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Chapter: 7
Biomedical signal detection__________________
7.1 Introduction

There are three distinct wave components in every cycle of an ECG viz. P, QRS 

complex and T (occasionally a Fourth Wave Component Viz U May Be Seen). For 

normal individuals each of these wave components has a specific wave shape 

corresponding to each lead, though slight but distinct variations can be noticeable. On 

the other hand, one can distinguish abnormal ECGs because of their difference in 

rhythm and/or morphologies. Thus by interpreting ECG, the manner of electrical 

conduction in the heart (normal or abnormal) can be understood. Hence for 

interpreting and ECG it becomes mandatory to detect the P. Q, R, S and T waves.

A lot of work has been done for the computerized detection of QRS complexes. The 

algorithms for QRS detectors can generally be divided into three categories: 

nonsyntactic, syntactic, and hybrid. The algorithms based on a syntactic approach are 

time-consuming; due to the need for grammar inference for each class of patterns 

hence the detectors are nonsyntactic. The syntactic methods [l], [3] use templates tor 

identification, these methods are very tedious and show no improvement in 

performance. Under the non syntactic methods are the following papers [3], [4] Pan 
and Tompkins in their paper [l] developed a pre-processor scheme for QRS detection 

that is more or less considered a standard. However in the decision rule section, 

adaptive thresholding was used and for T wave detection, the slope criterion was 

used. This did not prove to be very reliable. Hamilton and Tompkins in their paper [3] 

used the same pre-processor technique as in [3] but modified the decision rule section; 

they used a two-dimensional event vector with peak signal level and elapsed time 

from the last fiducial mark as parameters. They also used refractory blanking and 

search back methods to improve the detection efficiency. However this approach was 

found to be slow.

In [5], authors have described a QRS complex detector based on the dyadic wavelet 

transform (Dy WT) which is robust to time-varying QRS complex morphology and to 

noise. A spline wavelet suitable for QRS detection can be designed. The scales ot this 

wavelet are chosen based on the spectral characteristics of the electrocardiogram ECG 

signal.

In [l] there is developed a real time algorithm for detection of the QRS complexes of 

ECG signals, It reliably recognizes QRS complexes based upon digital analysis ot
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slope, amplitude, and width. A special digital band pass filter reduces false detection 
caused by the various types of interference present in ECG signals.

The detection of the QRS complex specifically, the detection of the peak of the QRS 
complex, or R wave in an electrocardiogram (ECG) signal is a difficult problem since 
it has a time-varying morphology and is subject to physiological variations due to the 
patient and to corruption due to noise.

The traditional approach to detecting heartbeats was to take the derivative of the ECG 
signal. The QRS complex is the sharp rise and fall in the waveform. Derivatives were 
used to detect the significant change in voltage of the ECG signal. Derivatives gave 
an accurate detection if the signal had been cleaned up of noise. New approaches, 
including neural network prediction and wavelet transforms, are able to analyze the 
signal with the noise intact.

This chapter includes introduction of ECG with characteristics points and features of 
real time detection. A brief overview of Traditional classical and transformed based 
methods is given. It also accounts for the work done by the researchers for detection 
using ANN. The MATLAB implementation of our proposed techniques is carried out.

7.2 QRS Complex

The QRS complex is the sharp rise and fall in the waveform. Derivatives were used 
to detect the significant change in voltage of the ECG signal. For a well-filtered ECG 
signal, derivatives were accurate as shown in figure 7.1.

Figure 7.1 Output waveforms for the different peak detectors
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Figure 7.2 ECG Processing

Various signal processing algorithms have been developed to process the ECG. 
Detecting QRS complexes in the ECG is one of the most important tasks that need to
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The functions corresponding to the letters on the graph are listed in table 7.1. Letters 
b and c are based solely on an approximation of the first derivative while d and e 
include an approximation of the second derivative of the ECG signal. The second 
derivative was used to help reduce false positives from baseline drift, which is similar 
to a DC offset, x’ and y are smoothed functions of the ECG signal.

Table 7.1 Description and formulae for Fig 7.2

Letter Function Description

a y(n) = x(n) Unfiltered ECG Signal

b yi(n) = x(n+l) - x(n-l) First Derivative

c y,(n) = x’(n)-x’(n-l)
X‘(n) = 0 if |x(n)| <6,|x(n)|

otherwise

Smoothed First Derivative

d z(n)=1.3|yi(n)| + l.ljy2(n)| 
y2(n) = x(n+2) - 2x(n) +x(n-2)

Linear Combination of First
and Second Derivative

e z(n) = yi(n) + |y2(n)| 
yi(n)= {0.25,0.5,0.25}*|yi(n)|

Linear Combination of
Smoothed First Derivative and

Second Derivative

f Results from [2].

g z(n) = ITk|x(n-k)-x(n-k“l)|, from k= 0 
toN-1

Multiplication of Backwards 
Difference (MOBD)

Processing



Chapter 7: Biomedical signal detection 170

be performed. This stage is crucial in basic ECG monitoring systems and also is 
important for all other ECG processing applications. Enhancement of the ECG is also 
important in a stress test. The stress ECG is prone to various types of noise, and it is 
important to reduce the noise without distorting the morphology of the ECG. 
Arrythmia classification is another important task in interpretive systems, which 
provide a diagnostic classification of the ECG. Another useful processing task is a 
noise alert algorithm which determines the fidelity of the ECG by indicating the level 
and type of noise in the signal Figure 7.2 shows four out of the many tasks that must 
be performed on the ECG in different applications:

Automatic detection and classification of heart beats from the ECG waveform using 
biomedical signal processing techniques has become a critical aspect of clinical 
monitoring. These systems can, in real time, monitor the heart beat of a patient and 
alert clinicians when life-threatening conditions begin to surface. Many methods for 
automatic classification of various arrhythmias have recently been presented in 
literature including algorithms based on hidden Markov models, [7] self-organizing 
maps, [8] filter banks, [9] and neural networks. [6,10,11] The results show that neural 
network classifiers are capable of the highest accuracy as local classifiers, but have 
not yet proved to be as successful when used as global classifiers.

