
Chapter 2

Finite Element Method & Transformer
Design

2.1 Finite Element Method

The finite element method is a numerical technique for solving a wide
variety of engineering problems. Finite Element Analysis (FEA) using
Finite Element Method (FEM) was developed initially to carry out the
structural analysis in civil and aeronautical engineering in early 1940s.
However it was not until 1960 that Clough made the term finite element
popular. Later on application of FEA is being expanded to simulation in
mechanical and electrical engineering also, to solve complex design
problems such as fluid flow, heat transfer, electric field plotting etc.

There are variety of practical engineering problems for which one cannot
identify the exact solution either due to the complex nature of the
governing differential equations or due to the difficulties in dealing with
their initial and boundary conditions. Numerical techniques are the best
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alternate to deal with such problems. There are several numerical
techniques such as finite difference method, boundary element method,
finite element method, etc. Among all these finite element method (FEM)
is practically well suited for the problems involving complex geometries. It
provides a standard process for converting the governing energy principles
or governing differential equations in to a system of matrix equations to be
solved for an approximate solution.

The working of finite element method and its advantages over other methods
can be described as under [106].

“In a continuum (a body of matter – solid, liquid or gas or simply a region
of space in which a particular phenomenon is occurring), problem of any
dimensions, the field variable – whether it is pressure, temperature,
displacement, stress or some other quantity – possesses infinitely many
values because it is a function of each generic point in the body or solution
region. Consequently, the problem is one with an infinite number of
unknowns. The finite element discretization procedure reduces the problem
to one of a finite number of unknowns by dividing the solution region into
elements and by expressing the unknown field variables in terms of
assumed approximating functions also called interpolation functions. The
interpolation functions are defined in terms of the values of the field
variables at specified points called nodes or nodal points. Nodes usually lay
on the element boundaries where adjacent elements are connected. In
addition to the boundary nodes, an element may also have a few interior
nodes. The nodal values of the field variable and the interpolation
functions for the elements completely define the behavior of the field
variable within the elements. For the finite element representation of a
problem the nodal values of the field variable become the unknowns. Once
these unknowns are found, the interpolation functions define the field
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variable throughout the assemblage of elements.

Clearly, the nature of the solution and the degree of approximation depend
not only on the size and number of the elements used but also on the
interpolation functions selected. While choosing the function, certain
compatibility conditions should be satisfied. Often the functions are chosen
such that the field variable or its derivatives are continuous across
adjoining element boundaries.

An important feature of the finite element method that sets it apart from
other numerical methods is its ability to formulate the solutions for
individual elements before putting them together to represent the entire
problem e.g. while solving a problem of stress analysis, the
force-displacement or stiffness characteristics of each individual element is
found first and then all elements are assembled to find out the stiffness of
the whole structure. This reduces a complex problem into a series of
greatly simplified problems.

Another advantage of finite element method is the variety of ways in which
the properties of the individual elements can be formulated. There are
basically three different approaches – Direct Approach which can be used
only for relatively simple problems, Variational Approach and Weighted
Residuals Approach.

The variational approach relies on the calculus of variations and involves
extremizing a functional. For the problems of solid mechanics the
functional turns out to be the potential energy, the complementary energy
or some variant of these, such as the Reissner variational principle.
Whereas the direct approach can be used to formulate the element
properties for only the simplest element shapes, the variational approach
can be employed for both simple and sophisticated element shapes.
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The weighted residuals approach begins with the governing equations of
the problem and proceeds without relying on a variational statement. This
is advantageous because it thereby becomes possible to extend the finite
element method to problems where no functional is available. The method
of weighted residuals (Galerkin Approach)is widely used to derive element
properties for nonstructural applications such as heat transfer, fluid
mechanics, electromagnetism etc.

The above discussion reveals that the finite element analysis of any problem
involves a step-by-step procedure as stated below [113], [117], [106].

