

Chapter 9 Results and proposed direction for future work

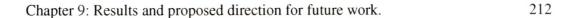
Chapter depicts the results obtained using GUI designed in Chapter 8, for sets of parameters for each network model and training algorithms. **Table 9.1** and **Table 9.2** in section indicates types of signals used for testing, network parameters, waveforms generated and figure of merit based on selected signal processing operations.

Table 9.1 Data files

Туре	File name
signal	ECG1: N0001.adcadc
	ECG2: N0029.adcadc
Noise	EMG: EMG01.adcadc

Table 9.2 Separated lead signals

File names(ECG as well as EMG)


L*.dat R*.dat C1*.dat C2*.dat C3*.dat C4*.dat C5*.dat C6*.dat *** = ECG or EMG**

9.1 Filtering

9.1.1 Hopfield Neural Network based filtering (LS/RLS Algorithm)

Parameters

- **R** : input resistance
- c : input capacitance
- **k1** : Constant multiplier of f(u)
- **k2** : Constant multiplier of g(u)
- TRG : Number of training samples
- TST : Number of test samples

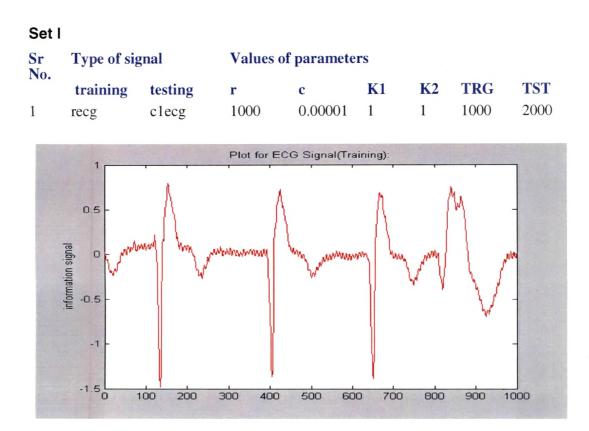


Figure 9.1(a) Plot of expected signal used for training(recg)

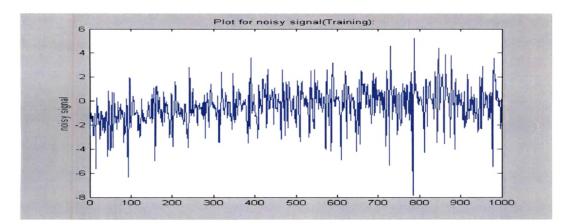


Figure 9.1 (b) Plot for noisy signal where originality of signal is lost(training)

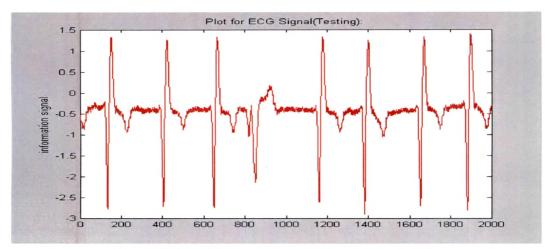
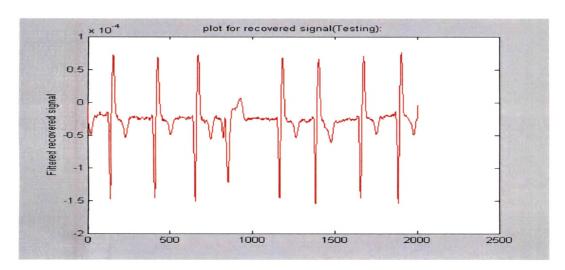



Figure 9.1 (c) Plot for ECG used for testing (clecg)

Figure 9.1 (d) Plot for recovered signal during testing

Figure 9.1 Waveforms showing related signals for filter using Hopfield NN

Recovered signal is very weak in aaamplitude. Hopfield NN insists on specific values of parameters. Hence does require careful selection of training sets.

