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Chapter 5

Multiobjective Optimization :

Evolutionary Algorithm

Multiobjective optimization of 2DOF controller parameters using evolutionary NSGA-II
and NSGA-IIT algorithms are discussed in this chapter. The above mentioned algorithms

are implemented in the software MATLAB and results are discussed.

5.1 Introduction

Multiobjective optimization is required to find widely spread nondominated set of solu-
tions on the Pareto front. Finding multiple solutions in a single simulation run is a rare
quality of evolutionary and swarm based algorithms. Evolutionary algorithms (EAs) are a
part of evolutionary computations, in which EAs follows mechanism inspired by biological
evolution. It includes following one or more mechanisms like, generation, recombination,
mutation, and selection of the fittest. Genetic algorithm (GA) is the most popular type
of evolutionary algorithm used in optimization problems realized by John Holland of the
University of Michigan Ann Arbor and it became popular in the early 1970s.

Here, 2DOF controller parameters of feed forward type structure are optimized using
multiobjective optimization of NSGA-II and NSGA-III algorithms. The comparison of

results are provided in following sections in the form of graphs and tabulated in tables.
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5.2 Working of GA

GA is population based search and optimization algorithm. As the name suggest ge-
netic algorithms (GAs) borrow their working principle from natural genetics. Genetic
algorithms (GAs) can find multiple optimal solutions in a single simulation run due to
population based approach. Hence, GA is used for solving multiobjective optimization
problems. The result of multiobjective optimization algorithm is a set of Pareto-optimal
solutions so, it is not possible to find out a unique solution which minimizes or maximizes
all objectives simultaneously. Hence, user has to select only one solution based on his/her
preference [13].

Genetic algorithm begins with a population of chromosomes (It is combinations of 2DOF
controller parameters). An objective function value for each chromosome is required to be
calculated in order to find the optimum value. The fitness value of all the chromosomes in
each generation will be evaluated using the performance objectives. Based on the fitness
of objective function value, parent chromosomes will be chosen for the next generation.
The crossover and mutation carried out among the selected parent chromosomes. The
above mentioned process is repeated till objective functions are optimized or for assigned
maximum number of iterations [33]. The working principle of GA is described in the form

of flow chart as shown in Figure 5.1.
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Figure 5.1: Flow chart for working principle of GA.

5.3 Tuning of 2DOF controller using Genetic algo-
rithm

Step 1: Define the dimension of 2DOF controller parameters optimization problem (num-
ber of decision variables ‘NVARS’ =5).

Step 2: Set the upper bound values UB= [100 100 100 1 1 ] & lower bound values LB=
[00000]. M Araki et al. [3] has tested different processes using 2DOF controller opti-
mization and maximum value of any parameters of Cy(s) is not greater than ‘60’ hence,
for safe side maximum value in Cy(s) is selected to be ¢100°.

Step 3: Derive transfer function of plant ‘plant’, actuator ‘actuator_tf’, sensor ‘sen-
sor_tf’, temperature disturbance ‘distb_temp’, flow disturbance ‘distb_flow’, serial
controller “C’, and feed forward controller ‘C_f’.

Step 4: Define the step magnitude of input, flow disturbance and temperature distur-
bance as 1, 0.1, and 0.01 respectively [59].

Step 5: The type of solver used for computing fitness function is ‘ga’.
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Step 6: Option for problem type is ‘boundconstraints’.
Step 7: In order to start genetic algorithm with same initial condition the default settings
are the ‘Mersenne Twister’ with seed ‘0’ is selected.

Step 8: The maximum number of iterations before the algorithm halts is ‘100’ (positive
integer only).

Step 9: The function that algorithm uses to create crossover children is default type
‘crossoverscattered’.

Step 10: The fraction of population at the next generation, not including elite children,
that is created by the crossover function is default positive scalar value ‘0.8’.

Step 11: The algorithm stops if the weighted average relative change in the best fitness
;

function value over ‘StallGenLimit ’ generations is less than or equal to ‘TolFun ’ is

default ‘1e-6’.
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Figure 5.2: Step response of 2DOF controller optimization using GA.
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Figure 5.3: Flow disturbance response of 2DOF controller optimization using GA.
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Figure 5.4: Temperature disturbance response of 2DOF controller optimization using GA.
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Table 5.1: Result of 2DOF controller parameter optimization using GA.

GA Peak Reduction Reduction
optimization of overshoot of Flow Temperature
2DOF controller of Step Disturbance | Disturbance

parameters Response Response Response
(K,, K;, Kq4, o, 5] In (%) In (%) In (%)

IAE

[2.540, 0.152, 22.529,0.707, 0.363] 2.1 54.3 85
ISE

[2.238,0.235, 31.598, 0.389, 0.549] 29.98 58.2 86
ITAE

[2.3065,0.1153,17.035,0.574, 0.431] 20.75 50.4 83
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From the Figure 5.2 ,5.3, 5.4 and parameters tabulated in Table 5.1, it is concluded
that TAE criterion for optimizing simultaneously all the five parameters of 2DOF con-
troller using GA method has minimum peak overshoot of step response(2.1%). The
maximum reductions of flow(58.2%) and temperature (86%) disturbances are obtained
under the criterion of ISE compared to other two criteria IAE and ITAE. Here, results
are obtained using single objective optimization by assigning equal weights(unity) to all
three objective functions under three separate evaluation criteria. As being multiobjec-
tive optimization problem, it is first required to obtain multiple pareto optimal solutions
and select best one using multi-criteria decision. Following section discusses prevalent
multiobjective optimization algorithms NSGA-IT and NSGA-III for the 2DOF controller

parameter optimization.

5.4 Working of Nondominated Sorting Genetic Algorithm-
IT (NSGA-II)

Nondominated Sorting Genetic Algorithm-II falls under the category of elitist genetic
algorithm. Unlike Rudolf method of using only an elite preservation, NSGA-II uses an
explicit diversity preservation mechanism based on crowding comparison (calculated on
objective function space) along with tournament selection procedure. In NSGA-II, first of
all offspring population @), of size N is created by using the parent population P; of size N.
Two populations @); and P, are combined to form R; of size 2N then, nondominated sorting
is used to classify the entire population R;. To achieve this, the combined population R;
is sorted according to different nondomination levels (F, F5, and so on). Then, each
nondomination level is selected one at a time to construct a new population S;, starting
from F}, until the size of S; is equal to N or for the first time exceeds N. An objective
in NSGA-II is to derive number of dominated and nondominated set of solutions. The
NSGA-IT computes density of solution in the population based on crowding distance.
NSGA-II considers rank of nondomination of an individual in the population and its
crowding distance to select solution. If two solutions has same nondomination rank then

solution comprising larger crowding distance value is selected [63], [14].
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5.5 Algorithm for tuning 2DOF controller using NSGA-
I1

Step 1: Define the dimension of 2DOF controller parameters optimization problem (num-
ber of decision variables ‘NVARS’ =5).

Step 2: Set the upper bound values UB= [100 100 100 1 1 ] & lower bound values LB=
[00000]. M Araki et al. [3] has tested different processes using 2DOF controller opti-
mization and maximum value of any parameters of Cy(s) is not greater than ‘60’ hence,
for safe side maximum value in Cy(s) is selected to be ¢100°’.

Step 3: Derive transfer function of plant ‘plant’, actuator ‘actuator_tf’, sensor ‘sen-
sor_tf’, temperature disturbance ‘distb_temp’, flow disturbance ‘distb_flow’, serial
controller “C’, and feed forward controller ‘C_f’.