Senhadji et al. also achieved a high accuracy (98%) but only used 25 beats for training 
and 28 beats for testing in their DWT / linear discriminates classifier. [12]. In 
contrast, de Chazal’s group tested their classifier over the entire MIT / BIH database 
of 48 files but achieved an accuracy of only 89%. Their method of classification 
involved combining heart beat morphology with timing interval features for the 

training of their network. [6]

These results suggest that the combination of waveform shape and timing interval 
features is necessary for robustness while wavelet decomposition provides higher 

accuracy.

In [9] an algorithm for the determination of the limits of P and T waves is proposed, 
and its foundations are mathematically analyzed. The algorithm performs an adaptive 
filtering so that the searched point corresponds to a minimum. Immunity to base line 
drifts and full adaptation to any cardiological criteria are also taken care in the 
algorithm. A series of tests are made involving real registers with different 

morphologies for P and T-waves.
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The base line of a typical ECG serves as an algorithm reference, setting the 
boundaries of ECG waves based on amplitude criteria. Base line drifts lead to 
deficient algorithm performance. This is of particular concern in exercise registers, 
where ECG recordings are greatly affected by the electromyogram.

The difficulty arises from the different criteria used by cardiologists in establishing 
the limits of the waves. For example: some set the end of T at the inflection point of 
the final part of the wave, while others consider the intersection between the base line 
and the tangent with maximum slope in this final area.

The implementation of an algorithm taking into account these often contradictory 
criteria is very complex. The algorithm developed in [9] overcomes both 
inconveniences: it is immune to base line drifts and is able to adapt to cardiologist 
criterion in determining the boundaries of P and T waves. It is also immune to 
Gaussian noise addition. The algorithm has been applied to obtain time-series in 5- 
min registers from healthy individuals. These series are extensively used in clinical 
research [10].

7.3 QRS Detection Techniques

The traditional approach to detecting heartbeats was to take the derivative of the ECG 
signal. The QRS complex is the sharp rise and fall in the waveform. Derivatives were 
used to detect the significant change in voltage of the ECG signal. Derivatives gave 
an accurate detection if the signal had been cleaned up of noise. Some classical 
techniques are described in this section.

7.3.1 Application of Detector

Most of the current QRS detectors are divided into two stages: a preprocessor stage 
to emphasize the QRS complex and a decision stage to threshold the QRS enhanced 
signal. Typically, the preprocessor stage consists of both linear and nonlinear filtering 
of the ECG. The ECG signal is first bandpass filtered to reduce noise and 
differentiated to emphasize the large slope of the R wave; it is then squared to further 
exploit the high-frequency content of the QRS complex. A short-time energy estimate 
is obtained by smoothing the resulting signal with moving window integration. The 
selection of the bandwidth of the bandpass filter and the duration of the sliding 
analysis window is not always straightforward. The bandwidth of the bandpass filter 
must be chosen to reflect the tradeoff between noise reduction and loss of high- 
frequency details; if the bandwidth is too large, noise reduction suffers. If the 
bandwidth is too narrow, high-frequency QRS characteristics are lost.
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A detector is presented in [11] which finds changes in the repolarization phase (ST-T 
complex) of the cardiac cycle. It operates by applying a detection algorithm to the 
filtered root mean square (RMS) series of difference between the beat segment (ST 
segment or ST-T complex) and an average pattern segment The detector has been 
validated using the European ST-T database, which contains ST-T complex episodes 
manually annotated by cardiologists, resulting in sensitivity /positive predictivity of 
85/865 and 85/76% for ST segment deviation and ST-T complex changes 
respectively.

The proposed detector includes signal preprocessing, computation of the root mean 
square (rms) difference series, filtering, and a decision algorithm which finds the 
ischemic events, as per Figure 7.3

ECG
Events

Figure 7.3 Detector Design

The preprocessing consisted of QRS detection and normal beats selection according 
to the arrhythmia detector and baseline wander attenuation using cubic splines, and 
rejection of noisy beats. In order to avoid the influence of high frequency noise in the 
rms difference series (e.g., 50/60 Hz noise), the ECG is low-pass filtered using a 
linear phase FIR filter (cutoff frequency 25 Hz). Beat segmentation is done by 
selecting intervals of 50 and 300 ms for the ST segment and ST-T complex, 
respectively, beginning at a distance from the QRS fiducial point dependent on the 
RR interval. These intervals definitions, related to the QRS fiducial point, avoid the 
always problematic estimation of the J point to define the repolarization windows, 

although consider the heart rate effects.

The proposed; detector has a performance similar to those which have a more 
complicated structure. The detector has the advantage of finding both ST segment 
deviations and entire ST-T complex changes hereby providing a wider 
characterization of the potential ischemic events. A post-processing stage, based on a 
cross-correlatiQn analysis for the episodes in the RMS series, is presented. With this 
stage sub clinical events with repetitive pattern were found in around 20% of the 
recordings and ,improved the performance to 90/85% and 89/76% for ST segment and 
ST-T complex changes respectively.
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The detector performance needs to be evaluated by comparing the cardiologists’ 
annotations and the detector output with regard to the following aspects:

• Detection rate
• Duration
• Magnitude of detected episodes

First two aspects are evaluated in terms of sensitivity and positive predictivity for 
both detection rate and duration respectively. The third aspect, related to the accuracy 
in the episodes magnitude estimation, is measured by comparing event-by-event the 
annotated amplitudes of the episodes (deviation peak as measured by the 
cardiologists) to the values obtained by the detector. The estimated linear correlation 
coefficient, between the two sets provides a measure of the detector linearity. Two 
kinds of statistics are commonly used for detector validation: gross statistics, in which 
the episodes of all patients are assigned equal weights, and averaged statistics, in 
which every patient is assigned equal weights.

Ischemic heart disease constitutes one of the most common fatal diseases in the 
western hemisphere. Myocardial ischemia is caused by a lack of sufficient blood flow 
to the contractile cells and may lead to myocardial infarction with its severe sequellae 
of heart failure, arrhythmias, and death. Ambulatory monitoring of the 
electrocardiographic (ECG) signal has become the noninvasive test most widely used 
for detecting cardiovascular diseases. Ischemic ECG changes typically precede the 

onset of anginal pain and, hence, these may be the only sign of “silent myocardial 
ischemia” [13], Therefore, it is essential to develop methods that detect early changes 
in the ECG, possibly indicating the onset of an acute ischemic syndrome.