9.1.2 MLPANN based filtering

Parameters

DIFF/I:	Phase difference in terms of number of samples/ Number of input layer				
	nodes				
н :	Number of hidden nodes				
TIME :	Time epochs during training				
ETA :	Learning rate				
TRG :	Number of training samples				
TST :	Number of test samples				

Set I

Sr No.	Type of sign	Values of	Values of parameters							
	training	testing	DIFF/I	H	TIME	ETA	TRG	TST		
1	r	c2	0/3	2	100	0.01	1000	3000		

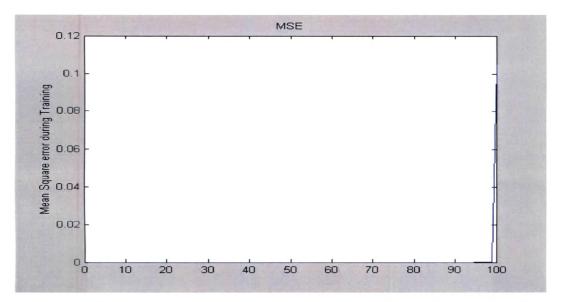


Figure 9. 2(a) Plot for mean square error during training for time epoch 100

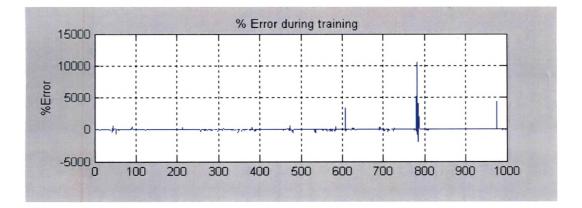


Figure 9.2 (b) Plot for % Error between original and reconstructed signal for training with 1000 samples

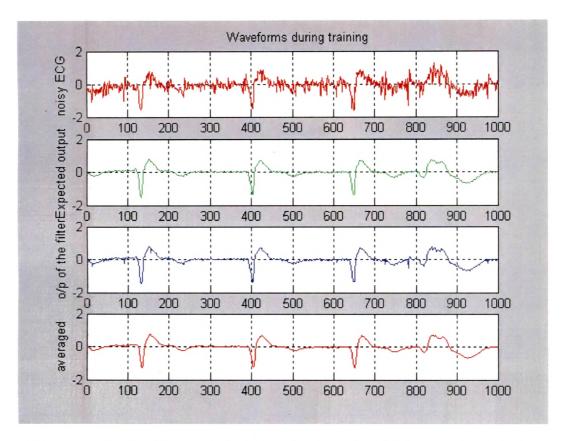


Figure 9.2 (c) Waveforms showing how effectively filtering is carried out during training

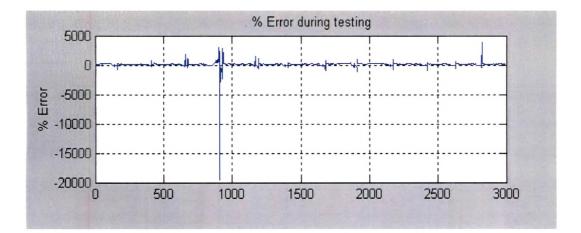


Figure 9.2 (d) Plot for % Error between original and reconstructed signal for testing with 3000 samples

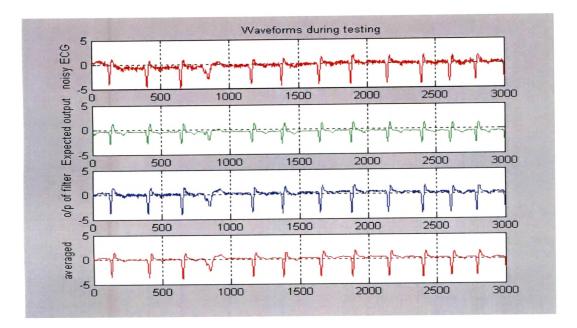
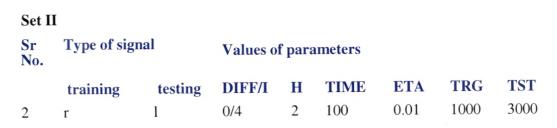