Step 4: Define the step magnitude of input, flow disturbance and temperature distur-
bance as 1, 0.1, and 0.01 respectively [59].

Step 5: Choose the population size (number of individuals in each generation) ‘Pop-
ulationSize’ (default is 15*NVARS) = 100, Data type of each decision variable is dou-
ble vector ( ‘PopulationType’ is ‘doubleVector’), Initial population matrix will be
‘PopulationSize* rows’ and ‘NVARS’ columns. Create population using MATLAB
function ‘gacreationuniform’, termination criterion ‘MaxGenerations’= ‘100’. Ini-
tialize the generation counter. Formulate problem with a vector of three objectives.
Step 6: Evaluate the objective function for the population, and use those values to create
scores for the population. The performance indices considered for evaluation of objective
functions are Integral of Absolute Error (IAE), Integral of Squared Error (ISE), and In-
tegral of Time-weighted Absolute Error (ITAE) one at a time. This establishes the basis
for selecting populations that will be mated during reproduction.

Step 7: Rank the population according to solution of objective functions based on non-
dominated sorting approach front wise.

Step 8: Select a pair of population for mating from the current population for the next
generation using the selection function ‘selectiontournament’. In the tournament ran-
domly two solutions are selected from the current population and the one having better
nondominated rank is selected. If solutions are on the same nondominated front then one
having higher crowding distance (function ‘distancecrowding’) will be selected.

Step 9: Use the genetic operators crossover (Cross over percentage ‘0.8’) and mutation
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(Mutation rate “0.09’) to generate offspring solution of size N. Create offspring by built
in MATLAB crossover function ‘crossoverintermediate’ and mutation function ‘mu-
tationadaptfeasible’.

Step 10: Calculate objective functions of the offspring population.

Step 11: Combine the current population (IN) and the offspring population (N) into
one matrix, the combined population (2N).

Step 10: Compute the rank by sorting non-inferior individuals above inferior ones, so it
uses elite individuals automatically (function ‘Rank’) and crowding distances (function
‘distancecrowding’) for all individuals in the combined population.

Step 11: Trim the combined population 2N to have ‘PopulationSize’ N by retaining
the non-inferior solutions front wise. If solutions are on same front apply crowding dis-
tance operator to select solution best N populations and other solutions are rejected.
Step 12: Replace the initial population with the new population. Increment generation
counter.

Step 13: If generation counter is less than MaxGenerations (the termination crite-
rion), Go to Step 8.

The output of algorithm is variable x which is a matrix with ‘NVARS’ columns. The
number of rows in x is the same as the number of Pareto solutions. All solutions in a
Pareto set are equally optimal; it is up to the designer to select a solution in the Pareto set
depending on the application or solutions are ranked using algorithm and highly ranked

solution is selected.

5.6 Working of Nondominated Sorting Genetic Algorithm-
ITI (NSGA-III) [5]

This algorithm is the extension of the NSGA-II algorithm for optimization of many objec-
tive problems. NSGA-III was presented by Kalyanmoy Deb [5]. The basic framework of
NSGA-III is identical to the NSGA-II though there is a sound change in its selection pro-
cedure. In the case of many objective optimization problems, proportion of nondominated
solutions becomes exponentially large due to increase in number of objectives. Since, non-
dominated solutions occupy most of the population slots, any elite preserving algorithm

faces difficulty in accommodating adequate number of new solutions in the populations.
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This slow down the search process. Here, diversity among the population members is
maintained by supplying and adaptively updating reference points. The crowding dis-

tance operator of NSGA-II is replaced in NSGA-III by following methods.

5.6.1 Classification of population into nondominated levels

The number of nondominated fronts are identified at first using prevailing nondominated
method. Then, population members from the nondominated front level ‘1’ to level ‘I’ are
incorporated in set S; . If |S;] = N (Number of population), no other process is required
and subsequent generation is started with P,y = S; . For |S;| > N, members from ‘1’
to ‘I-1” are chosen and remaining members K = N — |P,1)| are selected from last front

E,.

5.6.2 Determination of reference points on a hyper plane

The set of reference points (denoted as H) are used in order to maintain diversity among
solutions. The reference points can be predefined in a structured manner or determined
by the user. The algorithm is expected to obtain near Pareto optimal solutions corre-
sponding to the given reference points. This feature of algorithm is used for two combined
application one is decision making and second is optimization. Das and Dennis’s system-
atic approach is used to place points on a normalized hyper-plane a M-1 dimensional unit
simplexes inclined to all objective axes and has an intercept of one on each axis. The
total number of reference point in M objective problem considering ‘p” number of divisions
along each objective is given as under:

For example, in a three-objective problem (M = 3), the reference points are created
on a triangle with apex at (1, 0, 0), (0, 1, 0) and (0, 0, 1). If four divisions (p = 4)
are chosen for each objective axis, H= 15 reference points are created. The reference
points are shown in below Figure 5.5 for understanding. In the case of user supplied set
of preferred reference points, user marks H number of reference points on a normalized

hyper plane.



CHAPTER 5: MULTIOBJECTIVE OPTIMIZATION : EVOLUTIONARY
ALGORITHM 96

Reference

pomt - g / Normalized

I
1
: hyperplane
i

L]

E;ﬁfereuce :

-~ —l_ @

0 ey L._ ..
- ~Ideal pomt

Figure 5.5: Reference point (H=15) shown on normalized 3 objective problem with p=4

[15].

5.6.3 Adaptive normalization of population members

The main objective of normalization of an objective functions is to solve problems with
Pareto optimal front whose objective function values are scaled differently. The procedure
used for normalization of objective function includes creation of hyper plane on objective
space. The normalization of objective functions and creation of hyper plane is carried out
every generation to maintain diversity among population hence, it is known as adaptive
normalization of population. First, an ideal point of the population S; is determined
by identifying the minimum value (Z]T”i”), for each objective function. Each objective
value of S; is then translated by subtracting objective f; by Z;m” , so that the ideal
point of translated S; becomes a zero vector. This is called translated objective as fj’
(x) = fi(x)Z;* . Then, maximum point in each objective is calculated using following
function called as Achievement Scalarizing Function (ASF). ASF(x,w) = max}, fjl (x)/w;
for w;=0 replace with small value le-6. From this, calculate extreme maximum value of
M objective function vector Z;"**. Using the M extreme vectors, M dimensional linear
hyper plane is constructed. Now, the intercept a; with objective axis and linear hyper
plane is computed and objective functions are normalized as under:
_ filx) =z

. 7min
a; Zj

fi'(x) (5.1)

Here, intercept on each normalized axis is at f}' (x)= 1 and hyper plane constructed with
these intercept points will make, Z]Ail Ji =1 . The procedure for computing intercept

and forming hyper plane is in Figure 5.6.
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Figure 5.6: Computing intercepts and forming hyper-plane for a three objective problem

[15].

5.6.4 Association operation

Once adaptive normalization of population members is completed, population members
are required to associate with reference point. The aim of this operation is to find pop-
ulation members associated with reference point or not. In order to do this, a reference
line corresponding to each reference point on the hyper plane is determined by joining the
reference point with the origin. Then, perpendicular distance of each population member
from each of the reference lines is calculated. The reference point is said to be associated
with the population member if its reference line is closest to a population member in the

normalized objective space. This is shown in Figure 5.7.
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Figure 5.7: Association of population members with reference points [15].

5.6.5 Niche preservation operation

From, the above association operation it will come to know the number of population
members associated with reference points. The number of population members associated
with particular reference points are denoted as niche count for that reference point only.
The niching procedure is used to select population for next generation.