Different ECG changes related to the evolution of ischemia have been described, 
including T wave amplitude changes, ST deviations and even alterations in the 
terminal portion of the QRS complex [14]. In different situations T wave changes 
could precede ST segment deviations during the ischemic process [14], [15] and, 
therefore, shohld be considered in monitoring systems. The use of global 
representations: for the ST-T complex instead of using a single point from the ST 
segment better characterizes ischemic patterns [16], [17], and yields better

I

identification of an occluded artery [18]. Unfortunately, commercial equipment 
usually considers a fraction, of the whole repolarization period, i.e., the ST60 or ST80 
point! Different algorithms have been designed for analyzing the ST segment, either 
in the ECG signal [19], [20] or in the averaged ECG [21]-[29].
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[11] describes the design and validation of a system that detects changes either in the 
ST segment, or in the entire ST-T complex (including the T wave), thereby providing 
a wider characterization of ischemic events. It also describes the different parts of the 
detector, the database for validation and the performance measures. A cross­
correlation study between episodes is also included.

7.3.2 Application of Filter Banks

[30] uses a multi rate digital signal processing algorithm to detect heartbeats in the 
electrocardiogram (ECG). The algorithm incorporates a filter bank (FB) which 
decomposes the ECG into sub bands with uniform frequency bandwidths. The FB- 
based algorithm enables independent time and frequency analysis to be performed on 
a signal. Features computed from a set of sub bands and a heuristic detection strategy 
is used to fuse decision from multiple one-channel beat detection algorithm. The 
overall beat detection algorithm has a sensitivity of 99.59% and a positive predictivity 
of 99.56% against the MIT/BIH database. Furthermore this is a real-time algorithm 
since its beat detection latency is minimal. The FB based beat detection algorithm also 
inherently lends itself to a computationally efficient structure since the detection logic 
operates at the sub band rate.

Beat detection typically incorporates a preprocessing filter which decomposes the 
ECG into a signal which maximizes the signal-to-noise ratio (SNR) of the QRS 
complex [1]. A nonlinear processing stage and moving window integrator (MWI) are 
used to compute a signal that emphasizes the energy of the QRS complex. Beat 
detection logic incorporates a history of signal peaks and noise peaks which are used 
to establish signal and noise levels, respectively. A threshold is then used to decide 
period of time corresponding to the average heartbeat interval elapses without a beat 
detection a “search-back” strategy is used to check the ECG again for the presence of 

a beat [3].

The filters used are designed to optimize the SNR of the QRS complex but the 
Information from other frequency components of the ECG is filtered out and cannot 
be incorporated into the beat detection logic. Flence the preprocessing filters are not 
useful to other ECG processing tasks. The search-back strategy sometimes results in a 
beat detection latency time, of more than one heartbeats interval. This is not useful 
when immediate indication of the occurrence of a beat is needed. Recent and 
extensive work on the design and use of Fileter Banks is presented in the literature
[31] —[32].
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Figure 7.4 shows that a FB contains a set of analysis filters which decompose the 
bandwidth of the input signal into subband signals with uniform frequency bands.

Analysis Bank Synthesis Bank

Figure 7.4 Filter Banks

The subbands can be downsampled since the subband bandwidth is much lower than 
that of the input signal. Processing can be performed on the subbands according to a 
specific application. Moreover, the subbands may be reconstructed by a set of 
synthesis filters which will perfectly reconstruct the input signal. Figure 7.4 shows 
the ideal , magnitude responses of the filters. The subbands provide information from 
various frequency ranges and, thus, it is possible to perform time and frequency 
dependent processing of the input signal. Because the subbands are downsampled, 
processing can occur at a lower rate than the input sampling rate. [17], [18] describe 
processing the subbands to reduce noise in the higher frequency subbands outside the 
QRS complex. The rationale in this is that there are no high frequency components of 
interest outside the QRS complex. This noise removal strategy is potentially useful to 
enhance the stress ECG. Thus, the FB allows time and frequency-dependent 
processing to be performed at a computationally efficient rate to analyze the ECG.
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7.3.3 Real time Detection Algorithm

[1] describes a real time algorithm for detection of the QRS complexes of ECG 
signals, based upon digital analyses of slope, amplitude, and width. A special digital 
band pass filter reduces false detection caused by the various types of interference 
present in ECG signals. This filtering permits use of low threshold, thereby increasing 
detection sensitivity. The algorithm automatically adjusts thresholds and parameters 
periodically to adapt to such ECG changes as QRS morphology and heart rate. For the 
standard 24 h MIT/BIH arrhythmia database, this algorithm correctly detects 99.3 
percent of the QRS complexes.

Software QRS detectors typically include one or more of three different types of 
processing steps. Linear digital filtering nonlinear transformation and decision rule 
algorithm. [1] use all three types. Linear process includes a bandpass filter, a 
derivative and a moving window integrator. The nonlinear transformation that is used 
is signal amplitude squaring. Adaptive threshold and T-wave discrimination 
techniques provide part of the decision rule algorithm.

The slope of the R wave is a popular signal feature used to locate the QRS complex in 
many QRS detector [33]. An analog circuit or a real time derivative algorithm that 
provides slope transformation is straightforward to implement. However, by its very 
nature, a derivative amplifies the undesirable higher frequency noise components 
Also, many abnormal QRS complexes with large amplitudes and long durations are 
missed in a purely derivative approach because of their relatively low R-wave slopes. 
Thus R-wave slope alone is insufficient for proper QRS detection. To achieve reliable 
performance, we must extract other parameters from the signal such as amplitude, 
width and QRS energy [34], [35],

7.3.4 An automated approach

An algorithm has been proposed in [36] to detect the QRS complexes and the T waves 
in an ECG signal. The algorithm incorporates a parameter viz SDA for identification 
of QRS complexes and T waves. This method has been mainly developed to detect 
the wave components when there are morphological changes rather than any rhythm 
changes.

