LIST OF FIGURES

Figure 1.1 Classification of distortion is power networks	3
Figure 1.2 Shunt passive filters (a) single tuned filter (b) first order high-pass filter (c) second order
high-pass filter (d) C-type filter	
Figure 1.3 APF converter classification (a) current source converter type (b) voltage	source converter
type	
Figure 1.4 Series active power filter	
Figure 1.5 Unified power quality conditioner	14
Figure 1.6 Combination of series active filter and shunt passive filter	
Figure 1.7 Series APF connected in series with the shunt passive filter	16
Figure 1.8 Transformer less shunt hybrid power filter	16
Figure 2.1 Current harmonic spectrums (Laser machine)	
Figure 2.2 Voltage and current waveform (Laser machine)	
Figure 2.3 Current harmonic spectrums (Embroidery machine)	
Figure 2.4 Voltage and current waveform (Embroidery machine)	
Figure 2.5 Current harmonic spectrums (Water jet)	
Figure 2.6 Voltage and current waveform (Water jet)	
Figure 2.7 Current harmonic spectrums (EAF)	
Figure 2.8 Current harmonic spectrums (EAF)	
Figure 2.9 Current harmonic spectrums (UPS)	
Figure 2.10 Voltage and current waveform (UPS)	
Figure 2.11 Current harmonic spectrums (Computer center)	
Figure 2.12 Voltage and current waveform (Computer center)	
Figure 2.13 Current harmonic spectrums (fan regulator)	
Figure 2.14 Voltage and current waveform (fan regulator)	
Figure 2.15 Current harmonic spectrums (PC)	
Figure 2.16 Voltage and current waveform (PC)	
Figure 2.17 Current harmonic spectrums (Printer)	
Figure 2.18 Voltage and current waveform (Printer)	
Figure 2.19 Current harmonic spectrums (LCD projector)	
Figure 2.20 Voltage and current waveform (LCD projector)	
Figure 2.21 Current harmonic spectrums (CRO)	

Figure 2.22 Voltage and current waveform (CRO)
Figure 2.23 Current harmonic spectrums (DT)
Figure 2.24 Voltage harmonic spectrums (DT)
Figure 2.25 Voltage and current waveform (a-phase)
Figure 2.26 Voltage and current waveform (b-phase)
Figure 2.27 Voltage and current waveform (c-phase)
Figure 2.28 Voltage and current waveform (a-b-c and neutral)
Figure 2.29 Typical electric arc furnaces (EAF)
Figure 2.30 Heat conversions by electric arc
Figure 2.31 EAF with an electric network
Figure 2.32 Complete Simulink/MATLAB Simulation file of the proposed EAF model (a) three phase
network along with EAF (b) single phase EAF simulation (c) EAF equation modeling42
Figure 2.33 Waveform of arc voltage-current v/s time of (a) Cassie-Mayr's EAF model (b) Proposed
EAF model during refining cycle
Figure 2.34 VIC of (a) Cassie-Mayr's EAF model (b) the proposed EAF model during refining cycle
Figure 2.35 Harmonic spectrum of arc current at PCC of (a) Cassie-Mayr's EAF model (b) the
proposed EAF during refining cycle
Figure 2.36 Harmonic spectrum of arc voltage at PCC of (a) Cassie-Mayr's EAF model (b) proposed
EAF model during refining cycle
Figure 2.37 P-Q consumption of (a) Cassie-Mayr's EAF model (b) Proposed EAF model during
refining cycle
Figure 2.38 Simulink/MATLAB Simulation of sinusoidal flicker generation
Figure 2.39 Comparisons of data from various sources on voltage flicker
Figure 2.40 Waveform of arc voltage-current v/s time of (a) Cassie-Mayr's EAF model (b) proposed
EAF model during melting cycle considering sinusoidal flicker
Figure 2.41 VIC of (a) Cassie-Mayr's EAF model (b) the proposed EAF model during melting cycle
considering sinusoidal flicker
Figure 2.42 P-Q consumption of (a) Cassie-Mayr's EAF model (b) proposed EAF model during
melting cycle considering sinusoidal flicker57
Figure 2.43 Simulink/MATLAB Simulation of random flicker generation
Figure 2.44 Waveform of arc voltage-current v/s time of (a) Cassie-Mayr's EAF model (b) Proposed
EAF model during melting cycle considering random flicker

