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Abstract

Multilevel inverter and hybrid multilevel inverter play important role in medium
and high voltage industries. In this project these multilevel inverters are compared and
work is done for hybrid multilevel inverter. Different topologies are available for
multilevel inverters. Some of them are simulated and their working is understood.

Over modulation, linear range of modulation, switching states, switching
frequency and capacitor charge maintenance are contributing factors in limiting the
capability and performance of the multilevel inverter. Anyhow higher order harmonics
can be controlled by changing the switching frequency. Hybrid multilevel inverter
systems are designed to work in environments with as many modulation techniques as
possible in varying power conditions. Multilevel inverter and hybrid multilevel inverter
have emerged as one of the most promising approaches for high voltage inverter with
lowest total harmonic distortion, lower voltage stress on switches and increased
approximation towards sinusoidal wave. Hybrid multilevel inverter also provides very
high efficiency over normal inverter.

The aim of the project is simulation, design and implementation of hybrid
multilevel inverter. Simulations are carried out for cascaded multilevel inverter and
different hybrid multilevel inverter for comparison.

In this project hybrid multilevel inverter is controlled by multi carrier pulse width
modulation techniques like PDPWM, PODPWM, APODPWM and THIPDPWM
obtained using DSP. All these modulation techniques are adapted for selected HMLI
which in general are implemented for either cascaded multilevel inverter, symmetrical or
asymmetric hybrid multilevel inverter or other multilevel inverter. In that way all these
modulation techniques are novel for this work. The combination of
MATLAB/SIMULINK, CCS, emulator and DSP is used for controlling of system. The
software based control developed for optimization of hybrid Multilevel Inverter system
give provisions for configuration changes or further development.

If this system is to be made portable then batteries can be used. Here testing is
done on batteries as well as regulated power supply. Regulated power supply is
developed for high voltage and current rating.

The work presents the use of different modulation techniques, simulation,
analysis and implementation of the control of hybrid multilevel inverter. Regulated

power supply for DC 40V/80V is developed with SA current rating. Simulations are for



single phase cascaded multilevel inverters (five level, seven level and nine level) and
THD is compared.

Simulations are also done for different hybrid multilevel inverters like
asymmetric hybrid multilevel inverter, symmetrical hybrid multilevel inverter and half
bridge module based hybrid multilevel inverter with single phase and three phase
configurations. Simulations are done with and without modulation. For simulated circuits
with modulation THD is varying from 0.6% to 1.8% for different topologies with
different modulation techniques for single phase and three phase.

Similarly, simulations are done for selected hybrid multilevel inverter with
different modulation techniques for single phase and three phase and comparison is done
on basis of THD. For single phase THD varies from 1.15% to 1.52% and for three phase
THD varies from 0.84% to 1.41%.

The selected hybrid multilevel inverter is designed for single phase and three
phase. In the project multicarrier modulation techniques like PD, POD, APOD and
THIPDPWM are implemented with constant modulation index which can be changed to
achieve different results.

THD obtained as low as 1.2% from hardware and 0.19% from simulations. This

system can work for 1.5 kW power output.
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Chapter 1 Introduction

Multilevel inverters (MLI) have very important development for medium voltage
and high power application due to their ability to synthesize waveforms with better
harmonic spectrum. Multilevel inverters refer to the inverters with output which have
more than two voltage levels possible with respect to pole. The feature of having an
output voltage level that is higher than those of the power semiconductor switching
devices’ ratings puts the MLIs in high power inverters class. The application of MLIs has
been extended to the medium power range due the advantages of reduced distortion,

dv/dt stress and common mode voltage [1]-[3].

1.1 OVERVIEW
The cascaded H-bridge inverter (CHB) is a MLI topology with a modular

structure. The main drawback of a CHB inverter is the need for a large number of
isolated dc supplies [4]-[6]. To ease this problem hybrid multilevel inverters created by
cascading smaller dissimilar inverter circuits are suggested [7].

Hybrid inverters have different approaches to achieve the goal of multilevel
output such as: Employing different power switches like GTO and IGBT in cascade thus
operating at low and high frequency[8] or modifying the series connection of cascade
connected MLI[9] or obtaining multilevel output with combination of inverter and
converter[10],[11] or replacing the dc supply of the lower voltage stages with capacitors
and controlling the inverter to receive zero average power from the capacitor-fed stages
[12], [13] or replacing the highest voltage cascaded stages with a singly-supplied inverter
such as a basic 2-level, six-switch inverter [14] or a multilevel neutral point clamped
stage [15] or supplying various hybrid inverter stages using the same dc source and
isolating the outputs using a multi primaries transformer [16], [17] but this option is not
suitable when a wide frequency range including very low frequency is needed and also
by applying half bridge inverter cascaded with H bridge inverter[18] with single DC
source or separate DC sources.

Multicarrier pulse width modulation (PWM) inverters have been developed to
overcome shortcomings in solid-state switching device ratings, so that large motors can
be controlled by high-power adjustable-frequency drives. Multilevel inverters can
operate at both fundamental switching frequency and high frequency switching.

The different PWM schemes of multilevel inverters are classified into two types
the multi carrier Sub- Harmonic pulse width modulation (MC-SH PWM) and the multi
carrier switching frequency optimal pulse width modulation (MC-SFO PWM), Sub
Harmonic PWM (SHPWM), Phase Shift PWM (PSPWM), Variable Frequency PWM
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Chapter 1 Introduction

(VFPWM) and Carrier Overlapping PWM (COPWM) techniques employed for various
modulation indices using spectrum of the output voltage. Other performance measures
from above modulation techniques such as crest factor, form factor etc. and the use of
inverter state redundancies to perform additional application specific control tasks.

For all above modulation techniques, the switching devices of the main power
stage switch once per cycle for different modulation indices. This is suitable for the high
power semiconductor devices. Stress on the devices is reduced and total harmonic
distortion (THD) is also reduced.

The multicarrier PWM method uses several triangular carrier signals, keeping
only one modulating sinusoidal signal. For an n level inverter n-1 carriers are employed
[19] — [20]. The carriers have the same frequency and same peak to peak amplitude but
are disposed so that the bands they occupy are contiguous. The zero reference is placed
in the middle of the carrier set. The modulating signal is a sinusoid of frequency 50 Hz.
At every instant each carrier is compared with the modulating signal. Each comparison
gives high level or low level output if the modulating signal is greater or smaller than the
triangular carrier respectively. The results are added to give the voltage level, which is
required at the output terminal of the inverter.

Different multicarrier PWM methods include Phase Disposition (PD) Method
[21], Alternative Phase Opposition Disposition (APOD) Method, Phase Opposition
Disposition (POD) Method, Phase Shifted (PS) Method [22] and Hybrid Modulation
Technique [23]-[26]. Different modulation techniques for hybrid multilevel inverter are
studied in simulations and results are compared.

Other modulation techniques are also studied such as Multicarrier Sub Harmonic
Pulse Width Modulation (MC-SH PWM)[27], Multi Carrier Switching Frequency
Optimal PWM (MC-SFO PWM)[28], Phase Shifted Carrier Switching Frequency
Optimal Pulse Width Modulation (PSC-SFO PWM)[29] and HLCCAPOPWM control
technique [30].

The research will have an impact such that THD, stress on the devices are
reduced. This project aims at developing a multilevel inverter using various pulse width
modulation. It will be possible to implement the developed pulse width modulation
techniques for linear range of modulation.

There are several types of multilevel inverters but the one considered in this work
is the hybrid cascade multilevel inverter (HCMLI). HCMLI has many distinct features

particularly in terms of its structure which is simple and modular.
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Most multilevel inverters have an arrangement of switches and capacitor voltage
sources. By a proper control of the switching devices, these can generate stepped output
voltages with low harmonic distortions. These multilevel inverters are widely used in
manufacturing factories and acquired public recognition as one of the new power inverter
fields because they can overcome the disadvantages of traditional pulse width-
modulation (PWM) inverters. The selected hybrid cascaded multilevel inverter includes a
standard 3-leg inverter (one leg for each phase) and H-bridge in series with each inverter
leg. It can use only a single DC power source to supply a standard 3-leg inverter along
with three full H-bridges supplied by capacitors. But in this work separate four DC
sources are used instead of capacitors because capacitors were not easily available. In
case capacitor were used, balancing of capacitor is main task. Multilevel carrier based
PWM method is used to produce a five level phase voltage. Control for this hybrid MLI
is obtained wusing DSP 28335. Control signals are generated using
MATLAB/SIMULINK (2013) in discrete model, code is generated using CCS 3.3/ CCS
5.1, which is loaded in EPB28335 using Emulator xds510USB.

The features and discussions of research carried out in the thesis includes:

e Survey of different modulation techniques, power circuits and limitations of
existing topologies of Hybrid multilevel inverter (HMLI) with control circuitry.

e Comparison of different modulation techniques applied to different hybrid
multilevel inverter topologies on the basis of THD using MATLAB simulation

e MATLAB simulations for selected HMLI (single phase and three phase) with
different modulation techniques.

e Effect of amplitude modulation index (referred as modulation index in this work)
and frequency modulation index on Total harmonic distortion (THD) for HMLI
using MATLAB simulations.

® Design and development of power circuit for HMLI.

e Realization of hardware circuit using MOSFET/IGBT.

¢ Control signal realization using EPB28335 with CCS3.3 and emulator xds510usb

® Designing and implementation of interfacing card.

¢ Implementation of selected HMLI for low and high power output (single phase and
three phase) with different modulation techniques using EPB28335.

e Testing of hardware circuit and comparison with simulated results.

1.2 ROADMAP
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Introduction

The thesis is organized as follows:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

This chapter provides an overview and the context for the remainder of the
thesis. It also introduces the present trends in Multilevel inverter. It
presents the significance and scope of work to be carried out in the thesis.
This chapter gives comparative study of multilevel inverters and evolution
of hybrid multilevel inverter. Hybrid multilevel inverters are classified on
basis of power devices used, power supplies used and configuration of
power devices. Other classification is based on modulation technique
applied

This chapter introduces different modulation techniques that can be
applied to multilevel inverter. More focus is on multicarrier based
modulation techniques. Discussion is related with modulation index which
is based on modulation index and frequency modulation index.

In this chapter MATLAB simulations carried out for different cascaded
multilevel inverters and hybrid multilevel inverters are discussed to
finalize the topology of this project. Important factors to be considered are
total harmonic distortion, number of power supplies and number of power
devices. Also output levels are decided initially.

In this chapter MATLAB simulations are carried out for single phase and
three phase with different modulation techniques and results are discussed
for selected topology.

In this chapter controlling of power switches is discussed. The processor
used for controlling switching pattern of power circuit is TMS28335 with
code composer studio and emulator. Control signals are obtained using
MATLAB SIMULINK with Code Composer Studio and Emulator. All
these interfaces are discussed in detail. This chapter describes steps
involved in generation and application of control signals to power circuit.
Design of the power circuit of hybrid multilevel inverter for five level
output is described in this chapter. Design is for single phase and three
phase circuits. Circuit is designed for low as well as high power rating.
This chapter also describes regulated power supply design.

In this chapter results obtained from hardware are given and compared

with simulation results.
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Chapter 9

Chapter 10

Introduction

Conclusion and further possible expansion with respect to output power
and load applied are discussed in this chapter. Also applications could be
open loop or closed loop as per requirement.

Thesis ends with Bibliography which includes the list of references used in

each chapter.
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Chapter 2 MLI to HMLI

This chapter gives comparative study of multilevel inverters and evolution of
hybrid multilevel inverter.

The idea of multilevel inverters has been introduced since 1975 [1]. The term
multilevel began with three level inverter [2]. Thereafter several multilevel inverter
topologies have been developed [3-9]. But the basic concept of a multilevel inverter is to
obtain high power by using a series of power semiconductor switches. Thus a staircase
voltage waveform can be achieved from several low voltage DC sources. Capacitors,
batteries and renewable energy voltage sources can be used as the multiple DC voltage
sources. The switching of the power switches combine these multiple DC sources in
order to achieve high voltage at the output however the rated voltage of the power
semiconductor switches depends only upon the rating of the DC voltage sources to which
they are connected.

A multilevel inverter achieves high power ratings and also enables the use of
renewable energy sources. Renewable energy sources such as photovoltaic, wind and
fuel cells can be easily interfaced to a multilevel inverter system for a high power
application [10-12]. Thus a multilevel power inverter structure can be utilized as an
alternative in high power and medium voltage situations. A multilevel inverter has
several advantages over a conventional two-level inverter that uses high switching

frequency pulse width modulation (PWM).
2.1 MULTILEVEL INVERTER CONFIGURATION

Many multilevel inverter topologies have been proposed during the last three
decades. Modern research has engaged novel inverter topologies and unique modulation
schemes. Three different major multilevel inverter structures have been reported in the
literature: cascaded H-bridges inverter with separate DC sources, diode clamped (neutral
clamped) and flying capacitors (capacitor clamped).

The first topology introduced was the series H-bridge design [1]. This was
followed by the diode-clamped multilevel inverter [2,14,15] which utilizes a bank of
series capacitors to split the DC bus voltage. After few years the flying-capacitor (or
capacitor clamped) [16] topology was introduced in which instead of series connected
capacitors floating capacitors are used to clamp the voltage levels. Another multilevel
design, slightly different from the previous ones, involves parallel connection of inverter
outputs through inter-phase reactors [17]. In this design the switches must block the

entire reverse voltage, but share the load current. Various combinatorial designs have
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also emerged [18] and been implemented by cascading the fundamental topologies [19-
23] such designs come under hybrid topologies category. These designs can create higher
power quality for a given number of semiconductor devices than the fundamental
topologies due to a multiplying effect of the number of levels.

