
111

Chapter 8
Development of APF controller Software for DSP Implementation

Embedded System design involves choosing a right platform and the development support
available from the vendor. The selection of the platform depends on processor, SOC, memory, Buses,
software language, OS, code generating tools, simulators, emulators etc. Since the decision on DSP
processor is made, the chapter covers the hardware and software development support tools for the
development of system hardware and software.

DSK/EVM boards available from TI are chosen as the target system. The target system parallel
connects the simulator in| the host computer through a Target Server tool with board through parallel
or serial lines from the host computer. Emulator provides a great flexibility and ease for developing
various applications on a single system in place of testing multiple targeted systems. The Emulator
uses the circuit consisting of the DSP processor. It emulates the target system with extended memory
and with codes downloading ability during the edit-test-debug cycles. The hardware and software
support tools used in the project are also described.

! .

Active power filteir for power of 75 kVA was build and tested [1], The compensation process
is instantaneous and control algorithm of the proposed APF based on the control strategy following
from the instantaneous reactive power theory (Fig 8.1) was implemented in the fixed-point digital
signal processor TMS320jC50.

fp= T/N=78.125\\s
4 TMS320C50

fp= 78.125\is
4

A/D
Converter

lU-

i,T
A/D

Converter

y> [low Pass
Filter

Voltage
Controller

1-2-3

fj ___
■*ui Park'1

a-M J—| Transforn <J+

TTll
PLLH ►

cosinus smus
cosinm .

-+lsinus

High Pass
Filler

High Pass
Filter rrcosmus smus

ill
Park ► a-B-0 D/A -*

Current Dead-Time
Transform * * 1-2-3 4 Converter Controller Generator

Ql-Q6

Fig 8.1 Block Diagram of APF Control Algorithm

The DSP implementation was used for single phase APF [3]. The proposed scheme [3] employs a
control that requires less feedback information compared to other reported solutions. Only one current
sensor is used to sense the nonlinear load current and two voltage sensors to sense the input supply
voltage and the dc bus voltage. It also reduces the total chip count of the system using on-chip power
electronics peripherals of the DSP controller (TMS320F240). The proposed method provides both
harmonic elimination and power factor correction. The proposed scheme also requires fewer current
sensors than other solutions. The technique requires only the load current, dc bus voltage and supply
voltage information to estimate the fundamental current and hence calculate the required injected
current using the proposed DSP algorithm.

v\ 111
I 12

In our project we have used TMS320C6711 based DSP processor for implementation. The said series
of processors are suitable for development of applications in the field of communication. Really we
should have used TMS28XX series of DSP processors. Since the ccs link for 2000 series was not
available and we wanted to use SIMULINK model and embedded target support by MATHWORKS
for the development of embedded APF controller, the available tools for TMS320C67xx, daughter
cards and software plug Ins are used. Brief summary of hardware and software development tools
is given. The web sites of the manufacturer may be referred for further details.

8.1 Hardware Tools
Hardware tools used in the project for the development of embedded APF controller software
includes:

• TMS 320C671X DSP Starter Kit
• ADS 8364 EVM (6 - input Analog to Digital Converter)
• TLV 2553 EVM (11- input Analog to Digital Converter)
• TLV 5614 EVM (4 - output Digital to Analog Converter)
• 5 - 6 K Interface Card

8.1.1 TMS 320C671X DSK

The C671X DSP starter kit provides system design engineers with an easy-to-use, cost-effective way
to take their high-performance TMS320C6000 designs from concept to production. It provides facility
for fast development of networking, communications, imaging and other applications. Fig 8.2 depicts
the DSK board. DSK operates at 150 MHz delivers an impressive 1200 MIPS and 600 MFLOPs. The
C671 1 DSK is a superset of the C621 1 DSK. The kit includes a DSK board with ‘C671 1/13 DSP
processor, 16 MB external SDRAM, 128 KB External Flash for program and data storage, TI'S
TLC320AD535 16-bit Data Converter, TI'Ss TPS56100 Power Management Device, JTAG
Controller for emulation, Expansion Daughter Card Interface and CE-Compliant Universal Power
Supply DSK

TinrrMwt ̂ r.iw»lw
fUtfctOM IVMtMfAMi

[* »****•*• Cmr4 If

- l.M L»**l M3 IfMtMi

FIG. 8.2 TMS320C6711 DSK BOARD

113

8.1.2 Daughter Cards

Daughter Cards are hardware plug-on modules that compliment TI and/or Third Party DSP Starter
Kits (DSKs) and development boards Daughter cards enable the evaluation of a wide range of data
converters, prototype boards, new I/O interfaces and many other peripheral devices. They can be
connected with TI DSP Starter Kits (DSKs) seamlessly via common connectors An introduction on
the daughterboard concept is provided identifying the advantages of using this approach for rapid
prototyping and accelerated product developments.

EVM daughter boards present a modular approach to interface design that can support a wide range of
applications. Design efforts only need to focus on new interface requirements and related support
software, rather than the complete DSP processing system. This incremental design paradigm lends
itself well to rapid prototyping and product development acceleration. The different daughter cards are
for:

• External Memory Interface
• Peripheral interface
• Host port interface

The EVM’s two expansion connectors provide access to the DSP asynchronous external memory
interface (EMIF) and its on-chip peripheral and control/status signals. Both connectors also provide
multiple voltages to supply power to the daughter board. Each of the expansion connectors is a low-
profile, 80-pin, 0.050”-pitch connector designed to support high-speed board interconnections. Mating
connectors for the daughterboard are available in several mating heights which all meet the maximum
height requirement defined in the PCI Local Bus Specification. Two standard sizes of EVM daughter
boards are defined. A small size is intended for applications that do not require an I/O connection on
the mounting bracket. A large size is intended for applications that require an I/O connection on the
mounting bracket or need more board space for implementation. Fig 8.3 shows the daughterboard
interface including DSP signals provided by the expansion connectors.

Fig 8.3 Interfacing daughter Board

114

8.1.2.1 Expansion Memory Interface

The expansion connectors provide access to the DSP asynchronous external memory interface (EMIF).
The EMIF connector includes:

1. 20 EXTERNAL ADDRESS SIGNALS
2. 32 EXTERNAL DATA SIGNALS
3. CE1 MEMORY SPACE ENABLE
4. FOUR BYTES ENABLES
5. FOUR ASYNCHRONOUS CONTROL SIGNALS
6. POWER SIGNALS

The expansion memory interface includes:
• 20 external address signals (EA[21:2]). All of the DSP’s 20 external address signals are

available on the expansion memory interface, allowing up to 4M bytes of external memory to be
addressed. However, because the CE1 space must be shared with onboard EVM peripherals, only
the lower 3M bytes are available to the daughterboard. If CE2 or CE3 is used for external
asynchronous memory instead of SDRAM, an additional 4M bytes in each of these memory
spaces can be addressed. A total of 11M bytes of asynchronous memory is directly addressable
on a daughterboard. A memory page register could be used to enable a very large memory space
on a daughterboard.

• 32 external data signals (ED[31:0]); 32extemal data signals are available on the
expansion memory interface to support full 32-bit word accesses to the daughterboard.

• CE1 memory space enable (/CE1). CE1 memory space enable is available on the
expansion memory interface to allow asynchronous accesses to daughterboard memory and
memory-mapped devices. The CE2 and CE3 memory space enables are provided on the
expansion peripheral connector for additional asynchronous memory address spaces.

• Four byte enables (/BE[3:0]). The DSP’s four byte enables are available on the expansion
memory interface to support byte (8-bit), halfword (16-bit) and word (32-bit)daughterboard
memory accesses.

• Four asynchronous control signals (/AOE, /ARE, /AWE and ARDY). The DSP’s
asynchronous EMIF control signals are provided to control memory accesses to the
daughterboard. These signals indicate the direction of the data transfer and allow the
daughterboard to add wait states to memory accesses.

• Power signals. The expansion memory interface also provides ground, 5-V and 3.3-V
voltages to the daughterboard. The expansion memory interface supports both 3.3-V and 5-
V devices since it uses low-voltage translation buffers that have 5-V tolerant inputs. The
expansion memory interface is provided by a dual-row, 80-pin surface-mount connector.

8.1.2.2 Expansion Peripheral Interface

The EVM’s expansion peripheral interface provides the DSP’s on-chip peripheral signals to a
daughterboard. This peripheral interface allows synchronous serial devices such as codecs and
communication controllers, to be added to the EVM via a daughterboard. The expansion peripheral
interface includes:

1. Seven signals for each of the serial ports
2. Two I/O signals for each of the DSP timers
3. Interrupt, interrupt acknowledge, and identification signals

115

4. Four DMA completion flags
5. Four general-purpose input/output flags
6. Power-down signal
7. Reset signal
8. Buffered CE2 and CE3 signals
9. Power signals

• McBSPl signals available on the expansion peripheral interface are buffered by a TI
’CBT3384 device to support both 5-V and 3.3-V serial devices using McBSPl on the
daughterboard.

• McBSPO signals are also available when the DSP software controls onboard TI ’CBT3257
multiplexers that connect them to the expansion connector rather than the onboard audio codec.
This architecture provides a daughterboard with access to both of the DSP’s serial ports, which
is-useful in many DSP applications. Due to multiplexer, both 5-V and 3.3-V serial devices can
use McBSPO on a daughterboard. Both serial ports allow full-duplex connections between the
DSP and the daughterboard consisting of separate data, frame sync and clock signals for the
receive and transmit paths.

• input/output signals for DSP timers (timer 0 / timer 1). The expansion peripheral
interface includes each of the DSP timers’ input and output signals. This allows timer
signals to be sent to the daughterboard, or timer input or events to be counted to come from
the daughterboard. Each timer has one input and one output signal.

• Interrupt, interrupt acknowledge, and identification signals. A DSP external interrupt
(EXTJNT7) is included on the expansion peripheral interface to allow the daughterboard
to interrupt the DSP to notify it of data transfers and other significant events. This interrupt
is pulled down on the EVM, so the daughterboard must drive it high to interrupt the DSP
(rising edge). Additionally, the DSP’s interrupt acknowledge (IACK) and interrupt
identification number signals (INUM[3:0]) are available to the daughterboard.

• The DMA action complete flags (DMAC[3:0) are available to the daughterboard on the
expansion peripheral interface. These signals provide a method of feedback to external
logic generating an event for each DMA channel. The DMAC signals can also be used for
general-purpose output control signals controlled from the DSP’s DMA channel secondary
control register.