Figure 9.2 (e) plots for showing how effectively filtering is carried out during testing

Figure 9.2 Waveforms for MLPANN based filtering for parameter set I

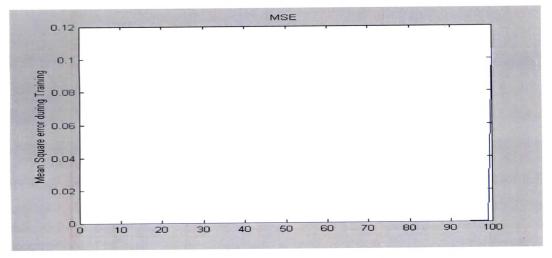


Figure 9.3 (a) Plot for mean square error during training for time epoch 100

With same line of arguments, even for significant value of % Error during training and testing at some points, desired signal is recovered satisfactorily with all clinical visibility.

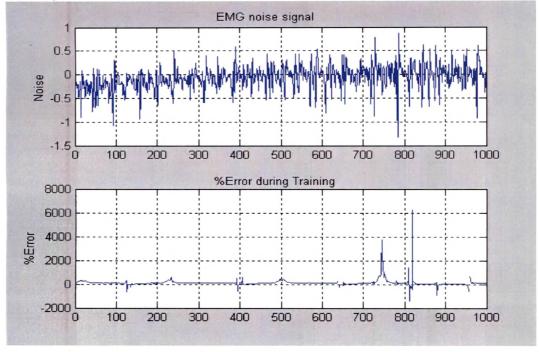


Figure 9.3 (b) Plot for % Error between original and reconstructed signal for training with 1000 samples

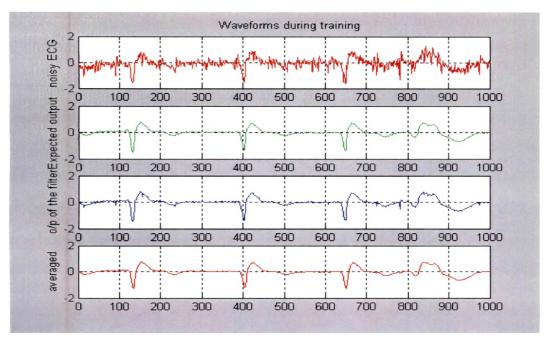


Figure 9.3 (c) Waveforms showing how effectively filtering is carried out during training

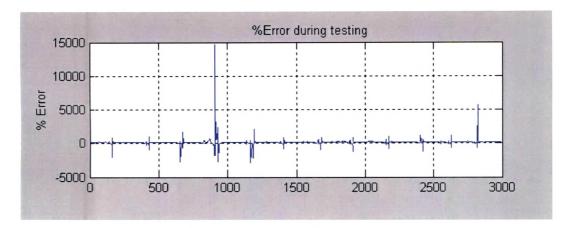


Figure 9.3 (d) Plot for % Error between original and reconstructed signal for testing with 3000 samples in set II

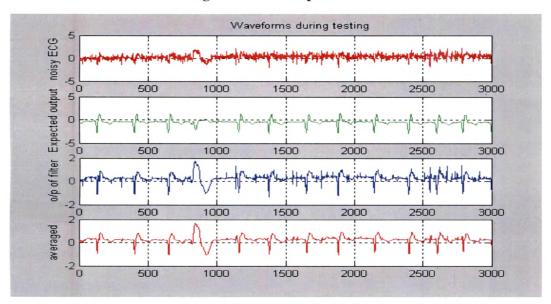


Figure 9.3 (e) plots for showing how effectively filtering is carried out during testing

9.1.3 RBFNN based filtering Parameters

ut
,

Chapter 9: Results and proposed direction for future work.

Set I										
Sr No.	signal		Values	Values of parameters						
	training	testing	eg	sc	DIFF	TRG	TST			
1	c2	c3	0.01	800	0/4	300	3000			

Following waveforms in **Figure 9.4** clearly show how noise with D.C. offset is filtered out very effectively and original ECG is restored.