Moreover, number of modulation techniques and control techniques have been
developed for multilevel inverters such as sinusoidal pulse width modulation (SPWM),
selective harmonic elimination (SHE-PWM), space vector modulation (SVM),
multicarrier modulation and others.

In the beginning multilevel inverters were introduced to drive high voltage as in
High Voltage Direct Current (HVDC) applications to make the front-end connection
between DC and AC lines. In this way the limits on the maximum voltage tolerable by
the semiconductor switches were overtaken and the inverters were able to drive directly
the line voltage without a transformer.

Nowadays it is possible to find multilevel applications even in low voltage field
like motor drive because of the high quality of the AC output. In particular back-to-back
multilevel systems can drive motors with very good performance concerning the line
voltage and current distortions and also reduces the losses. Recent advances in power
electronics have made the multilevel concept practical [2, 14-30]. In fact the concept is
so advantageous that several major drive manufacturers have obtained patents on
multilevel power inverter and associated switching techniques [4, 31-36].

In addition, many multilevel inverter applications focus on industrial medium-
voltage motor drives [7, 37] utility interface for renewable energy systems [38] flexible
ac transmission system (FACTS) [39] and traction drive systems.

2.1.1 WORKING PRINCIPLE OF MULTILEVEL INVERTER

General concept of multilevel inverter can be explained in this section which is
very popular. In this explanation operation of semiconductors are shown by an ideal
switch with several states. The switching pattern of switches and commutation of them
allow the addition of the capacitor voltages as temporary DC voltage sources whereas the
switches should withstand the voltages of capacitors. Thus Fig. 2.1 shows one phase leg
of multilevel inverter with different number of levels [10].

Fig. 2.1(a) is a two-level inverter since the output voltage V, has only two
possible values while Fig. 2.1(b) is a three-level inverter since its output can have three
different values. If m is the number of possible output voltage levels it is called m-level

inverter shown in Fig. 2.1(c). By increasing the number of levels the output voltage
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waveforms will have more steps and thus have a reduced harmonic distortion. However a

high number of levels will increase the complexity and introduce voltage imbalance

problems.
V. 1
C A~
Ve d;; ]
! ve s N\l
‘ o <2 I—‘ —&
° 1 ™
} 1
I
+ 1 1 F S
Ve A~ 4 Ve AN Va Ve AN Va
| TVa ’
-0 9 - 0
(a) (b) (c)

Fig. 2.1 Single leg of multilevel inverter (a) Two level (b) Three level (¢) m level
2.2 DIODE CLAMPED MULTILEVEL INVERTER

Fig. 2.2 describes working of a three-level diode-clamped inverter. In this circuit
two series-connected bulk capacitors C; and C, divide the DC-bus voltage. If the middle
point of the two capacitors is defined as the neutral point n then the output voltage v,
has three states: V4/2, 0 and - V4/2. When switches S| and S, are turned on then output
voltage v, is Vq4./2 while for — V4./2 output switches S;’and S’ are turned on and for the

0 level S, and S’ are switched on.

Va2
~C NTERN

Vie ——

v

L]

'Vdc/l

L

Fig. 2.2 Three level diode clamped inverter
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The key components that distinguish this circuit from a conventional two-level
inverter are diodes D; and D, . These two diodes clamp the switch voltage to half the
level of the DC-bus voltage. When both switches S; and S, turn on the voltage across ‘a’
and ‘0’ is Vgc i.e. Voo=Vg.. In this case D;’ balances the voltage sharing between S;’and
S,” with S;” blocking the voltage across C; and S, blocking the voltage across C,. Note
that output voltage v,, is ac and V,, is DC. The difference between v,, and V,, is the
voltage across C, which is V4/2. If the output is between ‘a’ and ‘o’, then the circuit
becomes a DC/DC inverter which has three output voltage levels: Vg, V4c/2 and 0.

Fig. 2.3 shows a five-level diode-clamped inverter in which the DC bus consists
of four capacitors C;, C,, C3 and C4. For DC-bus voltage V the voltage across each
capacitor is V4/4 and each device voltage stress will be limited to one capacitor voltage
level i.e. V4/4 through clamping diodes.

To explain how the staircase voltage is obtained the neutral point ‘n’ is
considered as the output phase voltage reference point. There are five switch
combinations to obtain five level voltages across ‘a’ and ‘n’.

For voltage level v,, =Vq4./2 turn on all upper switches S;—S4, For voltage level v,
=0, turn on two upper switches S; and S4 and two lower switches S;” and S,’. For voltage
level v,, =-V4./4 turn on one upper switch s4 and three lower switches S;’—S3’. Similarly
it can be explained for other voltage levels. Four complementary switch pairs exist in
each phase. The complementary switch pair is defined such that turning on one of the
switches will exclude the other from being turned on. In this example, the four
complementary pairs are (S, S1’), (Sa, S2°), (S3,93°), and (54,54 ).

Although each active switching device is only required to block a voltage level of
V! (m-1), the clamping diodes must have different voltage ratings for reverse voltage
blocking. Using D;” of Fig. 2.3 as an example when lower devices S,’-S4’are turned on,
D;’ needs to block three capacitor voltages or 3V4./4. Similarly D, and D,’ need to block
2V4/4, and D3 needs to block 3V,./4. Assuming that each blocking diode voltage rating
is the same as the active device voltage rating, the number of diodes required for each
phase will be (m-1)x(m-2). This number represents a quadratic increase in m. When m is
sufficiently high the number of diodes required will make the system impractical to
implement. If the inverter runs under PWM the diode reverse recovery of these clamping

diodes becomes the major design challenge in high-voltage high-power applications [10].
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Fig. 2.3 Five level diode clamped inverter
Table 2.1 Switching combination for five level DCMLI

SWITCHING STATES Output
Si S, Si S4 Sy’ Sy’ S3’ Ss’ Voltage
ON ON ON ON OFF OFF OFF OFF Va2
OFF ON ON ON ON OFF OFF OFF Val4
OFF OFF ON ON ON ON OFF OFF 0
OFF OFF ON ON ON ON ON OFF - Va/4
OFF OFF OFF OFF ON ON ON ON - Vao/2

2.3 FLYING CAPACITOR MULTILEVEL INVERTER

Fig.2.4 illustrates the fundamental building block of single phase-leg capacitor-
clamped inverter. The circuit has been called the flying capacitor inverter [11], [16], [40]
with independent capacitors clamping the device voltage to one capacitor voltage level.
The inverter in Fig. 2.4 provides a three-level output across a and n, i.e. v,, =Vq4./2, 0 or —
Va/2. For voltage level Vg4./2 switches S; and S, need to be turned on for —Vgy/2

switches S;’and S’ need to be turned on and for the 0 level either pair (S;,S;” ) or
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MLI to HMLI

(52,52’ ) needs to be turned on. Clamping capacitor C; is charged when S; and S,’ are

turned on and is discharged when S, and S’ are turned on. The charge of C; can be

balanced by proper selection of the O-level switch combination.

Vdc

Vad2|
1~ C St \
Vo
A
S, \\
e f C7< _ao Van é
= S\
Vo
-Va/2 ,
<G S2' N\
(1]
O

Fig. 2.4 Three level flying capacitor multilevel inverter

Va2
Si
Ci |
T
C3 SZ AN
Vald T e
C4 —_— C2 S3 \

V|
/

n
__l__“ — i~ Sl’k O

G, . Vo
C /< = G
N sl T
'Vdc/ 9 -

G = > |k ‘ L\_l'| t
Va2 S& I\

|

v

A
/

o
O

Fig. 2.5 Five level flying capacitor multilevel inverter
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The voltage synthesis in a five-level capacitor-clamped inverter has more
flexibility than a diode-clamped inverter. Using Fig. 2.5 as an example the voltage of the
five-level phase-leg ‘a’ output with respect to the neutral point ‘n’, v,, can be obtained
by following switching combinations.

Table 2.2 Switching combination for five level FCMLI
SWITCHING STATES Output
S So S; S4 S’ Sy’ Sy’ Sy’ Voltage
ON ON ON ON OFF OFF OFF OFF Va/2
ON ON ON OFF ON OFF OFF OFF Vac/4
OFF ON ON ON OFF OFF OFF ON Va4

ON OFF ON ON OFF OFF ON OFF Va/4
ON ON OFF OFF ON ON OFF OFF 0

OFF OFF ON ON OFF OFF ON ON 0
ON OFF ON OFF ON OFF ON OFF 0
ON OFF OFF ON OFF ON ON OFF 0

OFF ON OFF ON OFF ON OFF ON 0

OFF ON ON OFF ON OFF OFF ON 0

ON ON OFF OFF OFF ON ON OFF - Va/4
OFF OFF OFF ON OFF ON ON ON - Va4
OFF OFF ON OFF ON OFF ON ON - Va4
OFF OFF OFF OFF ON ON ON ON - Vg/2
For voltage level v,, = Vq4/2, turn on all upper switches S;— S4. For voltage level

van = 0, there are six combinations as shown in Table 2.2. For voltage level v, =-V4/4
there are three combinations: S1,S;,S,’,S3’(Van =Va/2 of upper C4’s -3Vy/4 of C3’s),
S4,S2°,837,S4’ (Van =Vac/4 of C; — V4o/2 of Cy4’s) and S3,S,°,S3°, Sa’(Van =Va/2 of Cy’s —
Va/4 of C; — V4/2 of lower Cy4’s). Other output voltage combinations are given in Table
2.2.

In the preceding description the capacitors with positive signs are in discharging
mode while those with negative sign are in charging mode. By proper selection of
capacitor combinations it is possible to balance the capacitor charge. Similar to diode
clamping the capacitor clamping requires a large number of bulk capacitors to clamp the
voltage. Provided that the voltage rating of each capacitor used is the same as that of the
main power switch, an m-level inverter will require a total of (m-1)x(m-2)/2 clamping

capacitors per phase leg in addition to (m-1) main DC-bus capacitors.
24 CASCADED MULTILEVEL INVERTERS

Inverter topology based on the series connection of single-phase inverters with
separate DC sources [41] is explained here. As stated above, the general function of the

multilevel inverter is to synthesize a desired voltage from several separate DC sources
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(SDCSs) such as solar cells, fuel cells, ultra capacitors, etc. Fig. 2.6 shows the power
circuit for one phase leg of a five-level inverter with two cells in each phase (one cell

refers to single phase H Bridge).

A

S] \ S3 \

Vae ——
Vol

N SN =
&
<
=
=
@)
-
-
w
-
=

S .\ St

Vae —— .
02

S21 \ S41 \

v

Fig. 2.6 Five level cascaded multilevel inverter
Table 2.3 Switching combination for five level CMLI

Switching State Output

Si S31 Si2 S32 Vi Vi Voizjge

1 0 1 0 Ve AN 2V e

1 0 1 1 Ve 0 Ve

1 0 0 0 Vdc 0 Vdc

1 1 1 0 0 Ve Ve

0 0 1 0 0 Ve Ve

0 0 0 0 0 0 0

0 0 1 1 0 0 0

1 1 0 0 0 0 0

1 1 1 1 0 0 0

1 0 0 1 Ve - Ve 0

0 1 1 0 -V Ve 0

0 1 1 1 -V 0 -Vie

0 1 1 0 -V 0 -V

1 1 1 1 0 Ve -V

0 0 0 1 0 - Vae -Vie

0 1 0 1 Ve | -Va | -2V
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The resulting phase voltage is obtained by the addition of the voltages generated
by the different cells.Each single-phase full-bridge inverter generates three voltages at
the output: Vg, 0 and -V this is accomplished by different combinations of the four
switches in each cell as explained in Table 2.3. The ac output of each full-bridge inverter
is connected in series such that the synthesized voltage waveform is the sum of all of the
individual inverter outputs. The number of output phase (line-neutral) voltage levels in a
cascade multilevel inverter is given by 2N+1, where N is the number of DC sources.

The CHB inverter explained above can be extended to any number of voltage levels.
2.5 FEATURES OF MULTILEVEL INVERTER

Thus features of a multilevel inverter can be summarized as follows:

Output Waveform Quality: Multilevel inverters can generate the output voltages with
very low distortion and reduced dv/dt stresses can be achieved therefore electromagnetic
compatibility (EMC) problems can be minimized. Hence output waveform quality is
improved.

Common-Mode (CM) Voltage: Multilevel inverters produce smaller CM voltage
therefore the stress in the bearings of a motor connected to a multilevel motor drive can
be reduced. Furthermore CM voltage can be eliminated by using advanced modulation
strategies such as that proposed in [13]. Thus common mode voltage is reduced.

Input Current Distortion: Multilevel inverters can draw input current with low
distortion.

Switching Frequency: Multilevel inverters can operate at both fundamental switching
frequency and high switching frequency PWM. It should be noted that lower switching
frequency usually means lower switching loss and higher efficiency.

High Voltage Capacity: Multilevel inverter structure can be utilized in high and
medium voltage applications.

Low THD and dv/dt: The output waveform voltages is composed of voltage levels
greater than three which leads to lower THD and dv/dt in comparison to the two-level
inverter operating at the same voltage rating and device switching frequency.

Multilevel inverters do have some disadvantages. One particular disadvantage is
the greater number of power semiconductor switches needed. Although lower voltage
rated switches can be utilized in a multilevel inverter each switch requires a related gate
drive circuit. This may cause the overall system to be more expensive and complex. Also

the capacitor banks or insulated sources needed to achieve the voltage steps on the DC
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busses.
2.6 HYBRID MULTILEVEL INVERTER

Hybrid multilevel inverter gives multi level operation by using hybrid source,
hybrid configuration or hybrid device in such a way to produce output with reduced
number of DC sources, high speed capability, low output switching frequency, low
switching loss, high conversion efficiency, flexibility to enhance and various topologies
for different applications.