Step 1 – Discretization:

The first step in finite element method is to divide the continuum (the
structure or the solution region) into subdivisions or elements. Hence the
structure is to be modeled with suitable finite elements. A variety of
element shapes may be used, and different element shapes may be
employed in the same solution region. The numbers of elements, their size
and their arrangements are to be decided.

Step 2 – Selection of Interpolation Function:

In this step nodes have been assigned to each element and then interpolation
function has been chosen to represent the variation of the field variable over
the element. The field variable may be a scalar, a vector or a higher order
tensor. Normally polynomials are selected as interpolation functions for the
field variable as they are easy to integrate or differentiate.

Step 3 – Determination of Element Properties:

Once the elements and their interpolation functions have been selected i.e.
finite element model has been established, determine the matrix equations
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describing the properties of the individual elements. For this any one of
the three approaches – direct approach, variational approach or the weighted
residual approach may be adopted.

Step 4 – To Obtain System Equations:

Assemble all the elements i.e. combine the matrix equations of individual
elements to form the matrix equations that represent the entire system
problem.

Step 5 – Boundary Conditions & Initial Conditions:

Once the system equations are ready for the solution, they must be modified
to account for the boundary conditions and initial conditions of the problem.
Known nodal values of the dependent variables or nodal loads are imposed
at this stage.

Step 6 – Solution Phase:

In this step, a set of linear or non linear simultaneously equations are solved
to obtain the unknown nodal values of the problem if the problem describes
steady or equilibrium behavior. If the problem is unsteady, the nodal
unknowns will be a function of time and then a set of linear or nonlinear
ordinary differential equations will have to be solved. Make additional
computations if required to obtain the other unknowns based on the
solutions achieved for the system equations e.g. in an electric heat flow
analysis problem, if the nodal unknowns are temperature values then
overall temperature rise of the system can be calculated.”
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2.1.1 Finite Elements

“A very important aspect of finite element method is the selection of
particular type / shape of finite element and defining an appropriate
interpolation function. Various element shapes such as – one dimensional
line element, two dimensional triangle, rectangle and general quadrilateral
elements and three dimensional tetrahedron, right prism (also known as
brick) and general hexahedron elements have been shown in figure 2.1 (a)
to (g). To approximate the curved boundaries with only few elements,
isoparametric elements such as triangle, quadrilateral, tetrahedron or
hexahedron elements as shown in figure 2.2 (a) to (d) are normally used.
This helps in solving the three dimensional problems with less complexity
and computation time.

(a) line element

(b) triangle (c) rectangle (d) quadrilateral

(e) tetrahedron (f) right prism (g) hexahedron

Figure 2.1: Basic Element Shapes

The nodes assigned to all these elements have been shown by a black dot.
Nodes may be classified as either exterior or interior depending on their
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(a) triangle (b) quadrilateral

(c) tetrahedron (d) hexahedron

Figure 2.2: Common Quadratic Isoparametric Elements

location relative to the geometry of an element. Exterior nodes lie on the
boundary of an element and they represent the points of connection
between bordering elements. Nodes positioned at the corners of an
element, along the edges or on the surfaces are all exterior nodes. Nodes
that do not connect with neighboring elements are called interior nodes.

Apart from element shape, two other features that characterize a particular
element are – (1) the number of nodes assigned to the element and (2) the
number and type of nodal variables chosen for the element. The numbers
of nodal variables or the parameters assigned to an element are called the
degrees of freedom of the element. They can be exterior or interior in
relation to the element boundaries depending upon whether they are
assigned to exterior or interior nodes.”