It can be concluded from the above process mentioned for NSGA-III that, this algorithm
does not require setting any new parameters other than usual GA parameters, similar to
NSGA-II. The parameter number of reference point (H) is not an algorithmic parameter;
it is directly related to the desired number of trade-off points. The overall computational

complexity of NSGA-IIT algorithm is higher than that of NSGA-II algorithm.

5.7 Algorithm for tuning 2DOF controller using NSGA -
I11

Step 1: Define the dimension of 2DOF controller parameters optimization problem (num-
ber of decision variables ‘NVARS’ =5).

Step 2: Set the upper bound values UB= [100 100 100 1 1] & lower bound values LB=
[00000]. M Araki et al. [3] has tested different processes using 2DOF' controller opti-
mization and maximum value of any parameters of Cs(s) is not greater than ‘60’ hence,

for safe side maximum value in Cy(s) is selected to be 100°.
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Step 3: Derive transfer function of plant ‘plant’, actuator ‘actuator_tf’, sensor ‘sen-
sor_tf’, temperature disturbance ‘distb_temp’, flow disturbance ‘distb_flow’, serial
controller ‘C’, and feed forward controller ‘Cf’.

Step 4: Define the step magnitude of input, flow disturbance and temperature distur-
bance as 1, 0.1, and 0.01 respectively [12].

Step 5: Choose the population size (number of individuals in each generation) ‘nPop’
= 100, Data type of each decision variable is double vector ( ‘PopulationType’is ‘dou-
bleVector’), Initial population matrix P, will be PopulationSize* rows and ‘NVARS’
columns. Create population using ‘unifrnd’, termination criterion ‘MaxIt’=100,
Crossover Percentage ‘pCrossover’ = 0.8, Mutation Percentage ‘pMutation’ = 0.5,
‘nObj’ is number of objectives, number of divisions are considered along each objective
‘nDivision’=10, Zr = GenerateReferencePoints(nObj, nDivision) total number
of reference points generated based on Das and Dennis’s technique. Initialize the genera-
tion counter. Formulate problem with a vector of three objectives.

Step 6: Evaluate the objective function for the population, and use those values to create
scores for the population. The performance indices considered for evaluation of objective
functions are Integral of Absolute Error (IAE), Integral of Squared Error (ISE), and In-
tegral of Time-weighted Absolute Error (ITAE) one at a time.

Step 7: Sort population and perform selection according to solution of objective functions
based on nondominated sorting approach front wise using function Sort AndSelectPop-
ulation(pop, params).

Step 8: While it < MaxIt do

1. Create offspring population ); using arithmetic crossover operator ‘Crossover(pl.Position,
p2.Position)’ and Gaussian mutation ‘Mutate(p.Position, mu, sigma)’.

2. Set Ry= P, U Q; i.e. combine parent and offspring populations of size 2* nPop.

3. Apply non-dominated sorting ‘NonDominatedSorting(newpop)’ on R; and
obtain solutions front wise F}, Fs, ....

4. Starting from F}, the individuals in the higher non-dominance levels are added
to S; until its size reaches ‘nPop’ or exceed ‘nPop’ for the first time, assuming number
of non-dominance levels ‘I’. Solutions from non-dominance level greater than ‘I’ are
discarded.

Si=|[ | and i=1

While |S;| < nPop
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i=i+1
End

Solutions S; are selected for next generation P(1). If the size of the Py iy is
‘nPop’ algorithm then repeats previous step in next iteration by generating new offspring
solutions (if termination criteria of the algorithm is not met). Else, the other nPop - P, 1)
solutions are selected from F; based on reference points. Since the objectives may be on
different scales, they are normalized and reference points are generated in the normalized
space. Each member of S; is associated with the reference point which has the closest
euclidean distance from it. The goal is to assign higher priority to those reference points
in F; that are not well represented in S;\F; to be in the next generation FPyyq). After
generating the reference points, the distance of each individual from the reference line,
the line that connects the origin of the space of the normalized objectives to the reference
point are calculated. Then, each individual is assigned to the closest reference point.
IF |S;| = nPop do
Pyi1y = S; ; break
Else
Pyeny = ULV,
Normalize S; using function ‘NormalizePopulation(pop, params)’ minimum
and intercept points of each objective.
Associate each member of S; to the reference point using function ‘Associate-
ToReferencePoint(pop, params)’.
Select nPop = F;;.1) members from F; using niche preserving operator.
End
it=it+1
End
The output of algorithm is variable P, is a matrix with ‘NVARS’ columns. The
number of rows in P, is the same as the number of Pareto solutions. All solutions in a
Pareto set are equally optimal; it is up to the designer to select a solution in the Pareto set
depending on the application or solutions are ranked using algorithm and highly ranked

solution is selected.
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5.8 Comparison of results using NSGA-II and NSGA-
III algorithms

The system of heat exchanger with controller and disturbances are considered as shown
in Figure 3.6. The step response and both flow and temperature disturbance rejection
responses of the system are simulated in the software tool MATLAB. The reference signal
and disturbances (both flow and temperature) applied as a step input has magnitude of 1,
0.1 and 0.01 respectively [59]. The process of tuning 2DOF controller for multiobjective
optimization using NSGA-II and NSGA-III algorithm is shown in the previous section.

Figure 5.8: Plot of Pareto optimal front using NSGA-II based optimization under TAE

Criterion.
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Figure 5.9: Plot of Pareto optimal front using NSGA-II based optimization under ISE

Criterion.

Figure 5.10: Plot of Pareto optimal front using NSGA-II based optimization under ITAE

Criterion.

The Figure 5.8 to Figure 5.10 are plots of Pareto optimal front of optimization of three
distinct objective functions i.e. set point tracking and disturbance rejections (Both flow
and temperature) obtained for all three criteria IAE, ISE & ITAE. The Pareto front has
27 nondominated set of solutions, which are obtained under different criteria are tabulated

as under.
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Table 5.2: Non-dominated set of solutions obtained using NSGA-II optimization under

TAE criterion.

Sr.No K, K; Ky «Q 15}

1 1.024007 | 0.048362 | 6.608518 | 0.486411 | 0.292564
2 1.362449 | 0.052017 | 6.854668 | 0.601088 | 0.439414
3 1.113922 | 0.051042 | 6.790711 | 0.527548 | 0.330018
4 1.149686 | 0.051746 | 6.837209 | 0.547475 | 0.363404
5 0.995107 | 0.046072 | 6.465139 | 0.471004 | 0.285858
6 1.142566 | 0.052012 | 6.811436 | 0.53246 | 0.36453
7 1.061573 | 0.0482 | 6.668703 | 0.489134 | 0.341552
8 1.253998 | 0.051724 | 6.84518 | 0.559015 | 0.399582
9 1.350209 | 0.051231 | 6.852343 | 0.577602 | 0.417164
10| 1.333592 | 0.05177 | 6.839711 | 0.565704 | 0.36669
11 | 1.026934 | 0.048259 | 6.654233 | 0.487695 | 0.304087
12| 1.192237 | 0.05188 | 6.76109 | 0.538246 | 0.348068
13 | 1.329296 | 0.051252 | 6.851525 | 0.57615 | 0.4176

14 | 1.233943 | 0.051778 | 6.837104 | 0.54654 | 0.369673
15 | 1.362205 | 0.052017 | 6.854668 | 0.601088 | 0.439581
16 | 1.294361 | 0.051796 | 6.837073 | 0.546528 | 0.376135
17 | 1.316415 | 0.051891 | 6.839923 | 0.563724 | 0.385974
18 | 1.267034 | 0.051803 | 6.835596 | 0.547901 | 0.380322
19 | 1.112907 | 0.051771 | 6.807975 | 0.530331 | 0.347839
20 | 1.338831 | 0.051908 | 6.844837 | 0.566669 | 0.391565
21 | 1.248228 | 0.051773 | 6.838224 | 0.562774 | 0.367966
22 | 1.276698 | 0.051557 | 6.833231 | 0.55156 | 0.410129
23 | 1.349177 | 0.05144 | 6.851313 | 0.570992 | 0.385513
24 | 0.995107 | 0.046072 | 6.465139 | 0.471004 | 0.285858
25 | 1.305848 | 0.051984 | 6.847643 | 0.556222 | 0.39363
26 | 1.163408 | 0.050888 | 6.802661 | 0.523014 | 0.339921
27 | 1.083258 | 0.052036 | 6.741211 | 0.523123 | 0.31271
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Table 5.3: Non-dominated set of solutions obtained using NSGA-II optimization under

ISE criterion.