• Four general-purpose input/output flags. Two general-purpose control outputs and status
inputs are brought to the expansion peripheral interface to allow the DSP to control and
monitor various signals on a daughterboard. The XCNTLf l :0] and XSTAT[1:0] signals can
be controlled by DSP software by accessing the CPLD’s DSP memory-mapped CNTL and
STAT registers respectively.

• Power-down signal. The DSP’s power-down indication signal (DSPJPD) is also brought
to the expansion peripheral interface so that a daughterboard can be powered-down if
desired.

• Reset signal. The expansion peripheral interface also provides a reset signal that is active
low when the board is in the reset state. This allows circuitry on the daughterboard to be set
to a known state. The reset signal is asserted for a minimum of 140 ms upon power-up, via
a manual reset pushbutton on the EVM or under host or DSP software control. A memory-
mapped register bit in the CPLD’s CNTL register allows DSP software to directly control
this reset signal.

116

• CLK0UT2 clock signal. The DSP’s CLKOUT2 signal (CPU clock divided by 2) is
brought out to the expansion peripheral interface for synchronization needs on
daughterboards.

• Buffered CE2 and CE3 signals. The DSP’s CE2 and CE3 memory space enables are
brought out to the expansion peripheral interface to support additional fast memory
decoding. This can be useful on daughterboards that have multiple devices that need
memory decodes. The CE2 and CE3 are dedicated to SDRAM use on the EVM board, but
the EMIF control registers can be initialized for asynchronous operation, which disables the
respective SDRAM banks and allows expansion asynchronous memory to be used instead.
The CE2 and CE3 SDRAM enable bits in the CPLD’s SDCNTL register must be disabled
to allow CPLD logic to enable the external data transceivers for CE2/CE3 daughterboard
accesses.

• Power signals. The expansion peripheral interface also provides ground, 12-V, -12-V, 5-V
and 3.3-V power signals to the daughterboard.

The serial synchronous ports can run up to 80 Mbits/sec (10 Mbytes/sec) with a 160 MHz DSP, so
they are about an order of magnitude slower than the parallel, memory-mapped interface. Serial
interfaces do provide the advantage of less complexity, with only a handful of signals being required.
The serial ports provide a direct data connection to the DSP without contending for EMIF bandwidth.
Several industry-standard devices such as computer telephony switches (MVIP, SCSA, H.l 10), Tl/El
framers, A/D converters and D/A converters can be directly connected to a McBSP.

8.1.2.3 Cross platform Specifications
A standard has been established for daughter cards made to function with TMS320C6000™ systems.
The daughter card specification is based on the interfaces provided with several existing DSP
motherboard TMS320C6711 DSK.

Fig 8.4 Daughter card Interface Layout on DSP Motherboard

The facilities present on the motherboards and the layout of a daughter card is specified such that a
card may reside within a PC chassis when attached to a PCI motherboard, though the interface is not

117

restricted to PCI platforms. Signals are brought to the daughter card through two 80-pin headers, with
one header primarily for peripheral signals and the other primarily for the external memory interface.
The daughter card interface on the DSP motherboard has several set requirements concerning signal
drive, timing delay, and voltage tolerance. It is important to design logic, perform timing analysis, and
develop software drivers considering the differences between the DSP interfaces and development
boards [Evaluation Modules (EVMs) and DSP Starter Kits (DSKs)]. The daughter card interfaces on
all existing DSP motherboards consist of two 80-pin headers.

Pin Signal Description Pin Signal Description
1 12V 12V Voltage Supply Pin 2 -12v 12V Voltage Supply Pin
3 GND System Ground 4 GND System Ground
5 5V 5V Supply pin 6 5V 5V Supply„pin
7 GND System Ground 8 GND System Ground
9 5V 5V Supply pin 10 5V 5V Supply pin
11-17 NC No Connect 12-18 NC No Connect
19 3.3 V 3.3 Voltage supply pin. 20 3.3 V 3.3 Voltage supply pin.
21 CLKXO McBSPO transmit Clock 22 NC No connect
23 FSKO McBSPO transmit frame sync. 24 NC No connect
25 GND System Ground 26 GND System Ground
27 CLKRO McBSPO receive Clock 28 NC No connect
29 FSKRO McBSPO receive frame sync. 30 DR0 McBSPO receive data
31 GND System Ground 32 GND System Ground
33 CLKX1 McBSPl transmit Clock 34 NC No connect
35 FSK1 McBSPl transmit frame sync. 36 DR0 McBSPl receive data
37 GND System Ground 38 GND System Ground
39 CLKR1 McBSPl receive Clock 40 NC No connect
41 FSKR1 McBSPl receive frame sync. 42 DR1 McBSPl receive data
43 GND System Ground 44 GND System Ground
45 TOUTO TimerO output 46 TIN0 TimerO input
47 NC NO connect 48 Ext_int5 External Interrupt 5
49 TOUT1 Timerl Output 50 UNI Timerl input
51 GND System Ground 52 GND System Ground
53 EXTJNT4 Ext. Interrupt 4 54 NC No connect
55 NC No connect 56 NC No connect
57 NC No connect 58 NC No connect ■
59 RESET System Reset 60 NC No connect
61 GND System Ground 62 GND System Ground
63 CNTL1 Daughter Card control 1 64 CNTL0 Daughter Card control 0
65 STAT1 Daughter Card status 1 66 STAT0 Daughter Card status 0
67 EXTJNT6 Ext. Interrupt 6 68 EXTJNT7 Ext. Interrupt 7
69-73 NC No connect 70-74 NC No connect
75 GND System Ground 76 GND System Ground
77 GND System Ground 78 ECLKOUT EMIF Clock
79 GND System Ground 80 GND System Ground

Table 8.1 TMS320C6711 DSK Peripheral Connector (J2): Pinouts

118

Pin Signal Description Pin Signal Descripion
1 5V 5V Voltage Supply Pin 2 5 V 5 V Voltage Supply Pin
3 EA21 EMIF Add Pin 21 4 EA20 EMIF Add Pin 20
5 EA19 EMIF Add Pin 19 6 EA18 EMIF Add Pin 18
7 EA17 EMIF Add Pin 17 8 EA16 EMIF Add Pin
9 EA15 EMIF Add Pin 15 10 EA14 EMIF Add Pin 14
11 GND System Ground 12 GND System Ground
13 EA13 EMIF Add Pin 13 14 EA12 EMIF Add Pin 12
15 EA11 EMIF Add Pin 11 16 EA10 EMIF Add Pin 10
17 EA9 EMIF Add Pin 0 18 EA8 EMIF Add Pin 8
19 EA7 EMIF Add Pin 7 20 EA6 EMIF Add Pin 6
21 5 V 5V Voltage Supply pin 22 5 V 5V Voltage Supply pin~''
23 EA5 EMIF Add Pin 5 24 EA4 EMIF Add Pin 4
25 EA3 EMIF Add Pin 3 26 EA2 EMIF Add Pin 2
27 BE3# EMIF Byte Enable 3 28 BE2# EMIF Byte Enable 2
29 BE1# EMIF Byte Enable 1 30 BE0# EMIF Byte Enable 0
31 GND System Ground 32 GND System Ground
33 ED31 EMIF Data pin 31 34 ED30 EMIF Data pin 30
35 ED29 EMIF Data pin 29 36 ED28 EMIF Data pin 28
37 ED27 EMIF Data pin 27 38 ED26 EMIF Data pin 26
39 ED25 EMIF Data pin 25 40 ED24 EMIF Data pin 24
41 3.3 V 3.3 V Power Supply pin 42 3.3 V 3.3 V Power Supply pin
43 ED23 EMIF Data pin 31 44 ED22 EMIF Data pin 22
45 ED21 EMIF Data pin 29 46 ED20 EMIF Data pin 20
47 ED19 EMIF Data pin 27 48 EDI 8 EMIF Data pin 18
49 ED17 EMIF Data pin 25 50 EDI 6 EMIF Data pin 16
51 GND System Ground 52 GND System Ground
53 EDI 5 EMIF Data pin 15 54 ED14 EMIF Data pin 14
55 EDI 3 EMIF Data pin 13 56 EDI 2 EMIF Data pin 12
57 ED11 EMIF Data pin 11 58 ED10 EMIF Data pin 10
59 ED9 EMIF Data pin 9 60 EDS EMIF Data pin 8
61 GND System Ground 62 GND System Ground
63 ED7 EMIF Data pin 7 64 ED6 EMIF Data pin 6
65 EDS EMIF Data pin 5 66 ED4 EMIF Data pin 4
67 ED3 EMIF Data pin 3 68 ED2 EMIF Data pin 2
69 EDI EMIF Data pin 1 70 EDO EMIF Data pin 0
71 GND System Ground 72 GND System Ground
73 ARE# EMIF Async. RD_ En 74 AWE# EMIF Async. WR_ En
75 AOE# EMIF Async. OUT_ En 76 ARDY# EMIF Async. ready
77 CE3# Chip Enable 3 78 CE2# Chip Enable 2
79 GND System Ground 80 GND System Ground

Table 8.2 TMS320C6711DSK Memory Connector (Jl): Pinouts
ne header contains the memory interface signals, while the other contains peripheral signals.

The dimensions of the daughtercard layout area are designed to facilitate being incorporated on a PCI

119

card within a PC chassis. The interface is not intended to be restricted to such platforms, however.
Any DSP board can be equipped with a compliant daughtercard interface provided that the signal
pinout and physical requirements are met. The interface connectors on theTMS320C6711 DSK (Fig
8.4) is shown in the Table 8.1 and Table 8.2. Table 8.3 gives summary of Daughter Card Interface
Features (DSK TMS320C6711)

Memory Interface Width 8/16/32
Addressing Byte
Access Byte

16-Bit word
32-Bit word

Chip Select 2
Memory Types Async
Addressable Mmeory CE2: 4 MB

CE3: 4 MB
Serial Ports 2 McBSP
Timers 2TINP

2 TOUT
Interrupts DC to DSP 4

DSP to Dc 0
DSP System Status RESET
GPIO 2 Input

2 Output
Hostl/F None

Table 8.3 Daug liter Card Interface Features (DSK TMS320C6711)

• Memory Interface: C6711 DSK provide an asynchronous memory interface capable of
communicating with 8-, 16-, or 32-bit memory. There are two chip selects. The interface is
byte addressable, with 20 address lines and individual byte enables. The memory is
controlled with separate output, read, and write enables. A ready input to the DSP is
available to indicate a memory is not ready. When using 8-bit or 16-bit memory the
physical connection of the memory depends on the endianness of the DSP. For little endian
mode of operation, the memory is attached to the low numbered data lines. For big endian
mode, the memory is attached to the high-numbered data lines. The addressable memory
for both memory spaces offerthe full 4MB of memory to the daughtercards: DC_EA[21:2]
= 0x000000 - OxFFFFF (byte address range = 0x000000 - 0x3FFFFF).