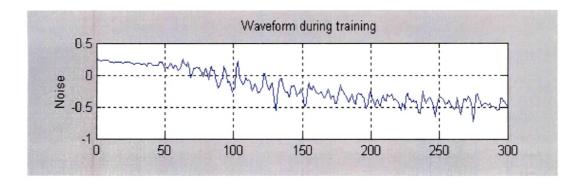


Figure 9.4 (a) Plot for noise waveform for 300 training samples.

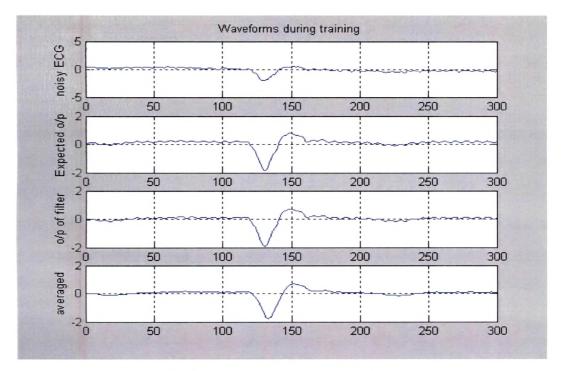


Figure 9.4 (b) Plot for waveforms during training

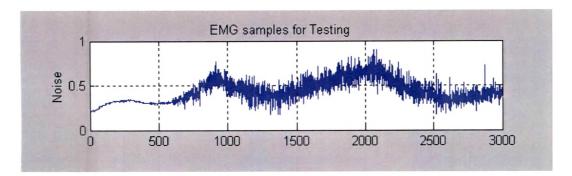


Figure 9.4 (c) Plot representing amount of noise that corrupts ECG

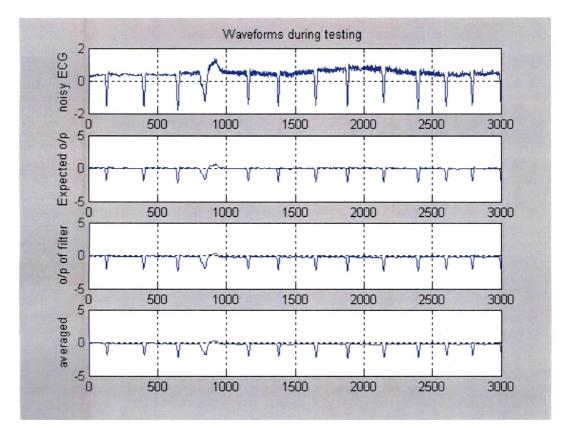


Figure 9.4 (d) Plot for waveforms during testing including recovered waveform as exact replica of desired ECG

Figure 9.4 Waveforms showing role of RBFNN in removing noise

Sr No.	Type of si	gnal	Values of parameters					
110.	training	testing	eg	sc	DIFF/I	TRG	TST	
1	c2	c3	0.01	800	2/3	300	3000	
-					a a			

Exactly same output as with DIFF =0 (Figure 9.4).

Set II

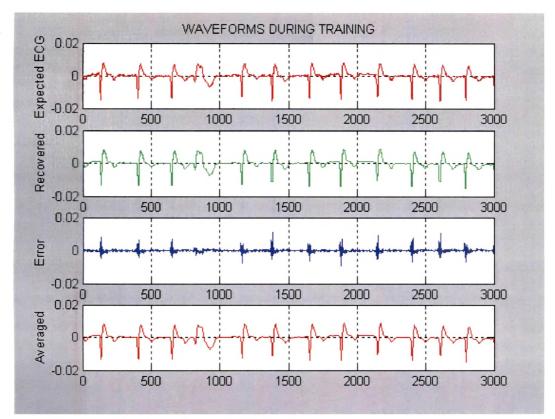
9.2 Compression

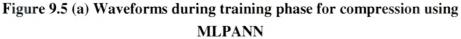
. .

