J) | peG |

The activation function is given by:

(ph(Wi, Xj, bj) = 1 -exp(-neti(h)-bj) ............................... (6.7)
1 + exp (-nets(h) -bj) 

so that the value e [0,1].

Output Layer:

netj(0)= V | A xp| A h(G) ,
GeP(I) | peG |

The activation function is given by :

q>h(W0, Xo, b0) = 1 - exp (-netj(o) -b„) .......................... (6.8)
1 + exp (-netj 'o) -b0)

so that the value e [0,1].
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The back propagation can be used to obtain error signal.

6.6.2 Weight Update for jth output node

Weight update equation at time n+1 is:

Wji(n+1) = Wji(n)+rj 5j(n)yi(n) +aAWji(n-l) ........................................ .................... (6.9)

Where

Sj(n) = ^’(vj^ejCn) ......................................................... (6.10)

(|)j’(Vj(n)): is the derivative of the activation function at the input of the jth node Vj(n). 

ej(n) : is the difference between actual output and expected output at the jth node, at 

instant n.
Yi(n): is the input from ith hidden neuron to the neuron j at output layer at time 

instant n. 

a: Momentum factor 

t| : Learning rate

6.6.3 Weight Update for ith hidden node

Weight update equation at time n is:

wik(n+l) = Wik(n) + qSi(n)xk(n) +aAWji(n-l) ........................................................ (6.11)

Where
O

5i(n) =4»i ’ (Vi(n))28j(n) Wji(n) ...................................................... (6.12)
j=l

<j)j’(Vj(ii)): is the derivative of the activation function at the input of the j* node Vj(n). 

8j(n) : is, value of 8 calculated at jth output node .
Wji(n): is the value of synaptic weight from ith hidden node to jth output node. 

xk: input from the kth input node.

In order to obtain [ wik(n+l) ] e [0,1], weights are updated as follows :
[1] . If Expected Value = <ph(W0, X,,, b0) No adjustment is required.

[2] . If Expected Value > cp h (W0, X0, b0)
if[wjj(n)< Expected Value ]

Wjj (n+1) = 1 A (Wy (n) + A. wy )
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Else

Wij(n+1)= Wij(n)

[3]. If Expected Value < (ph(W0, X0, b0 a(2) 4

if[Wjj(n) > Target Value ]

Wj j (n+1) = 0 v (wy (n) + A.wy )
Else

Wij(n+1)= Wij(n)

With 1 = 0 = 6, H = 3 (and hence CR = 2:1), Number of time epochs = 5000. We
obtained
PRD =

during training 28.6542
during testing 22.7810

Waveforms for the method are similar to Figure 6.11 and 6.12

In conventional methods, data compression is achieved by reducing number of bits 
representing a particular sample in the hidden layer. On the contrary, in the proposed 
method, number of bits per samples is reduced to half. Similarly, compression with 
any integer value is possible giving rise to different values of PRD. The extended 
back propagation was found to be conversing fast for the same error goal and target 
values, in comparison with the normal back propagation. It was found that the speed 
also depends on initial weights.