• Serial Ports All of the interfaces documented provide a serial interface to the daughtercard.

• The C6711 DSK provide two 7-signal serial ports to the daughtercard. This includes clock,
frame, and data signals for both the transmit and receive data streams, as well as a clock
input to operate the serial port asynchronously to the DSP. One serial interfaces is
dedicated to the daughter card and while the other is selectable between the daughter rcard
and system hardware. The serial port signals may be used as general-purpose I/O

Timers The on-chip timers are made available to the daughtercard on C6711 DSK, Each of
the two timers available consist of an input signal and an output signal. The input can be

120

used as either a general purpose input or as an event to be counted internally. Output signal
can either be a general-purpose output, a periodic pulse, or a clock output.

• Interrupt: The C6711 DSK provides four external interrupts for the daughtercard. It does
not provide the non-maskable interrupt.

• Status and Control Signals: C6711 DSKs do not have the status indicators that are present
on the C6201. The DSKs provide only the reset signal to the daughtercard.

• General-Purpose I/O Several of the interfaces have general-purpose signals present to
communicate between the DSP (or system) and the daughtercard. C6711 DSK have two
general-purpose inputs and two outputs for communication. These are referred to as status
and control signals, respectively.

8.1.2.4 Layout Daughter boards

The daughtercard interface consists of two signal connectors that present both an external memory
interface as well as numerous peripheral signals. The physical dimensions of the daughtercard allow
mounting the card on a PCI DSP motherboard while allowing the attached motherboard and
daughtercard to fit within a single PCI slot of a PC. While the specification is not restricted to PCI
applications, the physical dimensions of the daughtercard must fit within the maximum dimensions
outlined below to be compliant.

A daughtercard may be designed to use some or all of the signals presented by the daughtercard
interfaces on the DSP motherboards. Likewise, a daughtercard may be physically any size that fits
within the maximum dimension of 191 x 86.2mm. Mounting holes are provided on both the
daughtercard and the DSP board to allow stability. The daughtercard layout showing the component
side is shown in Fig 8.5.

NOTES:
1. AI! dimensions are shown in millimeters. inch dimensions are shown in

parentheses.
2. Drawing shows component side of daughtercard.
3. Full-size daughtercard area is 191 x 86.2 mm (7.52 x 3.39 in).
4. Daughtercard connectors are Samtec TFM-140-32-S-D-LC (or TF M-140-31-D-LC).

Fig 8.5 Daughter card Interface Layout

121

8.1.3 ADS 8364 EVM

The ADS8364 includes six, 16-bit, 250KHz ADCs (Analog to Digital Converters) with
6 fully differential input channels grouped into two pairs for high-speed simultaneous signal
acquisition. Inputs to the sample-and-hold amplifiers are fully differential and are maintained
differential to the input of the ADC to provide common-mode rejection of 80dB at 50 KHz that is
important in high-noise environments. The ADS8364 offers a flexible high-speed parallel interface
with a direct address mode, a cycle, and a FIFO mode. The output data for each channel is available as
a 16-bit word.

Features of ADS 8364 are: 6 Input Channels with facility for differential inputs and buffered
reference, 16-bit resolution 16 Bits with pS total throughput/ Channel Provides a direct connection to
C5000 and C6000 DSK platforms through the 80-pin as shown in Fig 8.6

Fig 8.6 INTERFACING ADS8364 WITH 671X
The ADS8364 is a high-speed, low power, dual 16-bit A/D converter that operates from independent
5-V AVDD and DVDD supplies. The digital output is delivered through a built-in buffer circuit that
can be powered from DVDD or separate 2.7-V to 5.25-V (BVDD) sources which gives flexibility for
mixed voltage environments design. Conversion time for the ADS8364 is 3.2 ps when a 5-MHz
external clock is used. The corresponding acquisition time is 0.8 ps. The maximum output rate is 250
KSPS.

The six fully differential sample and hold circuits are divided into three pairs (A, B, and C). Each pair
of channels has a hold signal (HOLDA, HOLDB, and HOLDC) which, when strobe together, allows
simultaneous sampling on all six analog inputs. The part accepts an analog input voltage in the range
of -VREF to +VREF, centered on the internal 2.5-V reference. The part also accepts bipolar input
ranges when a level shift circuit is used in the analog front-end circuitry.

The HOLDx signals, ADD pin control, and reset are all derived from the GPIO function of McBSP
port 1. These signals are located on J12. The address and data lines are available on J11. The EVM is
factory configured to use address OxAOOO 0020 as its base. An alternate address base can be selected

122

by removing the shunt jumper on WI7. This assigns A17 or 0xA002 0000 as the base address of the
EVM. In this configuration, channels AI through Cl are located at the base address + 0x4000.

The ADS8364 features a byte mode in which data can be read from the ADC in two consecutive 8-bit
reads. W16 controls the byte feature, which is disabled by default. To enable byte mode, remove the
jumper from W16. The BNC connector (J9) and W15 allow for the selection of an external conversion
clock source. Factory default settings provide the clock source via the TOUT I signal of the DSP by
placing a shunt jumper on pins 1 and 2 of W15. By moving the shunt to pins 2 and 3, the EVM user
can apply an external clock source of not more than 5 MHz to J9.

The power supply requirements for the ADS8364EVM board can be split into three categories—
analog front end, ADC power, and digital interface. While filters are provided for all power supply
inputs, optimal performance of the EVM requires a clean, well-regulated power source. The power and
ground planes on the inner layers of the EVM are split into digital and analog sections, with the
ground planes tied together at a single point near the filter circuits.

8.1.4 TLV 2553 EVM

The TLV2553 is a 12-bit, switched-capacitor ADC using SA The ADC has three control inputs [chip
select (CS)\, the input-output clock, and the address/control input (DATAIN)], designed for
communication with the serial port of a host processor or peripheral through a serial 3-state output.
The device has an on-chip 14-channel multiplexer that can select any one of 11 inputs or any one of
three internal self-test voltages using configuration register 1. The sample-and-hold function is
automatic. At the end of conversion, when programmed as EOC, the pin 19 output goes high to
indicate that conversion is complete. The converter incorporated in the device features differential,
high-impedance reference inputs that facilitate ratio metric conversion, scaling, and isolation of analog
circuitry from logic and supply noise. A switched-capacitor design allows low-error conversion over
the full operating temperature range.

Fig 8.7 TLV 2553 EVM BOARD

The TLV2553EVM (fig 8.7) is 11-Channel, 12-bit analog-to-digital converter board based on the
TLV2553 ADC. The ADC uses a synchronous serial interface which can be simply interfaced to many

123

micro controllers using the SPI protocol. The EVM also incorporates a stable voltage reference
buffered by an operational amplifier, to ensure a low-noise voltage reference for the ADC. A block
diagram for the analog interface of the EVM is shown in Fig 8.8 .The channels are arranged to comply
with the EVM standard developed for data converters. This standard defines eight channels of analog
I/O on each EVM module.

Fig 8.8 ANALOG INTERFACE BLOCK DIAGRAM

The amplifier present on the EVM operates from a dual power supply and is configured with a gain of
1. If signal conditioning is not required, it can easily be bypassed by a shorting bar at W6.

8.1.5 TLV 5614 EVM

The TLV5614 is a quadruple 12-bit voltage output digital-to-analog converter (DAC) with a flexible
4-wire serial interface. The 4-wire serial interface allows glue less interface to TMS320, SPI, QSPI,
and Micro wire serial ports. The TLV5614 is programmed with a 16-bit serial word comprised of a
DAC address, individual DAC control bits, and a 12-bit DAC value. The device has provision for two
supplies: one digital supply for the serial interface (via pins DVdd and DGND), and one for the DACs,
reference buffers, and output buffers (via pins AVdd and AGND). Each supply is independent of the
other, and can be any value between 2.7 V and 5.5 V. The dual supplies allow a typical application
where the DAC will be controlled via a microprocessor operating on a 3 V supply (also used on pins
DVdd and DGND), with the DACs operating on a 5 V supply. Of course, the digital and analog
supplies can be tied together.

The resistor string output voltage is buffered by a x2 gain rail-to-rail output buffer. The buffer features
a Class AB output stage to improve stability and reduce settling time. A rail-to-rail output stage and a
power-down mode makes it ideal for single voltage, battery based applications. The settling time of
the DAC is programmable to allow the designer to optimize speed versus power dissipation. The
control bits within the 16-bit serial input string choose the settling time.

This EVM (Fig 8.9) features four independent digital-to-analog converters on one convenient
evaluation platform. The EVM is available in a 12-bit version. The EVM contains a precision 5-V
reference for the DACs, as well as connection terminals for an independent external reference. The
analog outputs from each DAC are available on separate pin headers. Each DAC is address selectable

124

through hardware or user supplied software. The EVM has a built-in test mode that allows the user to
input a digital word to the DAC and verify the conversion result.

Fig 8.9 EVM BLOCK DIAGRAM

Closing W13 activates an onboard 20 MHz clock. This puts the EVM in self-test mode. The
onboard oscillator provides the SCLK signal to the data converters and test circuitry. Hardware
jumpers W10, W12, and W14 allow the EVM user to select the DAC for evaluation. W10 and W12
control U3 and U4 respectively. Opening these jumpers allows the frame sync signal to be routed to
the data converter. W14 provides a chip select signal to U5 (pulls CS low). One, two, or all three
DACs can be operated at the same time.

The onboard clock is fed through a 4-bit binary counter whose terminal count output is delayed
one clock cycle and used as the DAC frame sync. In test mode, frame sync is common to all DACs.
The test mode frame sync signal is inverted and used as the parallel-load enable signal to U10. This
inverted signal also clears the binary counter (U9). The two 8-channel data converters (U3 and U4) on
this EVM support daisy-chaining of the serial input data. Jumpers W6 and W9 support the daisy chain
devices. Jumper W11 allows the EVM user to configure the serial data source.

The EVM uses four banks of 4-bit switches to create a 16-bit serial word to the data converters.
This is accomplished through the use of parallel-load serial shift registers U8 and U10. The internal
configuration registers of the DACs can be set, and serial data can be simulated.