7.4 Wavelet based detection methods

Wavelet transforms decompose the signal with respect to a wavelet family (mother 
and her many daughters). Daughter wavelets are scaled and translations of the mother 
wavelet. For QRS detection, typical wavelets include Harr, spline (quadratic, cubic, 
and higher powers), and Daubechies.
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A short-time energy detector may be developed using a sliding analysis window. The 
choice of the duration of the sliding window results in a tradeoff between false and 
missed detections. A long window allows a large energy accumulation which easily 
exceeds a threshold, whereas narrow window duration allows too little energy to 
accumulate. In short, in the frequency domain, the fixed bandwidth of the bandpass 
filter cannot adapt to changes in the bandwidth of the QRS complex, and in the time 
domain, the fixed length of the moving window cannot adapt to changes in the 
duration of the QRS complex. A prefixed bandpass filter/short-time energy technique 
does not accurately account for the inherent time-varying morphology of the QRS 
complex i.e. they do not adapt very well to changes in QRS morphology. To 
overcome the limitations imposed by fixed duration windowing techniques in 
detecting time-varying transients, a general, adaptive technique that captures the 
spectral/temporal variations in QRS morphology is needed [36].

[36] uses the dyadic wavelet transform (Dy WT). A chosen “mother wavelet” has a 
fixed shape; however, the wavelet functions derived from it by changing scales, 
referred to as “daughter” wavelets, have different bandwidths and time supports. At 
any particular scale, the Dy WT is the convolution of the signal and a dyadically time- 
scaled daughter, wavelet. Scaling the mother wavelet is the mechanism by which the 
Dy WT adapts to the spectral and temporal changes in the signal being analyzed. The 
Dy WT inherently has a multi resolution capability. For small scale values, it exhibits 
high temporal and low spectral resolution whereas for large scale values, it exhibits 
low temporal and high spectral resolution. The Dy WT was applied for edge detection 
and image compression, while in [37] it was used to extract pitch period information 
from voiced speech segments. The Dy WT has also been previously applied to ECG 
analysis in the context of 1) detecting ventricular late potentials (VLP’s) [38], and 2) 
separating the various waves (P, R, and T) in the ECG [38]

A specific spline wavelet, suitable for the analysis of QRS complexes, is: designed and 
the scales are chosen adaptively based on the signal. The Dy WT is computed at two 
consecutive scales and at one additional scale if necessary. It was observed that the 
Dy WT-based QRS detector is robust to noise.

The algorithm of the Dy WT-based QRS detector is as follows:

Algorithm computes the Dy WT of a windowed portion of length Lw seconds of an 
ECG signal at the dyadic scales a=2’, i=im, im+i, ... iu. Lw was set to 2.05 s (512 
samples). The starting index im and the ending index were chosen based upon known
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physical constraints. QRS complexes were detected by making use of the property 
that the absolute value of Dy WT has localized maxima across several consecutive 
scales at the instant of the occurrence of transients. For each scale there is located the 
local maxima of the absolute value of Dy WT (b, 21) which exceed a given local 
threshold. A choice of 60% as the local threshold value (i.e., 60% of the maximum 
value of the |Dy WT| in each windowed portion of data) gave the best results. Hence, 
0.6 was used as the local threshold value. Both the number and the locations of 
thresholded local maxima (peaks) of the |Dy WT| were considered at the scale, a=2‘ 
and at the scale a=2l+1. If the number of peaks is the same, and the location of the 

peaks align within ±25 samples (±0.1s) neighborhood of time across two consecutive 
scales, it was assumed that the locations of these maxima correspond to the location 
of possible QRS complexes. However, if the number of peaks agrees but the locations 
exceed ±25 samples time neighborhood, the thresholded data is pruned of the 
offending misaligned peaks. The locations of peaks that align across the two 
consecutive scales are stored in a vector of possible QRS complexes. If the number of 
peaks does not agree across two consecutive scales, the DyWT is computed at the next 
dyadic scale, and the procedure described above is repeated while I <=ia.

Next, the vector of possible QRS complexes was searched for refractory peaks. Any 
peak in the vector of possible QRS complexes occurring within a refractory period 
(0.2 s or 50 samples) of a previously thresholded peak was disregarded since the 
refractory period represents the interval immediately following a QRS complex 
during which no further excitation of the cardiac tissue can initiate another QRS 
complex. Thus, detection of false peaks could be minimized, and the locations 
represent the time of occurrence of the transient waves. The heart rate was then 
estimated by computing the inverse of the time interval between two consecutive 

waves.

The Dy WT is generally computed at scales 21 for, theoretically, all i. However, one 
can restrict the range of scale parameters needed to compute the Dy WT based on the 
nature of the signal under study. Using the procedure outlined in [36], they designed a 
cubic spline mother wavelet with center frequency equal to 120 Hz and a bandwidth 
of 240 Hz. Since the average spectral support of the QRS complexes is 6-30 Hz and 
most of the spectral power of motion artifact and muscle noise is within 0-5 Hz as 
shown in [39], they chose the scales such that they cover the spectral support of QRS 
complexes. Such a selection of scales helps in filtering out noise.
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Consequently, the algorithm starts with the scale, 2m (index im = 1), corresponding to 
center frequency of 60 Hz and bandwidth 120 Hz, and continues up to a maximum 
scale, 21U (index iu = 3), corresponding to center frequency of 15 Hz and bandwidth of 

30 Hz. This is the upper limit. The algorithm does not compute the Dy WT beyond 
this scale. If the algorithm fails to find any matching peaks at this scale, then it 
declares that there are no QRS complexes in the data segment and proceeds to the 
next data segment. After choosing the lowest and highest scales, they compute the 
DyWT at the lowest scale and double the scale parameter (if the number of peaks and 
their locations do not match at two successive scales) until the highest scale is 
reached. The flow chart of the algorithm is shown in Figure 7.5.

Figure 7.5 Flow chart of the DyWT-based QRS detector
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7.4.1 Detection of ECG characteristic points

A good performance of an automatic ECG analyzing system depends heavily upon 
the accurate and reliable detection of the QRS complex, as well as the T and P waves. 
The detection of the QRS complex is the most important task in automatic ECG signal 
analysis. Once the QRS complex has been identified, a more detailed examination of 
ECG signal, including the heart rate, the ST segment, etc., can be performed.