2.1.2 Interpolation Functions with Generalized Coordinates:

“The functions used to represent the behavior of a field variable within an
element (element equations) are called the interpolation functions or shape
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functions or approximating functions. These functions can be of many
types; however polynomials have been used widely to express these
functions due to ease of their integration or differentiation in one, two or
three dimensions. The interpolation function cannot be chosen arbitrarily.
Certain continuity requirements must be there to satisfy the convergence
criteria. The degree of continuity of a field variable is said to be C0 if the
field variable is continuous at element interfaces. It is said to be C1 if the
first derivatives are continuous and C2 if the second derivatives of these
equations are continuous. If the function appearing under the integrals in
the element equations contain derivatives up to (r + 1)th order, then for
rigorous assurance of the convergences – compatibility requirement and
completeness requirement must be satisfied as element size decreases i.e.
at element interfaces one must have Cr continuity to satisfy compatibility
requirement and Cr+1 continuity within an element to satisfy completeness
requirement. In one, two and three dimension, a general complete nth order
polynomial can be expressed as in equation 2.1 to 2.3.

Pn(x) =

Tn(1)∑
k=1

αKx
i, i ≤ n (2.1)

where,

T
(1)
n = n+ 1

for n = 1, T
(1)
1 = 2, and P1(x) = α1 + α2x

for n = 2, T
(1)
2 = 3 and P2(x) = α1 + α2x+ α3x

2 and so on

Pn(x, y) =

Tn(2)∑
k=1

αKx
iyj, i+ j ≤ n (2.2)
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where,

T
(2)
n = (n+ 1)(n+ 2)/2

for n = 1, T
(2)
1 = 3, and P1(x, y) = α1 + α2x+ α3y

for
n = 2, T

(2)
2 = 6, P2(x, y) = α1 + α2x + α3y + α4xy + α5x

2 + α6y
2

and so on

Pn(x, y, z) =

Tn(3)∑
l=1

αlx
iyjZk, i+ j + k ≤ n (2.3)

where the number of terms in polynomial is

T
(3)
n = (n+ 1)(n+ 2)(n+ 3)/6

for n = 1, T
(3)
1 = 4, and P1(x, y, z) = α1 + α2x+ α3y + α4z;

for n = 2, T
(3)
2 = 10, P2(x, y, z) = α1 +α2x+α3y+α4z+α5xy+α6xz+

α7yz + α8x
2 + α9y

2 + α10Z
2 and so on ;

For two and three dimensional polynomials, if the terms are placed in
triangular array, a triangle similar to Pascal triangle as shown in figure 2.3
for two dimensional polynomial and Pascal tetrahedron as in figure 2.4 for
three dimensional polynomial.

The coefficients αk in all above polynomials which are representing the
field variables, are called the generalized coordinates of the element. They
are the independent parameters and specify the magnitude of the prescribed
distribution for φ- a polynomial function. The shape of the prescribed
distribution is decided by the order of the polynomial which depends on the
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Figure 2.3: Pascal Triangle in Two Dimension

Figure 2.4: Pascal Tetrahedron
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number of degree of freedom assigned to the element. Accordingly the
number of coefficients in a polynomial should be equal to the number of
nodal variables.

While choosing a polynomial expression as an interpolation function for an
element, compatibility and completeness requirements are to be satisfied to
ensure continuity of the field variable and convergence to the correct solution
as the element mesh size is made smaller and smaller. Apart from these
two requirements, a polynomial needs to possess geometric isotropy that is
the polynomial expansion for the element must remain unchanged under a
linear transformation from one Cartesian coordinate system to another. Two
axioms that allow constructing polynomial series with this desired property
are:

1. Polynomials of order n those are complete – contain all their terms – are
said to have geometric isotropy.

2. Polynomials of order n those are incomplete – yet to contain the
appropriate terms to preserve symmetry are said to have geometric
isotropy.

According to the first axiom, the polynomials expressed by equations 2.1 to
2.3, when used as an interpolation function, remain invariant under linear
coordinate transformation. The second axiom talks about symmetry during
truncation of the polynomial. The polynomial series must be truncated by
dropping the terms those occur in symmetric pairs to preserve the
geometric isotropy. Equation 2.4 represents once such truncated cubic
polynomial showing eight terms that actually contain ten terms.