When operated outside of the test mode (W13 open), the DACs expect to receive their control signals
and serial data input from a host processor. The EVM works with TI’s DSK series of digital signal
processor evaluation boards that support the common connector interface. Connectors J10 and Jll,
located on the underside of the EVM, provide the DSP interface. Connectors J6, J7, and J8 allow the
EVM user to define a custom processor interface. The shorting bars on J7 and J8 can be removed,
allowing the EVM user to interface to older DSKs, micro controllers, or pattern generators.

EVM ADDRESS BUS: Address decoder U13 determines access to each data converter. A two-bit
address bus on the EVM can be accessed via J9, or daughterboard connector J10. For TMS320C6000
systems using the common connector, jumper block W2 allows the user to select any two of the high
order address bits A14, A15, A16 or A17.

125

The DAC EVM is designed to operate from 3.3 V to 5.5 V. The EVM requires 170 mA at 3.3 V and
150 mA at 5.5 V. Power to the EVM can be applied via J1 from an external supply, or can be directed
through the common connector interface via J10. Jumper W1 allows the EVM user to select either the
3.3-V or 5-V bus from the DSP.

8.1.6 5 - 6 K INTERFACE EVM

The interface board Fig (8,10) consists of two signal conditioning sites, two serial EVM
sites, and a parallel EVM site. All EVMs compatible with the 5-6K Interface Board have a standard
analog interface and standard power connector. Three position screw terminals Jl and J2 and two
position screw terminals J6, J8, J9, and Jl I provide access to a common power bus routed to all sites.
The Interface Board maintains a compatible interface with the TMS320 Series of Digital Signal
Processors (DSP). The EVM is a Circuit board which allows the designer to mate the board with TI
DSK.

Fig 8.10 5K - 6 K INTERFACE CARD
8.2 Software Development Tools
The software tools described in this section include:

• Real Time Workshop®
• Code Composer STudio
• MATLAB Link for Code Composer Studio
• Data Converter Plug-Ins
• SIMULINK Blocks: Embedded Targets

8.2.1 Real-Time Workshop®
Real-Time Workshop® is an extension of capabilities found in Simulink® and

MATLAB® to enable rapid prototyping of real-time software applications on a variety of systems.
RTW generates optimized, portable, and customizable ANSI C code from Simulink models to create
stand-alone implementations of models that operate in real-time and non-real-time in a variety of
target environments. Generated code can run on PC hardware, DSPs, microcontrollers on bare-board
environments, and with commercial or proprietary real-time operating systems (RTOS). Real-Time
Workshop lets you speed up simulations, build in intellectual property protection, and operate across a
wide variety of real-time rapid prototyping targets. Fig 8.11 illustrates the role of Real-Time
Workshop in the software design process

126

fUATLAB~>

and
Toolboxes

Design
and ^

S^Anafyars^y

Real-Time
Workshop {
components

Simulmk,
Stateflow, and Bloeksets

External Mode
Monitoring and

pammeteriumrig

Sinralmk Code
Generator
Generates C

' Make
prccess

Rapid Prototyping Target!
Reai-tim'e test environment j

pt^tianiePd|iphKtN
I Moniioiing end I
\parameter tuningJ

Production
Target

Early rapid prototyping iterations *?vr*.........Final production
iteration

j*

Fig 8.11 SOFTWARE DEVELOPMENT Using MATLAB/SIMULINK

The optional Real-Time Workshop Embedded Coder works with Real-Time Workshop to
generate efficient, embeddable source code. Fig 8.12 depicts the process of generating source code
from SIMULINK models.

S i.raxtl mk
oiocel *. radX

Real-Time Worlt5h op

^TLC pix»gram: \

♦ SjrB&eaxx taurjgperts file %
♦ Bloc’k: t4ajr,jgperfc Tillers; £

J * Inliped S-ftmctitm
\ target £Lles

•• Targiafe 3L. angruag e
Oomjpil. er Rinction

/ library

Kjeal»Tixoe Workshop Builcl

I roocel * rtsv

"1" arget
iia gs-ie* Cctmpi lear
A. eooceJ.c

Riip- tiaae ijbite i~f:a<W''f.
^u.j>po2rt fikts &.

Make ri k’-/

rr»ocs’el .. e xe

Fig 8.12 RTW Code Generation

A target is an environment—hardware or operating system—on which your generated
code will run. The process of specifying this environment is called targeting. The process of
generating target-specific code is controlled by a system target file, a template makefile, and a make

127

command. To select a desired target, specify these items individually, or choose from a wide variety of
ready-to-run configurations.

The host is the system used to run MATLAB, SIMULINK, and RTW. Using the build
tools on the host, code and an executable that runs on target system can be created These include
ready-to-run configurations and third-party targets. Fig 8.13 gives a complete list of bundled targets,
with their associated system target files and template make files.

Fig 8.13 TARGET FILE BROWSER

Real-Time Workshop provides a generic real-time development target. The GRT target
provides an environment for simulating fixed-step models in single or multitasking mode. A program
generated with the GRT target runs your model, in simulated time, as a stand-alone program on your
workstation. The GRT target allows to perform code validation by logging system outputs, states, and
simulation time to a data file. The data file can then be loaded into the MATLAB workspace for
analysis or comparison with the output of the original model. The GRT target also provides a starting
point for targeting custom hardware. The GRT harness program grt_main.c can be modified to execute
code generated from the model at interrupt level under control of a real-time clock.

Real-Time Workshop generates source code for models and blocks through the Target
Language Compiler, which reads script files (or TLC files) that specify the format and content of
output source files.
Two types of TLC files are used:

• A system target file, which describes how to generate code for a chosen target, is the
entry point for the TLC program that creates the executable.

• Block target files define how the code looks for each of the SIMULINK blocks in the
model.

Real-Time Workshop uses template make files to build an executable from the
generated code. The Real-Time Workshop build process creates a make file from the template make
file. Each line from the template make file is copied into the make file; tokens encountered during this
process are expanded into the make file. The name of the make file created by the build process is
model.mk (where model is the name of the Simulink model).

128

The model.mk file is passed to a make utility, which compiles and links an executable
from a set of files. A template make file has an extension of .tmf and a name corresponding to your
target and compiler. System target files and template make files using the Real-Time Workshop pane
of the Simulation Parameters dialog box (Fig 8.14) can be specified either by typing their filenames
or choosing them with the Target File Browser.

Fig 8.14 REAL TIME WORKSHOP PANE

A high-level M-file command controls the Real-Time Workshop build process. The
default command, used with most targets, is make_rtw. When you initiate a build, Real-Time
Workshop invokes make_rtw.

The make_rtw command, in turn, invokes the Target Language Compiler and utilities such as
make. The build process consists of the following stages:

• make_rtw compiles the block diagram and generates a model description file, model.rtw.
• make_rtw invokes the Target Language Compiler to generate target-specific code,

processing model.rtw as specified by the selected system target file.
• make_rtw creates a make file, model.mk, from the selected template make file.
• make is invoked which compiles and links a program from the generated code, as

instructed in the generated make file.

8.2.2 S-function

An S-function is to create custom Simulink blocks. An advantage of using S-functions is that
we can build a general purpose block that can use many times in a model, varying parameters
with each instance of the block. S-function is use to make generalize Simulink model of the
system. S-functions can be written in MATLAB, C, C++. S-functions use a special calling
syntax that enables to interact with Simulink equation solvers. The interaction is very similar to
the interaction that takes place between the solvers and built-in Simulink blocks. The form of
an S-function is very general and can accommodate continuous, discrete, and hybrid systems.
S-functions allow to add new blocks to Simulink models. S-functions can also be used with
the Real-Time Workshop to customize the code generated by the Real Time Workshop for S-
functions by writing a Target Language Compiler (TLC) file.

129

8.2.2.1 M-FILE S-FUNCTIONS
An M-file S-function consists of a MATLAB function of the following form:

[sys,xO,str,ts]=f (t, x, u, flag, pi, p2) : where f is the S-function's name,
t is the current time, x is the state vector of the corresponding S-function block, u is the block's inputs,
flag indicates a task to be performed, and pi, p2,... are the block's parameters.

8.2.2.2 FLAG ARGUMENT
Table 8.4 gives the value of flag and its association with the handle in the simsize structure.

Flag S-Function Routine Description
Flag=0 mdllnitializeSizes Defines basic S-Function block characteristics,

including sample times, initial conditions of
continuous and discrete states, and the sizes array.

Flag=l mdlDerivatives Calculates the derivatives of the continuous
State variables.

Flag =2 mdlUpdate Updates discrete states, sample times, and major time
step requirements

Hag =3 mdlOutputs Calculates the outputs of the S-function.
Hag =4 mdlGetTi meOfN extV arHi t Calculates the time of the next hit in absolute time.

(This routine is used only when you specify a variable
discrete-time sample time in mdllnitializeSizes).

Flag =9 mdlTerminate Performs any necessary end-of-simulation tasks.
Table 8.4 Flag Characteristics

8.2.23 S-Function BLOCK CHARACTERISTICS

For Simulink to recognize an M-file S-function, must provide it with specific information
about the S-function. This information includes the number of inputs, outputs, states, and other

Field Name Description

sizes.NumContStates Number of continuous states

sizes.NumDiscStates Number of discrete states

sizes.NumOutputs Number of outputs

sizes.NumInputs Number of inputs

sizes.DirFeedthrough Hag for direct feed through

sizes.NumSampleTimes Number of sample times

Table 8.5 fields in SIZE Structure

130

To pass information to SIMULINK the following steps may be used:
1. call the simsizes function at the beginning of mdllnitializeSizes sizes = simsizes;
2. call simsizes again using ^ sys = simsizes(sizes);

8.2.3 Code Composer Studio

Fig 8.15 depicts the procedure to generate code. The CCStudio IDE provides a graphical interface for
using the code generation tools. A CCStudio project keeps track of all information needed to build a
target program or library. A project records:

> Filenames of source code and object libraries
> Compiler, assembler, and linker options
> Include file dependencies

corpc++
sareellles

■teseirfcly
cpllinber: .

ONLY apples
tflCSDOD

fesembty
preprocessor

G'C-t-* corrplter

Raiser

Opttnizer
(opltral)

Fig 8.15 CODE DEVELOPMENT FLOW

131

The CCStudio IDE supports all phases of the development cycle shown in Fig 8.16

Fig 8.16 SIMPLIFIED CCSSTUDIO DEVELOPMENT FLOW

The compiler, assembler, and linker options can be specified within CCS’s Build
Options dialog box (Fig 8.17). Nearly all command line options are represented within this
dialog box. Options that are not represented can be specified by typing the option directly into
the editable text box that appears at the top of the dialog box.

