Contents

Sy	Synopsis				
A	cknov	wledge	ments		xii
1	Intr	oducti	on		1
	1.1	Gener	al		1
	1.2	State	of Art		3
	1.3	Limita	tions of E	xisting Works	55
	1.4	Motiva	ation		58
	1.5	Thesis	Structure)	60
2	Volt	tage St	ability V	Vith Wind Power	62
	2.1	Introd	uction		62
	2.2	Voltag	e Stability	$^{\prime}$ Analysis \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	63
		2.2.1	Methods	of Voltage Stability Analysis	66
	2.3	Statist	ical Estim	ation Methods for Voltage Stability Evaluation $\ldots \ldots$	67
		2.3.1	Monte Ca	arlo Simulation	68
		2.3.2	Point Est	imation Method	69
			2.3.2.1	Two Point Estimation Method	70
			2.3.2.2	Two Point Plus One Sampling $(2n+1)$ Method	74
			2.3.2.3	Three Point $(3n)$ Method $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	74
			2.3.2.4	Four Point Plus One Method $(4n + 1)$	75
		2.3.3	Latin Hy	percube Sampling (LHS)	77
		2.3.4	Method o	of Series Expansion	81
			2.3.4.1	Moments and Cummulants	82
			2.3.4.2	Relation between Cummulants and Moments	84

		2.3.4.3 PDF Approximation in terms of Reference PDF 8	5			
		$2.3.4.3.1 \text{Exact Solution} \dots \dots \dots \dots \dots \dots 8$	7			
		2.3.4.3.2 First Approximation	8			
		2.3.4.3.3 Second Approximation	0			
		2.3.4.4 Gram-Charlier Expansion	0			
		2.3.4.4.1 Selection of Reference PDF	1			
		2.3.4.4.2 $$ Selection Weibull Parameter for Reference PDF $$. $$ 9 $$	2			
2.4	Correlated Wind Power Sources					
	2.4.1	Relationship Between Correlation Matrix and Covariance Matrix . $\ 9$	5			
		2.4.1.1 Conversion of Covariance Matrix to Correlation Matrix 9	6			
		2.4.1.2 Conversion of Correlation Matrix to Covariance Matrix 9	6			
2.5	Results and Discussion					
	2.5.1	Simple Method of Voltage Stability with Wind Power Plant 9	8			
		2.5.1.1 Case-1: Wind Farm Supplying the Load 9	8			
		2.5.1.2 Case-2: Wind Farm and Grid Supplying the Load 10	3			
	2.5.2	Voltage Estimation with Wind Power Using Statistical Methods $\ . \ . \ 10$	6			
		2.5.2.1 Analysis of Voltage Variation Estimation of IEEE-12 Bus				
		Radial Network with Wind Power using Statistical Esti-				
		mation Methods $\ldots \ldots 10$	7			
		2.5.2.1.1 Voltage Variation Estimation with Wind Power				
		at Bus-12 \ldots 10	8			
		2.5.2.1.2 Voltage Variation Estimation with Wind Power				
		at Bus-6	7			
		2.5.2.1.3 Voltage Variation Estimation with Wind Power				
		at Bus-2	7			
		2.5.2.2 Voltage Estimation of IEEE - 12 Bus Radial System with				
		Multiple Parameters Variation	9			
		2.5.2.3 Voltage Estimation of IEEE - 12 Bus Radial System with				
		Correlated Wind Power Sources at Different Locations $\ . \ . \ 15$	0			
	2.5.3	Probability Function Estimation	1			
2.6	Concl	usion \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 16	0			

CONTENTS

3	Har	rmonic	Stabilit	y with `	Wind Power	162	
	3.1	Introduction				162	
	3.2	Harm	rmonics Resonance				
	3.3	Modal Analysis				166	
			3.3.0.1	Sensitiv	ity of Eigenvalue	173	
		3.3.1	Relation	between	Critical Mode and Resonance Frequency \ldots .	175	
		3.3.2	Determi	nation of	Critical Mode	175	
			3.3.2.1	Networ	k Aggregation	180	
	3.4	Select	Selection of Method for Harmonic Resonance Analysis				
	3.5	Optimization using Simulated Annealing				183	
		3.5.1	Basic of	Simulate	ed Annealing	183	
		3.5.2	Simulate	ed Annea	ling Process	185	
		3.5.3	Cooling	Schedule	,	187	
			3.5.3.1	Multipl	icative Monotonic Cooling	188	
			3	.5.3.1.1	Exponential Monotonic Multiplicative Cooling	188	
			3	.5.3.1.2	Logarithmical multiplicative cooling $\ldots \ldots \ldots$	188	
			3	.5.3.1.3	Linear multiplicative cooling	189	
			3	.5.3.1.4	Quadratic multiplicative cooling	189	
			3.5.3.2	Additiv	e Monotonic Cooling	190	
			3	.5.3.2.1	Linear Additive Monotonic cooling	190	
			3	.5.3.2.2	Quadratic Additive Monotonic cooling	191	
			3	.5.3.2.3	Exponential Additive Monotonic cooling	191	
			3	.5.3.2.4	Trigonometric Additive Monotonic cooling	191	
			3.5.3.3	Non-Me	onotonic Adaptive Cooling	192	
			3.5.3.4	Selectio	n of Appropriate Cooling Schedule	193	
			3.5.3.5	Objecti	ve Function Formulation	194	
	3.6	Descri	ription of Test Network				
	3.7	Results and Discussion				198	
		3.7.1	Modal A	Analysis o	of Wind Farm Connected to Power System	198	
		3.7.2	Detune	Reactor	on PF Capacitor	206	
		3.7.3	Modal A	Analysis v	with Detuned Reactor and C-Type Filter on Bus-5	215	
		3.7.4	Modal A	Analysis	with Detuned Reactor and High Frequency Filter		
			on Bus-	5		221	