Broadly HMLI can be classified as per power circuit configuration and
modulation technique used.

2.7 CLASSIFICATION OF HYBRID MULTILEVEL INVERTER

Hybrid multilevel inverters are classified on basis of types of power devices used,
number of power supplies used, magnitude of the power supplies used and how power
devices are connected in circuit. Thus broad classification of hybrid multilevel inverter is
as follows:

Asymmetric Hybrid Multilevel Inverter

Hybrid Multilevel Inverter Based on Half-Bridge Modules
New Symmetrical Hybrid Multilevel Inverters

Hybrid Clamped Five-Level Inverter Topology

Distinct Series Connected cells Hybrid Multilevel Inverter
Hybrid Medium-Voltage Inverter based on a NPC Inverter

V V.V V V V VY

New Hybrid Asymmetrical Multilevel H-bridge Inverter
» Hybrid Multilevel Inverter with Single DC Source
2.71 ASYMMETRIC HYBRID MULTILEVEL INVERTER '*

In previous description of cascaded multilevel inverter the DC voltages of each
cell are equal. However it is possible to have different voltage levels among the cells
[42], [43] and such circuit is called as asymmetric hybrid multilevel inverter. Fig. 2.7
shows an example of two separate DC-bus levels one with low voltage switches and the
other with high voltage switches. Switches S;- S4 are low voltage switches like IGBT
and switches Sy;- S4; are high voltage switches like GTO. With unequal DC voltages the
number of voltage levels can be increased without necessarily increasing the number of
H-bridge cells in cascade. This allows more voltage steps in the inverter output voltage

waveform for a given number of power cells [42, 44].

'Hina B. Chandwani and Meeta K. Matnani "A review of hybrid multilevel inverter configurations and their
comparison” is published Elixirjournal Elixir Power Elec. Engg, May 2012, pp. 8483-8486.
% Hina B. Chandwani and Meeta K. Matnani, “A review and comparative study of hybrid multilevel inverter

configuration” is published Elixirjournal Elixir Power Elec. Engg July 2012, pp. 9690-9692
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Depending on the availability of DC sources the voltage levels are not limited to
a specific ratio. This feature allows more levels to be created in the output voltage and

thus reduces the harmonic contents with less cascaded cells.

A} A
St N S3 N\ v St N S3 N\
Vae—— o —
Vo1 Vo1
N = N SN =
: :
= =
= =
= =
= &
= =
A Su \ Sa1 N\ W, Sit \ Ss1 \
T Vo2 T Vo2
Sz] \ S41 \ Szl \ S41 \
v v
(a) (b)

Fig. 2.7 Asymmetric hybrid multilevel inverter (a) seven level (b) nine level
Fig. 2.7 shows two inverter topologies, where the DC voltages for the H bridge
cells are not equal. In the seven-level topology the DC voltages for H bridgel and H
bridge2 are V4. and 2V respectively. The two-cell inverter leg is able to produce seven
voltage levels: 3Vc, 2Vie, Ve, 0, —Vae, —2V4e, and —3Vg.. The relationship between the
voltage levels and their corresponding switching states is summarized in Table 2.3. In
the nine-level topology, the DC voltage of H bridge2 is three times that of H bridgel. All
the nine voltage levels can be obtained by replacing the H bridge2 output voltage of v,; =

+2 V. in Table 2.4 with v,; = £3 V¢ and then calculating the inverter phase voltage.
There are some drawbacks associated with the CHB inverter using unequal DC
voltages. The merits of the modular structure are essentially lost. In addition, switching
pattern design becomes much more difficult due to the reduction in redundant switching
states [44] Therefore, this inverter topology has limited industrial applications. Even with

the same voltage level among them, it is also possible to use high-frequency PWM for
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one cell, while the other switches at a lower rate. Fig. 2.7 shows an example with two
different devices. The top full-bridge cell uses the insulated gate bipolar transistor
(IGBT), and the low cell uses the gate-turn-off thyristor (GTO) as its switching device.
The GTO-based cell switches at a lower frequency, typically the fundamental frequency,
and the IGBT-based cell switches at a PWM frequency to smooth the waveform [42],
[43].

Table 2.4 Switching states for AHMLI

Switching State Output Voltage
S S3 Si S31 Vol Vo2 Vo= Voi+ Vo2
1 0 1 0 Ve 2 Vg 3 Ve
1 1 1 0 0 2 Vg 2 Ve
0 0 1 0 0 2 Vg
1 0 1 1 Ve 0 Ve
1 0 0 0 Ve 0
0 1 1 0 — Ve 2 Vg
0 0 0 0 0 0 0
0 0 1 1 0 0
1 1 0 0 0 0
1 1 1 1 0 0
1 0 0 1 Ve -2 Ve — Ve
0 1 1 1 — Ve 0
0 1 0 0 - Ve 0
1 1 0 1 0 -2 Ve -2 Ve
0 0 0 1 0 -2 Vg
0 1 0 1 — Ve -2 Vg -3 Ve

2.7.2 HYBRID MULTILEVEL INVERTER BASED ON HALF-BRIDGE
MODULES

Cascaded half-bridge inverters [45]-[49] employ half-bridge modules connected
in series instead of the H Bridges. These inverters are one of the alternatives to the
conventional cascaded H Bridge inverters. The modular multilevel inverter [45]—[48]
employ series connections of pairs of half-bridge modules. These modules are connected
in delta forming a three phase system and the capacitors of DC links do not need isolated
DC supplies [45], [46] since the voltage across each half-bridge module DC link
capacitor can be actively controlled. The hybrid cascaded half-bridge inverter [49] uses
an alternative connection of half-bridge modules to eliminate the output DC level. The
three phase system is reached through a Y connection. The modules are also connected
in pairs and the inverter is able to provide just odd levels in the output phase voltages.

This type of inverter requires a higher number of insulated DC sources for the same
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number of levels of a CHB. However, lower active power levels are processed in the DC

sources.
oA oB oC
Ve Slx AN Sly . Slz N
T Vi ™= Vio———
Six Siy’ Siz
YN N
Va2 Sox ,
Ly y N S N\
T Var——
Sax ;
? \ SZy \ SZZ’ \
Sax N S3y AN S3z\
Vi ——
AN Sy N S3 N\

Fig. 2.8 Hybrid multilevel inverter based on half-bridge modules
This hybrid cascaded half-bridge inverter makes use of a three-phase inverter shown as a
VSIin Fig. 2.8 where each output is series connected to a pair or multiple pairs (cascade)
of half-bridge inverters connected with inverse polarity as shown in Fig. 2.8. Here the
special connection of the half-bridge modules [49] guarantees that no DC level is
observed at the output voltages. In the symmetrical version the modularity is preserved.

Even though the number of insulated sources is increased for the same number of voltage
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levels as for the CHB or HCHB this inverter lowers the ratings of these devices since the
average current that is drawn from each 6-pulse rectifier feeding a half-bridge module is
lower when compared to an H-bridge based inverter. Thus, higher power levels can be
achieved for a given transformer/rectifier circuit. The assumptions made for the analysis
of circuit are: (i) the switching devices are ideal (ii) the DC sources are constant positive
voltages (iii) parasitics are neglected (iv) the virtual center point of the VSI’s DC-link
drawn in Fig. 2.8 is assumed as reference for the voltages.

It is observed that the output voltage v4 can assume six different values, which
are given for v,, with o = x;y;z, in Table 2.5. These output voltage levels depend on the
DC sources voltages Vg2 and Vg and on the states of switches Sjo and Sjo0 , with j = 1;
2; 3. Based on these results, the hybrid cascaded half-bridge inverter can be operated
with a number of levels Ny varying from four to six given that
Nievel = 4; if Vaez = Vet
Nievet =55 if Ve = Ver/2
Nievel =6; if Vier # Vaea # Vael/2

Table 2.5 Resulting output phase voltage

S, S, S5 v Case 1 Case 2 Case 3
’ ? ? ’ Viac2=Vae1=Vae | Vaer=Vac1/2=Vac | Vaco=Vae1/3=Vac
0 0 0 -Viae2-Vge1/2 -3V4/2 -2V4e -5V4/2
1 0 0 -Vc1/2 -Vao/2 -Vie -3V4/2
0 1 0 -Vic1/2 -Vac/2 -Vac -3V4c/2
1 1 0 Vch'Vdcl/ 2 +Vdc/ 2 0 'Vdc/ 2
0 0 1 -Vaeo+ Ve 1/ 2 ‘Vdc/ 2 0 +Vdc/ 2
1 0 1 +Vie 1/ 2 +Vdc/ 2 +Vie +3Vdc/ 2
0 1 1 +Vie 1/ 2 +Vdc/ 2 +Vie +3Vdc/ 2
1 1 1 +Vaeo+ Ve 1/ 2 +3Vdc/ 2 +2Vdc +5Vdc/ 2

2.7.3 NEW SYMMETRICAL HYBRID MULTILEVEL INVERTERS

With a proper driving pattern for switches S; — S4, and for the switches of the H-
Bridge, it is possible to obtain a voltage waveform between the points a-b as shown in
Fig. 2.10. Then the circuit of Fig. 2.9 behaves as a five-level output voltage single-phase
inverter. The single leg switches block voltages of value ~ V4.~ and with proper
modulation strategy they operate at high frequency (a few kHz). On the other hand, the
H-bridge switches Ss, S, S7 and Sg must block a higher voltage level of 2V’ .
However, these switches operate only in a semi cycle of the output voltage. Thus, they
operate at low frequency commutating at zero voltage. Thus this inverter can also be

classified among the hybrid multilevel inverters group.
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As shown in [11] and [28], the multilevel inverters based on the H-bridge
symmetrical cascade have a number of levels in its output voltage given by 2N+1. For
circuit shown in Fig. 2.9 output voltage levels are also obtained through the same

expression 2N+1 levels where N is the number of DC sources.

S\
Vae ———
S S
a —|LOAD—b
S3 \ Se \ Ss \
Vae —/—
Ss N\
Fig. 2.9 New symmetrical hybrid multilevel inverter
A
Yab Sl S2 Sz Sl
ZVdC ——————— S* Sy S4 S
S1,S4
Vdc |
Sz S1 Sz 82 Sl
S5 S; S4 S4 S3 1 t >
S5, Ss ON n
S6,S7 OFF

Fig. 2.10 Output voltage waveform for new symmetrical hybrid multilevel inverter

This can be implemented with the configuration shown in Fig. 2.9 where
switches Ss to Sg are connected as a full-bridge inverter that is responsible for switching
the load terminals according to the gate’s signals. Fig. 2.10 shows the possible load
voltage v, for the specified switching conditions. It is seen that the pairs Ss/Sg and S¢/S;
are turned on complementarily in order to generate, respectively, negative and positive
voltages. The three-level DC-DC inverter switches S; to S4 are switched according to a
proper modulation pattern in order to generate a desired load voltage. Therefore, the

inverter shown in Fig. 2.9 is a five-level single-phase inverter where switches S; to Sy4
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operate at high frequency and are rated for half of the DC-link voltage E. Switches Ss to
Sg are rated for the full DC-link voltage 2V 4.. On the other hand, switches Ss to Sg can be
implemented with low-frequency devices such as GTOs, integrated gate commutated
thyristors (IGCT), and others, since they switch a single time per load-voltage period
under zero voltage. Based on this strategy, the proposed inverter is a symmetric (equal
DC sources) hybrid (multiple carrier frequencies) multilevel inverter. Furthermore, the
number of levels can be increased by cascading multiple single-phase inverters. This can
be achieved with other topologies as well. As shown in [11] and [28], the total number of
level across the load terminals v,;, for the mentioned topology is given by v,, = 2N + 1
where N is the total number of DC sources

2.7.4 HYBRID CLAMPED FIVE-LEVEL INVERTER TOPOLOGY

4V4.
Sal
N
Ci
—~
Sa2 \
Sacl \
3‘Idc
Cs
Sa3
2
—_
Sac3 \
D D Sa4
Wa C, 2 7? 5 7? . a
T~ FO
C Sac4 \ j D Sa4’
21 D3 Y 6
T~
C, ,
SacS \ 7.< D47|Y Sa3 \
Vdc
Sac6 SaZ, \
Cq4
_
Sal’

Fig. 2.11 Hybrid clamped five level inverter

A hybrid clamped multilevel inverter topology with self voltage balancing is discussed in
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[50]. Fig. 2.11 shows one leg of the five-level topology. The main switching devices S,j,
Sa2, Sa3 and S,4 are complementary with S,;°, Saa’, Sa3” and Sy’ respectively and S, is
complementary with Sy;.

Among the clamping switching devices S| - Sic6 the adjacent switching devices
are complementary. Self-voltage balancing in capacitors is realized by switching from
one kind of device switching mode combination to another by turns.

Switching states are shown in Table 2.6 while Table 2.7 lists all the switching
modes conversions for a hybrid clamped five-level inverter topology. From Table 2.7 it
can be seen that there are two cases of switching modes conversions: (1) Switching
modes conversions with the different output levels (2) Switching modes conversions
with the same output levels. Vg is equal to the voltage of one capacitor.