Build Options for octlvefllter__dsp^.pjt

The following procedure allows user to create new projects, either individually or
several at once. Each project’s filename must be unique. The information for a project is stored
in a single project file (*.pjt).
• From the Project menu, choose New. The Project Creation wizard window (Fig 8.18)

displays.

132

Fig 8.18 PROJECT CREATION WINDOW

• In the Project Name field, type the name you want for your project.
• In the Location field, specify a directory to store the project file. You can type the full path

in the Location field or click the Browse button and use the Choose Directory dialog box.
• In the Project Type field, select a Project Type from the drop-down list. Choose either

Executable (.out) or Library (lib). Executable indicates that the project generates an
executable file. Library indicates that you are building an object library.

• In the Target field, select the Target Family that identifies your CPU. This information is
necessary when tools are installed for multiple targets.

• Click Finish.
The CCStudio IDE creates a project file (Fig 8.19) called projectname.pjt, which stores

project settings and references the various files used by the project. The new project
automatically becomes the active project. The first project configuration (in alphabetical order)
is set as active. The new project inherits Tl-supplied default compiler and linker options for
debug and release configurations.

* Code Composer

Q | %

I - 3 i 7*. -u
| aclivefilter_dsp1 pjl ^ 11 Custom_MW ^ | tHi *
ip SW Q l§5H0i£<

& £
activefilter_dsp 1 .p j

J GEL files
J Projects

EJQ activefilter_dspl .cr
♦ Qj DSP/BIOS Config
+■ I Generated Files
♦ P~l Include
♦ __J Libraries

__J Source

Djx4
INITIALIZING CPU

Fig 8.19 CCSSTUDIO IDE BASIC WINDOW

133

After creating a new project file, add the filenames of the source code, object
libraries, and linker command file to the project list. The procedure to add files to the project:

• Select Project —► Add Files to Project, or right-click on the project’s filename in the Project
View window and select Add Files. The Add Files to Project dialog box displays.(Fig 8.20)

Add Files to Project IJ2JIXJ
Look in: I k ^ activefilter_dsp1_c6000_rtw H E C* *- m-
HD activefilter_dsp 1
12 activefilter_dspl_data
12 activefilter_dspl_main
2 activeFilter_dsplcfg_c

2 ti_nonfinite

2 MW c67xx csl
2 rt_sim

File name:

Files of type: | C Source Files (“,c;“.ccc)

□ pen

33 Cancel

Help

Fig 8.20 ADD FILES TO PROJECT DIALOG BOX

• In the Add Files to Project dialog box, specify a file to add. If the file does not exist in the
current directory, browse to the correct location. Use the Files of type drop-down list to set
the type of files that appear in the File name field.

• Click Open to add the specified file to your project. The Project View is automatically
updated when a file is added to the current project. The project manager organizes files into
folders for source files; include files, libraries, and DSP/BIOS configuration files. Source
files that are generated by DSP/BIOS are placed in the Generated files folder. To build and
run a program, follow these steps:

• Choose Project —» Rebuild All or click the . (Rebuild All) toolbar button. The
CCStudio IDE recompiles, reassembles, and relinks all the files in your project. Messages
about this process are shown in a frame at the bottom of the window.

• By default, the .out file is built into a debug directory located under your current project
folder. To change this location, select a different one from the CCStudio toolbar.(Fig 8.21)

Name of the
Current Project

Project Configuration

Fig 8.21 TOOLBAR SHOWING BUILD OPTION

134

8.2.4 MATLAB Link for Code Composer Studio

The link provides Development Tools to use MATLAB functions to communicate with Code
Composer Studio™ and with information stored in memory and registers on a target. With the
links user can transfer information to and from CCS and with the embedded objects, get The
information about data and functions stored in the signal processor memory and registers, as
well as information about functions in the project can be obtained. The links and the embedded
objects are objects which can be used like all other MATLAB objects. The object properties
and their methods can be set, changed or manipulated. The link allows creating two kinds of
objects:

• Links that connect MATLAB to Code Composer Studio
• Embedded objects created by user to provide access to data and functions in the ccs

and target. The link objects allow to use the embedded objects to access the target.

C6000 target in Real-Time Workshop®, the MATLAB Link for Code Composer Studio
supports: TMS320C67Q1 EVM, TMS320C6711 DSK and C6xxx simulator.Links for RTDX
and CCS work with any board that CCS supports. The link provides three components that
work with and use CCS IDE and TI Real-Time Data Exchange (R1DX™):

• Link for Code Composer Studio IDE: To use objects to create links between CCS IDE
and MATLAB ®. From the command window, you can run applications in CCS IDE, send to
and receive data from target memory, and check the processor stattis, as well as other
functions such asstarting and stopping applications running on your digital signal processors.

•Link for Real-Time Data Exchange Interface: It provides a communications pathway
between MATLAB and digital signal processors installed on the PC. The objects in the
MATLAB Link for Code Composer Studio are used to open channels to processors on boards
in the computer and send and Retrieve data about the processors and executing applications, as
well as send data to the processes for use and get data from the applications.

Choose File —> Load Program. Select the program you just rebuilt, and click Open. The
CCStudio IDE loads the program onto the target DSP and opens a Dis-Assembly window
that shows the disassembled instructions that make up the. program. (Notice that the
CCStudio IDE also automatically opens a tabbed area at the bottom of the window to show
the output that the program sends to stdout.)
Choose View —> Mixed Source/ASM. This allows you to simultaneously view your c
source and the resulting assembly code.
Click on an assembly instruction in the mixed-mode window. (Click on the actual
instruction, not the address of the instruction or the fields passed to the instruction.) Press
the FI key. The CCStudio IDE searches for help on that instruction. This is a good way to
get help on an unfamiliar assembly instruction.
Choose Debug —> Go Main to begin execution from the main function. The execution halts
at main and is identified by fil

Choose Debug
Choose Debug

Run or click the (Run) toolbar button to run the program.
Halt to quit running the program.

135

•Embedded Objects: It provides object methods and properties that let you access and
manipulate information stored in memory and registers on digital signal processors, or in your
Code Composer Studio project. From MATLAB you gather information from you project,
work with the information in MATLAB. doing things like converting data types, creating
function declarations, or changing values, and return the information to your project—all from
the MATLAB command line.

To verify that CCS is installed on the system, enter » ccsboardinfo ... at the MATLAB
command line. With CCS installed and configured, MATLAB returns information about the
boards that CCS recognizes on your machine, in a form similar to the following listing:

Board Board Proc Processor Processor
Num Name Num Name Type

1 C6xxx Simulator (Texas Instrum... 0 6701 TMS320C6701
0 C6xll DSK (Texas Instruments) 0 CPU TMS320C6xlx

With the target code loaded, MATLAB Link can be used for CCS Studio functions to examine
and modify data values in the processor. In the CCS IDE Project view window, there should
be a file named ccstut.c. The MATLAB Link for Code Composer Studio provides three
functions to control target execution—run, halt, and restart.

MATLAB Link for Code Composer Studio implements just this sort of access and
manipulation capability by using MATLAB objects (called embedded objects in this guide)
that access and represent variables and data embedded in your project. Various functions that
compose the MATLAB Link for Code Composer Studio, such as createobj, convert, and write,
helps to create the embedded objects to be used to work with the data in DSP memory and
registers, and allows the to manipulate the data in MATLAB as well as in user code

The MATLAB Link for Code Composer Studio and the links for CCS IDE and RTDX speed
and enhance ability to develop and deploy digital signal processing systems on TI DSPs.
Math Works tools, CCS IDE and RTDX work together to test and analyze processing

algorithms in the MATLAB workspace. In contrast to CCS IDE, using links for RTDX allows
user to interact with the process in real time while it’s running on the target. Across the link,
it is possible to:
• Send and retrieve data from memory on the processor
• Change the operating characteristics of the program
• Make changes to algorithms as needed without stopping the program or setting breakpoints

in the code Enabling real-time interaction to the process or algorithm in action, the results
as they develop, and the way the process runs.

A data buffer is created from MATLAB is sent to DSP processor (DSK/EVM). The tools
required are:
1. Embedded Target for TI C6000 DSP
2. MATLAB link for CCS.

136

Support files required are:
1. c671 Xdsk.cmd ==Linker Command file
2. Vecor file
3. rtdx.lib = Library support file
4. A header file to enable the interrupt
5. C program creates a channel:

• input == PC-MATLAB to DSK
• output channel.=== DSK to PC-MATLAB

Input channel will read data from PC and output channel will send the result. (I/O is designated
from Target)
// RTDX rnatlab sim.c MATLAB-DSK interface using RTDX between PC & DSK
// RTDX MATLAB sim.m MATLAB-DSK interface using RTDX. Calls CCS

8.2.5 SIMULINK Blocks: Embedded Targets

User can use Real-Time Workshop to generate, target, and execute Simulink models on the TI
C671 1 DSK. The software is the ideal resource for rapidly prototyping and developing
embedded systems applications for the TI C6711 Digital Signal Processor. The Embedded
Target software focuses on developing real-time DSP applications for the C6711 DSK. The
library of simulink blocks for the C671 1 target is depicted in Fig 8.22

W---
LTl Library: c671 1 dsklib

1 File Edit View Format Help

Line In
CS711 DSK

ADC

Cine Out
C6711 DSK

DAC

ADC DAC

C67 11 DSK
LED

R eset
C6711 DSK

LED

C67 11 DSK
DIP Sixuitoh

Fig 8.22 Block library for DSK C67l l

The blocks provided in the library are corresponding to the I/O component such as LDE,
Swithces, ADC and DAC, on the kit TMS 320C6711 DSK

• Input block : (C67l l DSK ADC)
• Output block : (C67l l DSK DAC)
• Light emitting diode block (C67l l DSK LED)
• DIP switch block (C67l I DIP Switch)
• Reset block (Reset C6711 DSK)

137

8.2.6 Data Converter Plug-In: DCP

Data converters provide the interface between the analog world and the digital world of the
digital signal processor. Most converter ICs offer only simple conversion and has simple interfaces.
This has changed recently, with more functionality moving into the converter, Converters have special
features suited to particular applications, such as high-precision differential inputs. Some have
enhanced digital interfaces while others execute common pre/post-processing tasks to decrease the
CPU load. Texas Instruments uses the plug-in architecture to extend the development environment by
gradually implementing DSP-optimized ADCs and DACs. The goal is to simplify integration of data
converters from device initialization up to the sample processing into its own algorithm.The Data
Converter Plug-In (DCP) is a software plug-in with the Code Composer Studio™ (CCS) for the
TMS320C2800™, TMS320C5000™, and TMS320C6000™ digital signal processor (DSP) families. It
generates C source code drivers based on user inputs for Texas Instruments (TI) data converters
(ADC, DAC, and CODEC) connected to a TI DSP.