9.2.1 MLPANN Based Compression Parameters

. 1

I	:	No. of input layer nodes
H	:	No. of hidden layer nodes
0	:	No. of output layer nodes
eta	:	Learning rate
TIME	:	Number of time epoches
TRG	:	Number of training sets
TST	:	Number of test sets


c .


Set I

Sr	Type of sig	Value	Values of parameters						
No.	training	testing	I=O	Η	eta	TIME	TRG	TST	
1	r	C3	6	3	0.1	5	500	500	

Results obtained:

CR	PRD during training	PRD During testing
2	31.1814	25.7546

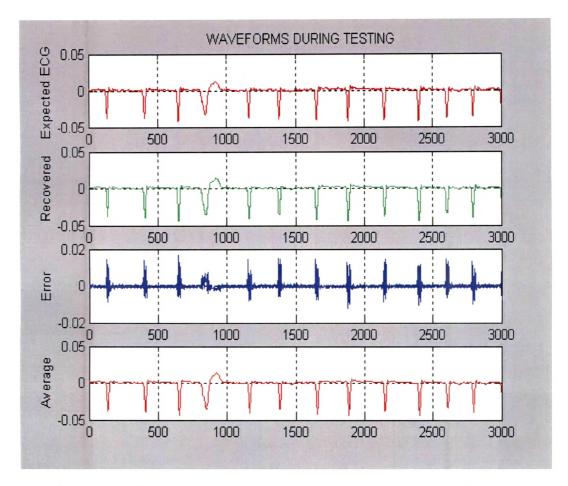


Figure 9.5 (b) Waveforms during training phase for compression using MLPANN

Figure 9.5 Waveforms for compression using MLPANN for set I

Sr No.	Type of sign	Values of parameters						
	training	testing	I=O	н	eta	TIME	TRG	TST
2	r	C3	6	3	0.1	500	500	500
Resu	lts obtained:							

CR	PRD during training	PRD During testing		
2	29.8005	24.0542		

Set II

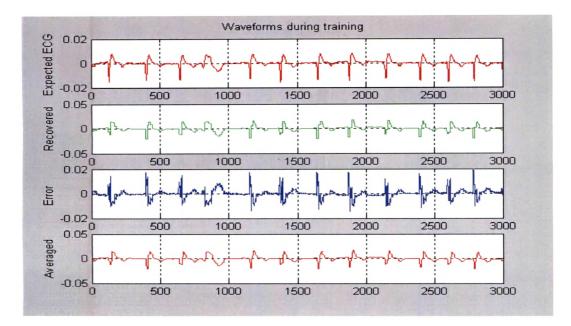


Figure 9.6 (a) Waveforms during training phase for compression using MLPANN

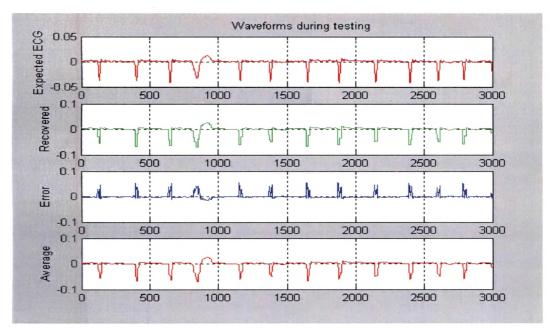


Figure 9.6 (b) Waveforms during training phase for compression using MLPANN

Figure 9.6 Waveforms for compression using MLPANN for set II

Chapter 9: Results and proposed direction for future work.

Set III

Sr No.				Values of parameters						
	training	testing	I=O	Н	eta	TIME	TRG	TST		
3	r	c3	6	3	0.1	1000	500	500		
Resu	lts obtained:									
CR		PRD during trai	ning	PRD	Durin	ng testing				
2		28.7406		22.78	858					
Set I	v									
Sr	Type of sign	al	Value o	Value of parameters						
No.										
	training	testing	I=O	Н	eta	TIME	TRG	TST		
4	c2	c4	12	3	0.1	1000	250	250		
Resu	lts obtained:									
CD		DDD Juning (mg)		DDD	D:	- 4 4.				