They [43] first filter the ECG signal with a bandpass filter (or a matched filter) to 
suppress the P and T waves and noise. Then the signal is passed through a nonlinear 
transformation to enhance the QRS complexes. The decision rules are used to 
determine whether QRS complexes are present in the signal. A matched filter [40] 
can improve the signal-to-noise ratio; its effect is limited by the variability of QRS 
waveforms for different beats of the same subject. The detection of the P wave is 
difficult because this wave is small and sometimes is embedded in noise. Gritzali 
proposed a simple method to detect P and T waves by “length transformation” [41], 
but it is not robust to noise.

Wavelet transform is a very promising technique for time frequency analysis [41]. By 
decomposing signals into elementary building blocks that are well localized both in 
time and frequency, the WT can characterize the local regularity of signals [42]. This 
feature can be used to distinguish ECG waves from serious noise, artifacts and 
baseline drift. In this paper, an algorithm based on the WT for detecting QRS 
complex, .P and T waves is proposed. A dyadic wavelet transform is used for 
extracting ECG characteristic points. The local maxima of the WT modulus at 
different scales can be used to locate the sharp variation points of ECG signals. The 
algorithm [43] first detects the QRS complex, then the T wave, and finally the P 

wave.

7.5 ANN based detection

The section describes methods used for detection based on Artificial Neural Network. 
ART2 is used to store pattern which are to be detected. It requires some preprocessing 
of ECG including cycle separation. They can serve two different functions when 
detecting QRS waveforms: adaptive filtering (Preprocessing) and waveform 
prediction.

7.5.1. Self-Organizing Network for QRS recognition

7.5.1.1 Introduction
[44] describes a self-organizing QRS wave recognition system for electrocardiograms
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(ECG’s) using neural networks. An ART2 (adaptive resonance theory) networks are 
employed in this self organizing neural networks system. The system consists of 
preprocessor detects R points in the ECG and divides the ECG into cardiac cycles. A 
QRS-wave is the part of the ECG that is between a Q points and an S point. The input 
to the ART2 network is one cardiac cycle from which the ART2 network indicates the 
approximate locations of both the Q and S points. The recognizer establishes search 
regions for the Q and S points. Then, it locates the Q and S points in each search 
region. The system uses this method to recognize a QRS wave. Then, the ART2 
network learns the new QRS wave pattern from the incoming ECG. The ART2 
network self organizes in response to the input ECG. The average recognition error of 
the present system is less than 1 ms in the recognition of the Q and S points.

7.5.1.2 The Principle of QRS-Wave recognition with ART2 network

It was assumed in [44] that the portion of the ECG from the R point to the Q point and 
the portion from the R point to the S point can be approximated by a straight line. 
This is only a preliminary approximation. After learning takes place with the ART2 
network, this assumption is no longer necessary. One can find a well-fitted right- 
angled triangle pattern for the portion of the ECG.

ttw*! 4J

Figure 7.6 Q point recognition

A straight line approximating the portion of the ECG is the hypotenuse of the right- 
angled triangle pattern as shown in Figure 7.6. One hundred right-angled triangle
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patterns are memorized by long- term memories (LTM's) of the ART2 network. The 
length of the base of each triangle patterns is different. In the input layer of the ART2, 
the input patterns are normalized within a predetermined level by the competitive 
interaction among neurons. An automatic gain control ensures that all the right- 
angled triangle patterns memorized in the LTM have the same height. These right- 
angled triangle patterns thus memorized are the initial template patterns for the ART2 
network. As the portion of the ECG 100 ms in length from the R point in the direction 
towards the P point, as shown in Figure 7.6, is input to the ART2 network, the ART2 
network associates the right-angled triangle pattern that is closest to the input ECG 
from those stored in the LTM’s. The ART2 network receives a raw ECG signal, and 
each FI neuron represents a 1 ms sample of the ECG. At that time, the left end of the 
associated right-angled triangle pattern indicates the approximate location of the Q 
point in the ECG. The approximate location of the S point is determined in a similar 
manner. The recognizer of the system establishes search regions for the Q and S 
points, i.e., 4 ms before and after the points indicated by the ART2 network. The 
recognizer locates the Q and S points in each established region. The recognizer 
considers a location of the ECG as the Q point when the slope

Slope = (x(nT) - x(nT + T))/T .................................... .................. (7.1)

is less than 16.0 in the Q point search region, where T is the sampling rate of the 
ECG. The S point is the location where the following condition is satisfied

(x(sT + nT)~x(sT + nT + T))/T =
<0 n = -2, -1, 0
>0 n= 1,2 ...................................................... (7.2)

where s is the location of the S point in the search region. If there is no location in the 
ECG satisfying (7.1) or (7.2), the system considers that the approximate locations 
indicated by the ART2 network are the Q and S points, respectively. These two 
conditions are determined experimentally. In the search region, when there are a few 
locations that satisfy (7.1) or (7.2), the system may recognize a point as the Q and S 
point that is not the true Q or S point. After completing a QRS-wave recognition of 
one cardiac cycle, the ART2 network changes the pattern of the right- angled triangle 
associated by obtaining new information from the input ECG. The ART2 network 
extracts the features of the input ECG pattern and changes stored patterns in the LTM 
so that the ART2 network will be able to create new template patterns for the 
recognition of the QRS-wave. The patterns changed in the LTM replace the template
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patterns of the initial values of the LTM. The right-angled triangle patterns are used as 
the initial template patterns of the QRS-wave. As the system self-organizes with 
respect to the incoming ECG patterns, the template patterns no longer retain the right- 
angled triangular shape. With the present algorithm, however, the initial length of the 
base of the right-angled triangle patterns is held even if the initial template patterns 
change according to the incoming ECG. As the process goes on, many characteristic 
QRS-wave patterns, which are different depending on each patient, will be stored in 
the LTM. Successive Q and S points recognition is carried out using these stored 
patterns. This is the seif- organizing process of the present system in response to 
newly input ECG’s. The vigilance parameter determines whether the input pattern is 
the same as a pattern stored in the LTM. When the matching rate between two 
patterns (one is the input to the system and the other one is the stored pattern in the 
LTM) is higher than the vigilance level, the system considers the two patterns as the 
same. Therefore, when the matching rate between QRS-waves from a different patient 
is higher than the vigilance level, learning is carried out by lumping together these 
QRS-waves. It is considered that the two patterns are the same when the matching 
rate between the two Patterns is higher than the vigilance level. Learning by lumping 
similar patterns will have no effect on correct pattern recognition. When a physician 
wants to know the characteristic QRS-wave patterns of a patient for diagnosis, 
clusters of the LTM are added for each patient to the system. The QRS-wave 
classification of each patient is performed using a corresponding cluster. At that time, 
one cluster of LTM stores QRS-wave patterns for one patient.