P (x, y) = α1 + α2x+ α3y + α4x
2 + α5xy + α6y

2 + α7x
3 + α10y

3 (2.4)
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OR

P (x, y) = α1 + α2x+ α3y + α4x
2 + α5xy + α6y

2 + α8x
2y + α9xy

2

An interpolation function represented by a polynomial series – for a
rectangular element as shown in figure 2.5, with its nodes positioned at the
corners – is shown in equation 2.5.

Figure 2.5: A Rectangular Element with Global Coordinate

φ(x, y) = α1 + α2x+ α3y + α4xy (2.5)

The coefficients of this series are generalized coordinates. Since one value
of φ is assigned to each node, the element has four degrees of freedom and
a set of simultaneous equations may be represented as in equation 2.6
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φ1 = α1 + α2x1 + α3y1 + α4x1y1

φ2 = α1 + α2x2 + α3y2 + α4x2y2

φ3 = α1 + α2x3 + α3y3 + α4x3y3

φ4 = α1 + α2x4 + α3y4 + α4x4y4

or, in matrix form

{φ} = [G] {α} (2.6)

Where

{φ} =


φ1

φ2

φ3

φ4



[G] =


1 x1 y1 x1y1

1 x2 y2 x2y2

1 x3 y3 x3y3

1 x4 y4 x4y4



{α} =


α1

α2

α3

α4


The generalized coordinates can be expressed as the solution of equation 2.6
for {α} ,
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{α} = [G]−1 {φ} (2.7)

Expressing the terms of equation 2.5 as a product of a row and a column
vector,

φ = bP c {α} (2.8)

where,

bP c = b1 x y xyc

Substituting equation 2.7 into equation 2.8

φ = bP c [G]−1 {φ} = bNc {φ} (2.9)

with
bNc = bP c [G]−1 (2.10)

Equations 2.7 to 2.10, though represent a case of rectangular element, are
generally applicable to all straight elements. The original interpolation
polynomial bP c {α} should not be confused with the interpolation
functions Ni associated with the nodal degree of freedom. bP c {α} is an
interpolation function that applies to the whole element and expresses the
field variable behavior in terms of the generalized coordinates, whereas the
interpolation functions Ni refer to the individual nodes and individual
nodal degrees of freedom; collectively representing the field variable
behavior. It takes on unit value at node i and zero value at all the other
nodes of the element.
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Solution to above equations for a large system is very time consuming as it
requires very large computational efforts in obtaining [G]−1. The alternative
to this method is the use of Natural Coordinate system as described in section
2.1.3 for a three dimensional tetrahedron element.”

2.1.3 Interpolation Functions with Natural Coordinates

”A local coordinate system that relies on the element geometry for its
definition and whose coordinates range between zero and unity within the
element is known as a natural coordinate system. In this system, one
particular coordinate has unit value at one node of the element and zero
value at the other node(s) and its variation between nodes is linear. The
main advantage of using Natural Coordinates is that it allows the use of
closed-form integration formulae to evaluate the integrals in the element
equations. Also the use of Natural coordinates makes it easier to develop
curve sided elements. The natural coordinate system makes it easy to
describe the location of a point inside an element in terms of the
coordinates associated with the nodes of that element. Natural coordinates
are denoted as Li(i = 1, 2, . . . , n), where n represents the numbers of
external nodes of an element. The natural coordinates are the functions of
the global Cartesian coordinate system in which normally an element is
defined. The natural coordinates for a four node tetrahedron element as
shown in figure 2.6 is a set of volume coordinates. They are related with
the global Cartesian coordinates as shown in equation 2.11.
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x = L1x1 + L2x2 + L3x3 + L4x4

y = L1y1 + L2y2 + L3y3 + L4y4

z = L1z1 + L2z2 + L3z3 + L4z4

L1 + L2 + L3 + L4 = 1 (2.11)

Further solving equation 2.11, it gives equation 2.12

Li =
1

6V
(ai + bix+ ciy + diz), i = 1, 2, 3, 4 (2.12)

where,

6V =

∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣∣∣∣∣∣
= 6(volume of the tetrahedron defined by nodes 1,2,3,4 ) (2.13)

The other constants can be derived using a cyclic permutation of the
subscripts 1 to 4. As these constants are the cofactors of the determinant in
equation 2.13, they must be represented with proper sign i.e. negative or
positive.