CR	PRD during training	PRD During testing
4	47.0833	47.7726

Higher and higher value of TIME improves PRD.

9.2.2 VQNN based compression (difference of samples)

Parameters

Ι	:	No. of input layer nodes
Н	:	No. of hidden layer /competing nodes
eta	:	Learning rate
TIME	:	Number of time epoches
TRG	:	Number of training sets
TST	:	Number of test sets

Set I								
Sr No.	Type of signal		Val	Values of parameters				
110.	training	testing	Ι	н	eta	TIME	TRG	TST

	8		-					
1 .	r	r	300	100	0.1	2000	50	100

Results obtained:

CR (As per Equation 6.4) 1200

PRD during training 149.0223

PRD During testing 152.5699

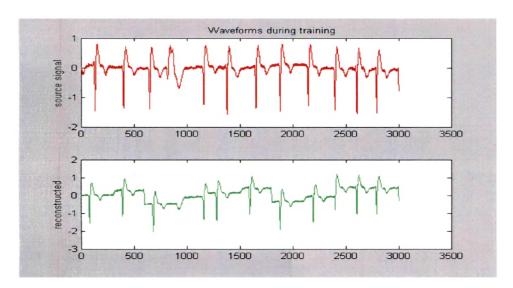


Figure 9.7 (a) Plot for original and reconstructed signals during training

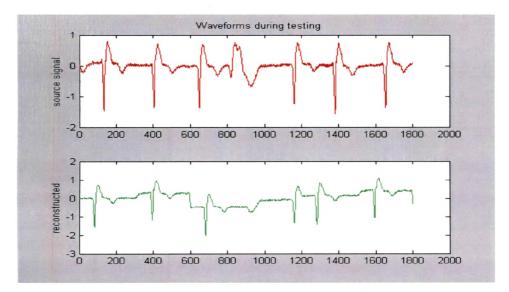


Figure 9.7 (b) Plot for original and reconstructed signals during testing Figure 9.7 Waveforms for compression using VQANN (difference of samples)

225

As can be seen, this method can give better CR but can give faithful reproduction only if heavy training is imparted and large number of test patterns are used for training.

9.2.3 VQNN based compression (absolute samples)

Parameters

Ι	:	No. of input layer node	es				
Н	:	No. of hidden layer /co	ompeting nodes				
eta	:	Learning rate	Learning rate				
TIME	:	Number of time epoche	es				
TRG	:	Number of training set	s				
TST	:	Number of test sets					
Set I							
Sr	Тур	e of signal	Value of parameters				
No.							

	training	testing	Ι	н	eta	TIME	TRG	TST
1	r	1	4	128	0.05	8	128	500

Results obtained:

CR (As per	PRD during training	PRD During testing			
Equation 6.4)					
6.85	2.3498	13.8434			

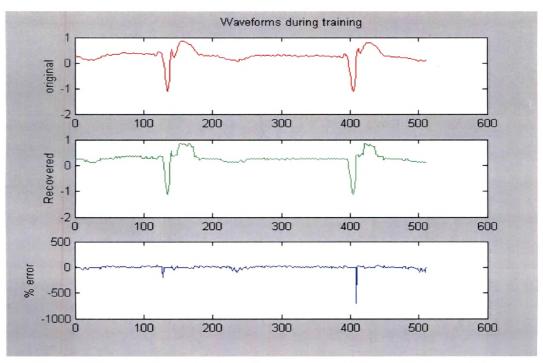
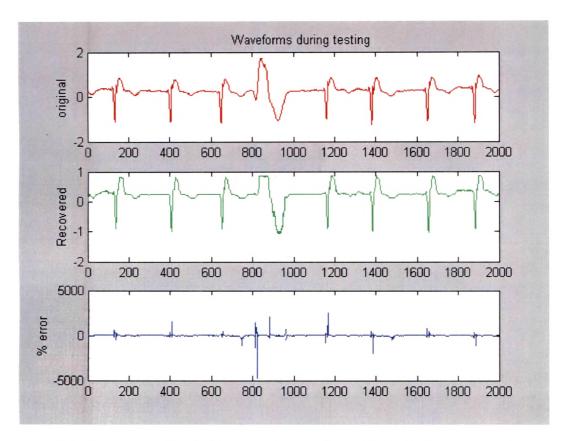