Figure 2.45 VIC of (a) Cassie-Mayr's EAF model (b) the proposed EAF model during melting cycle
considering random flicker
Figure 2.46 Single line diagram of test system
Figure 2.47 RM loop auxiliaries (a) equivalent 6-pulse DC motor drive (b) three-phase 6-pulse
converter
Figure 2.48 Complete Simulink/MATLAB simulation file of EAF Model 1 (Cassie-Mayer) (a) three
phase network along with EAF (b) three phase EAF simulation (c) single phase EAF simulation
(d) EAF equation simulation
Figure 2.49 Complete Simulink/MATLAB simulation files of proposed EAF model (a) three phase
network along with EAF (b) three phase EAF simulation (c) single phase EAF simulation68
Figure 2.50 Simulink/MATLAB Simulation of (a) sinusoidal flicker (b) random flicker68
Figure 2.51 Simulink/MATLAB Simulation of (a) 6-pulse DC motor drive (b) three-phase 6-pulse
converter69
Figure 3.1 Schematic diagram of shunt passive filter connected to EAF distribution network
Figure 3.2 Equivalent circuit diagram of tuned shunt passive filter73
Figure 3.3 Shunt connected low pass filter75
Figure 3.4 Shunt connected high pass filter76
Figure 4.1 PQ improvement using CF80
Figure 4.2 Voltage vector decomposition
Figure 4.3 Reference signal calculator
Figure 4.4 Direct-sequence component calculation91
Figure 4.5 Fundamental positive sequence component calculator91
Figure 4.6 Fortescue inverse transformation
Figure 4.7 IGBT leg for phase-a93
Figure 4.8 Series APF connected at PCC94
Figure 4.9 Gating signal generation94
Figure 4.10 Control strategy simulations
Figure 4.11 Composite filter configuration96
Figure 4.12 Single phase equivalent circuit EAF supplying network (a) with fundamental and
harmonic components (b) with only harmonic components100
Figure 4.13 Closed loop model for composite filter (a) complete model (b) reduced model101
Figure 4.14 Magnitude and phase Bode plot for (a) function $k_s(s)$ (b) for function $k'_s(s)$ 106
Figure 5.1 Complete MATLAB simulation file of composite filter connected to EAF network 108

Figure 5.2 Filter performance in EAF refining cycle (a) V_{PCC} without filter (b) harmonic spectrum without filter (c) V_{PCC} with PF (d) harmonic spectrum with PF (e) V_{PCC} with CF (f) harmonic Figure 5.3 Filter performance in EAF refining cycle (a) I_{PCC} without filter (b) harmonic spectrum without filter (c) I_{PCC} with PF (d) harmonic spectrum with PF (e) I_{PCC} with CF (f) harmonic Figure 5.4 Filter performance in EAF refining cycle (a) VIC without filter (b) POS powers without filter (c) power factor without filter (d) VIC with PF (e) PQS powers with PF (f) power factor with PF (g) VIC with CF (h) PQS powers with CF (i) power factor with CF.....117 Figure 5.5 Filter performance in EAF melting cycle (sinusoidal flicker) (a) V_{PCC} without filter (b) harmonic spectrum without filter (c) V_{PCC} with PF (d) harmonic spectrum with PF (e) V_{PCC} with Figure 5.6 Filter performance in EAF melting cycle considering random flicker (a) I_{PCC} without filter (b) harmonic spectrum without filter (c) I_{PCC} with PF (d) harmonic spectrum with PF (e) I_{PCC} Figure 5.7 Filter performance in EAF melting cycle considering sinusoidal flicker (a) VIC without filter (b) PQS powers without filter (c) power factor without filter (d) VIC with PF (e) PQS powers with PF (f) power factor with PF (g) VIC with CF (h) PQS powers with CF (i) power Figure 5.8 Filter performance in EAF melting cycle (random flicker) (a) V_{PCC} without filter (b) harmonic spectrum without filter (c) V_{PCC} with PF (d) harmonic spectrum with PF (e) V_{PCC} with Figure 5.9 Filter performance in EAF melting cycle considering random flicker (a) I_{PCC} without filter (b) harmonic spectrum without filter (c) I_{PCC} with PF (d) harmonic spectrum with PF (e) I_{PCC} Figure 5.10 Filter performance in EAF melting cycle considering random flicker (a) VIC without filter (b) PQS powers without filter (c) power factor without filter (d) VIC with PF (e) PQS powers with PF (f) power factor with PF (g) VIC with CF (h) PQS powers with CF (i) power Figure 5.12 Three phase V_{PCC} for sinusoidal flicker (a) without filter (b) with PF (c) with CF 139 Figure 5.14 Three phase voltage unbalance (a) without filter (b) with PF (c) with CF142