Sr.No K, K; Ky o 15}
1 1.696144 | 0.045715 | 4.894663 | 0.604138 | 0.228633
2 1.676746 | 0.045378 | 4.886081 | 0.6193 | 0.215132
3 1.12004 | 0.054174 | 4.830019 | 0.603224 | 0.115752
4 1.156798 | 0.05391 | 4.834612 | 0.601096 | 0.108425
5 1.632394 | 0.048476 | 4.889907 | 0.606914 | 0.209064
6 1.256848 | 0.053329 | 4.851208 | 0.606097 | 0.125689
7 1.234446 | 0.0533 | 4.848767 | 0.604842 | 0.136053
8 1.202035 | 0.053501 | 4.875281 | 0.603063 | 0.118119
9 1.692167 | 0.047096 | 4.890637 | 0.604381 | 0.228432
10 | 1.535643 | 0.049876 | 4.880562 | 0.609287 | 0.206677
11 | 1.409286 | 0.053676 | 4.886552 | 0.606422 | 0.110776
12| 1.330287 | 0.051077 | 4.864312 | 0.606479 | 0.14383
13 1.3083 | 0.054096 | 4.874194 | 0.60833 | 0.17808
14 | 1.413978 | 0.052716 | 4.875266 | 0.607019 | 0.169175
15 | 1.279894 | 0.053249 | 4.857112 | 0.604928 | 0.142454
16 1.32216 | 0.051512 | 4.879703 | 0.604255 | 0.137026
17 | 1.539822 | 0.051603 | 4.884958 | 0.605085 | 0.203346
18 | 1.550184 | 0.04867 | 4.887196 | 0.606408 | 0.203231
19 | 1.608952 | 0.048967 | 4.89097 | 0.603107 | 0.219779
20 | 1.628257 | 0.048833 | 4.886023 | 0.607083 | 0.203008
21 | 1.594193 | 0.048788 | 4.87988 | 0.607308 | 0.196674
22 | 1.430709 | 0.051995 | 4.878397 | 0.60782 | 0.179276
23 | 1.665038 | 0.047606 | 4.890524 | 0.603808 | 0.161112
24 | 1.506493 | 0.049876 | 4.876303 | 0.608933 | 0.193128
25 | 1.282773 | 0.050966 | 4.869333 | 0.603866 | 0.124228
26 | 1.636219 | 0.047434 | 4.893375 | 0.604517 | 0.217247
27 | 1.520018 | 0.053782 | 4.895455 | 0.609287 | 0.206677
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Table 5.4: Non-dominated set of solutions obtained using NSGA-II optimization under

ITAE criterion.

Sr.No K, K; Ky o 15}
1 0.852827 | 0.033659 | 5.324272 | 0.439655 | 0.463838
2 0.836627 | 0.032942 | 5.230666 | 0.421576 | 0.417012
3 0.869257 | 0.033901 | 5.315995 | 0.439526 | 0.474888
4 0.894934 | 0.034171 | 5.316161 | 0.437792 | 0.480781
5 0.870821 | 0.033758 | 5.308657 | 0.436979 | 0.475201
6 0.853539 | 0.033408 | 5.321049 | 0.437744 | 0.467873
7 0.858643 | 0.033344 | 5.321461 | 0.431966 | 0.470431
8 0.856807 | 0.033583 | 5.322067 | 0.424024 | 0.467221
9 0.868056 | 0.033656 | 5.319998 | 0.437607 | 0.471322
10 0.86372 | 0.033441 | 5.32166 | 0.427881 | 0.468131
11 | 0.866127 | 0.034088 | 5.281864 | 0.444645 | 0.472936
121 0.857191 | 0.03308 | 5.321088 | 0.42873 | 0.471637
13 | 0.889773 | 0.034101 | 5.369274 | 0.441436 | 0.482245
14 | 0.878432 | 0.034095 | 5.316452 | 0.437786 | 0.476991
15 | 0.911885 | 0.034239 | 5.313478 | 0.471491 | 0.479922
16 | 0.895713 | 0.034053 | 5.310828 | 0.43612 | 0.479032
17 1 0.910474 | 0.034142 | 5.302916 | 0.441588 | 0.474148
18 | 0.886536 | 0.034076 | 5.340969 | 0.439622 | 0.477364
19 | 0.945207 | 0.035115 | 5.27583 | 0.443237 | 0.480697
20 | 0.905041 | 0.034167 | 5.301803 | 0.440695 | 0.476445
21 | 0.892192 | 0.033976 | 5.335683 | 0.442162 | 0.474603
22 1 0.912436 | 0.034314 | 5.297286 | 0.471881 | 0.47975
23 | 0.869928 | 0.033664 | 5.314661 | 0.436995 | 0.473112
24 | 0.873633 | 0.033829 | 5.305953 | 0.441525 | 0.477943
25 1 0.900335 | 0.034297 | 5.305991 | 0.440605 | 0.478676
26 | 0.880645 | 0.033852 | 5.34835 | 0.435275 | 0.478134
27 | 0.836627 | 0.032942 | 5.230666 | 0.421576 | 0.417012
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The values of 2DOF controller parameters tabulated in Table 5.2, 5.3, & 5.4 are
nondominated set of solutions. Hence, any of the above result can be selected by the
user for the problem of shell and tube heat exchanger system. The Figure 5.11 to Figure
5.19 are plots of set point tracking and disturbance rejections for all values of 2DOF
controller parameters obtained under the criteria IAE, ISE and ITAE as nondominated
set of solutions using NSGA-II. The best value obtained from the list of nondominated

set of solutions are plotted as symbol “*’ has red color.
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Figure 5.11: Set point response obtained using NSGA-II optimization of 2DOF controller
under TAE.
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Figure 5.12: Flow disturbance rejection response obtained using NSGA-II optimization

of 2DOF controller under TAE.
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Figure 5.13: Temperature disturbance rejection response obtained using NSGA-II opti-

mization of 2DOF controller under TAE.
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Figure 5.14: Set point response obtained using NSGA-II optimization of 2DOF controller
under ISE.
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Figure 5.15: Flow disturbance rejection response obtained using NSGA-II optimization

of 2DOF controller under ISE.
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Figure 5.16: Temperature disturbance rejection response obtained using NSGA-II opti-

mization of 2DOF controller under ISE.
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Figure 5.17: Set point response obtained using NSGA-II optimization of 2DOF controller
under ITAE.
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Figure 5.18: Flow disturbance rejection response obtained using NSGA-II optimization

of 2DOF controller under ITAE.
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Figure 5.19: Temperature disturbance rejection response obtained using NSGA-II opti-

mization of 2DOF controller under ITAE.