If the field variable φ is represented as a function of Li instead of x, y and z,
then

φ(x, y, z) = φ1L1 + φ2L2 + φ3L3 + φ4L4

The appropriate differentiation and integration formulae can be expressed as
in equations 2.14 and 2.15.”
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(a) (b)

Figure 2.6: Tetrahedron Element (a) in Global Coordinates (b) in Natural (Volume)
Coordinates

∂φ

∂x
=

4∑
i=1

∂φ

∂Li

∂Li
∂x

∂φ

∂y
=

4∑
i=1

∂φ

∂Li

∂Li
∂y

∂φ

∂z
=

4∑
i=1

∂φ

∂Li

∂Li
∂z

(2.14)

∫
V (e)

Lα1L
β
2L

γ
3L

δ
4dV

(e) =
α!β!γ!δ!

(α + β + γ + δ + 3)!
6V (2.15)

2.2 FEM – Application in Transformer Designing - A Retrospective

As discussed in chapter 1, the circuit theory models for designing
transformers are not much accurate in determining the transformer
parameters such as winding impedance, leakage inductance, hot spot
temperature etc. The physical realization of these parameters is needed on
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a prototype unit. The finite element method can play a vital role in deriving
these parameters without any physical verification. Various research
approaches and papers show the effectiveness of finite element method in
determining the above mentioned parameters while designing the
transformers - both oil cooled as well as dry type - for power and
distribution sectors as well as to analyze and detect the internal faults in the
transformer.

The main objective of applying finite element method while designing a
transformer is, to estimate the temperature rise and hot spots under non
linear load conditions, to determine the impedance value and short circuit
forces to identify the electrical stresses and weakest insulation points and to
estimate the correct insulation level to avoid the HV failures.

2.2.1 Transformer Design Parameters - Realization using FEM

The use and effectiveness of finite element method in designing the power
transformer as compared to magnetic circuit theory [120] have been
discussed in various papers like, a three dimensional finite element analysis
of electric fields at winding ends of dry type transformer [23], hot spot and
life evaluation of power transformer [26], [25] & [49], predicting hottest
spot temperatures in ventilated dry type transformer windings [6], leakage
inductance calculations [48], thermal modeling of disc type winding, foil
type winding and transformer assembly for ventilated dry type transformers
[39], [45] & [53], a generalized finite element analysis of three-dimensional
heat transfer problems exhibiting sharp thermal gradients [41], thermal
analysis of power transformer using an advanced coupled 3D heat transfer
and fluid flow FEM model [59], leakage flux and force calculation on
power transformer windings [4], experimental verification of short circuit
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electromagnetic forces in a dry type transformer using FEA [57],
transformer over heating under non linear and unbalanced load conditions
citepie95, [22], [24] and [54], internal winding fault detection and analysis
[19], [27] & [37], analysis of short circuit performance of split winding
transformer using coupled field circuit approach [31], etc.

In a paper presented by S C Bell and P S Bodger [29] and [14], a comparison
has been made between magnetic circuit theory and finite element method
for designing the power transformer. It summarizes the reverse method of
transformer design.

In their paper, first the models for the resistive and inductive reactance
components of the Steinmetz ‘exact’ transformer equivalent circuit have
been developed from fundamental theory as presented in [25]. Then two
and three dimensional linear and non linear magneto static finite element
models were introduced as an alternative model for the inductive reactance
components.