Table 2.6 Switching mode combinations

SWITCHING STATES Output
Sy S S;3 Sy Voltage
ON ON ON ON 2V4.
OFF ON ON ON Ve
ON OFF ON ON Ve

ON OFF OFF ON 0
OFF OFF ON ON 0
ON ON OFF OFF - Ve
OFF OFF OFF ON - Ve

OFF OFF OFF OFF -2 Ve

Table 2.7 Switching modes conversions for a hybrid clamped five-level inverter

Switching Switching
mode.s Output l.evel modes Output l.evel
conversions conversions . conversions
conversions
1111-0111 2V4e — Ve 1001—0011 0—0
11111011 2Vg4. — Vg 0011—0001 0— -V
0111—-1111 Vi — 2V 1001—1000 0— -Vg.
10111111 Vi — 2V 0001—0011 -Vg— 0
0111—1011 Vic — Ve 1000—1001 -Vigc— 0
10110111 Vic — Ve 0001—1000 -Vie — -Vae
0111—-0011 Vic— 0 1000—0001 -Vie — -Vae
1011—1001 Vic— 0 0001—0000 -Vie = -2V
0011—0111 0— Vg 1000—0000 -Vic = -2V
1001—1011 0— Vg 0000—0001 -2V4e = -V
0011—1001 0—-0 0000— 1000 -2Vg4e = -V

2.7.5 DISTINCT SERIES CONNECTED CELLS HYBRID MULTILEVEL
INVERTER

In distinct series connected hybrid multilevel inverters two, three and five-level
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cells connected in series as shown in Fig. 2.12[51]

Vdc3/2

Vaes o, A s\ AN

V2

<L
D, 7§ TN D, 7§ S3’ N

Vac3/2
¢ /-\C S’)’ \ Sd’ \

Vio——— V2

=1 s U

Vdc1/57'|\ C

Fig. 2.12 Distinct series connected cells hybrid multilevel inverter

The first cell synthesizes two levels with 1-p.u. voltage step, the second cell
generates three levels also with 1-p.u. voltage step and the third cell synthesizes five
levels with 3-p.u. voltage steps. The switching devices of the two-level cell operate at
high frequency, while the switches that compose the five-level cell operate at
fundamental frequency. As v;, v,, and v; satisfy equation, the phase-voltage waveform

with 16 levels is modulated at high frequency among any adjacent levels.
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This example demonstrates the wide variety of arrangements that can be adopted

to obtain a given number of levels. Thus it is essential to develop a design methodology

to define the main parameters of a hybrid inverter such as the number of series-connected

cells DC voltage levels and topologies used in each cell.

2.7.6 MEDIUM-VOLTAGE HYBRID MULTILEVEL INVERTER BASED ON

A NPC INVERTER
Va2
—<Ci Sa1 Sp1 N\ St
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Vdc
I . » N
- al S b1 X cl
Dalzg Dblzg N Da Z% N
Va2 > ’ >
—=c, Saz Sh2 . Se2 .
Ve S1 N\ S\
H BRIDGE | H BRIDGE |_|
[ ‘B’ PHASE |— ‘C’ PHASE |__
Sz \ S4 \
A ° B o Co

Fig. 2.13 Hybrid medium voltage inverter based on NPC inverter

This hybrid topology is composed of a traditional three-phase three-level NPC

inverter and single phase H bridge inverter in series with each output phase [52]-[54].
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The power circuit is illustrated in Fig.2.13 with only the H bridge of phase a shown in
detail. As shown the DC source for the NPC inverter is provided by two series connected
diode bridge rectifiers arranged in a 12-pulse configuration.

The H bridge DC links are not connected to an external DC power supply but
they consist only of floating capacitors kept at a constant voltage by the control strategy.
In this hybrid topology the NPC inverter provides the total active power flow. For a
high-power medium-voltage NPC, there are advantages to using latching devices, such
as integrated gate-commutated thyristors (IGCTs), rather than insulated-gate bipolar
transistors (IGBTs) due to their lower losses and higher voltage blocking capability [52],
[54], [55] imposing a restriction on the switching frequency. In contrast the H bridges are
rated at a lower voltage and need to be commutated at a higher frequency for an effective
active filtering effect. This calls for the use of the IGBT.

The first interpretation is as a single hybrid multilevel inverter with a nine-level
phase voltage, achieved by the cascade connection of a three-level NPC leg and an HB
per phase. The second interpretation is as an NPC inverter with a series active filter that
compensates for the harmonic content introduced by the low switching NPC stage. If the
NPC bridge is to be modulated at a low switching frequency the second interpretation
would seem to be more appropriate in devising a control algorithm, leading to the
following two design challenges: 1) To determine the lowest value of the HB DC-link
voltage Vg4 that achieves adequate voltage harmonic compensation. 2) To devise a
control algorithm that ensures that the floating DC links are properly regulated at this
value.

2.7.7 HYBRID MULTILEVEL INVERTER BASED ON MAIN INVERTER
AND CONDITIONING INVERTER

With minor changes in hybrid medium-voltage inverter based on a NPC inverter,
hybrid multilevel inverter based on main inverter and conditioning inverter is obtained.
Modifications done are shown in Fig. 2.14 the conditioning inverter is supplied by ultra
capacitors as the DC source. The main and the conditioning inverters are in series. The
output voltage of the main inverter is denoted v; and the output voltage of the
conditioning inverter is denoted v, so the output voltage of the hybrid multilevel inverter
1S Vo =Vvi+12

To explain the analysis of this circuit only one H bridge power cell is considered
in each phase which means N=1 in Fig. 2.14, so the main inverter can be considered as a

3- level inverter. Its output voltage v, can be +Vdc’, 0 and —Vdc).
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Conditioning inverter
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Fig. 2.14 Hybrid multilevel inverter based on main inverter and conditioning

inverter

For the NPC conditioning inverter two ultra capacitors are in series and

connected to the DC-link. If the DC voltage is considered as Vdcv, and the two ultra

capacitors are the same i.e.V|= -V,= V4/2. So the conditioning inverter output voltage v,

can be + V4/2, 0 and -Vg4/2. Therefore the inverter output

voltage v, can be -

(Ve +Vae/2), Ve -(Vae -Vael2), -Va/2, 0, Vael2, (Vi -Vae/2), Vae and (Vg + Vae/2) 9

possible output levels. When the ratio of Vdc’:VdC/Z:I, the inverter can output 5 voltage
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levels. When Vdc’: V4/2=3, the inverter can output 9 voltage levels, which is called the
maximal distension in the reference [56],[57].

This hybrid inverter is based on the traditional H-bridge topology incorporated
with the conditioning inverter, thus some advantages can be obtained: 1) The
conditioning inverter can be used as an energy storage device, which can store and reuse
the braking energy of the motor. As a result, it improves the inverter efficiency. 2) The
three-level NPC inverter can generate three different voltages, as the H-bridge cells do.
So one H-bridge cell of each phase can be reduced by the conditioning inverter. This
leads to a simplification of the feeding transformer. 3) The conditioning inverter can be
considered as a SVC, which can deliver reactive power and improve the power factors of
the system. 4) The conditioning inverter can be used to redundantly provide
instantaneous energy when the main inverter cell is broken.

2.7.8 NEW HYBRID ASYMMETRICAL MULTILEVEL H-BRIDGE

INVERTER
!
&
<
C— D, D, k =
q\ S1 S3 \ %
2V — S : .;_i
D; Dy Sz \ S4 \
C 1~

Fig. 2.15 New hybrid asymmetrical H-bridge multilevel inverter

Following the principle of increasing the number of output waveform voltage
levels with less switching devices inverter topology is shown in Fig. 2.15. The new H-
bridge topology with an auxiliary bidirectional switch can output maximum five level
voltage waveform (2Vy., Vac, 0, -2Vg4e, 2V4e). The switching combinations required to
generate the five-level output waveform is as given in Table 2.8. In this configuration the
two capacitors in the capacitive voltage divider are connected directly across the DC bus
and since all switching combinations are activated in an output cycle the dynamic

voltage balance between the two capacitors is automatically restored[55,58].
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Table 2.8 Switching combinations for five level output voltage

Output
S Si 52 S3 S4 Voltla)lge
OFF ON OFF OFF ON 2 Ve
ON OFF OFF OFF ON Ve
OFF OFF ON OFF ON 0
ON OFF OFF ON OFF - Ve
OFF OFF OFF ON OFF -2 Ve

2.79

HYBRID MULTILEVEL INVERTER WITH SINGLE DC SOURCE

This inverter includes a standard full bridge 3-leg inverter (one leg for each

phase) and an H-bridge in series with each inverter leg as shown in Fig. 2.16.

A O B Q Co
\\ S5’ \ Vi S,” L S;” . Vi S,’” \C Sy’ .
Vae < 1~ T~
\ \ S’ S, \ SZ’”\ S4”’\
Sy 2
Sl \ S3 \ Ss \
p) P
S4 \ Se . S \

Fig. 2.16 Three phase hybrid multilevel inverter with single DC source

It uses only a single DC power source to supply a standard 3-leg inverter along

with three full H-bridges supplied by capacitors or batteries. Traditionally, each H-bridge

requires a DC power source [11,12,59-63]. The inverter can be used in electric vehicles

(EV) / hybrid electric vehicles (HEV) to drive electric motor. And it can be applied for

utility interface. As shown in Fig. 2.17 the output voltage v; of single leg (with respect to

the ground) is either +Vy. (Ss closed) or — V. (Sg closed). This leg is connected in series
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with a full H-bridge which in turn is supplied by a capacitor voltage. If the capacitor is
used and kept charged to Vg, then the output voltage of the H-bridge can take on the
values + Vg (S1, S4 closed), 0 (Sy, S, closed or S3, S4 closed), or — V. (S2, S; closed).
Fig. 2.18 shows an output voltage example. The capacitor’s voltage regulation
control method consists of monitoring the output current and the capacitor voltage so that
during periods of zero voltage output either the switches S;, S4, and Sg are closed or the
switches S,, S3, S5 are closed depending on whether it is necessary to charge or
discharge the capacitor. This method depends on the voltage and current not being in
phase. That means one needs positive (or negative) current when the voltage is passing
through zero in order to charge or discharge the capacitor. Consequently the amount of
capacitor voltage the scheme can regulate depends on the phase angle difference of

output voltage and current [64-68].

St \ S, \
Vdc T~ V2 A
V2
. AN
Ss Sy
Vo
Vc e
e T~ AN
2Vdc—_ | €4— —
T L
S
Ve 7~ N\

Fig. 2.17 Single phase hybrid multilevel inverter with single DC source

When the output voltage v = v;+v; is required to be zero, one can either set v,= +
Vac and v, = = Vg or v; = + Vg and v, = + V. It is this flexibility in choosing how to
make that output voltage zero that is exploited to regulate the capacitor voltage. During
01 < 0 < &, the output voltage in Fig. 2.19 is zero and the current i > 0. If S; and Sy are
closed (so that v, = + V) along with S¢ closed (so that v; = — V), then the capacitor is

discharging (ic = —1 < 0 see Fig. 2.18) and v = v;+v; = 0. On the other hand, if S, and S;
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are closed (so that v; = — V) and Ss is also closed (so that v; = + V), then the capacitor
is charging (ic =1 > 0 see Fig. 2.18) and v = v;+v, = 0. The case i < 0 is accomplished by
simply reversing the switch positions of i > 0 case for charge and discharge of the
capacitor.

As Fig. 2.19 illustrates, this method of regulating the capacitor voltage depends
on the voltage and current not being in phase. That is, one needs positive (or negative)
current when the voltage is passing through zero in order to charge or discharge the
capacitor. Consequently, the amount of capacitor voltage the scheme can regulate
depends on the power factor. Thus by maintaining the regulation of the capacitor voltage
simultaneously achieves an output voltage waveform which is 25% higher than that

obtained using a standard 3-leg inverter by itself.

2‘Idc.

Vdc T

Fig. 2.18 Output voltage for single phase hybrid multilevel inverter with single DC
source

IJ;:‘( T / 1|"-:-."‘]_ +1:’)
Vac'2T %? .
1 1 L

. T2 vy
I'n‘r 27 |_| [ | Fdr 2 —‘ | | I_I ot d
14 ‘1’* L
S T /2 —
‘L-‘l 1|,-‘1
I::‘c (2 — I I::‘c /21 _EJF
91 T 9._| ﬂ I
_I’u‘r 21 _Fn‘r 21—

Fig. 2.19 Capacitor voltage regulation
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2.8 SUMMARY

Thus comparative study for different multilevel inverters carried out in this
research work is described and discussed. It can be concluded that every topology has its
own advantages and disadvantages. Thus as per the application topology can be chosen
and implemented. As asymmetrical multilevel inverters are alternative to minimize the
harmonic distortion of the output voltages without increasing the number of power
devices. The use of different DC voltage values naturally leads to hybrid multilevel
topologies, which employ distinct types of semiconductors and modulation strategies, in
an effort to optimize the power processing of the overall system. On the other hand, these
features increase significantly the flexibility and complexity of hybrid multilevel inverter
design. Distinct series connected cells hybrid multilevel inverter reduces the complexity
for hybrid topology for distinct applications thus minimizing the number of switching
devices and reducing the circulating energy among the series-connected cells. Compared
with an H-bridge cascaded multilevel inverter, the number of overall insulated DC
sources is reduced in the single phase hybrid symmetrical multilevel inverter while the
number of semiconductors is kept the same. Thus, this concept appears as a useful and
suitable solution for medium voltage applications where input-side insulation is required
along with high efficiency and modularity. Furthermore, by reducing the number of
insulated DC supplies, the number of cables connecting the input transformer terminals
to the rectifying bridges is reduced.