The Data Converter Support Software (DCP) is a useful tool. It generates driver source code in
response to inputs from the user. All interface and configuration settings are made through an easy-to-
use graphical user interface (GUI). The drivers have been developed and tested on the data-converter
evaluation modules (EVM) that are also available from Texas Instruments. TI offers a variety of DSP
architectures optimized for a wide range of applications. In addition to DSPs for motor and process
controls, there are low-cost DSPs with floating-point architecture for a variety of industrial systems.
To allow for high portability, the processors are often programmed in C, using the highly efficient,
optimizing C-compilers.

The C6000 DSPs offer processor performance up to several thousand MIPS (million
instructions per second). Those devices are mainly used in applications requiring large processing
power and high data throughput, such as compression algorithms in the audio and video segment.
Typical applications are central office DSL modems as well as GSM base stations, where many data
channels need to be processed simultaneously. To support both increasing system complexity and
shorter design cycles, new development systems had to improve in code generation as well as in
efficient debugging capabilities. All development tool modules have been integrated into one
development system, the Code Composer Studio ™ (CCS). User functions to configure the DSP on-
chip peripherals are combined into libraries, enabling the user to execute easily the many configuration
options available. Subroutines to configure and read or write ADCs and DACs are developed for all
major DSP families.

The user may generate configuration data using a graphical user interface provided by a CCS plug-in.
Plug-in allows the designer to choose from the many options to configure a data converter via a dialog
window. Once the parameters have been selected, the tool generates the necessary functions for the C-
program that are required to configure the data converter. Functions to initiate the data transfer via the
ADC-DSP interface and to read ADC conversion results are also generated. The interface can be
tested easily and immediately for optimal performance.

When calling the “Data Converter Support” menu option within CCS, the designer can choose
from existing ADC, DAC, and AIC devices via the “Add” context menu in the dialog window, the
desired converter is added to the system. Selecting “Properties” with the converter selected makes the

138

configuration dialog window appear. This window consists of the following three segments: "Interface
Settings,” "ADC Settings,” and "Current Control Selection.” "Interface Settings,” for example,
includes the definition of the ADC address within the DSP memory space, the polarity of the edge of
the interrupt signal, and the format of the transferred data. Within "ADC Settings,” the number of
analog-input channels and their operation modes is defined. The ADC conversion clock and
configures the FIFO by setting the trigger level. After the source code implementation, the overall
system test can begin. User can return to the "Data Converter Support” dialog window and selects new
parameters. The generation of driver files requires following steps:

V Setup and Open Code Composer Studio (CCS)
V Create a New Project in CCS
V Open DCP
V Add a Converter to the DCP
V DSP Configuration
V Converter Settings
V Code Generation

8.2.6.1 CREATE A NEW PROJECT IN CCS
The DCP creates a set of files and adds them to a CCS project. Therefore, it is important to
create a new project or to open an existing project before running the DCP.
• Select CCS menu - Project - New to create a new project, or
• Select CCS menu - Project - Open to open an existing project.

.IJ1 »l
Elio Edit VW,w r ...i-. r El ofllei .FI Opttor PBC D5P/BIOS WlndFiP Hnlp

tfe a | * sto ms I rr ||— —|g a -t. ■» | at iff | -i« 1 ..si w. i m

Fig 8.23 CCS Project Creation

As already described in the previous chapters use the following steps to create a project:
• In the field labeled Project Name, type the name of the project, e.g., DemoDCP. (Fig 8.13)
• Verify the location where your project will be created. It is usually c:\li\myprojects where c:\ti

is the CCS installation directory.
• Set Project Type to Executable and Target to the DSP family (TMS320C67XX).
• Click the Finish button to create the project.
• CCS automatically creates a subdirectory and places the project file in it. The newly created

project appears in the project pane (left side of the CCS window).

139

S.2.6.2 OPEN DCP

With the project open start the DCP. Select CCS menu - Tools - Data Converter Support to

Ne Edit View Project Debug Profiler GEL Option Tools PBC DSP/BIOS Window Help
-Ul«l

id 12? U DTk | -O -7 c? || j-J U v>» <9. «<v te> i 1 El
| DemoOCP pit — 11 Debug ^ 1 ® till tSS rff£l 1 « 1 9* Q G3 as □□ G3 [®1 rl i dvr

O*

o*
-n
(*>
&
2?

cn

^ Files
*1 ___| GEL files

_J Projects
♦ Dcmol

■1- ■ 1
rj^f

■■JOJ-sJ
System | DSP | Fite* |

Welcome lo the Texes Instruments Dele Convene! Plug-In

Quick Select |

Peripheral Setup. Copyright (c) 2000-2004 Texes Instruments

CPU MALTED For Help, press FI

Fig 8.24 DCP Start Screen

8.2.6.3 ADD A CONVERTER
The next step is to add the desired converter to the DCP. This can be accomplished in two
ways:
• navigate the converter tree to find the desired converter based on the interface and width
• use the Quick Select feature, DCP searches for all converters beginning with the letters and

numbers typed. Select the converter from the generated drop-down list as shown in Fig 8.25.
* Code Composer [— |[j)[X||

File Edit View Project Debug Profiler GEL Option Tools PBC DSP/BIOS Window Help

CS ' rl * ' - -- | ^ fe* V4 ^ ¥?

(dEMODCP Pit - Debug -y iSft

£2 car □ H S3 H S 0 d.

For Help, press Fl CAP NUM

Fig 8.25 Data Converter Selection
When a converter is selected, the DCP expands the tree, highlighting the device and placing the
cursor on it. Some converters are gray colored, which means that for this converter on this

140

specific DSP platform no complete driver is available. Create the register settings for the
converter, which can later be used in the driver later on.

• Header file (dc_conf.h) describing the converter's setup
• Abstraction layer files (;tidcjapi.c, tidc_api.h) are generated, which is described in

subsequent sections.
To add the converter to the system, right-click on the highlighted converter. A pop-up menu
appears (Fig 8.26). Click on the first entry labeled add, this includes the converter in the system
and adds a configuration tab for it to the DCP window. Notice that a new tab called
<Converter name>_\ (here: TLV2553_I) has been added to the DCP.
The pop-up menu (Fig 8.16) has two more active menu items. Clicking on the Properties item
reveals the driver seed and driver output file names used for the selected converter. The Help
item from the pop-up menu opens the help file of the DCP.

0 Code Composer
File Edit View Project Debug Profiler GEL Option Tools PBC DSP/BIOS Window

id u
| DEMODCP.pjl ©bug ^] Irf 4.1

S3 iv o EH sa 00 E3 Gal d

[- ir^irxi
"3 « %

The DCP supports multiple converters in the system. If the system has more than one converter
connected to the DSP, repeat the steps for all converters

8.2.6.4 DSP CONFIGURATION

The DSP-specific settings must be chosen before the converter settings can be entered. Click
on the DSP tab to display the DSP-specific controls. The DSP page opens (Fig 8.17). Through
the configuration setup, the DCP automatically determines the DSP family to be used, and lists
all supported DSPs in the DSP Type control.

• Choose the DSP you are using in your system from the drop-down list. The DSP Clock control
should be set to the DSP frequency used in the design. This value is used for frequency
calculation for the peripherals only. It does not control the DSP frequency.

• Type the DSP frequency you are using in your system into the DSP Clock edit field. The
Dispatcher in DSP/BIOS Used check box under Misc Settings informs the DCP if you are
using the dispatcher in the DSP/BIOS. If you are not using DSP/BIOS, this checkbox must be
left unchecked.

141

INITIALIZING CPUFor Help, press FICAP NUM

Fig 8.27 DSP Page

8.2.6.S CONVERTER SETTINGS
Click on the tab for the data converter you added in previous section. Converters differ in
capabilities and interfaces. As a result, each converter has its own unique setup tab. All pages
are separated in:

• Interface Settings: The Interface Settings section is where the user enters
information about the physical connection between DSP and the data converter.
• Converter Settings (if applicable): The Converter Settings section determines the
behavior of the converter after power up. These settings are completely configurable—
the converter works with any combination of the controls.

GUI of TLV2553 is shown in Fig 8.28. One important feature of the tool is that it is not
possible to choose invalid combinations—the DCP validates all user inputs against the device
constraints and displays only valid combinations for the particular converter. Choose the
desired settings for all converters in the system.

♦ Code Composer f— |f |[X ||
File Edit View Project Debug Profiler GEL Option Tools PBC DSP/BIOS Window Help

DEMODCP pjt

<53

| D ebug

Qi ED ai [1 E3 ® ii

INITIALIZING CPU

l)dld Converter Support ej&ic*)
System | DSP Tlv2553_ 1 Files | 3

ADC settings

Data length' C~
c~-

8 Bit
12 Bit

DSP Interrupt | E xt 1 nt 4

mm DSP Serial Port: [McB SP 0 “3
Output direction: <*■ MSB First

LSB First Speed Serial Port: [9277 778 (kHj)

Output: U nipolai

r~ Bipolar Register settings

Power supply (Vcc):

<~

3.3V
5 V

7 6

Register 0: 0 0

5 4 3 2 1 0

0 0 110 0

c~
r~ ■ 3■* *

For Help, press FI CAP NUM

Fig 8.28 GUI of the TLV 2553

142

82.6.6 CODE GENERATION

Once the converter is set up, the driver code can be generated. Click on the Files tab (Fig 8.29).
The last property page opens. The Show Files checkbox specifies whether the generated source files
remain open (checked) or are closed (unchecked) once they are generated. Verify that directory where
the driver files will be generated is the project directory. In our case the directory is named
c:\tfonyprojects\DemoDCP.

* Code Composi
File Edit View Project Debug Profiler GEL Option Tools PBC DSP/BIOS Window Help

pncini®
llL) Ce£ "2EJI ** *

IdEMODCP Pit * | j Debug — ' L±1±J ^

Q S ai [1] E3 @ d
fh®* Data Converter Support | — |ff““] || X |

♦ 1__J GEL files
- 1 Projects System | DSP | Tlv2553_1 Files |

|___| DSP/BIOS Cortfig Source File Options
1 ~ 1 Generated Files Files folder. CAtiVmyproiects Browse |

2$ __J Include
i 1 Libraries Project c: \ti\myprojects\D E M O D CP. pit
I ~ 1 Source

[Show creeled filesH M

Help Info

Use the WHITE FILES button to generate C source code files now.
T bis button win only be active if you previously added a device to the system.