From the Figure 5.11 to Figure 5.19 and parameters tabulated in Table 5.5, it is con-
cluded that ITAE criterion for optimizing simultaneously all the five parameters of 2DOF

controller using multiobjective optimization of NSGA-II has minimum peak overshoot of
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step response for nondominated set of solution
[0.911884974,0.034239346,5.313477873,0.471490705,0.479921627] (Sr.No-15, from Table 5.4).
The maximum reductions of flow and temperature disturbances are obtained under the
criterion of TAE for nondominated set of solution [1.36244, 0.0520165, 6.8546, 0.60108,
0.439414] (Sr.No-15, from Table 5.2).

Table 5.5: Result of 2DOF controller parameter optimization using NSGA-II.

Multiobjective
optimization
2DOF controller
parameter NSGA-II
(K, K;, Kq4, a0, 3]

Peak
overshoot of
of Step

Response

In (%)

Reduction
Flow
Disturbance
Response

In (%)

Reduction
Temperature
Disturbance

Response

In (%)

IAE
(Sr.No-15, Table 5.2)
[1.362,0.052,6.85,0.601, 0.439]

(Best Set point tracking & disturbance rejections)

4.79

33.43

77.82

ISE
(Sr.No-1, Table 5.3)
[1.676,0.045,4.88,0.619,0.215]
(Best Set point tracking)

12.5

31.02

77.01

ITAE
(Sr.No-15, Table 5.4)
[0.911,0.034, 5.31, 0.471, 0.479]
(Best Set point tracking)

4.44

24.8

74.94

ITAE
(Sr.No-19, Table 5.4)
[0.945,0.035,5.27,0.443, 0.480]

(Best Disturbance rejections)

9.52

25.11

75.1
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Pareta optimal plot under 1AE

nd Objective 181 Oljective

Figure 5.20: Plot of Pareto optimal front using NSGA-III based optimization under IAE

Criterion.

Pareto Plot under ISE

3rd Objective

2nd Objective 18 Objective

Figure 5.21: Plot of Pareto optimal front using NSGA-III based optimization under ISE

Criterion.
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Pareto Plot under ITAE

nd Objective 181 Oljective

Figure 5.22: Plot of Pareto optimal front using NSGA-III based optimization under ITAE

Criterion.

The Figure 5.20 to Figure 5.22 are plots of Pareto optimal front of optimization of
three distinct objective functions i.e. set point tracking and disturbance rejections (Both
flow and temperature) obtained for all three criteria IAE, ISE & ITAE. The Pareto front
has 80 nondominated set of solutions, which are obtained under different criteria are

tabulated as under.

Table 5.6: Nondominated set of solutions obtained using

NSGA-III optimization under IAE criterion.

Sr.No K, K; Ky « 15}

1.5620 | 0.0747 | 10.3879 | 0.5645 | 0.3978
1.5381 | 0.0737 | 10.1711 | 0.5671 | 0.3981
1.5557 | 0.0745 | 10.2929 | 0.5671 | 0.3979
1.6258 | 0.0757 | 11.1012 | 0.5605 | 0.4015
1.5461 | 0.0741 | 10.2436 | 0.5680 | 0.3977
1.5808 | 0.0750 | 10.4887 | 0.5649 | 0.3991
1.5501 | 0.0740 | 10.2770 | 0.5663 | 0.3975
1.5822 | 0.0750 | 10.6929 | 0.5620 | 0.3982
1.5301 | 0.0735 | 10.0894 | 0.5673 | 0.3980
1.5514 | 0.0748 | 10.2189 | 0.5688 | 0.3978
1.5861 | 0.0751 | 10.5896 | 0.5650 | 0.3978

O ([0 | | |O k=W (N |~

—_
S

—_
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Sr.No | K, K; Ky « 15}
12| 1.5919 | 0.0757 | 10.6840 | 0.5577 | 0.3989
13 | 1.5884 | 0.0752 | 10.6801 | 0.5663 | 0.3977
14 | 1.5945 | 0.0752 | 10.8216 | 0.5587 | 0.4009
15 | 1.5846 | 0.0747 | 10.5988 | 0.5661 | 0.3976
16 | 1.5919 | 0.0750 | 10.6700 | 0.5648 | 0.3988
17 | 1.5751 | 0.0747 | 10.4876 | 0.5664 | 0.3977
18 | 1.5297 | 0.0735 | 10.0840 | 0.5692 | 0.3962
19 | 1.5683 | 0.0748 | 10.3699 | 0.5668 | 0.3966
20 | 1.5450 | 0.0739 | 10.1616 | 0.5669 | 0.3977
21 | 1.5178 | 0.0734 | 9.9859 | 0.5690 | 0.3977
22 | 1.5650 | 0.0755 | 10.4903 | 0.5639 | 0.3984
23 | 1.5486 | 0.0739 | 10.2677 | 0.5664 | 0.3974
24 | 1.5919 | 0.0757 | 10.6840 | 0.5577 | 0.3989
25 | 1.5568 | 0.0750 | 10.4014 | 0.5644 | 0.3980
26 | 1.5329 | 0.0737 | 10.0695 | 0.5673 | 0.3965
27 | 1.5698 | 0.0746 | 10.4395 | 0.5644 | 0.3976
28 | 1.6043 | 0.0753 | 10.8488 | 0.5607 | 0.4009
29 | 1.6086 | 0.0753 | 10.8854 | 0.5622 | 0.3981
30 | 1.6002 | 0.0752 | 10.8939 | 0.5614 | 0.4002
31 | 1.5297 | 0.0733 | 10.0964 | 0.5726 | 0.3972
32 | 1.5505 | 0.075 | 10.4026 | 0.5653 | 0.3969
33 | 1.5628 | 0.075 | 10.3995 | 0.5642 | 0.3978
34 | 1.5898 | 0.0752 | 10.6625 | 0.5634 | 0.3981
35 | 1.5326 | 0.0737 | 10.0699 | 0.5674 | 0.3962
36 | 1.5692 | 0.0748 | 10.384 | 0.5664 | 0.3974
37 | 1.5564 | 0.0742 | 10.2887 | 0.5661 | 0.3978
38 | 1.5135 | 0.0735 | 9.9835 | 0.5641 | 0.3971
39 | 1.5325 | 0.074 | 10.1527 | 0.568 | 0.3979
40 | 1.5134 | 0.0737 | 10.0476 | 0.5644 | 0.3957
41 1.558 | 0.0743 | 10.3165 | 0.5649 | 0.3981
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Sr.No | K, K; Ky « 15}
42 | 1.5481 | 0.0739 | 10.2525 | 0.5651 | 0.3967
43 | 1.5919 | 0.075 | 10.6840 | 0.5577 | 0.3989
44 | 1.5244 | 0.073 | 10.0665 | 0.5679 | 0.3969
45 | 1.5567 | 0.074 | 10.3022 | 0.5658 | 0.3978
46 | 1.5728 | 0.0752 | 10.5443 | 0.5643 | 0.398
47 | 1.5861 | 0.0753 | 10.5366 | 0.5648 | 0.3979
48 | 1.5365 | 0.0737 | 10.1346 | 0.574 | 0.3979
49 | 1.5706 | 0.0754 | 10.4832 | 0.5646 | 0.3983
50 | 1.5518 | 0.0747 | 10.2805 | 0.569 | 0.3979
51 | 1.5718 | 0.075 | 10.5874 | 0.5656 | 0.3978
52 1.578 | 0.0756 | 10.5092 | 0.5632 | 0.3983
53 | 1.5754 | 0.0753 | 10.4826 | 0.5649 | 0.3981
54 | 1.5767 | 0.0749 | 10.5184 | 0.5664 | 0.3981
55 | 1.5486 | 0.0739 | 10.2695 | 0.5663 | 0.3981
56 | 1.5229 | 0.0732 | 10.0459 | 0.5678 | 0.3954
57 | 1.5394 | 0.0743 | 10.2501 | 0.5666 | 0.3981
58 | 1.5492 | 0.0739 | 10.2401 | 0.5679 | 0.398
59 | 1.5698 | 0.0754 | 10.4897 | 0.5642 | 0.3981
60 | 1.5935 | 0.0756 | 10.749 | 0.5578 | 0.3996
61 | 1.5441 | 0.0745 | 10.1785 | 0.5708 | 0.3979
62 | 1.5899 | 0.0756 | 10.824 | 0.5627 | 0.3986
63 | 1.5632 | 0.0746 | 10.3182 | 0.5663 | 0.3972
64 | 1.6002 | 0.0744 | 10.6852 | 0.562 | 0.3989
65 | 1.5381 | 0.0745 | 10.2606 | 0.568 | 0.3977
66 | 1.5826 | 0.075 | 10.4411 | 0.5655 | 0.3978
67 | 1.5874 | 0.0753 | 10.5535 | 0.5667 | 0.398
68 | 1.5635 | 0.0747 | 10.3949 | 0.5652 | 0.3979
69 | 1.5606 | 0.0744 | 10.3742 | 0.5625 | 0.3976
70 | 1.5238 | 0.073 | 10.0236 | 0.5673 | 0.3953
71 | 1.5887 | 0.0753 | 10.5864 | 0.5641 | 0.398
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Sr.No | K, K; Ky a g