To demonstrate the reverse design method, the author have designed, built
and tested two single phase, 50 Hz, high voltage transformers, the results of
which are summarized in table 2.1

Rc =Transformer core resistance
Rw = Transformer winding resistance
Xm = Magnetizing reactance of the transformer
Xl = Leakage reactance of the transformer
DM = Direct Measurement
CTM = Circuit theory model
LFEM = Linear finite element model
NLFEM = Non-linear finite element model
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Table 2.1: Calculated and Measured Equivalent Circuit Parameters for Sample
Transformers

Method Equivalent Circuit Parameters in Ω
Rc Rw Xm Xl

Transformer 1 :
Primary 240 V, Secondary 6240 V, 200 VA

DM 3388 10.0 1987 2.8
CTM 1342 11.5 1383 1.9
LFEM - - 1905 1.6

NLFEM - - 1883 -
Transformer 2 :
Primary 14 V, Secondary 4560 V, 617 VA

DM 18 0.043 41 0.012
CTM 9.9 0.055 20 0.016
LFEM - - 25 0.015

NLFEM - - 54 -

The results show that the non linear finite element model most accurately
calculated the magnetizing reactance value of the two sample transformers.
For transformer 1 the non linear model seems to be less accurate however
this may be due to the approximations made in the geometry of the finite
element model.

D. Azizian, M. Vakilian, and J. Faiz [48] have introduced analytical and FEM
based models for electromagnetic modeling and inductance calculation in
dry type multi-winding traction transformers. The accuracy of these models
is verified against the experimental data for a traction transformer having
specifications as given in table 2.2.

The test results are as shown in table 2.3 from which it is evident that the FEM
has better and most accurate results. The accuracy of axi-symmetric 2D
FEM model goes on increasing as we increase the complexity of modeling
from simplest core (2D-S) to full core (2D-F) to improved core (2D-I). The
accuracy of 3D model is much higher than the 2D models.
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The experimental results of this paper also yield that the proper modeling
of the transformer core further helps in determining the value of leakage
inductance due to change in the cross section area of the core. This is
especially very helpful in designing the converter duty transformers where
leakage inductance between the transformer windings is of utmost
importance to decide the capacitance value for the LCL filter. The leakage
inductance of the transformer itself forms a part of the filter circuit.

Table 2.2: Specifications of Typical Traction Transformer

Power Rating Vector Group
4000 KVA Dd0/y11

HV Line Voltage HV Line Current
(H1||H2) = 20 KV (H1||H2) = 115.5 A

LV Line Voltage LV Line Current
(L1||L2) = 750 V (L1||L2) = 1540 A

Table 2.3: Leakage Inductances of Traction Transformer

Test / Measurement Method Leakage Inductances %
L1H1 L1H2 L1L2 L2H1 L2H2 H1H2

Analytical Results 5.9 72.5 55.2 71.7 88.1 6.0
2D-Simplest core 5.679 44 45 44 42 5.686

2D-Full Core 5.808 111 112 112 110 5.84
2D–Improved Core 5.794 98 100 99 97 5.834

3D Model 5.892 88 88 88 88 5.914
Experimental 5.797 74 73 72 72 5.943

N. L. Allen and et.al [13] have discussed the behavior of air and its
breakdown at elevated temperatures in non uniform electric fields. V. E.
Gonzalez and et.al [50] have proposed the designing of insulating supports
in medium voltage dry type transformers. The effect of the high operation
temperatures of the transformer on the voltage breakdown in the insulating
supports was investigated and the electric field distribution on different
shapes/profiles of the supports was identified using finite element method.
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The impact of inrush currents on the mechanical stresses developed in a high
voltage power transformer coils during the switching of a transformer has
been discussed in [21]. The behavior of superconducting transformer against
inrush current has been studied by S. Nishimiya and et.al [32]. A pre-fluxing
technique has been discussed for a single phase transformer to reduce the
magnetizing inrush current at the instant of switching of a transformer in
[58].