7.5.1.3 ART2 network for QRS-Wave recognition

Carpenter and Grossberg designed the neural-network model of the ART2 network. 
The ART2 network self-organizes in response to newly input patterns [45]. The 
ART2 network consists of an attentional subsystem and an orienting subsystem.

The attentional subsystem (Figure 7.7) recognizes the input patterns through a 
hypothesis testing cycle. It consists of a feature detector (FI), a category 
representation (F2), and a set of bottom-up and top-down LTM’s. The connections 
between the neurons in the FI layer and the corresponding neurons in the F2 layer 
form the LTM. A pathway from the FI layer to the F2 layer is the bottom-up LTM. 
The pathway from the F2 layer to the FI layer forms the top-down LTM. In the 
hypothesis testing cycle, the FI layer receives an input pattern and extracts the 
features of the input pattern using a Non-linear signal function.
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Figure 7.7 Basic architecture of ART2 network

7.5.1.4 Results

Some fiducial point recognition systems have been developed in the past. In these 
systems, an ECG 10 s in length is taken and divided into cardiac cycles. The cardiac 
cycles are stacked one over another to reduce noise. The fiducial points are 
recognized in one cardiac cycle of the ECG that emerged as a result of the stacking. 
They are the average of all the fiducial points in the cardiac cycles before stacking. 
The present system, however, recognizes the Q and S points in each cardiac cycle 
before stacking. The past systems recognize the fiducial points by slope detection. 
They have compared the recognition rate of the present system with the recognition 
rate of the slope detection method. Since the ART2 network is a self-organizing 
neural network to the input patterns, no training is needed for pattern recognition. We 
gave right-angled triangle patterns to the LTM's of the ART2 network as the initial 
values. The right- angled triangle patterns are used to locate the approximate location 
of the Q or S point. The recognition error rate of the QRS-wave by the present system 
was compared with the recognition error rate of the slope-detection method. In the 
slope-detection method, high- frequency disturbance is removed with a low-pass 
filter. Then the Q and S points are recognized by examining the slope of the ECG 
from the R point to the Q or S point. The slope from the R point towards the P wave is
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calculated for the Q point recognition. The S point is recognized in a similar manner. 
The low-pass filter was employed to remove high-frequency disturbance. The Q and S 
points are recognized when the conditions of (7.1) for the Q point and (7.2) for the S 
point are satisfied. The recognition error of the QRS- wave of the present system was 
evaluated by the following method. A part of the ECG including the QRS-wave, 100 
ms in length from the R point in the direction towards the P wave and 100 ms in 
length from the R point in the direction towards the T wave was printed on paper. 
Both the Q and S points were recognized by the present system and by the slope- 
detection method. Both the Q and S points were visually recognized by a well-trained 
person. Visual recognition is carried out by examining the slope change of the ECG 
wave form and the wave form of the ECG before and after the points were visually 
considered to be Q and S points. In evaluating recognition errors, if we visually 
recognized the Q and S points clearly, we calculated the recognition error. They 
considered that the visually recognized Q and S points were the true Q and S points. 
Then, the recognition errors by the present system and slope detection were evaluated 

using the visually recognized Q and S points. A total of 1500 cardiac cycles taken 
from the ECG’s of five subjects were processed to check recognition errors by both 
the present system and the slope-detection method.

7.5.2 Adaptive back propagation

7.5.2.1 Introduction

A Supervised neural network (NN) based algorithm was used for automated detection 
of ischemic episodes resulting from ST segment elevation or depression [46]. The 
performance of the method was measured in terms of beat-by beat ischemia detection 
and in terms of the detection of ischemic episodes. The algorithm used to train the NN 
was an adaptive back propagation (BP) algorithm. This algorithm drastically reduces 
training time when compared to the classical BP algorithm. The recall phase of the 
NN is then extremely fast, a fact that makes it appropriate for real time detection of 
ischemia episodes. The resulting NN is capable of detecting ischemia independent of 
the lead used. It was found that the average ischemia episode detection sensitivity is 
88.62% while the ischemia duration sensitivity is 72.22%

7.4.2.2 Selection of the Training Set from the ST-T European Database- 
Ischemia Detection Rules

The training set was constructed using patterns from the ST-T European database. 
The ECG’s included in this database are 2-h-long recordings digitized at 250 Hz. This 
database is intended to be used for the evaluation of algorithms for ischemia analysis 
based on ST and T wave changes. The database consists of 90 continuous two- 
channel records. The leads used included modified leads VI, V2, V3, V4, and V5 and
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modified limb leads MLI and MLIII. Each record contains at least one ST or T 
ischemic episode. Specifically, for the ST episode annotations, the expert 
cardiologists used the following criteria:

1) ST segment deviations are measured in relation to a reference normal waveform 
selected from the first 30 s of each record.
2) Measurements of ST deviation are taken 80 ms after the J-point or in the case of 
tachycardia 60 ms after the J-point.
3) ST episodes must contain an interval of at least 30 s during which the absolute 
value of the ST deviation is no less than 0.1 mV.
4) The beginning and the end of each episode are annotated searching backward and 
forward, respectively, from the ST-episode, until a beat is found with absolute ST 
segment deviation less than 0.05 mV.