72 | 1.5756 | 0.0751 | 10.5162 | 0.5614 | 0.3981
73 | 1.6174 | 0.0756 | 10.9185 | 0.5614 | 0.4003
74 1 1.5695 | 0.0751 | 10.4988 | 0.5614 | 0.3978
75 ] 1.5325 | 0.0737 | 10.0704 | 0.5674 | 0.3969
76 1.562 | 0.0748 | 10.3791 | 0.5645 | 0.3978
77 | 1.5335 | 0.0737 | 10.1415 | 0.5675 | 0.3974
78 | 1.5464 | 0.0739 | 10.2238 | 0.5656 | 0.3972
79 | 1.5803 | 0.0751 | 10.5592 | 0.5636 | 0.3979
80 | 1.5365 | 0.0738 | 10.1135 | 0.5655 | 0.3966

Table 5.7: Nondominated set of solutions obtained using

NSGA-IIT optimization under ISE criterion.

Sr.No K, K; Ky o 15}
1 1.4321 | 0.0843 | 10.5769 | 0.5787 | 0.2771
2 1.4161 | 0.0841 | 10.4796 | 0.5792 | 0.2726
3 1.479 | 0.0861 | 10.9209 | 0.5778 | 0.2898
4 1.3921 | 0.0833 | 10.3181 | 0.5795 | 0.2703
5 1.4112 | 0.0836 | 10.3778 | 0.5789 | 0.2705
6 1.4566 | 0.0851 | 10.7506 | 0.579 | 0.277
7 1.4233 | 0.084 | 10.5172 | 0.5791 | 0.2763
8 1.4207 | 0.084 | 10.5293 | 0.5788 | 0.2751
9 1.3943 | 0.0831 | 10.3132 | 0.5797 | 0.2706
10 | 1.4355 | 0.0849 | 10.6477 | 0.579 | 0.277
11 | 1.3776 | 0.0827 | 10.1824 | 0.5838 | 0.2679
12| 1.6476 | 0.0911 | 13.1916 | 0.5758 | 0.2755
13 | 1.4187 | 0.0843 | 10.5345 | 0.579 | 0.2764
14 | 1.4292 | 0.0841 | 10.5305 | 0.5788 | 0.2763
15 | 1.4049 | 0.0836 | 10.3788 | 0.5792 | 0.2713

—_
(@]

1.4263 | 0.0838 | 10.5119 | 0.5789 | 0.2763
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Sr.No | K, K; Ky « 15}
17 | 1.4246 | 0.0841 | 10.5252 | 0.5792 | 0.276
18 | 1.3896 | 0.0828 | 10.2103 | 0.5795 | 0.2639
19 | 1.4349 | 0.084 | 10.5761 | 0.5785 | 0.2775
20 | 1.4476 | 0.0854 | 10.8604 | 0.5782 | 0.2781
21 1.402 | 0.0835 | 10.2976 | 0.5792 | 0.2686
22 | 1.3841 | 0.083 | 10.3396 | 0.5798 | 0.2702
23 | 1.4272 | 0.084 | 10.5286 | 0.5789 | 0.276
24 1.43 | 0.0841 | 10.5663 | 0.5785 | 0.277
25 | 1.4806 | 0.0861 | 10.8053 | 0.5782 | 0.2778
26 | 1.4328 | 0.0841 | 10.5775 | 0.5785 | 0.2773
27 | 1.4724 | 0.0862 | 10.7815 | 0.5784 | 0.2776
28 | 1.5359 | 0.0899 | 11.1511 | 0.5789 | 0.2825
29 | 1.4294 | 0.084 | 10.5381 | 0.5787 | 0.2765
30 1.447 | 0.0854 | 10.7573 | 0.5787 | 0.2774
31 | 1.4379 | 0.084 | 10.6376 | 0.5785 | 0.2797
32 | 1.7863 | 0.0954 | 13.8225 | 0.5756 | 0.2856
33 | 1.5767 | 0.0948 | 11.6566 | 0.579 | 0.2856
34 | 1.4262 | 0.0843 | 10.6246 | 0.579 | 0.2807
35 | 1.4843 | 0.0856 | 11.2806 | 0.5771 | 0.2885
36 | 1.4279 | 0.0841 | 10.5567 | 0.5786 | 0.2765
37 1.418 | 0.0837 | 10.4685 | 0.5791 | 0.2742
38 | 1.4461 | 0.085 | 10.6136 | 0.5791 | 0.2746
39 | 1.3923 | 0.0833 | 10.2041 | 0.5807 | 0.2674
40 1.431 | 0.0848 | 10.6535 | 0.5788 | 0.2764
41 | 1.4423 | 0.0847 | 10.6054 | 0.579 | 0.2752
42 | 1.4037 | 0.0836 | 10.38 | 0.5795 | 0.2731
43 | 1.4527 | 0.0862 | 10.7185 | 0.5791 | 0.2779
44 | 1.4277 | 0.084 | 10.5192 | 0.5787 | 0.2764
45 1.5722 | 0.0923 | 11.1516 | 0.5762 | 0.2791
46 | 1.3719 | 0.0823 | 10.156 | 0.5847 | 0.2701
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Sr.No | K, K; Ky « 15}
47 | 1.3576 | 0.0817 | 9.9175 | 0.5952 | 0.2596
48 | 1.4176 | 0.084 | 10.4877 | 0.5794 | 0.2763
49 1.476 | 0.086 | 10.9548 | 0.5784 | 0.278
50 1.4211 | 0.0838 | 10.4611 | 0.5792 | 0.2754
51 1.43 | 0.0844 | 10.5784 | 0.5787 | 0.2769
52 | 1.3897 | 0.0827 | 10.207 | 0.5794 | 0.2638
53 | 1.4311 | 0.0842 | 10.5062 | 0.5786 | 0.2762
54 1.461 | 0.0854 | 10.8097 | 0.5788 | 0.2777
55 | 1.4461 | 0.0854 | 10.7215 | 0.5783 | 0.2779
56 | 1.4636 | 0.087 | 10.841 | 0.5789 | 0.2789
57 | 1.4277 | 0.0847 | 10.5989 | 0.579 | 0.275
58 | 1.4247 | 0.0843 | 10.4814 | 0.5791 | 0.2753
59 1.418 | 0.0837 | 10.4122 | 0.5941 | 0.2727
60 1.626 | 0.0981 | 12.6792 | 0.5763 | 0.2778
61 | 1.4097 | 0.0835 | 10.3611 | 0.5786 | 0.2721
62 | 1.3221 | 0.0819 | 9.6583 | 0.5806 | 0.2397
63 | 1.4295 | 0.0845 | 10.5808 | 0.5787 | 0.2762
64 | 1.4145 | 0.0837 | 10.4618 | 0.5788 | 0.2724
65 | 1.3969 | 0.083 | 10.1393 | 0.5894 | 0.26
66 | 1.3895 | 0.0827 | 10.2002 | 0.5796 | 0.2631
67 1.626 | 0.0981 | 12.4959 | 0.5763 | 0.2778
68 | 1.7483 | 0.1066 | 12.1525 | 0.5745 | 0.2838
69 1.6322 | 0.1012 | 11.9297 | 0.5746 | 0.2843
70 | 1.4187 | 0.0839 | 10.5248 | 0.5789 | 0.2758
71 | 1.3718 | 0.0832 | 10.093 | 0.5802 | 0.2633
72 1.626 | 0.0981 | 12.6792 | 0.5763 | 0.2778
73 | 1.4437 | 0.0843 | 10.7053 | 0.5785 | 0.2853
74 | 1.4057 | 0.0836 | 10.2906 | 0.5789 | 0.2694
75 ] 1.3669 | 0.0818 | 9.9974 | 0.5796 | 0.2629
76 | 1.4221 | 0.0838 | 10.5005 | 0.5788 | 0.2759
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Sr.No | K, K; Ky a g