M. Enokizono and N. Soda [12] did the analysis for finding out the core
losses using improved FEM. In [15], measurement of eddy current loss
coefficient have been done and de-rating of single phase transformer has
been suggested in comparison with k-factor approach. Effect of saturation
and eddy currents in commercial variable transformer has been modeled
using Finite element method by S. H. Khan and et.al [18]. Calculation of
eddy current field in the flange for the bushing and tank wall of a large
power transformer has been presented in [34]. M. A. Venegas Vega and
et.al [36] have estimated the stray losses in a three phase transformers using
3D finite element method. Investigation of no load and load losses in a
amorphous core dry type transformers has been done in [47].

2.2.2 Life evaluation of Transformer using FEM

One of the most important parameters governing the life expectancy of a
transformer is the hot-spot temperature value. Stray losses and non linear
loads in a transformer are one of the main contributing factors in creating
such hot spots which all together decide the life of a transformer.

The stray losses in a transformer are caused by the time variable leakage
flux which induces emf and circulates eddy currents in the winding as well
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as conducting parts of the transformers such as clamps, core, tank wall etc.
Evaluation of stray losses can be done quite accurately by FEM as discussed
by A. S. Reddy and M. Vijaykumar [26].

Dejan Susa [25] has developed the models to determine the hottest spot in a
transformer based on heat transfer theory, application of the lumped
capacitance method, the thermal-electrical analogy and a new definition of
nonlinear thermal resistances at different locations within a power
transformer. The changes in oil viscosity, loss variation with temperature
and changes in transformer time constants due to changes in oil viscosity
were also accounted for in the thermal models. The results showed that the
top oil temperature time constant is shorter than the time constant
suggested by the present IEC loading guide, especially in cases where the
oil is guided through the windings in a zigzag pattern for the ONAN and
ONAF cooling modes. The models are validated using experimental
results, which have been obtained from a series of thermal tests performed
on a range of power transformers.

With development of the electronic equipments such as Computers, UPS,
and High Frequency Drives for motor loads, arc furnaces, Electronic
Ballasts, Compact Fluorescent Lamps, etc. the harmonic content in the
power distribution network has increased tremendously. These highly non
linear loads are present not only in the industrial sectors but also in the
commercial sector and the first victim to any such load is always a
transformer feeding them. These non linear loads result into the
overheating of the transformers. The non linearity of the loads is best
judged by the K factor [51] as described by equation 2.16 and accordingly
the transformer required will be designated as K-rated transformer.

The K-rated transformer does not mitigate the harmonic but is capable
enough to sustain the overheating due to such non linear loads. The design
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and application considerations along with testing approach based on UL,
NEMA and IEEE standard C57.110-1986 are best described by L. W.
Pierce, member IEEE [8].

K =
h∑
1

(
Ih

2

IRMS
2

)
h2 (2.16)

where

h = order of harmonic
Ih= RMS value of the current for h order harmonic
IRMS = RMS value of the total load current

A three dimensional finite element method using a magnetic scalar
potential formulation is applied [24] to compute the magnetic field in free
and iron spaces. The calculation is then combined with a mixed analytical
and numerical form of the electrical circuit equation to take into account
the skin and proximity effects in the rectangular windings in dry type
transformers under non linear load conditions. A two step FEM using the
both reduced and total magnetic scalar potentials throughout a penalty term
is proposed in this paper.