Check the ‘Show created files'?" option above in order to view all changed and added files
___1

Write Files |

■ < ! _____ ______________ _ . 1 -J
INITIALIZING CPUFor Help, press F1CAP NUM

Fig 8.29 Files Page

Click on the Write Files button to start the file creation process. Files as in the Fig 8.30 are
generated. The driver source code fde and the driver header file are not generated if the a gray-
colored converter in the tree is selected

* Code Composer

&
IDEMODCP pjt D ebug

GEL Option Tools PfiC DSP/BIOS Window Help

-'ll
—3 a ft -u <s» 43 •*)= m‘1 m

_~J ^ 9 * | > 9t-
l

* tidc_api
■agfejEfe

j * tide api

({{TIDC_Wizord Auto Code Start
don’t change anything here until you know wha
the plug-in will change all text between the —
without user interaction'

software generated by Data Converter Plug-in
based on <C:\TI\PLUOINS^AAP_DEV\c6000\didc_62

** Texas Instruments Data Converter API 2.1 for
* $Revision: 6 $ $JustDate^

u« ,^

“C

w wha
the

/* ADC 1 parameter data
^define ADC1_TYPE
#def me ADC 1_REG0_VALUE
#define ADC1_INTNUMBER

l_<

TLV2553
(OxOOOC)
(IRQ_EVT_EXTINT4)

INITIALIZING CPU For Help, press FI Ln 1, Col 1 CAP NUM

Fig 8.30 Code Generation

143

The current version of CCS already includes support for 11 data converters. Further devices
currently under development will be integrated gradually into the plug-in. An installation
program, updated with the latest plug-in, is available for downloads from TI’s Web site at
www.ti.com/sc/dcplug-in Program examples for some of the DSP DSKs and data converter EVMs
are also available. Future standard software interfaces for ADCs and DACs are currently under
development

8.3 APF Controller Software
For designing the control circuit of active power filter the MATLAB / SIMULINK is

used. The design is based on the instantaneous active reactive power theory. The control circuit
contains two major parts

1. Generation of 3-0 compensating currents
2. Generation of 6 PWM signals from these compensating currents

For DSP implementation, the program should be in DSP assembly language. We can generate
the DSP assembly language code with the help of MATLAB / SIMULINK in two ways.

• We can convert the simulink model (.mdl) file into the C source code with the
help of Real Time Workshop and then this C source code can be loaded into the
Code Composer Studio (CCS) of Texas Instruments.

• The other procedure is we can use the Code Composer Studio Link (CCS Link)
given in MATLAB and we can directly convert the simulink model file into
DSP assembly language code.

These both processes are discussed in this chapter in detail. The DSP code can be generated
with the help of any one of the above method.

8.3.1. Code Generation Using Real Time Workshop & CCS
The C code can be generated from the Real Time Workshop given in the simulink RTW
imposes certain requirements and restrictions on the model from which code is generated.
Many of these, for example, the use of variable-step solvers, are target specific.

• SETTING PROGRAM PARAMETERS

To generate code correctly from your model, you must change some of the simulation
parameters. In particular, note that generic real-time (GRT) and most other targets require that
the model specify a fixed-step solver. To set parameters, use the Simulation Parameters
dialog box (Fig. 8.31) as follows:

o From the Simulation menu, choose Simulation Parameters. The Simulation
Parameters dialog box opens.

o Click the Solver tab and enter the following parameter values on the Solver pane,
o Start Time: 0.0; Stop Time: 60;
o Solver options: set Type Fixed-step. Select the ode5 (Dormand-Prince).
oFixed step size: 0.05.Mode: Single Tasking,
o Click Apply. Then click ok to close the dialog box.

144

oSave the model. Simulation parameters persist with the model, for use in future
sessions.

Fig 8.31 SETTING PROGRAM PARAMETERS

• SELECTING THE TARGET CONFIGURATION

To select the GRT target:
oFrom the Simulation menu, choose Simulation Parameters. The Simulation Parameters

dialog box opens.
oClick on the Real-Time Workshop tab of the Simulation Parameters dialog box. The

Real-Time Workshop pane activates.
oThe Real-Time Workshop pane has several parts, which are selected via the Category

menu.
o Click the Browse button next to the System target file field. This opens the System Target

File Browser, illustrated below. The browser displays a list of all currently available target
configurations.

oOn target configuration selection, RTW automatically chooses the appropriate system
target file, template make file and make command. (Fig. 8.32)

Category: P~T arget configuration

Configuration
System target file: | Qrt.iTc Browse... I

Template makefile: | grt_defaulUmf

N1 ake commend: | make_rtw

I Generate code only Stateflow options |

| Cancel j H elp

Fig 8.32 REAL TIME WORKSHOP PANE

145

System large! File Browser: activefiltermainl

| System target file D e s c rip tion

asap2.tic
dec.tic
ere.tic
art.tic

ASAM-ASAP2 Data Definition Target
DOS (■4GTJ) Real-Time Target
RTU Embedded Coder
Visual C/C+-+- PEOject Makefile only for the RTU Embedded Coder

get.tic Visual C/C-+-+- Project Makefile^ only for the "grt" target
get. malloc.tlc Generic Real-Time Target with dynamic memory allocation
get malloc.tlc Visual C/C-t-i- Project Makefile only for the "grt malloc" target
mpc555exp.tic Embedded Target for Motorola MPC555 (algorithm export)

' impc 5 55pi 1. tic Embedded Target for Motorola MPC5S5 (processor-in-the-loop)
mpc555rt.tic Embedded Target for Motorola MPC555 (real-time target)
osek lco.tic (Beta) LE/O (Lynx-Embedded OSEK) Real-Time Target
rsim.tic Rapid Simulation Target
r twin.. tic Real-Time Uindows Target
ecusfen.tic S-function Target
tl c6000.tic Target for Texas Instruments(tm) TMS320C6000 DSP
totnado.tic Tornado (VxUorks) Real-Time Target
xpetarget.tic xPC Target

Selections f C:\MATLAB6p5\rtw\c\grt\get. tic

Fig 8.33 SYSTEM TARGET FILE BROWSER

o From the list of available configurations, select Generic Real-Time Target (fig. 8.33) and
then click OK.

o The Real-Time Workshop panes now display the correct system target file (grt.tlc),
template makefile (grt_default_tmf), and make command (make_rtw).

o Save the model.

• BUILDING AND RUNNING THE PROGRAM

To build and run the program:

o Click the Build button in the Simulation Parameters dialog box to start the build
process The final message will be

o # # # successful completion of Real-Time Workshop build procedure for model:
activefiltermainl

o To observe the contents of the working directory after the build, type the dir command
from the MATLAB command window.

■ dir
■

■ .. activefiltermainl.exe activefiltermainl.mdl
■ activefiltermainl _grt_rtw

o To run the executable from the MATLAB command window enter;
» activefiltermainl

o By typing this it will give the following message
■ ** starting the model **
■ ** created activefiltermainl.mat **

8.3.2. Code Generation: Using CODE COMPOSER STUDIO)
o In the code composer studio select project - new. Give some name. Say new3.pjt
o In this project select project - add files to project. A browser opens, select the required path.

You only need to add ‘C’ programs. Header files will be added automatically in the include
subfolder while checking dependencies.

146

Cl* '{)

^ &

| Projects >
activefilter _d*p I .pjt
Ml actlvef liter _dspl .cm

- _J DSP/BIOS Config
• activefilter_dspl

♦ i~ ~1 Generated Files
1__J Include

■*- l Libraries
- 1 ~1 Source

Real-Time Workshop code generation for

Model Version
Real-Time Workshop file version
Real-Time Workshop file generated on
TLC version
C source code generated on

o Select File - New - DSP - BIOS configuration, and select appropriate DSP configuration. For
our case c6711. Save this as new3.cdb

o Go to project - add files to project and add new3.cdb and new3.cmd. new3cfg.sf6 will be
automatically added.

o Go to project - compile. Remove all compilation errors.
o Go to project - build. If the program contains no syntax error and output file will be made,

new3.out
o Go to File - Load program, select new3.out as the output file to be loaded in DSP.
o Once program is loaded in DSP go to Debug - Run. You will be able to see the results.
o Fig (8.34) shows a ‘c’ program in code composer studio.

1 • Code Composer [activefilter dspl .c]

^ File Edit View Project Debug Profiler GEL

GS U B | ■ ■. -• 1 [”

Option Tools PBC DSP/BIOS Window

—3 *

Help _ S' X

t‘,i -5= *5= tfi 00|/

j adivelil»ei_dsp1 pjl * 11 Cu*tom_MW

AvJ Q 1 Ivl h-^4 1^1 &L |«J

^ * | a * |

I Q. 1
' 1_________

*1 activefilter_dspl
*1 activefilter_dspl
.*1 MW_c67xx_csl.c ,

'a

^include <string.h>
^include "activefi1ter_dsp1.h"
^include "act ivef i 1 ter_dsp l_pnvate . h "
^include "simstruc.h"

<Linking>

Build Complete,
0 Errors, 3 Warnings, 0 Remarks.

i i i k
CPU RESETTING

►rJ
For Help, press FI

Fig 8.34 C SOURCE CODE
o Fig (8.35) shows its assembly language version which is created by CCS.

* Code Composer [act ivcf ilter_ dspl clatd.asm| (- I HD 8
% File Edit View Project Debug Profiler GEL Option Tools PBC DSP/BIOS Window Help

i£) G& U

[aclivefH»ei_dsp1 pji ^ 11 Cus(om_MW

£3 (3 0 SU [I] 0 H d
I'rf.t.'i

"3] m ^ t5* -51 m5* &’

94 | I

22 I

_| Projects
activefilter _d*p 1 .p|l
Ml actlvefilter_dspl .cm

- i__J DSP/BIOS Config
? activefilter_dsp 1

♦ I Generated Files
i~ i Include

♦ I~ I Libraries
- ___| Source

>1 rnmnama■tl activefilter_dspl
*1 activefilter_dspl

MW_c67xx_csl.c „

nJ3T

TMS32QC6X ANSI C Codegen
Date/Time created: Mon Apr 25 23:18:14 2005

GLOBAL FILE PARAMETERS

Archltecture
Optimization
Optimizing f or

Endian
Interrupt Thrshld
Memory- Model
Calls to RTS

TMS320C67lx
Enabled at level I
Speed
Based on options:
Little
Inf mite
La rge
Far

-o 2, no -ms

<Linking>
Build Complete,

0 Errors, 3 Warnings, 0 Remarks

—i i i i\ B.iM.i r
D* I DrCFTTIM^

iui_

Fig 8.35 ASSEMBLY LANGUAGE CODE

Q Windows Media PI... ♦ Code Composer

LM

•• IP H If)
®
 (N

(N
|J

C
C

U 3
U

q a*-) a

O (/>< —
<

o’TO
C

O
S

•
• 0

• 0
rn ip y in i

147

8.3.3 Code Generation Using CCS Link

For creating assembly language program using CCS link the rules are as follows:

• The solver to be used should be fixed step.
• The simulink model file should be discrete.
The steps for converting simulink model file into DSP assembly language code using CCS link are
as follows:

• From the Simulation menu, choose Simulation Parameters. The Simulation
Parameters dialog box (Fig 8.36)opens.