New hybrid asymmetrical multilevel H-bridge inverter reduces the harmonic
components of output voltage. Hybrid multilevel inverter based on main inverter and
conditioning inverter topology is very suitable for the applications which need motors
accelerating and braking frequently. The braking energy can be stored in the floating
ultra capacitors of conditioning inverter to improve the efficiency and performance of the
system. Hybrid multilevel inverter employing half-bridge modules and a three-phase
inverter is able to provide better losses distribution among the power semiconductors and
to limit the maximum device loss to a lower level when compared to a fully high
frequency switched inverter. In this case devices are replaced with lower speed and lower
forward voltage drop IGBTs for the four-level hybrid inverter which is able to achieve
higher efficiency figures. In hybrid multilevel inverter with single DC source topology
capacitor voltage balancing is of importance. This topology is generally used for HEV

and EV applications, while hybrid clamped multilevel inverter reduces filter size.
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Chapter 3 Novel Modulation Techniques for MLI and HMLI

In different hybrid multilevel inverter topologies various modulation techniques
can be applied. Every modulation technique has its own advantages and disadvantages.
Depending on modulation index with respect to amplitude and frequency different

modulation techniques can be studied.'?

3.1 CLASSIFICATION OF DIFFERENT MODULATION
TECHNIQUES

Various modulation techniques are as shown in block diagram:

Novel Modulation
Technigues
MC- PWM Hybrid Optimal HLCCAPO AHPWM SVPWM
=T B Modulation PWM PWM E / B VEW
Technigues

Fig. 3.1 Block diagram for novel modulation techniques
1. Multi carrier Pulse Width Modulation (MC-PWM).
2. Hybrid modulation techniques.
3. Synchronous pulse width modulation and higher frequency sub harmonic PWM
4. Higher and Lower Carrier Cells and Alternative Phase Opposition PWM
(HLCCAPOPWM)
5. Alternative hybrid PWM (AHPWM).
6. Space vector PWM (SVPWM).

These modulation techniques can also be applied for other multilevel inverter
configurations like diode clamped MLI, flying capacitor MLI and cascaded MLI. These
modulation techniques are explained in general. Some modulation techniques are easily
applicable to particular MLI but have to be modified for some other configurations.
Modulation ratio plays an important role in all the techniques. Modulation can be over
modulation or under modulation depending on modulation ratio and accordingly total
harmonic distortion (THD) varies. While describing modulation techniques MLI
topology, modulation ratio and THD are considered as major factors.

Following definitions are to be considered for further description:

e Amplitude Modulation ratio (m,), defined as m,=A/A., where A, is the
amplitude of the reference signal and Ac is the peak-to-peak amplitude of carrier
signal. (For a N-level inverter, this ratio is defined as m,= A;,,/(N-1)A..

""Hina B. Chandwani and Meeta K. Matnani, “A review of modulation techniques for hybrid multilevel inverter”

Emerging Technology Trends in Electronics, Communication and Networking (ET2ECN), December 2012, pp. 1-7.
’Hina B. Chandwani and Meeta K. Matnani ,“A Review of Multicarrier Modulation Techniques for Various Hybrid

Multilevel Inverter” International Journal of Engineering Associates Volume 2 Issue 4, pp. 20-25. 35
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¢ Frequency modulation ratio (my), defined as ms= f./f;, where f; is the reference
signal frequency and f; is the carrier signal frequency.

e [} angle that the relative phase displacement between the carrier and the reference
signal and in this analysis it is assumed to be zero.

3.2 MULTI CARRIER PULSE WIDTH MODULATION

The following section describes different multicarrier PWM techniques. The

multicarrier PWM can be broadly classified as shown in Fig. 3.2.

Mt st

( )
I I
i Multi Carrier Pulse i
i Width Modulation |
| (MC-PWM) |
)
i Carrier Disposition i i Phase Shifted
! (CD)Methods : : (PS) Method
i i i i i Alternative Phase
! Phase Disposition | ! Phase Opposition | : Opposition
: (PD) Method : | (POD) Method | : Disposition
: : : : | (APOD)Method

Fig. 3.2 Classification for multicarrier pulse width modulation

The multicarrier PWM technique uses several triangular carrier signals keeping
only one modulating sinusoidal signal. For an n level inverter n-1 carriers are employed
[1] — [2]. The carriers have the same frequency and same peak to peak amplitude but are
disposed so that the bands they occupy are contiguous. The zero reference is placed in
the middle of the carrier set. The modulating signal is a sinusoid of frequency 50 Hz. At
every instant each carrier is compared with the modulating signal. Each comparison
gives one if the modulating signal is greater than the triangular carrier, zero otherwise.
The results are added to give the voltage level which is required at the output terminal of
the inverter. Multicarrier PWM technique can be categorized into 2 groups. 1) Carrier
disposition techniques (CD) where the reference waveform is sampled through a number

of carrier waveforms displaced by contiguous increments of the reference waveform
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amplitude. 2) Phase shifted PWM technique, where the multiple carriers are phase
shifted accordingly [3].
3.2.1 CARRIER DISPOSITION TECHNIQUES (CD)

This carrier disposition can be classified into the following three techniques 1)
phase disposition technique ii) phase opposition technique and iii) alternative phase
opposition disposition technique. These techniques are usually applied to the neutral
point clamped topology [4] - [7]. These techniques may not be used for the H-Bridge
inverter applications directly. But by using discontinuous PWM reference signals with
phase-shifted carrier strategy may be implemented to apply PD technique to the H-

Bridge inverter [8].

‘ N A
St N\ Ss N\ S1i N\ Ss N
Vdc
Vae—— p—
vOl vOI
S: O Ss O S: . Ss
Vo "
S S AN Sat N\
Vdc__ 1\ 31,\ 2y S 31
T Vo2 T Vo2
SZI N\ S41 N\ SZI . S41 .
! v
(a) (b)
Fig. 3.3 Cascaded H-bridge inverter (a) symmetric five level (b)Asymmetric seven
level

For description of the three modulation techniques mentioned a five level
symmetric cascaded H-bridge inverter is considered as shown in Fig. 3.3(a). Also these
modulation techniques can be applied to asymmetric multilevel inverter, diode clamped
MLLI, flying capacitor MLI and other hybrid MLI configurations.

3.2.2 PHASE DISPOSITION (PD) TECHNIQUE

The phase disposition technique has all carrier waveforms in phase with same

frequency and amplitude, as shown in Fig. 3.4 (a). The zero reference is placed in the

middle of the carrier sets. For this technique, significant harmonic energy is concentrated
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at the carrier frequency [9]. The PD technique yields only odd harmonics for odd m; and
yields odd and even harmonics for even m¢ ( =0) [10]. PD-PWM modulation can also
be used in asymmetric multilevel topology [11] and as the number of voltage levels are
increased the harmonic contents are decreased. Fig. 3.4 (b) shows output phase voltage
for five level MLI using PD modulation technique.

For all simulation results on Y-axis voltage in volts is taken and on X-axis

...ff,'”_’“«/ W f"u"' W W W fif W\/“

:“\\ : f i I L
N : : £

time is taken in seconds.
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Fig. 3.4 (a) Phase Disposition technique (b) Five level inverter output voltage

3.2.3 PHASE OPPOSITION DISPOSITION (POD) TECHNIQUE
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Fig. 3.5 (a) Phase Opposition Disposition technique (b) Five level inverter output
voltage
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With the POD technique the carrier waveforms above or below the zero reference
value are in phase. However, they are phase shifted by 180° between the carrier
waveforms above and below zero, as shown in Fig. 3.5 (a). The POD technique yields
quarter wave symmetry for even m¢ and odd symmetry for odd my. In this modulation,
dominant harmonics are on the sideband of the first carrier (ms = 1) and the phase voltage
harmonic at the carrier frequency is not considerable [12]. POD modulation contains
significant harmonics in the line voltage spectrum, especially in the first carrier band.

Fig. 3.5 (b) shows output phase voltage for five level MLI using POD modulation

technique.
3.24 ALTERNATIVE PHASE OPPOSITION DISPOSITION (APOD)
TECHNIQUE

All carrier waveforms in this APOD technique are phase-displaced by 180°

alternatively, as shown in Fig. 3.6 (a).

________ _________ __________ __________ __________ __ M\

1 1 1 1 1 1 | H
] nooz 0004 0.00s 0008 0.m nmz 00714 0Me 0018 0.0z

Fig.3.6 Alternative Phase Opposition Disposition technique (b) Five level
inverter Output Voltage

This technique requires each of the four carrier waveforms, for a five level
inverter output waveform, to be phase displaced from each other by 180° alternately. The
voltage at the output of a five level inverter which uses APODPWM control technique is

as the following:
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e The inverter switches to V/2 if the reference signal is higher than all of carrier

signals.

e The inverter switches to V/4 if the reference signal is lower than two above

Novel Modulation Techniques for MLI and HMLI

carrier signals and higher than two below carrier signals.

e The inverter switches to —V/4 if the reference signal is lower than two below

carrier signals and higher than two above carrier signals.

e The inverter switches to —V/2 if the reference signal is lower than all of carrier

signals

It can be seen that APOD modulation does not produce a first carrier harmonic.
Instead the dominant harmonics are channeled into the sidebands around the first carrier
harmonic. Therefore, since only the triple sidebands away from the carrier frequency
cancel in a three phase system, APOD modulation contains some considerable harmonic
energy in the line mf is even. If m¢ is odd, then the output waveform has odd symmetry.

Fig. 3.6 (b) shows output phase voltage for five level MLI using APOD modulation

technique.

3.2.5 PHASE SHIFTED (PS) TECHNIQUE
In the phase-shifted multicarrier modulation, all the triangular carriers have the
same frequency and the same peak-to-peak amplitude, but there is a phase shift between

any two adjacent carrier waves, given by ®@cr = 360°/(m — 1) where m is voltage level of

multilevel inverter.

.40 i
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Fig.3.7 (a) Phase Shifted Technique (b) Five level inverter QOutput Voltage
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In general, a multilevel inverter with m voltage levels requires (m — 1) triangular
carriers. The gate signals are generated by comparing the modulating wave with the
carrier waves. It means for the five level inverter, four triangular carriers are needed with
a 90° phase displacement between any two adjacent carriers as shown in Fig. 3.7 (a) Fig.
3.7 (b) shows output voltage for five level MLI [13].

3.3 HYBRID MODULATION TECHNIQUES

Hybrid PWM (H-PWM) is an extension of PWM for CHB with unequal dc
sources [14]. The hybrid PWM is the combination of low frequency PWM and high
frequency SPWM. The main challenge is to reduce the switching losses of the inverter
by reducing the switching frequency of the higher power cells. Therefore, instead of
using high frequency carrier-based PWM techniques in all the cells, the high-power cells
are operated with square waveform patterns, switched at low frequency, while only the
low power cell is controlled with unipolar PWM. An optimized hybrid PDPWM
technique commutates the power switches at high frequency and low frequency
sequentially.

3.3.1 HYBRID MODULATION STRATEGY

A hybrid modulation strategy combines fundamental frequency switching for
higher power cells and open loop PWM control for the low power cell switching at
higher frequency [14]-[17]. Fig. 3.8 shows basic block diagram for such technique to be
implemented. With this modulation technique the effective spectral response of the
output depends on low power cell like IGBT switching while the overall voltage
generation is decided by voltage ratings of higher power cells like GTO.

As shown in Fig. 3.8 the command signal is compared with a threshold voltage. If
it is larger than the threshold then high voltage cell inverter contributes to the output. The
difference between the output of the high voltage inverter and the command signal is
then compared against a PWM (ramp) signal to modulate the low voltage cell inverter.
The resultant phase voltage obtained is shown in Fig. 3.11. The switching patterns for the
high voltage cell inverter and low voltage cell inverter are shown in Fig. 3.9 and 3.10. It
may be seen that although the high voltage cell inverter switching is stepped (Fig. 3.9),
the overall waveform quality is mainly decided by the intermediate low voltage cell
inverter switching (Fig. 3.10). The high voltage cell inverter participates in synthesizing
the required high voltage level while the low voltage cell inverter acts as a harmonic

compensator.
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Fig. 3.8 Hybrid modulation strategy
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Fig. 3.9 High power cell switching
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Fig. 3.10 Low power cell switching
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Fig. 3.11 Output phase voltage
3.3.2 INVERTED SINE CARRIER PWM (ISCPWM)

This control strategy replaces the conventional triangular based carrier waveform
by inverted sine wave which has a better spectral quality and a higher fundamental
output voltage without any pulse dropping [18]. This technique combines the advantage
of inverted sine and constant or variable frequency carrier signals as shown in Fig. 3.12
and Fig. 3.13 respectively. However, the fixed frequency carrier based PWM affects the
switch utilization in multilevel inverters. In order to balance the switching duty among
the various levels in inverters, a variable frequency carrier based PWM has been shown

[19]-[20]. Both the techniques are explained in brief.
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Fig. 3.12 (a) Inverted sine technique (b) Five level inverter output voltage
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Fig. 3.12 shows application of unipolar PWM to inverted sine carrier which
results in the reduction of carrier frequencies or its multiples and significant reduction in
switching losses. Thus advantage of inverted sine and unipolar PWM are combined to
improve the performance of the hybrid multilevel inverter. The inverted sine carrier
PWM (ISCPWM) technique uses the sine wave as reference signal while the carrier
signal is an inverted (high frequency) sine carrier that helps to maximize the output
voltage for a given modulation index. From the Fig. 3.18 it is clear that the pulses are
generated whenever the amplitude of the reference sine wave is greater than that of the
inverted sine carrier wave.