		3.7.5	Optimization of Harmonic Filter	228		
			3.7.5.1 Effect of Optimized First Order Filter on Network Impedance	e236		
			3.7.5.2 Compliance to IEEE 519 - 1992/2014 Standard $\ .$	244		
	3.8	Conclu	sion	247		
4	Con	werter	Stability Analysis	249		
	4.1	Introdu	action	249		
	4.2	Modelli	ing Of Voltage Source Converter	250		
	4.3	Impeda	ance Based Stability Analysis	251		
	4.4	Grid C	onnected Inverter	253		
	4.5	Phase l	Lock Loop (PLL)	255		
	4.6	Dampe	d Passive Filter Topologies	258		
		4.6.1	R-L Filter	258		
		4.6.2	L-C Filter	261		
		4.6.3	L-C-L Filter	263		
	4.7	L-C-L	Filter Design	265		
	4.8	Results	and Discussion	266		
		4.8.1	Passive Damping of Filter	266		
			4.8.1.1 Type–I Filter	266		
			4.8.1.2 Type–II Filter	268		
			4.8.1.3 Type–III Filter	270		
			4.8.1.4 Type–IV Filter	272		
			4.8.1.5 Type–V Filter	274		
		4.8.2	Active Damping of Filter	275		
		4.8.3	System Parameter for Converter Analysis	278		
	4.9	Conclu	sion	278		
5	Har	monic	Stability of Grid Connected Wind Energy Source - A Case)		
	\mathbf{Stu}	dy		280		
	5.1	0.1 Introduction				
	5.2	2 Network Description				
	5.3	Probler	n Description	282		
	5.4	Method	lology	283		

	5.5	5State Space AnalysisState Space Analysis6Simulation of Harmonic Resonance of NetworkState Space Analysis				
	5.6					
	5.7	Harmonic Filter Design				
		5.7.1	Tuned Filter			
		5.7.2	C-Type Filter			
	5.8	Results	and Discussion			
	5.9	Conclus	sion \ldots \ldots \ldots \ldots \ldots 304			
6	Sma	all Signa	al Stability of Doubly Fed Induction Generator 306			
	6.1	Introdu	$action \dots \dots$			
	6.2	Modelli	ng of DFIG			
		6.2.1	DFIG Equations in a-b-c Form $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 308$			
		6.2.2	a - b - c to $q - d - 0$ Transformation			
			6.2.2.1 Transformation Matrix $\ldots \ldots \ldots \ldots \ldots \ldots \ldots 311$			
			6.2.2.2 DFIG Equations in $d - q - 0$ Frame $\ldots \ldots \ldots \ldots 312$			
		6.2.3	State Space Equation Formation			
		6.2.4	Electromagnetic Torque			
		6.2.5 Drive Train Model				
			6.2.5.1 Two Mass Model			
			6.2.5.2 One Mass Model			
		6.2.6	Converter Model			
		6.2.7	Interface of DFIG with Grid			
			6.2.7.1 $d-q$ to $D-Q$ Transformation			
			6.2.7.2 Power Flow between DFIG and Grid			
			6.2.7.3 DFIG Internal Power Flow			
		6.2.8	System Initialization			
	6.3	Eigenva	due Analysis			
	6.4	Probabilstic Small Signal Stability Analysis				
	6.5	System	Parameters			
	6.6	B Results and Discussions				
	6.7	Conclus	sion \ldots \ldots \ldots \ldots \ldots 338			

7	Sim	Simulation of DFIG with Decoupled Control for Improved LVRT Re-						
	spor	sponse 33						
	7.1	Introduction	339					
	7.2	LVRT Requirements in india	340					
	7.3	Wind Power Model \ldots	342					
	7.4	Wind Turbine Model \ldots	342					
	7.5	Wind Turbine Inertial Response	343					
	7.6	Pitch Angle Control	345					
	7.7	Decoupled Control Structure	347					
	7.8	Control Scheme	348					
	7.9	Test System	354					
		7.9.1 Test Parameters	355					
	7.10 Simulation Results and Discussion		355					
		7.10.1 Case-A: L-L-G Fault of 250 ms Duration	355					
		7.10.2 Case-B: L-L-G Fault of 1.5 Seconds Duration	366					
	7.11	Conclusion	377					
8	Con	clusion and Future Work	379					
	8.1	Conclusion	379					
	8.2	Future Work	381					