Fig 8.36 Simulation Parameters: Dialog Box

• Click the Solver tab and enter the following parameter values on the Solver pane.
Start Time: 0.0; Stop Time: 60;
Solver options: set Type Fixed-step. Select the ode5 (Dormand - Prince).
Fixed step size: 0.05.Mode: Single Tasking.

• Click Apply. Then click ok to close the dialog box.
• Save the model. Simulation parameters persist with the model, for use in future

sessions.

• Click on the Real-Time Workshop tab of the Simulation Parameters dialog box. The
Real-Time Workshop pane activates. 3

• The Real-Time Workshop pane has several parts, which are selected via the Category
menu.

• Click the Browse button next to the System target Fde field. This opens the System
Target File Browser (Fig 8.37).

148

asap2. t-lc
drt.tic
ert.tic
ert.tic
get.tic
grt.tic
gtt_malloc.tic
grt_iaalloc. tic
mpc555exp.tic
upc555pll.tic
mpc555rt.tic
osek_leo.tic
ESlU.tlC

rtwin.tic
rtwsfcn.tic

ASAM-ASAP2 Data Definition Target
DOS(4GU) Real-Time Target
RTU Embedded Coder
Visual C/C++ Project Makefile only for the RTTJ Embedded Coder
Generic Real-Time Target
Visual C/C++ Project Makefile only for the "grt" target
Generic Real-Time Target with dynamic memory allocation
Visual C/C++ Project Makefile only for the "grt_malloc" target
Embedded Target for Motorola MPC555 (algorithm export)
Embedded Target for Motorola MPC555 (processor-in-the-loop)
Embedded Target for Motorola MPC555 (real-time target)
(Beta) LE/O (Lynx-Embedded OSEK) Real-Time Target
Rapid Simulation Target
Real-Time Uindows Target
3-function Target

■H-l'M'lfl.itornado.tic
xpetarget.tic

Tornado (VxWorks) Real-Time Target
xPC Target

Selection: |C:\MATLAB6p5\toolbox\rtw\targets\tic6000\tic6000\ti_c6000.tic

Fig. 8.37 Target File Browser

On selecting target, RTW automatically chooses the appropriate system target file,
template make file, and make command. From the list of available configurations,
select Target for Texas Instruments (tm) TMS320C6000 DSP and then click OK.

• The Real-Time Workshop panes now display the correct system target file
(ti_c6000.tlc), template makefile (ti_c6000.tmf), and make command (make_rtw).

• Click the Build & Run button in the Simulation Parameters dialog box to start the
build process. The final message will be

Generating the DSP/BIOS configuration file...

Creating project in Code Composer Studio(tm)

Aetivefilter_dspl.mk which is generated from

C:\MATLAB6p5\toolbox\rtw\targets\tic6000\tic6000\ti_c6000.tmf is up to date

Building Code Composer Studio(tm) project...

Build complete

• It directly opens the code composer studio.
• It generates the .out file, .asm files and gathers all the information.
• Go to File - Load program, select activefilter_dsp 1 .out as the output file to be loaded in

• Once program is loaded in DSP go to Debug - Run. You will be able to see the results.

• Fig. 8.38 shows the CCS window showing the activefilter_dspl .pjt

DSP.

149

• Code Composer Lactivcfilt
File Edit View Project Debug Profiler GEL Option Tools PBC DSP/BIOS Window Help

i_iriir><i
i^l oaf wi

| activefilter_d*pl pjl 1 j Custom_MW

QEHaiCEIEZlHfll

"3

| Projects
actlvcliltcr dspl.pjt
JQ activefilter_dspl .cm

- ___| DSP/BIOS Config
actlvefllter_dspl

♦ | Generated Files
~ I Include

♦ | Libraries
- | Source

& i| activefilter_dspl
,*1 activefHter_dspl
AH MW_c67xx_csl.c >

" nJ-EET

- TMS320C6x ANSI
" Date -Time cieat 25 23:18:04 2005

ri

GLOBAL. FILE PARAMETERS

Archlteotui'e
Optimization
Optimizing for

Interrupt Thrshld
Memorv Model
Colls to RTS

TMS320C67lx
Enabled at level
Compile time 1st.
Based on options:
Little
Inf mite
Large
For

<Linking>
Build Complete,

0 Errors, 3 Warnings, 0 Remarks.

\ Bull.I /~

CPU RESETTING For Help, press FI

Fig 8.38 CCS WINDOW: activefilter_dspl.pjt

8.4 I/O Port Design

The DSK provides an asynchronous expansion memory interface connector (Jl) to add
memory or memory-mapped devices via a daughterboard. The expansion memory interface is mapped
into the lower 3M bytes of the DSP's 4M-byte asynchronous CE1 memory space. Expansion memory
in the CE1 space is addressed from Ox 1000000-12FFFFF in MAP 0 and Ox 1400000-16FFFFF in
MAP 1 mode. The upper 1M bytes of the CEI memory space is allocated for onboard peripherals.
This division of the CEI memory space allows both the onboard devices and the expansion memory
interface to coexist without conflicts.

The CPFD provides transceiver control logic that prevents the expansion memory
space from conflicting with the onboard use of the CEI space. The CPFD monitors the CEI signal
along with the upper address signals (EA [21:20]) to determine when the lower 3M-byte expansion
memory space is being accessed and enables the expansion memory transceivers accordingly. CEI
decoding in the upper 1M byte is handled by the CPLD for control of onboard peripherals. The EMIF
CE2 and CE3 memory space enables are available on the expansion peripheral interface connector
(J3). These two memory spaces can also be used for asynchronous memory on the daughterboard
when their respective SDRAM enable bits are not asserted in the CPLD register. The SDRAM enable
bits control the SDRAM clock enables, as well as enabling the expansion memory transceivers to be
turned on during CE2 and CE3 memory space accesses. This capability supports applications that do
not require one or both banks of SDRAM, but need to interface to faster or additional asynchronous
memory on a daughterboard.

All expansion memory interface signals are buffered using TI 'LVTH buffers/
transceivers to allow both 3.3- and 5-V devices to be used on the daughterboard and to isolate the
daughterboard from the onboard EMIF. The three memory space enables (CE1-CE3) are buffered
versions of the DSP outputs and are not generated by decode logic. This allows fast daughterboard
logic to be used as required for the application without incurring additional delay. The expansion
memory transceivers isolate the daughterboard and onboard data busses to prevent bus contention.

The 'C6711 DSK provides two expansion connectors that allow a daughterboard to be
connected to the board. Daughter boards can be used to extend the capabilities of the DSK and to

150

provide custom and application-specific I/O. The ’C671 I DSK’s expansion memory and peripheral
interfaces are provided with two dual-row, 80-pin connectors. These surface-mount connectors are low
profile and have a 0.050-inch (1.27-mm) pitch. The recommended mating connectors provide 0.465-
inch board spacing, allowing ample space for daughterboard components. The expansion memory
interface provides the DSP's asynchronous EMIF signals to a daughterboard. External asynchronous
memories and memory mapped devices can be added to the DSK. including nonvolatile memory that
can be used to boot the DSK upon reset.

8.5. HARDWARE SETUP
In this project work the control signal generator unit for active power filter is

implemented using digital signal processor. The schematic diagram for active power filter is shown in
fig. 8.39.

Hritlyo

Fig 8.39 SCHEMATIC OF ACTIVE POWER FILTER

The active filter controller shown in fig. 8.39 is implemented using DSP in this project work.
The steps to generate DSP code are shown in previous sections. For implementation of the
DSP controller the hardware tools used are TMS320C671 1 DSP Starter Kit, ADS 8364 EVM
(6 input ADC); TLV 2553 EVM (1 1 input ADC); TLV 5614 EVM (4 output DAC) and 5-6 K
Interface card. In order to study effect of resolution of ADC the DSP controller for this project
was setup in two configurations: Low resolution setup (using 1 1 input ADC) and High
resolution setup (using 6 input ADC)

Fig 8.40 System Setup: High Resolution

Fig. 8.40 depicts the high resolution setup. TLV2553 which is a 12 bit serial ADQi? used.
Since the ADC is 12 bit, the resolution it offers is less. This ADC can take 11 inputs so there is n6 T-
need of hysterisis card in this setup. The reference currents for the generation of firing pulses£'an be
given directly to the ADC as analog inputs in this setup. The firing signal can be given to IGBT-'f/lY!
driver circuit using I/O port in this setup. The I/O port design is shown in previous section.

8.5.2 Low resolution setup (using 6 input ADC)

FROM
PC

TMS320C671 I
DSK

5-6K
INTERFACE

CARD

ADC

DAC
HYSTERISIS

CARD

Fig 8.41 System Setup: Low Resolution

In fig. 8.41 the low resolution setup is shown. In this setup the ADC used is ADS 8364 which is a
16 bit parallel ADC with 6 channels. Here the reference currents can not be given as analog inputs so
they are taken directly from the system and the DAC is used to convert them in to analog values. The
DAC used is TLV5614. The firing pulses are generated using analog hysterisis card in this setup. The
reference currents are given through software in this setup.

O OH U ► fio | Normal 3 E) ** «*>

Fig 8.42 SIMLLINK model

8.6 APF Controller Software
To implement the DSP controller the interfacing of ADC and DSP should be done with the
help of some interface system. The flow chart (Fig 8.43) depicts the working of system and
implementation steps.

152

Fig 8.43 System Flowchart: APF Controller

153

Fig 8.43 depicts the system model. The firing pulses which are then to be given to the power
circuit of active power filter. Fig 8.44 and 8.45 shows the waveforms for firing circuits with
and with out loading._________________
7 Time Scopel ' | . i||E^||BHKHD| |. [[t? ||*X]

US A IS IS

Fig 8.44 FIRINGPULSES: Without Load
•4 Scope

dBl A IS IS
I3@®

Fig 8.45 FIRING PULSES: with load (for compensation)