All conventions and definitions of the European ST-T database for ischemic episode 
classification were followed in this work. Specifically, the ECG recordings are broken 
into ten-beat groups. The number of normal and abnormal beats in each ten-beat 
group is then counted. If the number of normal beats is greater than or equal to the 
number of abnormal beats, then all beats of the group are assigned to the normal state. 
If the number of ischemic beats is greater than the number of normal beats, then all 
beats of the group are assigned to abnormal. Algorithm is designed to detect an 
ischemic segment if consecutive ten-beat groups are ischemic for at least 30 s. If this 
is not the case, a normal ECG segment is diagnosed. This way, the false detection of a 
single normal beat in an ischemic segment will not result in misclassification. One- 
hundredrtwenty patterns, resembling normal and ischemic cases encountered in 
clinical practice, were selected from the European ST-T Database for the construction 
of the training set. Such patterns included flat ST depression, sloped ST depression, 
and noisy signals. Specifically, 50% of the patterns used were normal, 25% had ST 
depression, and 25% ST elevation. Ischemic patterns were chosen from the patterns 
belonging to the most depressed area of the ischemic episodes.

7.5„2.3 Description and Training of the NN

Figure 7.8 shows the general configuration of the system used. The NN used to 
identify the ST segment, consisted of three layers. The number of neurons in the input 
layer . (Nj ) was chosen to be 20. This value was determined experimentally, so as to 
accelerate and stabilize the performance of the NN. In particular, the 40 points 
normally present in a typical ST segment sampled at 250 Hz were reduced to 20 by 
dividing the input points into successive pairs, and then taking the average value of 
each pair as the input to the NN.
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7.8 (a) Training Phase

7.8 (b) Recalling Phase
Figure 7.8 Flow for Adaptive back propagation

This accelerated both training and recall of the NN with no adverse effect on its 
classification accuracy. The number of neurons (Nh) in the hidden layer was chosen 
to be ten. The value of Nh was determined heuristically, so as to decrease the training 
time of the NN.

For the third layer (output layer), two neurons were used. The output of each of these 
neurons assumes a value between zero and one, which is rounded to one if higher than 
0.5 or to zero otherwise. The resulting four output combinations serve to identify four 
beat classes: normal beats, ST depressed, ST elevated, or unelassifiable.



Chapter 7: Biomedical signal detection 188

An adaptive BP algorithm was used for the training procedure [47], This BP 
algorithm changes the weights of NN so as to minimize the error or energy function, 
defined by the equation

E
M

= Si (7-3)

where M is the size of the training set, ok the output vector of NN, and tk the target 
vector for each training pair k . Each unit of the network uses the sigmoid activation 
function

f(x) = l/(l+e ~“x+p) (7.4)

where a and p and are constants that determine the transition of the neural unit.

The procedure for the training of the NN is based on an adaptive algorithm with the 
parameter a changing, so as to help avoid entrapment into local minima. Specifically, 
as with classical BP methodology, purpose is the minimization of the energy function

Aw = a * 8E
dw

(7.5)

where w is the weight vector of the weights between the input and the hidden layers. 
If in the above

equation 8E_
dw

: 0, a minimum has been reached.

7.5.2.4 Recall Phase of the NN

The main goal of the ECG preprocessing is to formalize the ST-segment in order to 
prepare an input suitable for the NN without loss of information. This was 
accomplished by computing the difference between an ischemic ST segment template 
and the normal (reference) template.

7.5.2.5 Results

There are defined two sets of performance indexes: 1) sensitivity and positive 
predictivity for ischemic ST episode detection and 2) sensitivity and positive 
predictivity for ischemia duration.
Correctly detected episodes are termed true positive (TP) episodes. Missed episodes 
are termed false negatives (FN). Erroneously detected nonischemic episodes are



Chapter 7: Biomedical signal detection 189

termed false positives (FP). Finally, correctly identified normal beats are termed true 
negative (TN). Four indexes calculated in [46] are defined as follows.

1) Ischemic ST Episode Sensitivity (ST Se): Is defined as the ratio of the number of 
detected episodes matching the database annotations to the number of annotated 
ischemia episodes. This index expresses the sensitivity of the algorithm to the 
identification of ST episodes
2) Ischemic ST Episode Predictivity (ST P): Defined as the ratio of the number of 
correctly detected (matching) episodes to the number of episodes detected
This index is a measure of the inclination to incur false detection. Here, the 
denominator is the number of ischemic ST episodes detected by the NN algorithm.
3) Ischemia Duration Sensitivity (IS Se): Defined as the ratio of the duration of true 
matched ischemia to the total duration of annotated ischemia in the database
4) Ischemia Duration Predictivity (IS P): Defined as the ratio of the duration of true 
matched ischemia to the total duration of the ischemia detected by the NN

Since the total number of ischemia episodes in the database is small, aggregate 
statistics was used. The gross statistics are obtained by evaluating the numerators and 
denominators of the four indexes indicated above over the whole database. The 
average statistics are obtained by evaluating the above indexes for each file of the 
database separately, and averaging over the number of files. The indexes for the 
episode detection are better than the ones for duration of ischemia. In particular, the 
gross statistics give an episode detection sensitivity of 85% versus 88.62% of the 
average statistics method. The ischemic episode detection positive predictivity is 
68.69% and 78.38%, respectively. On the other hand, the overall ischemia duration 
sensitivity stands at 73% for gross and at 72.22% for average statistics. The indexes 
for ischemia duration predictivity are 69.45% and 67.49% for gross and average 
statistics, respectively. Finally, the overall sensitivity and positive predictivity for the 
detection of the normal beats are 91% and 83%, respectively. From the above 
mentioned figures, it was observed that except in the case of episode predictivity, the 
performance of the algorithm is described consistently by all types of aggregate 
statistics.

Also, the average statistics produce better performance indexes as regards episode 
detection than gross statistics, while the opposite is true for the ischemia duration.

The performance indexes differ considerably from lead to lead, with the most 
problems encountered in lead MLIII (modified lead III). The lead with the best overall
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performance as compared with the overall figures of merit, is modified lead I (MLI). 

Also NN-based algorithm can reliably detect ischemia episodes even in leads not 

included in the training set such as MLI.