3.3.3 VARIABLE FREQUENCY INVERTED SINE CARRIER PWM
(VFISPWM)

The VFISPWM technique provides an enhanced fundamental voltage, lower
THD and minimizes the switch utilization among the bridges in inverters [21]. The
number of active switching among the bridges is balanced by varying the carrier
frequency based on the slope of the modulating wave in each band. The frequency ratio
for each band should be set properly for balancing the switching action for all bridges.
Using the slope values of the carrier bands, the new frequencies are calculated. The
number of switching actions is balanced for all the switches in bridge with low voltage
level switches using the VFISPWM technique. The band dwell time of the modulating

wave in each carrier and the frequency ratio (my) can be calculated.
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Fig. 3.13 (a)Variable Frequency Inverted Sine Carrier (b) Five level inverter output
voltage
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As seen hybrid PWM is the combination of low frequency PWM and high
frequency SPWM. In each cell of cascaded inverter, the four power devices are operated
at two different frequencies, two being commutated at low frequency, i.e. the
fundamental frequency of the output, while the other two power devices are pulse width
modulated at high frequency. This arrangement causes the problem of differential
switching losses among the switches.

An optimized sequential signal is added to the hybrid PWM pulses to overcome
this problem. The low and high frequency PWM signal are shown in Fig. 3.14 (c.f [22]).
An optimized hybrid PDPWM technique commutates the power switches at high
frequency and low frequency sequentially.

A common sequential signal and low frequency PWM signals are used for all
cells in cascaded inverter. A high frequency SPWM for each cell is obtained by the
comparison of the rectified modulation waveform with corresponding phase disposition
carrier signal. The low frequency PWM signal should be synchronized with the
modulation waveform. In Fig. 3.15 (c.f [22]) the gate pulses are generated by a hybrid
PWM controller. This controller is designed to mix the sequential signal low frequency
PWM and high frequency phase disposition sinusoidal PWM and to generate the
appropriate gate pulses for cascaded inverter.

3.34 OPTIMIZED HYBRID PDPWM

An optimized hybrid PDPWM switching pattern can be generalized for N level
inverter. Let N be the number of levels of the cascaded inverter. M is the number of
inverter cells, M=N-1/2. The modulation index is therefore defined as ma= A, /MA. and
the definition of the frequency ratio mf= f/f., where f. as carrier frequency and f,, as
modulating signal frequency. The modulating signal A,, is modified based on number of
levels and modulation index. A modified sinusoidal modulating signal is then compared
with each phase disposition carrier signal separately to generate M number of high
frequency sinusoidal PWM signals. A hybrid PWM controller is used to mix low
frequency PWM and the corresponding high frequency SPWM for M™ inverter cell. This
hybrid PWM for M™ inverter cell is then optimized with sequential signal in order to
equalize switching transitions. Similarly, hybrid PWM pulses are developed for all cells

in any level cascaded inverter [22].
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Fig. 3.14 Low and high frequency PDPWM
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Fig. 3.15 Optimized hybrid PDPWM switching pattern for five level cascaded MLI

34

SWITCHING FREQUENCY OPTIMAL PWM

When the carrier wave is synchronized with the modulating wave (mf is an

integer), the modulation scheme is known as synchronous PWM. The synchronous PWM

scheme is more suitable for implementation with a digital processor. For a m-level

inverter, m-1 carriers with the same frequency fc and the same amplitude Ac are

disposed such that the bands they occupy are contiguous [28]. The reference wave form

has peak to peak amplitude Am, the frequency fm, and its zero centered in the middle of

the carrier set. The reference is continuously compared with each of the carrier signals. If
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the reference is greater than s carrier signal, then they active device corresponding to that
carrier is switched off. This technique is further explained in following section.

3.4.1 MULTI CARRIER SWITCHING FREQUENCY OPTIMAL PWM
(MC-SFO PWM)
The other technique to improve the gain of pulse width modulator in a multilevel

inverter is Switching Frequency Optimal PWM (SFO-PWM) [23]. This modulation is
similar to the group of pure sinusoidal PWM (SPWM) and applicable for three-phase
systems but the zero sequence (3rd harmonic) of voltage is injected to each reference
signals [24]. This technique calculates the average value of maximum and minimum of
instantaneous reference voltages and for all the modulation waveforms subtract this
value from the reference voltage.
Vottset = Max(V,, Vi, Vo) + Min(V,, Vi, Vi)
V_aSFO = V_a — V _offset
V_bSFO = V_b — V_offset
V_cSFO = V_c — V_offset

Analog circuit to make the reference signal of SFO-PWM is shown in Fig. 3.16
[25] — [27]. Fig. 3.17 shows the SFO-PWM with injection of a third-harmonic into the
reference waveforms which achieves a 15% increase in modulation index over sinusoidal
PWM before over modulation nonlinearities occur. It is simply because of the reduced
height of the three phase reference envelope that is achieved by third-harmonic injection.
In this technique, the 3rd harmonic is cleared in three-phase system.

The results indicate that the third-harmonic injection offers minimal harmonic
advantage for PWM of multilevel inverters, since the harmonic distribution of line
voltage spectrum is not improved significantly. Therefore, this optimization only has the

value to increase the available linear modulation region if this is required [36].

I\

SineWave a
I'ﬁ'L 2.2 B max

> L+
G ain hax + _>| — I
Sine WWave b 4,-’ + -
Diff
'Iﬁ‘“ L min Add i3 3in

Sine W ave ¢ in

Fig. 3.16 Analog circuit to make the reference signals in SFO-PWM technique
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Fig. 3.17 SFO-PWM technique for a 9-level asymmetric inverter output

3.4.2 PHASE SHIFTED CARRIER SWITCHING FREQUENCY OPTIMAL
PULSE WIDTH MODULATION (PSC-SFO PWM) OR PHASE-SHIFTED
SUBOPTIMAL CARRIER PWM (PS-SUB-PWM)

Fig.3.18 shows the phase shifted carrier SFO PWM modulating signal generation

2ok L Lo ........ R ‘-

-0

[28]. The technique takes the instantaneous average of the maximum and minimum of
the three reference voltages (Va, Vb, Vc) and subtracts the value from each of the
individual reference voltages to obtain the modulation waveforms, which is shown in
Fig.3.19. From the above criteria the following equation are obtained.

Vcarrier = {max (Va,Vb,Vc ) + min (Va,Vb,Vc )} /2

VaSFO = Va — Vcarrier

VbSFO = Vb — Vcarrier

VcSFO = V¢ — Vcarrier

Sine Witawe a
L2 # max
G ain Max # + i b ]
Sina Wave b —l—h + -
"\ L min A d % gify o
Sine W ave o bin

Fig.3.18 PSC-SFO PWM modulating signal generation
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Fig. 3.19 Phase shifted carrier switching frequency optimal pulse width modulation

The carrier voltage is the average of maximum and minimum value of Va,Vb,Vc.
The phase voltage using SFO is the difference between reference voltages to carrier
voltage. The zero sequence modification made by the SFO PWM technique restricts its
use to three phase three wire system, however it enables the modulation index to be
increased by 15% before over modulation or pulse dropping occurs.

Fig. 3.19 shows an example of the five-level PS-SUB-PWM technique where

switching angles in 1/4-period are defined.

3.5 HIGHER AND LOWER CARRIER CELLS AND
ALTERNATIVE PHASE OPPOSITION PW (HLCCAPOPWM)

The PWM control technique based on the improvement of carrier phase
disposition PWM (PDPWM) is called higher and lower carrier cells alternative phase
opposition PWM (HLCCAPOPWM) for the hybrid-clamped multilevel inverter Fig. 3.20
[30].

49



Chapter 3 Novel Modulation Techniques for MLI and HMLI

4V, Su1 K
Ci
T
Sa2 \
Sact
ac \
3Vdc C
5
— Sa3
2
=
Sac3 \
D D Sa4
Wa C 27Y 5 7? . a
—~
Sac4 \ Sa4’
C3__ D; 7Y Ds
S
C;
SacS \ 7.< D47|Y Sa39 \
Vdc
Sac6 SHZ, N
C4
=
Sal’

Fig. 3.20 Hybrid clamped five level inverter

3.5.1 PRINCIPLE OF HLCCAPOPWM

The principle of the HLCCAPOPWM technique is explained by introducing the
concept of carrier cell. When the carrier waveforms are divided according to the carrier
period then the individual triangle wave is called carrier cell as shown in Fig. 3.21[30]..
This technique can reduce switching losses and improve the output harmonic
performance in low harmonic bands. The concept of carrier cell provides a new clue for
improving carrier waveforms of switching devices for the hybrid-clamped multilevel
inverter. The novel PWM technique can effectively reduce the number of device
switching on or off in different degrees hence reducing switching losses within broad
modulation index range. In other words the switching frequency with the
HLCCAPOPWM technique can be increased under the condition of the same switching

losses with the PDPWM technique and then the harmonic content of output voltage will
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be further lowered. In addition the energy of lower harmonics transfers to higher
harmonics band with the HLCCAPOPWM technique. The reduction of the energy of

lower harmonics can simplify the design of output filter and reduce its size.
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Fig. 3.21 Carrier waveforms of the upper four main switching devices for a hybrid-
clamped five-level inverter with the PDPWM technique. (a) Carrier of S,1. (b)
Carrier of S,;. (¢) Carrier of S,3. (d) Carrier of S.4

3.5.2 HLCCAPOPWM CONTROL TECHNIQUE

Using the concept of carrier cell, it can be seen from Fig. 3.21 that the carrier
waveforms of the PDPWM technique for hybrid-clamped multilevel inverters have two
features: 1) all the carrier cells are in phase and 2) the carrier cells of main switching
devices S,i1, Sa, Sai3, and S,4 are positioned on the higher and lower carrier bands
respectively. Furthermore the higher and the lower carrier cells alternate by turns
constantly [31]. For S,; the higher carrier cells are positioned on the first carrier band and
the lower ones on the fourth carrier band. For S, the higher carrier cells are positioned
on the first carrier band and the lower ones on the second carrier band. For S,3 the higher
carrier cells are positioned on the second carrier band and the lower ones on the third
carrier band. For S, the higher carrier cells are positioned on the third carrier band and
the lower ones on the fourth carrier band. If the higher carrier cells and the lower ones
are in phase the corresponding PWM pulse waveform is shown in Fig. 3.22(a) [31]
which is produced by a higher carrier cell intersecting the modulation wave. As it is
known the device controlled by this PWM pulse waveform will turn on or off four times.
If the higher carrier cells are reversed then the higher carrier cells and the lower ones are
in phase opposition. In addition the corresponding PWM pulse waveform is shown in
Fig. 3.22 (b) c.f [31] which is also produced by a higher carrier cell intersecting the same

modulation wave. It is clear that the number of device switching on or off is two, only
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half of that shown in Fig. 3.22 (a). Fig. 3.23 c.f [31] shows two PWM pulse waveforms
respectively produced by two kinds of carrier cells in phase opposition intersecting a

certain modulation waveform.

I_I___

Ca) ()

Fig. 3.22 Device switching on or off (a) Higher carrier cells and lower carrier cells
in phase. (b) Higher carrier cells and lower carrier cells in phase opposition
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Fig. 3.23 PWM pulse waveforms respectively produced by the carrier cells in phase
opposition intersecting a certain modulation wave
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Fig. 3.24 Carrier waveforms of the upper six main switching devices for a seven
level inverter with the HLCCAPOPWM technique. (a) Carrier of S,;. (b) Carrier of
S.z. (¢) Carrier of S,3. (d) Carrier of S.4. (€) Carrier of S,s. (f) Carrier of S,6

If the duty cycles during one carrier period of two PWM pulses are equal then the
instantaneous values of the output voltage fundamental component are also equal so the
modulation performance of two kinds of carrier cells in phase opposition as shown in
Fig. 3.23 are identical. Therefore it is feasible to improve the carrier waveforms of every

switching device shown in Fig. 3.21 by reversing all the higher carrier cells to reduce the
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number of device switching on or off. As a result the higher and lower carrier cells will
be in phase opposition for every switching device. The improved carrier waveforms for

switching devices S,i, Sa2, Sa3, and S,4 are shown in Fig. 3.24 c.f [31].

3.6 ALTERNATIVE HYBRID PWM (AHPWM)
Fig. 3.25 [32] shows the carriers of another PDPWM technique. The initial phase

angle of the triangle carrier waveform is 180" so it is called “W” PDPWM technique.
Seen from Fig. 3.26 [32] it is known that when the modulation waveform intersects the
first carrier band, even if the two adjacent intersecting points respectively locate in the
carrier waveforms of two different devices, no switching modes conversion occurs at the
edge of the two kinds of carrier waveforms, which means no unexpected output levels
will emerge when the modulation waveform intersects the second or the third or the
fourth carrier band and the two adjacent intersecting points respectively locate in the
carrier waveforms of two different devices, switching modes conversions with the same
output levels will occur at the edge of the two kinds of carrier waveforms which means
unexpected output levels will emerge.

3.6.1 “W?”PDPWM AND “M” PDPWM TECHNIQUE
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Fig. 3.25 Carrier waveforms and the representative PWM pulse waveforms of the
“W” PDPWM technique
In Fig. 3.25 c.f [32], when the modulation waveform intersecting points

respectively locate in the carrier waveforms of two different devices, no switching modes
conversion occurs at the edge of the two kinds of carrier waveforms, which means no
unexpected output level will emerge; when the modulation waveform intersects the first
or the second or the third carrier band and the two adjacent intersecting points

respectively locate in the carrier waveforms of two different devices, switching modes
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conversions with the same output levels will occur at the edge of the two kinds of carrier
waveforms, which means unexpected output levels will emerge.