Figure 9.8 (a) Plot for original and reconstructed signals during training

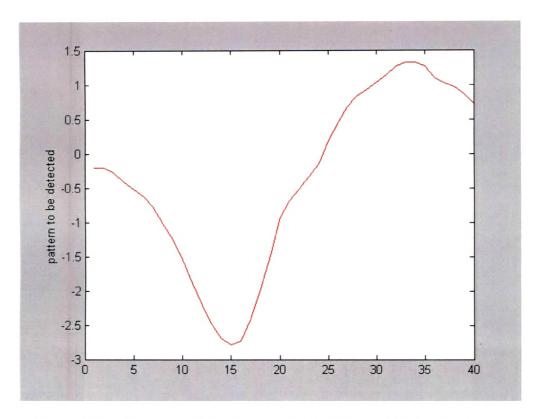


Figure 9.8 (b) **Plot for Original and reconstructed signals during training Figure 9.8 Waveforms for compression using VQANN (absolute samples)**

These values of CR and PRD are comparable to such values by various methods listed in **table 6.2**.

9.3 VQNN based QRS detection Parameters used:

Ι	:	No. of input layer nodes							
Н	:	No. of hidden layer /competing nodes							
eta	:	Learning rate							
TIME	:	Number of time epoche	es						
TRG	:	Number of training sets							
TST	:	Number of test sets							
Set I		c							
Sr	r Type of signal Value of parameters								
No.									
	trai	ning as well as testing	Ι	Η	eta	TIME	TRG	TST	
1	c1		40	128	0.05	5	200	2000	

Output = 8 (Count/repeat for the selected pattern)

Figure 9.9 (a) Template of QRS complex to be detected for its occurrence

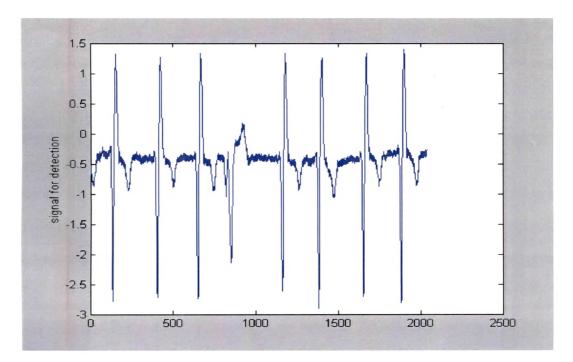


Figure 9.9 (b) Waveform from which QRS complex is to be detected Figure 9.9 Waveforms for detection using VQANN

Algorithm works with 100% efficiency with correct detection upto any length as there is correct assignment of each pattern to each of 128 competing nodes.

9.4 Future scope

The environment developed helps user to carry out signal processing in a specified format. It is possible to extend the use of real time or on line signal processing. A hypothetical setup is shown in **Figure 9.10**.

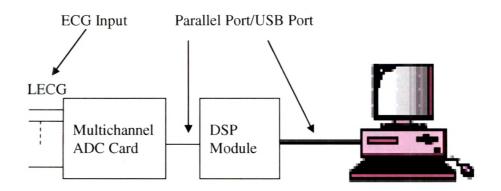


Figure 9.10 ECG Signal Processing Environment

The ECG input data can be received from eight leads through ADC Channels. A code using Plug-ins can be developed to create digital file online through DSP, using ccslink provided by "MATH WORKS" with MATLAB. This file can be used by the developed environment for online/ real time signal processing.

The software environment can be extended to carry out analysis and diagnosis of filtered or pure ECG signal. The compressed signal can be communicated through serial port to device at other end for experts' advice.

Currently advanced Neuro Fuzzy systems are also being developed. The software algorithms using Neuro Fuzzy and genetic algorithms can be developed and more flexible environment can be developed.