77 | 1.4296 | 0.0842 | 10.5687 | 0.5785 | 0.2764
78 | 1.4024 | 0.0834 | 10.2917 | 0.5794 | 0.2707
79 ] 1.4295 | 0.0845 | 10.5769 | 0.5785 | 0.2774
80 | 1.4206 | 0.0838 | 10.4821 | 0.5791 | 0.2747

Table 5.8: Nondominated set of solutions obtained using

NSGA-IIT optimization under ITAE criterion.

SrNo | K, K, Ky a 5
1 1.457 | 0.0633 | 9.3165 | 0.5835 | 0.5028
2 | 1.4381 | 0.0631 | 9.086 | 0.5881 | 0.5025
3 | 1.4445 | 0.0633 | 9.15 | 0.5895 | 0.5027
4 | 1.4606 | 0.0634 | 9.3094 | 0.5827 | 0.5027
5 | 1.4417 | 0.0632 | 9.1277 | 0.5902 | 0.5023
6 | 1.4432 | 0.0631 | 9.1174 | 0.5896 | 0.5027
7 | 14607 | 0.0634 | 9.3164 | 0.5831 | 0.5028
8 | 1.4497 | 0.0633 | 9.2287 | 0.5857 | 0.5026
9 | 1.436 |0.0631 | 9.0792 | 0.5877 | 0.5025
10 | 1.4322 | 0.0629 | 9.0067 | 0.5903 | 0.5022
11 1.45 | 0.0634 | 9.2308 | 0.5857 | 0.5027
12 | 1.4425 | 0.0632 | 9.1273 | 0.5885 | 0.5026
13 | 1.4531 | 0.0633 | 9.2304 | 0.5856 | 0.5026
14 | 1.4417 | 0.0632 | 9.1438 | 0.5898 | 0.5026
15 | 1.4347 | 0.063 | 9.0427 | 0.5887 | 0.5026
16 | 1.4397 | 0.0633 | 9.1376 | 0.5931 | 0.5028
17 | 1.4371 | 0.0631 | 9.0826 | 0.5872 | 0.5024
18 | 1.4482 | 0.0634 | 9.2265 | 0.5865 | 0.5027
19 | 1451 |0.0632 | 9.202 | 0.5867 | 0.5026
20 | 1.4556 | 0.0634 | 9.2643 | 0.5864 | 0.5027

[\)
—_

1.4304 | 0.063 | 9.0434 | 0.5903 | 0.5022
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Sr.No | K, K; Ky « 15}
22 | 1.4423 | 0.0632 | 9.1545 | 0.588 | 0.5026
23 1.434 | 0.063 | 9.0489 | 0.5908 | 0.5025
24 | 1.4396 | 0.063 | 9.096 | 0.5879 | 0.5025
25 | 1.4435 | 0.0633 | 9.1385 | 0.5881 | 0.5027
26 | 1.4445 | 0.0633 | 9.1465 | 0.5902 | 0.5026
27 | 1.4485 | 0.0632 | 9.1905 | 0.5871 | 0.5026
28 | 1.4342 | 0.063 | 9.0775 | 0.5877 | 0.5024
29 | 1.4512 | 0.0634 | 9.2681 | 0.5841 | 0.5027
30 | 1.4504 | 0.0633 | 9.2229 | 0.5875 | 0.5026
31 | 1.4399 | 0.0631 | 9.126 | 0.5863 | 0.5026
32 | 1.4315 | 0.0629 | 9.048 | 0.5891 | 0.5023
33 | 1.4448 | 0.0633 | 9.1685 | 0.5897 | 0.5026
34 | 1.4557 | 0.0633 | 9.261 | 0.5834 | 0.5026
35 1.456 | 0.0634 | 9.2739 | 0.5857 | 0.5027
36 | 1.4351 | 0.0629 | 9.037 | 0.5884 | 0.5026
37 1.436 | 0.0631 | 9.0538 | 0.5885 | 0.5025
38 | 1.4341 | 0.063 | 9.0751 | 0.5903 | 0.5023
39 | 1.4599 | 0.0634 | 9.3136 | 0.5834 | 0.5026
40 | 1.4143 | 0.0629 | 8.8144 | 0.593 | 0.5028
41 | 1.4703 | 0.0631 | 9.398 | 0.5828 | 0.5036
42 | 1.4317 | 0.0628 | 9.028 | 0.5883 | 0.5022
43 | 1.4616 | 0.0636 | 9.3389 | 0.5881 | 0.5028
44 | 1.4534 | 0.0633 | 9.2185 | 0.5865 | 0.5026
45 | 1.4455 | 0.0633 | 9.1713 | 0.5875 | 0.5026
46 1.44 | 0.0633 | 9.142 | 0.589 | 0.5025
47 | 1.4408 | 0.0632 | 9.107 | 0.5878 | 0.5024
48 | 1.4608 | 0.0634 | 9.3182 | 0.5828 | 0.503
49 | 1.4521 | 0.0632 | 9.2669 | 0.5834 | 0.5026
50 | 1.4413 | 0.0632 | 9.1146 | 0.5894 | 0.5028
51 | 1.4283 | 0.063 | 8.9217 | 0.5924 | 0.5027
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St.No | K, K; Ky a g