Obviously, if the “M” carriers are applied to the first carrier band and the “W”
carriers to the fourth carrier band, the switching modes conversions causing the
unexpected output levels can be avoided®. On the other hand, in order to avoid the
switching modes conversions causing the unexpected output levels for the second and
third carrier bands, the carrier cells (triangle waveforms) in opposite phase alternatively
are applied to these two carrier bands respectively, as shown in Fig. 3.27 c.f [32], which

is called AHPWM (Alternative Hybrid PWM) technique.
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Fig. 3.26 Carrier waveforms and the representative PWM pulse waveforms of the
“M” PDPWM technique
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Fig. 3.27 Carrier waveforms and the representative PWM pulse waveforms of
AHPWM technique
Fig. 3.27[32] shows four cases of the modulation waveform intersecting four

carrier bands respectively. Case “(3)” is similar to the case “(2)” in Fig. 3.25, and case
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“(4)” is similar to the case “(3)” in Fig. 3.26 c.f [32], that is to say, no switching modes
conversions occur at the edge of two kinds of carrier waveforms with different colors, so
no unexpected output levels emerge. In the case of “(1)” and case of “(2)”, applying the
alternative hybrid carrier cells (triangle waveforms), the switching modes conversions at
the edge of two kinds of carrier waveforms with different colors is corresponding to the
different output levels respectively, so no unexpected output levels will emerge, which is

known from the above analyses [32].
3.7 SPACE VECTOR MODULATION

The space vector modulation technique is based on reconstruction of sampled
reference voltage with help of switching space vectors of a voltage source inverter in a
sampling period. Each multilevel inverter has several switching states which generate
different voltage vectors and can be used to modulate the reference. In SVM, the
reference signal is generated from its closest signals. Some vectors have redundant
switching states, meaning that they can be generated by more than one switching state
this feature is used for balance of capacitor voltages. Multilevel SVM must manage this
behavior to optimize the search of the modulating vectors and apply an appropriate
switching sequence.

3.7.1 SPACE VECTORS

The space vector modulation (SVM) is also described using symmetrical three-
phase systems in the o-B reference frame. The three-phase reference voltages are
represented as a single reference phasor with constant length and angular speed. It
substitutes the demanded voltage space vectors by the nearest real voltage space vectors
in an appropriate combination in each sampling interval. The basic principles of the
SVM is shown in Fig. 3.28 c.f [33] for three level inverter, which involves 27 different
inverter switch states (= number of level)3 [33]. Using a three to two dimensional
transformation, the desired output averaged over the switch period and the inverter states
are represented as vectors. The visualization and calculation of switching periods is then

performed using simple vector math.
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Fig. 3.28 Space vector diagram for the two-level inverter

The voltage common to all three phases can be found at the neutral point of a

balanced star connected load. It is known as the zero sequence component. By allowing
the neutral point voltage to vary, one phase leg can be held continuously high or low for
a 60 degree interval while the other two switch. The correct phase to phase waveforms
are still formed. This has two significant advantages.
Firstly, the inverter’s full potential modulation depth can be used since the phase to
phase voltages are maximized. Secondly, the switching losses are lowered, since the
average switching frequency falls to two thirds of its original value. If suitable zero
sequence space vectors can be identified for multilevel inverters, the simplicity of
multilevel modulator implementations using phase shifted triangular carriers can be
retained.

The SVM approach is perhaps the most powerful, because it allows more
freedom to control and optimize the switching patterns than any other modulation
approach; at the same time, for inverters with higher number of levels it becomes too
cumbersome for real-time implementation.

For a given magnitude (length) and positionTef) can be synthesized by three
nearby stationary vectors, based on which the switching states of the inverter can be
selected and gate signals for the active switches can be generated. Whenmpasses
through sectors one by one, different sets of switches will be turned on or off. As a
result, when mrotates one revolution in space, the inverter output voltage varies one
cycle over time. The inverter output frequency corresponds to the rotating speed of

e

Vrer while its output voltage can be adjusted by the magnitude of V. .
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The dwell time for the stationary vectors essentially represents the duty-cycle
time (on-state or off-state time) of the chosen switches during a sampling period Ts of
the modulation scheme. The dwell time calculation is based on ‘volt-second balancing’
principle, that is, the product of the reference voltage m) and sampling period Ts
equals the sum of the voltage multiplied by the time interval of chosen space vectors.
Whenm falls into sector I as shown in Fig. 3.29 c.f [33] it can be synthesized by
W , W and W.

Table 3.1 Space Vectors, Switching States, and On-State Switches

Space Vector Switching State On-State Switch Vector Definition
(Three Phases)
W [PPP] [OOO] S1, S3, S5 W =0
S4, S6, S2

v POO S1, S6, S2 — 2
Vl [ ] ’ ’ Vl = § Vd eJO
7. PP 1 2 o _2, T
VZ [ O] S [} S3’ S VZ — § Vd e}g
7 P 4 2 — _ 2 j2m
V3 [OPO] 54,53,5 V; = 3 | ejz?
= OPP S4, S3, S5 — 2 3
2 [OPP] Vi =5 Vaeld
v OOP S4, S6, S5 — 2 A
Vs [OOP] , S6, AN Je
2 [POP] S1, S6, S5 A - v, 00T

The coefficient 2/3 is somewhat arbitrarily chosen. The commonly used value is
2/3 or \2/3. The main advantage of using 2/3 is that the magnitude of the two-phase
voltages will be equal to that of the three-phase voltages after the transformation. A

space vector can be generally expressed in terms of the two-phase voltages in the a-

plane. The zero vector W has two switching states [PPP] and [OOO], one of which
seems redundant. The redundant switching state can be utilized to minimize the
switching frequency of the inverter or perform other useful functions. Note that the zero
and active vectors do not move in space, and thus they are referred to as stationary
vectors. On the contrary, the reference vector m in Fig. 3.29 rotates in space at an
angular velocity o = 2xf;

where f1 is the fundamental frequency of the inverter output voltage.
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The angular displacement between V,.r and the o axis of the -8 plane can be
obtained by O(t) = [ w(t)dt + 6(0)

With the space vectors selected and their dwell times calculated, the next step is

to arrange switching sequence. In general, the switching sequence design for a given
m is not unique, but it should satisfy the following two requirements for the
minimization of the device switching frequency: (a) The transition from one switching
state to the next involves only two switches in the same inverter leg, one being switched

on and the other switched off. (b) The transition for V;..; moving from one sector in the

space vector diagram to the next requires no or minimum number of switchings.

SECTOR O

Fig. 3.29 V,.s synthesized by W, W and W
3.7.2 SWITCHING SEQUENCE

Fig. 3.30 c.f [33] shows a typical seven-segment switching sequence and inverter
output voltage waveforms for V,.r in sector I, where V..r is synthesized by W,

Wand W . The sampling period Ts is divided into seven segments for the selected
vectors.
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Fig.3.30 Seven-segment switching sequence for V,..; in sector I
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Fig. 3.32 Three-level NPC inverter
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Fig. 3.33 Output voltage waveforms of the NPC inverter

The line-to-line voltage waveform produced by the SVM inverter contains even-
order harmonics which can be eliminated by modified SVM scheme. As the switching
sequence design is not unique for a given set of stationary vectors and dwell times,

switching discontinuity can give discontinuous space vector modulation.
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3.8

Novel Modulation Techniques for MLI and HMLI

COMPARISON OF MODULATION TECHNIQUES ON BASIS

OF MODULATION INDEX

It is observed that THD varies with type of inverter topology, output level and

modulation index. Generally variability in THD is about 10% for different modulation

techniques [1-34].

Table 3.2 Modulation techniques summarized

Sr. Modulation Technique Output Topology(Diode THD
No Voltage Clamped, Flying (Approx)
level Capacitor, %
Cascaded MLI
or Hybrid MLI)
5 NPC 13
1 | Phase Disposition (PD) Technique 2 ﬁ;ﬁ??g;?gjéxﬁu é:55'/75.23
5 Cascaded MLI 5.2
2 | Phase Opposition Disposition (POD) 5 Cascaded MLI 6.56
Technique 6.8
3 | Alternative Phase Opposition Cascaded MLI 5.68
Disposition (APOD) 5 12.9
4 | Phase Shifted (PS) Technique 5 Cascaded MLI 9.72
5 | Hybrid modulation techniques 9 Hybrid MLI 13.96
7 17.19
6 | Optimized Hybrid PDPWM 9 Cascaded MLI 12.87
11 9.95
7 | ISPWM 7 Asymmetric Cascaded 7.98
Multilevel Inverter
8 | VFISPWM 7 Hybrid MLI 5.92
9 | Multi carrier switching frequency 5 Cascaded 21.5
optimal PWM (MC-SFO PWM)
10 | Phase Shifted Carrier Switching Cascaded 20.5
Frequency Optimal Pulse Width 5
Modulation (PSC-SFO PWM)
11 | Phase-Shifted Suboptimal Carrier PWM 5 Cascaded 22
(PS-SUB-PWM)
12 | Higher and Lower Carrier Cells and Hybrid MLI 38.6
Alternative Phase Opposition PWM 5
(HLCCAPOPWM)
13 | Alternative hybrid PWM (AHPWM) 5 Hybrid MLI 35.95
SPACE VECTOR MODULATION
14 PD Cascaded 4 .45
POD 5 5.23
APOD 10.38

Some modulation techniques are easy to implement but as in hybrid modulation

technique if it is implemented directly i.e. by using low frequency and high frequency
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modulation with constant carrier frequency then THD is higher as compared with
ISPWM, VFISPWM or optimized hybrid PWM. Similarly as the complication of
generating and implementing of modulation techniques is increased THD decreases.
Also some modulation techniques can be directly applied to multilevel inverters like
NPC but modifications are required for implementing same technique to hybrid
multilevel inverter. Comparison is briefly summarized in Table 3.2.

Space vector modulation technique has more degree of freedom in control and
optimization of switching pattern as compared to other techniques. But at the same time
its real time implementation is difficult for multilevel inverters with higher number of
levels. HLCCAPOPWM and alternative hybrid modulation techniques are related with
PDPWM and THD obtained is not much low but it can be further improved by taking
appropriate modulation index. Thus various modulation techniques can be used directly

or hybrid technique can be applied for hybrid multilevel inverter.

3.9 SUMMARY

The different modulation techniques are discussed in this chapter. It is observed
that total harmonic distortion changes with inverter topology, output levels of multilevel
inverter and modulation index. Some modulation techniques are easy to implement but
as in hybrid modulation technique if it is implemented directly i.e by using low
frequency and high frequency modulation with constant carrier frequency then THD is
higher as compared to ISPWM, VFISPWM or optimized hybrid PWM. Similarly as the
complexity of generation and implementation of modulation techniques is increased
THD is likely to be decreases. Also some modulation techniques can be directly applied
to multilevel inverters like NPC but modifications are required for implementing same
technique to hybrid multilevel inverter.

The optimization in modulating signal as discussed in SFO-PWM only has the
value to increase the available linear modulation region. While in PSC SFO PWM the
zero sequence modification technique restricts its use to three phase three wire system,
however it enables the modulation index to be increased by 15% before over modulation
or pulse dropping occurs. Also the PSSUB- PWM is suitable for three-phase systems, as
harmonics added are triplens and in three phase system triplens are missing.
HLCCAPOPWM and alternative hybrid modulation techniques are related with PDPWM
and THD obtained is not much low but it can be further improved by taking appropriate

modulation index.
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Chapter 4 Simulation Results for MLI and HMLI

In this chapter MATLAB simulations done for different cascaded multilevel
inverters (CMLI) and hybrid multilevel inverters (HMLI) are described and analyzed.
Simulations are carried out for 5 level, 7 level and 9 level output with respect to cascaded
multilevel inverter. Different modulation techniques implemented are PD, POD, APOD
and hybrid modulation technique. Modulation index is taken either 0.9 or 1 specified
with respective output figures while frequency modulation index is 21. For better
visualization figures are resolved, but simulations and THD measurement are done as per
the values specified. Further sections describe MATLAB simulations for different MLI
and HMLI.

41 SIMULATIONS FOR CASCADED MULTILEVEL INVERTER

As per the theory discussed in chapter 2 and chapter 3 simulations are carried out
for different cascaded multilevel inverter and FFT analysis is done in
MATLAB/SIMULINK to obtain THD.

4.1.1 FIVE LEVEL CASCADED MULTILEVEL INVERTER

As shown in Fig. 4.1 if two H bridges are cascaded then 5 level output is
obtained. Though practically type of switches used do make difference in output but in
simulations no major difference is observed.
4.1.1.1 Five Level Cascaded Multilevel Inverter with Staircase Technique

Fig. 4.1 shows block diagram structure in MATLAB/SIMULINK for 5 level
cascaded MLI.

For all simulation results on Y-axis voltage in volts is taken and on X-axis

time is taken in seconds.
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Fig. 4.1 Simulink block for cascaded multilevel inverter
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Fig. 4.2 Simulink output for five level cascaded multilevel inverter
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Fig. 4.3 FFT analysis and THD for five level cascaded multilevel inverter
In this simulation universal bridge simulink block is used in which MOSFET
switch is chosen. Fig. 4.2 shows 5 level output voltage where V4. is 20V for each bridge
thus DC voltage is equal for both bridges. MOSFETS are switched at approximately 10°
and 56" to obtain Ve and 2V as the output, accordingly rest of switching takes place.
Switching angles can be obtained using different techniques such as selective harmonic

elimination (SHE).
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Thus output can be optimized with different switching angles and accordingly
THD will change. Fig. 4.3 corresponds to FFT analysis giving THD at 23 cycle with
1500 Hz as maximum frequency. FFT parameters remains same for all analysis unless
and until specified.