Accordingly the magnetic field into the air gap (Ωa) and in the core (Ωc)
based on the reduced and total magnetic scalar potential φ follows the
governing equations:

lnΩa : H = Hj − grad(φ)

lnΩc : H = −grad(φ) (2.17)
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Where, the source magnetic field Hj can be computed using either the
Biot-Savart law or a fictitious field for the known current distribution [4].
The relationship given in equation 2.17 has been solved from a two step
formulation using a difference magnetic field h = H–H0, considered as
being a disturbance of H0 due to the core saturation. In first step the
magnetic permeability µ was assumed to be infinite and a reduced
magnetic scalar potential φ1 was used to calculate the magnetic field H0.
In the second step, a total magnetic scalar potential φ2 formulation was
applied with H0 as the new magnetic source field in order to calculate the
difference field h.

Based on the magnetic field described above and the empirical formula of
the ac resistance component as in [110], the additional losses in the winding
due to the harmonic currents have been modeled in [24] on a sample 10 KVA
dry type distribution transformer. The nominal current of the transformer is
applied to the windings for all frequencies in the above paper. However with
non linear loads the harmonics do not own the same amplitude. The power
losses are then need to be weighted and modeled in accordance with the
current to estimate the exact value of temperature rise.

The other major factor that decides the life of a transformer is the designing
of insulation system. The determination of insulation level can best be
identified by determining the electric fields at the winding ends. Using
three dimensional FEM and ANSYS software, J. Hong, L Heyun and X.
Zihong [23] have estimated the electric fields at the winding end in 10KV
SG10 dry type transformer. The similar approach can be extended to other
higher rating transformer too at the design stage itself to estimate the
correct insulation level and consequently increase the life of a transformer.
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2.2.3 Fault detection in Transformer using FEM

Majority times the faults in a transformer are turn to turn, disk to disk or
turn/disk to earth short circuit. This occurs mainly because of the aging of
the insulation or displacement of the insulation during transportation or
maintenance. This leads to the overheating of the transformer and finally
results into the transformer failure. Study shows that around 70-80% of the
transformer failures are due to the short circuit between turns. Considering
this damage occurring in the transformer and time and cost involved in
rectifying the same, it seems that simulation involving modeling of the
transformer for detecting the fault is the most economical and convenient
way.

One of such methods of modeling distribution transformer with internal
short circuit faults using Finite Element Analysis (FEA) is presented in
[19]. Based on the physical information of the transformer, the finite
element model for a normal transformer or a transformer with an internal
fault was implemented by commercially available software. The resulting
circuit model was exported and used in a circuit analysis package to study
the terminal behavior of the transformer. The observations of the
simulation are compared with the experimental results and it shows that the
FEA model can provide an accurate estimation of the internal winding
faults.

The electromagnetic quasi-static finite element approach [37] describes the
detection of winding short circuit faults with the help of frequency
response analysis. The principle of coupled circuit approach and
electromagnetic quasi-static analysis approach were applied along with
FEA for determining the short circuit current under different fault
conditions.
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A case study on 30 MVA, 63 KV/20 KV, Ynd1, and 50 Hz transformer has
been discussed in this paper [37]. Parameters of transformer are estimated
by means of finite element analysis and utilized in circuit based model and
the input impedance is calculated in wide band frequency. In addition to
classifying and analyzing main types of short circuit according to IEEE
standard C57.140, frequency response of disk-disk short circuit state is also
investigated in several points in the HV winding to identify the location of
the short circuit fault along the winding. The results have been summarized
in terms of deviation of resonance component which showed that the first
resonance of the input impedance due to short circuit moves orderly giving
a better idea about the location of the short in a winding.

2.3 Conclusion

The discussion above reveals that the finite element method is an efficient
tool for designing the transformer. Whereas the determination of
impedance, winding hot spots temperature, insulation class and insulation
level etc. are the major challenges while designing a transformer, the FEA
can serve a vital role and may provide a cost effective and efficient solution
to the problem. The preliminary results obtained from finite element model
may be useful to develop cost effective and efficient design. However from
all above discussions, it is evident that a three dimensional finite element
model is predominant over a two dimensional model. While initiating the
analysis a two dimensional model may be adopted but for the betterment of
results the analysis must be completed by developing a three dimensional
model only.
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