List of Figures

2.1	Sections of a typical ECG	9
2.1	Conventional lead placements	10
2.2	File Format	10
3.1	Transversal filter	14
3.2	Vector Quantization	29
3.3	Block diagram of a typical signal averager.	35
3.4	Relative power spectra of QRS complex, P and T wayes, muscle noise	36
5.4	and motion artifacts based on an average of 150 beats.	50
3.5	Plots of the signal-to-noise ratio (SNR) of the QRS complex	37
5.5	referenced to all other signal noise based on 3875 heartbeats. The	51
	optimal bandpass filter for a cardio tachometer maximizes the SNR.	
3.6	Filter stages of the QRS detector. Z (n) is the time-averaged signal.	40
5.0	Y(n) is the band passed ECG, and x (n) is the differentiated ECG.	40
4.1	Single neuron	45
4.2	Block diagram: Multilayer Perceptron (MLP)	46
4.3	Structure: Multilayer Perceptron	46
4.4	Structure of RBF ANN	47
4.5	Hopfield Neural Network architecture	49
4.6	Recurrent Neural Network	49
4. 7	A Kohonen Self Organising Grid - 2 Dimensional Output	50
4.8	Input v/s output space	50
4.9	Error correction learning	53
4.10	Neurodynamic programming	55
4.11	A 6x5 Kohonen Grid showing the size of neighbourhood influence	57
	around node Uc	0,
4.12	Encoding and Decoding in Vector Quantization	60
5.1	Block Diagram of the Process	63
5.2	Configuration: Adaptive Noise Cancellation (ANC)	68
5.3	Multi Reference ANC	74
5.4	Adaptive Filter	8 1
5.5	Hopfield Model for Least Square Algorithm	83
5.6	Training and testing waveforms for ECG signal filtering using	98
	Hopfield NN	
5.7	Hopfield Model for recursive least square algorithms	100

٠

,

.

.

List of Figures

ī

5.8	Block diagram for MPLNN Based Adaptive filter (Dotted portion	103
	shows training phase using Back propagation algorithm)	
5.9	MLPANN to estimate noise value at time n, with K+1 number of	103
	input nodes, H number of hidden nodes and one output node	
5.10	Mean square error for time epochs 50 during MLPANN training	114
5.11	Figure 5.11 Results of the filtering using MLPANN during training (a)	114
	noisy ECG samples contaminated by EMG signal (b) Expected ECG	
	(c) Recovered ECG (d) averaged signal by the adaptive filter	
5.12	Errors in filtering using MLPANN during training	115
5.13	Results of the filtering using MLPANN during testing (a) noisy ECG	115
	samples contaminated by EMG signal (b) Expected ECG (c)	
	Recovered ECG (d) averaged signal	
5.14	Errors in filtering using MLPANN during testing	116
5.15	Adaptive filter using RBFNN	117
5.16	RBFNN for filtering	117
5.17	Training phase with 100 input samples (RBFNN)	124
5.18	Waveforms showing Testing phase for 3000 samples(RBFNN)	124
6.1	Diagnostic Features of ECG wave	127
6.2	Compression Algorithm	129
6.3	Decompression algorithm	129
6.4	General Scheme of ASEC	131
6.5	Decoding System	132
6.6	Residual Decoder	133
6.7	A generalized DOWT-based coding system	135
6.8	Proposed Encoder-Decoder	136
6.9	Hybrid Compression scheme	137
6.10	MLPANN for ECG signal compression	142
6.11	Waveforms during training phase for compression using MLPANN	148
6.12	Waveforms during recall phase for compression using MLPANN	148
6.13	Vector Quantization Neural Network	149
6.14	Vector Quantization	152
6.15	Waveforms for Training Phase for VQANN (Difference of adjacent	157 ₍
	samples)	1.67
6.16	Waveforms for Testing Phase for VQANN (Difference of adjacent	157
	samples)	172
6.17	- · · · · · · · · · · · · · · · · · · ·	162
6.18	Waveforms for Testing Phase for VQANN (Absolute samples)	163
7.1	Output waveforms for the different peak detectors	168

viii

7.2	ECG Processing	169
7.3	Detector Design	172
7.4	Filter Banks	175
7.5	Flow chart of the Dy WT based QRS detector	179
7.6	Q point recognition	181
7.7	Basic architecture of ART2 network	184
7.8	Flow for Adaptive back propagation	187
7.9	Competitive Learning Neural Network for QRS detection	190
7.10	Template of QRS wave to be detected	191
7.11	Figure Waveforms showing signal for detection for VQNN	196
8.1	Parts of GUI implementation	198
8.2	Layout Editor	199
8.3	Align objects	200
8.4	Property inspector	200
8.5	Object Browser	201
8.6	Menu Editor	201
8.7	Tab Order Editor	202
8.8	M-file Execution path	203
8.9	Dialog box to save changes	204
8.10	Dialog box to change the current directory during execution	204
8.11	Graphical User Interface: Main Screen for selection	206
8.12	GUI for Filtering using Hopfield NN(LS Algorithm)	206
8.13	GUI for Filtering using Hopfield NN(RLS Algorithm)	206
8.14	GUI for Filtering using Hopfield NN(LS Algorithm) (with activated)	206
8.15	GUL for Filtering using Hopfield NN(RLS Algorithm) (with rest activated)	206
8.16	GUI for filtering by MLPANN (Values of MSE displayed)	208
8.17	GUI for filtering using RBFNN	208
8.18	GUI for Filtering using RBF ANN ('Other' Selection)	208
8.19	GUI for Help to select other file and to carry out training	208
8.20	GUI for Compression using MLP ANN (Back Propagation)	209
8.21	GUI for Compression using MLP ANN (Extended Back Propagation)	209
8.22	GUI for Compression using VQ ANN (Absolute Sample)	209
8.23	GUI for Compression using VQ ANN (Sample Difference)	209
8.24	GUI for Detection using VQ ANN	210
9.1	Waveforms showing related signals for filter using Hopfield NN	213
9.2	Waveforms for MLPANN based filtering for parameter set I	216

List of Figures

9.3	Waveforms for MLPANN based filtering for parameter set II	218
9.4	Waveforms showing role of RBFNN in removing noise	220
9.5	Waveforms for compression using MLPANN for set I	222
9.6	Waveforms for compression using MLPANN for set II	223
9.7	Waveforms for compression using VQANN(difference of samples)	225
9.8	Waveforms for compression using VQANN(absolute samples)	227
9.9	Waveforms for detection using VQANN	228
9.10	Signal Processing Environment	229

.

· · · ·

x

f