7.5.3 Competitive Learning based detection

Multiplication of Backwards Difference (MOBD) is defined. MOBD keeps a value of 

the maximum of the signal. Whenever the signal drops by half of the maximum, a 

peak is detected and the running maximum value is halved. In a QRS complex, the 

QR portion would set the running maximum to the highest value and the RS portion is 

what would be detected. The problem with derivatives and MOBD is that they give 

too many false positives and true negatives as compared to more modem methods.

In competitive learning the output neurons of a neural network compete among 

themselves to become active (fired). Whereas in a neural network based on Hebbian 

learning several output neurons may be active simultaneously. In competitive learning 

only a single output neuron is active at any one time. It is this feature that makes 

competitive learning highly suited to discover statistically salient features that may be 

used to classify a set of input patterns.

Input Vector xi X2..................... Xl

Figure 7.9 Competitive Learning Neural Network for QRS detection

In the simplest form of competitive learning, the neural network has a single layer of 

output neurons, each of which is fully connected to the input nodes. The network may 

include feedback connections among the neurons, as indicated in Figure7.9. In the 

network architecture the feedback connections perform lateral inhibition, with each 

neuron tending to inhibit the neuron to which it is laterally connected. In contrast, the 

feed forward synaptic connections in the network of Figure 7.9 are all excitatory.

When the synaptic weights are properly scaled they form a set of vectors that fall on 

the same N-dimensional unit sphere. However, for this function to be performed in a

Output codebook

Weight vector = {Wy}

Where i e [1 K] 

and j e [1 L]
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"stable" fashion the input patterns must fall into sufficiently distinct groupings to 

begin with. Otherwise the network may be unstable because it will no longer respond 

to a given input pattern with the same output neuron.

During testing, under utilization problem occurs. Some neurons are left and never win 

the competition. Hence, frequency sensitive competitive learning algorithm is used. A 

record of how frequent each neuron is the winner is kept to maintain that all neurons 

in the network are updated an approximately equal number of times. To implement 

this scheme, the distance is modified to include the total number of times that the 

neuron i is the winner.

7.5.3.1 Algorithm for QRS Detection

Figure 7.10 depicts the template to be matched as QRS complex. During training 

weights are updated to come closer to input patterns. Each pattern appearing in input 

vectors will be assigned a unique index. Hence, the pattern matching the specified 

QRS complex will also be given unique index which will be stored as special value. 
During testing, for each pattern, again index is generated and matched with index of 

QRX complex. If matches count for number of QRS complex will be incremented.
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Figure 7.10 Template of QRS wave to be detected
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7.5.3.2 MATLAB Implementation and waveforms

The competitive learning algorithm described in the section is implemented using 
MATLAB. The script is given below:

close all; 
clear all;

%----------------------------------------------------------------------------------------------------------

1=40;
%H=200;%Hidden nodes 
eta=0.02;
time=5;%time epoches 
tests=200;
H=tests;
N=I+tests;
fid = fopen('clecg.datyr');
[x,count]=fscanf(fid,'%f,N);
fclose(fid);
%from 120 to 159, pattern is to be detected
pattem=x( 120:159);
figure(l);
plot(pattem);ylabel('pattem to be detected');

% Initialize weights: 
w=ones(H,I)/I;
for j =1 :tests % tests: no of training sets
for i=j:I+j-l
n=i-(j-l);
Up(n,j)= x(i,l); %overlapping

end
end
decode=zeros(I,H); 
fort= l:time 

t
f = ones(H,l);%frequeney of winning 
z = zeros(H,l); 
location=0; 
for 1 = 1 :tests
min = sum(abs(Up(:,l)-w(l,:)’))*f(l);
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loc=l;%Initialization for loc

%-----------------------------------------------

%find loc:
%-----------------------------------------------

for k= 1:H
if min> sum(abs(Up(:,l)-w(k,:)'))*f(k) 
min= sum(abs(Up(:,l)-w(k,:)'))*f(k); 
loc = k; 
else
loc=loc;
end %ofif
end %ofk

%no operation required

o/n

if Up(:,l)=pattem 
location=loc;
else
location=location;

% the exact location for pattern match

end %of if
%------------------------
decode(:,loc)=Up(:,l);
%—--------------------
z(loc) = 1; 
f(loc)=f(loc)+30; 
for tin =1:4
forj = 1:1

%store the vector

w(locj)=w(locj)+eta*(Up(j,l)-w(locj)');
end %of j
end %of tests
end %tin
end %oft

%------------------------
%testing for the same input pattems:Up:

%------------
tests=2000;
N=I+tests;
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fid = fopen('clecg.datVr');
[x 1 ,count]=fscanf(fid,'%f ,N); 
fclose(fid);
for j =1 :tests % tests is no of training sets
for i = j:I+j-l
n=i-(j-l);
Up(n,j)= xl(i,l);%overlapping 
end
end %Up is training input to the MLP
code=zeros(tests, 1);
ztest = zeros(H,tests);
count=0;
fori= 1: tests
min = sum(abs(Up(:,i)-w(l,:)')); 
rank= 1; 
for j = 1:H
op(j,i) = sum(abs(Up(:,i)-w(j,:)'));
if min>op(j,i) 
min=op(j,i); 
rank=j; 
else
rank=rank; 
end %of if 
end %OF j

%----------------------
if rank = location 
count = count+1; 
else

count = count; 
end

%----------------------------------------------
end %tests 
figure(2);
plot(xl);ylabel('signal for detection');
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7.5.3.3 Parameters used

The parameters used for testing g and training are as follows:

> Number of input nodes I = No. of samples used to form input vector = 40
> Number of hidden layer nodes H= No.of tests performed = 200
> Learning Rate, r| = 0.02
> Time epochs = 5
> Inner loop time epochs tin = 4
> Increment of frequency= 30

One important point about training and testing phases is the type of input fed to it as 
testing pattern. Patterns as input are at 1 sample advancement as compared to 
previous pattern. Testing is also done with same kind of shifted sample vectors only. 
Testing is carried out by taking signals of the same type but with different length. 
Shape of signal is shown in Figure 7.11(a), (b) and (c).
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Figure 7.11(a) part of test waveform for w hich count=4
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Figure 7.11(b) part of test waveform for w hich count=8

Figure 7.11(c) part of test waveform for which count = 13 
Figure 7.11 Waveforms showing signal for detection by VQANN