52 1.4573 | 0.0633 | 9.2964 | 0.5832 | 0.5026
53 1.4567 | 0.0634 | 9.2913 | 0.586 | 0.5026
54 1 14313 | 0.063 | 9.0278 | 0.5904 | 0.5024
55 1.4492 | 0.0634 | 9.1888 | 0.5861 | 0.5026
56 1.4458 | 0.0633 | 9.1641 | 0.5895 | 0.5027
o7 1 1.4479 | 0.0633 | 9.1906 | 0.5888 | 0.5027
o8 1.4574 | 0.0635 | 9.268 | 0.5839 | 0.5026
59 1.4379 | 0.0632 | 9.1057 | 0.5893 | 0.5024
60 1.4494 | 0.0633 | 9.2186 | 0.5877 | 0.5026
61 1.4463 | 0.0633 | 9.1869 | 0.5873 | 0.5027
62 1.4325 | 0.0629 | 9.02 | 0.5908 | 0.5025
63 1.4524 | 0.0633 | 9.2146 | 0.5872 | 0.5026
64 | 1.4494 | 0.0632 | 9.1852 | 0.5861 | 0.5026
65 1.4516 | 0.0634 | 9.2308 | 0.585 | 0.5026
66 1.4538 | 0.0633 | 9.2588 | 0.586 | 0.5026
67 | 1.4477 | 0.0631 | 9.1889 | 0.5873 | 0.5025
68 1.4675 | 0.0636 | 9.3994 | 0.5844 | 0.5036
69 1.424 | 0.0629 | 8.8408 | 0.599 | 0.5026
70 1.445 ] 0.0632 | 9.1733 | 0.5876 | 0.5024
71 1.4458 | 0.0633 | 9.1638 | 0.5901 | 0.5026
72 1.4494 | 0.0633 | 9.1969 | 0.5873 | 0.5026
73 1.4562 | 0.0634 | 9.2846 | 0.5855 | 0.5027
74 1 1.4298 | 0.0629 | 8.9989 | 0.5903 | 0.5023
75 1.4425 | 0.0632 | 9.1524 | 0.5885 | 0.5026
76 1.4571 | 0.0633 | 9.309 | 0.5832 | 0.5026
77 1 1.4573 | 0.0634 | 9.3116 | 0.5851 | 0.5026
78 1.4488 | 0.0633 | 9.1819 | 0.5903 | 0.5026
79 1.4971 | 0.0636 | 9.5291 | 0.5853 | 0.5039
80 1.451 | 0.0634 | 9.2351 | 0.5855 | 0.5027

The Figure 5.23 to Figure 5.31 are plots of set point tracking and disturbance rejections
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for all values of 2DOF controller parameters obtained under the criteria IAE, ISE and
ITAE as nondominated set of solutions using NSGA-III. The best value obtained from

the list of nondominated set of solutions are plotted as symbol * has red color.
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Figure 5.23: Set point response obtained using NSGA-III optimization of 2DOF controller
under TAE.



CHAPTER 5: MULTIOBJECTIVE OPTIMIZATION : EVOLUTIONARY

ALGORITHM 83
o0e T T T T T T T T
008 b= -
004 -

Figure 5.24: Flow disturbance rejection response obtained using NSGA-III optimization

of 2DOF controller under TAE.
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Figure 5.25: Temperature disturbance rejection response obtained using NSGA-III opti-
mization of 2DOF controller under TAE.
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Figure 5.26: Set point response obtained using NSGA-III optimization of 2DOF controller
under ISE.
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Figure 5.27: Flow disturbance rejection response obtained using NSGA-III optimization

of 2DOF controller under ISE.
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Figure 5.28: Temperature disturbance rejection response obtained using NSGA-III opti-
mization of 2DOF controller under ISE.

Figure 5.29: Set point response obtained using NSGA-III optimization of 2DOF controller
under ITAE.



CHAPTER 5: MULTIOBJECTIVE OPTIMIZATION : EVOLUTIONARY

ALGORITHM 86
ooy T T T T
0oe - -
Ll B
0 0d -
% oo =
- .
oo =5
o =
%
Time

Figure 5.30: Flow disturbance rejection response obtained using NSGA-III optimization

of 2DOF controller under ITAE.
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Figure 5.31: Temperature disturbance rejection response obtained using NSGA-III opti-

mization of 2DOF controller under ITAE.
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Table 5.9: Result of 2DOF controller parameter optimization using NSGA-III.

Multiobjective
optimization

2DOF controller

[Kpa Kia Kd7 «, B]

parameter NSGA-III

Peak
overshoot of
of Step

Response

In (%)

Reduction
Flow
Disturbance

Response

In (%)

Reduction
Temperature
Disturbance

Response

In (%)

[AE
(Sr.No-18 Table 5.6)
[1.529,0.074, 10.08, 0.56, 0.392] 11.34 40.63 80.21
(Best Set point tracking)
[AE
(Sr.No-4 Table 5.6)
[1.626,0.076,1.10, 0.560, 0.401]
(Best disturbances rejections)
ISE
(Sr.No-11 Table 5.7)
[1.377,0.083, 10.18, 0.58, 0.268]
(Best Set point tracking)
ISE
(Sr.No-12 Table 5.7)
[1.647,0.091,13.19, 0.57, 0.276]
(Best disturbances rejections)
ITAE
(Sr.No-16 Table 5.8)
[1.439,0.0633,9.08, 0.59, 0.502] 5.64
(Best Set point tracking)
ITAE
(Sr.No-7 Table 5.8)

[1.460,0.063,9.31, 0.583, 0.502] 9.52

11.62 42.46 80.82

21.87 40.20 80.07

29.59 45.34 81.78

38.52 79.50

38.92 79.64

(Best disturbances rejections)
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From the Figure 5.23 to Figure 5.31 and parameters tabulated in Table 5.9, it is
derived that ITAE criterion for optimizing concurrently all the five parameters of 2DOF
controller using NSGA-III algorithm has minimum peak overshoot of step response(5.64%)
for nondominated set of solution [1.439,0.0633,9.08,0.593,0.502] (Solution.No-16, Table
5.8). The maximum rejection of flow (45.34%) and temperature (81.78%) disturbances
are attained beneath the criterion of ISE for nondominated set of solutions [1.647, 0.091,

13.19, 0.576, 0.276] (Solution.No-12, Table 5.7).

5.9 Conclusion

The results of GA based multiobjective optimization algorithms NSGA-IT and NSGA-III
are compared. From the responses shown in Figure 5.8 to Figure 5.31 and parameters tab-
ulated in Table 5.5 & 5.9, it is derived that multiobjective optimization of 2DOF controller
using NSGA-III algorithm gives more number of nondominated set of solutions (Here, 80
each for three criteria IAE, ISE and ITAE) as compared to NSGA-II algorithm (Here,
27 each for three criteria TAE, ISE and ITAE). Among all the solutions obtained under
three tests criteria using NSGA-II & NSGA-III approaches, ITAE criterion for NSGA-III
gives (mentioned in ITAE Solution No-16, Table 5.8) considerably balanced solution in
terms of minimizing peak overshoot (5.64%), flow disturbance rejections (38.52%) and
temperature disturbance rejections (79.50%). Hence, out of total available nondominated
set of solution one from ITAE (Solution No-16, Table 5.8) is preferred one.

NSGA-IT and NSGA-IIT optimization algorithms give number of nondominated set of so-
lutions called Pareto optimal solutions. Practically, user needs only one solution from
the set of Pareto optimal solutions for particular problem. Generally, user is not aware
of exact trade-off among objective functions. Hence, it is desirable to first obtain max-
imum possible Pareto optimal solutions and select best one using multi-criteria decision
making technique. TOPSIS based multi-criteria decision making technique is applied to

nondominated set of solutions discussed in the chapter 7.