4.1.1.2 Five Level Cascaded Multilevel Inverter with Phase Disposition Modulation
Technique

Block diagram structure for 5 level cascaded MLI with PD modulation technique
remains same as Fig. 4.1. Control block is changed as shown in Fig. 4.4 where ‘gl’-‘g2’
combine to give ‘A’ and ‘g5’-’gb’ combine to give ‘Al’ in Fig. 4.1. Fig. 4.5 shows
carrier and modulating signal for PD modulation technique for five level cascaded MLI.
Modulation index is specified earlier. Fig. 4.6 shows 5 level output voltage where V. is
20V for each bridge. Thus DC voltage is equal for both bridges. Thus output can be
changed with different modulation index for amplitude and frequency hence THD will
change accordingly. Fig. 4.7 corresponds to FFT analysis giving THD at 23 cycle with
1500 Hz as maximum frequency. FFT parameters remains same for all analysis unless
and until specified.

Similar outputs can be obtained for POD and APOD modulation technique.
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Fig. 4.4 Control block for five level cascaded MLI with PD technique
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Fig. 4.7 FFT analysis and THD for five level cascaded multilevel inverter with PD
technique

4.1.2 SEVEN LEVEL CASCADED MULTILEVEL INVERTER
Seven level output can be obtained using two or three H bridges by varying V.
as per requirement.

4.1.2.1 Seven Level Cascaded Multilevel Inverter with Staircase Technique Using
Three H Bridges

A) Using three bridges

IR E I -

50 T T T T T T T ! T

40

20

-20

-0

-60

i i i i i i i i i
o 0002 0004 0 0006 0008 ool 001z 0014 0016 0018 0.0z

Time offset: 0O

Fig. 4.8 Simulink output for seven level CMLI using three H bridges
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Fig. 4.9 FFT analysis and THD for seven level CMLI for specified angles

Block diagram structure for 7 level cascaded MLI with three H bridges is shown

Simulation Results for MLI and HMLI

in Fig. 4.1. Switches are switched at approximately 100, 26° and 49° to obtain Vies 2Vc

and 3V, and accordingly rest of switching takes place. Fig. 4.8 shows 7 level output

voltage where V4. is 20V for each bridge thus DC voltage is equal for all bridges. Thus

output can be optimized with different switching angles and accordingly THD will

change. Fig. 4.9 corresponds to FFT analysis giving THD at 23" cycle with 1500 Hz as

maximum frequency.
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Fig. 4.10 Simulink output for 7 level CMLI using 2 H bridges
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Seven level cascaded MLI with two H bridges can be obtained by removing one
H bridge from Fig. 4.1 and changing DC voltages to V4. and 2V4.. Switches are switched
at approximately 100, 26° and 49° to obtain Ve, 2V and 3 V. and accordingly rest of
switching takes place. Fig. 4.10 shows 7 level output voltage where Vg is unequal for H
bridges. Thus output can be optimized with different switching angles and accordingly
THD will change. Fig. 4.11 corresponds to FFT analysis giving THD at 23" cycle with

1500 Hz as maximum frequency.
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Fig. 4.11 FFT analysis and THD for 7 level CMLI for specified angles

4.1.2.2 Seven Level Cascaded Multilevel Inverter with Phase Disposition
Modulation Technique

A) Using three bridges
Block diagram structure for 7 level cascaded MLI with PD modulation technique

remains same as Fig. 4.1. Control block will consist of carrier and modulating signal for
PD technique with number of carriers increased to six as output is having seven levels As
shown in Fig. 4.5 number of carriers is increased while modulating signal is same.
Modulation index is specified earlier. Fig. 4.12 shows 7 level output voltage where Vg is
20V for each bridge, the DC voltage is equal for all bridges. Thus output can be changed
with different modulation index for amplitude and frequency hence THD will change
accordingly. Fig. 4.13 corresponds to FFT analysis giving THD at 23" cycle with 1000
Hz as maximum frequency. FFT parameters remains same for all analysis unless and

until specified.
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Fig. 4.12 Simulink output for 7 level CMLI with PD technique
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Fig. 4.13 FFT analysis and THD for seven level cascaded multilevel inverter with
PD technique
Similar outputs can be obtained for POD and APOD modulation technique as

shown in Fig. 4.14 and Fig. 4.15 respectively.
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Fig. 4.14 Simulink output for 7 level CMLI with POD technique
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Fig. 4.15 Simulink output for 7 level CMLI with APOD technique
4.1.3 NINE LEVEL CASCADED MULTILEVEL INVERTER

Nine level output can be obtained by using two or four H bridges by varying Vg
as per requirement.

4.1.3.1 Nine Level Cascaded Multilevel Inverter with Staircase Technique Using
Three H Bridges

A) Using four bridges
Switches are switched at approximately 7.50, 19.10, 33.5%and 51.6° to obtain Ve,

2V4e, 3V4. and 4V4. and accordingly rest of switching takes place. Fig. 4.16 shows 9
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level output voltage where Vg is 20V for each bridge thus DC voltage is equal for all
bridges. Thus output can be optimized with different switching angles and accordingly
THD will change. Fig. 4.17 corresponds to FFT analysis giving THD at 23" cycle with
1500 Hz as maximum frequency.

Block diagram structure for 9 level CMLI with four H bridges can be obtained by
adding one H bridge Fig. 4.1.
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Fig. 4.16 Simulink output for 9 level CMLI for 4 H bridges
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Fig. 4.17 FFT analysis and THD for 9 level CMLI for specified angles
B) Using two bridges

Nine level cascaded MLI with two H bridges can be obtained by removing one
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H bridge from Fig. 4.1 and changing DC voltages to V4. and 3V .
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Fig. 4.18 Simulink output for nine level cascaded multilevel inverter for 2 H bridges

Switches are switched at approximately 7.5°,19.1°, 33.5% and 51.6" to obtain 0,
Ve, 2V4e and 3V and accordingly rest of switching takes place. Fig. 4.18 shows 9 level
output voltage where output levels are obtained by addition or subtraction of applied DC
voltage i.e. 10V and 30V. Thus output can be optimized with different switching angles
and accordingly THD will change. Fig. 4.19 corresponds to FFT analysis giving THD at

23" cycle with 1500 Hz as maximum frequency.
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Fig. 4.19 FFT analysis and THD for 9 level CMLI for specified angles
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4.2 SIMULATIONS FOR HYBRID MULTILEVEL INVERTER
As per the theory discussed in chapter 2 and chapter 3 simulations are carried out
for different hybrid multilevel inverters and FFT analysis is done in

MATLAB/SIMULINK to obtain THD.

4.2.1 ASYMMETRIC HYBRID MULTILEVEL INVERTER

As shown in Fig. 4.24 IGBT H bridge is cascaded with GTO H bridge thus giving
asymmetric topology with respect to power devices, but in simulations no major
difference is observed as compared to cascaded multilevel inverter with same type of

power devices.

4.2.1.1 Single Phase Asymmetric Hybrid Multilevel Inverter with Hybrid
Modulation Technique
A) Equal DC sources

Fig. 4.20 shows block diagram structure in MATLAB/SIMULINK for
asymmetric hybrid multilevel inverter with equal DC sources. Fig. 4.21 is control block
and Fig. 4.22 control signals for IGBT and GTO bridge. As per Fig. 4.22 it is observed
that GTO H-bridge is switched at low frequency while IGBT bridge is switched at high

frequency.
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Fig. 4.20 Simulink block for single phase asymmetric hybrid multilevel inverter
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Fig. 4.21 Control block for single phase asymmetric hybrid multilevel inverter with
hybrid modulation technique
As DC voltages sources are equal output is five level output as shown in Fig.

4.23. Fig. 4.24 corresponds to FFT analysis giving THD at 23" cycle with 1500 Hz as
maximum frequency. FFT parameters remains same for all analysis unless and until

specified.

S @ s A B e & - =

1 IGET GATE PULSES
! r ! : ! ! !

GTO GATE PULSES

i i i i i i i i
0 0002 0004 0006 0.008 0. ooz o014 o0l oole 0.0z

Time offzet: 0O

Fig. 4.22 Control signals for asymmetric hybrid multilevel inverter
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Fig. 4.23 Simulink output for single phase asymmetric multilevel inverter with
hybrid modulation technique for equal DC sources
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Fig. 4.24 FFT analysis and THD for asymmetric hybrid multilevel inverter with
hybrid modulation technique for equal DC sources

B) Unequal DC sources
Asymmetric hybrid multilevel inverter with unequal DC sources is obtained by changing

DC sources in Fig. 4.21 as 10V for IGBT H bridge and 20V for GTO H bridge. Control
signals are same as shown in Fig. 4.22. As DC voltages sources are unequal output is
seven level output as shown in Fig. 4.25. Fig. 4.26 corresponds to FFT analysis giving

THD at 23" cycle with 1500 Hz as maximum frequency. FFT parameters remains same
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for all analysis unless and until specified. It is observed that if DC voltage value is

increased like 100V or more THD remains unchanged in simulation
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Fig. 4.25 Simulink output for single phase asymmetric multilevel inverter with
hybrid modulation technique for unequal DC sources.
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Fig. 4.26 FFT analysis and THD for asymmetric hybrid multilevel inverter with
hybrid modulation technique for unequal DC sources
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4.2.1.2 Single Phase Asymmetric Hybrid Multilevel Inverter with Phase Disposition
Modulation Technique

A) Equal DC sources

Fig. 4.27 shows the output for single phase asymmetric hybrid multilevel inverter
with phase disposition modulation technique and equal DC sources which is equal to
20V. Thus five level output is obtained. While Fig. 4.28 corresponds to FFT analysis
giving THD at 23" cycle with 1500 Hz as maximum frequency. Other parameters remain

same as above.
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Fig. 4.27 Simulink output for single phase asymmetric multilevel inverter with PD
technique for equal voltages
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Fig. 4.28 FFT analysis and THD for asymmetric hybrid multilevel inverter with PD
modulation technique for equal DC sources
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4.2.1.3 Three Phase Asymmetric Hybrid Multilevel Inverter with Hybrid
Modulation Technique
A) Equal DC sources
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Fig. 4.29 Simulink output for three phase asymmetric hybrid multilevel
inverter hybrid modulation technique with equal voltages
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Fig. 4.30 One phase output from three phase asymmetric hybrid multilevel
inverter hybrid modulation technique with equal voltages
Fig. 4.29 shows the output for three phase asymmetric hybrid multilevel inverter

with hybrid modulation technique and equal DC sources where voltage is 20V. In three
phase control signals are phase shifted by 120°. Fig. 4.30 shows nine level output for
single leg of three phase asymmetric hybrid multilevel inverter. While Fig.4.31
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corresponds to FFT analysis giving THD at 23 cycle with 1500 Hz as

Simulation Results for MLI and HMLI

maximum
frequency. Other parameters remain same as above.
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Fig. 4.31 FFT analysis and THD for three phase asymmetric hybrid multilevel

inverter with hybrid modulation technique for equal DC sources

B) Unequal DC sources
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Fig. 4.32 Simulink output for three phase asymmetric hybrid multilevel

inverter hybrid modulation technique with unequal DC sources

Three phase asymmetric hybrid multilevel inverter with unequal DC sources with

hybrid modulation technique output is shown in Fig. 4.32 with DC sources as 10V for
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IGBT bridges and 20V for GTO bridges. Control signals are phase shifted by 120°. As

Simulation Results for MLI and HMLI

DC voltages sources are unequal output is thirteen level as shown in Fig. 4.33. Fig. 4.34

corresponds to FFT analysis giving THD at 23" cycle with 1500 Hz as maximum

frequency. Other parameters remain same as above.
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Fig. 4.33 One phase output from three phase asymmetric hybrid multilevel
inverter hybrid modulation technique with unequal DC sources
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Fig. 4.34 FFT analysis and THD for three phase asymmetric hybrid multilevel

inverter with hybrid modulation technique for unequal DC sources
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4.2.2 SYMMETRICAL HYBRID MULTILEVEL INVERTER
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Fig. 4.35 Simulink block for five level symmetric hybrid multilevel inverter
Block diagram structure for symmetrical hybrid multilevel inverter is shown in
Fig. 4.35.DC voltage sources are equal. As per switching pattern discussed in chapter 2
simulations are done.

4.2.2.1 Symmetrical Hybrid Multilevel Inverter with Staircase Technique
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Fig. 4.36 Simulink output for five level symmetric multilevel inverter
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Fig. 4.37 FFT analysis and THD for single phase symmetrical hybrid multilevel
inverter with staircase technique

In symmetrical hybrid multilevel inverter switches are switched at approximately

20° and 58° to obtain 5 level output as shown in Fig. 4.36. To optimize output with

different switching angles can be applied and accordingly THD changes. Fig. 4.37

corresponds to FFT analysis giving THD at 23" cycle with 1500 Hz as maximum

frequency.

4.2.2.2 Single Phase Symmetrical Hybrid Multilevel Inverter with Phase Shift

Modulation Technique

(\‘v Sl

A

h

W “
C NOT

Catriet

gl
Sine Abs \/ L
R Sine -
/W\ » NOT4>< 12 0 ™
Cartier Congtart
/\
43 V L
Sing =
0 LI
R

Caonstant

i)

Fig. 4.38 Control block for single phase symmetrical hybrid multilevel inverter with

phase shift modulation technique
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Fig. 4.38 control block for single phase symmetrical hybrid multilevel inverter
with phase shift modulation technique. Fig. 4.39 shows carrier and modulating signal for

PS technique for single phase symmetrical hybrid multilevel inverter.
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Fig. 4.39 Carrier and modulating signal for symmetrical hybrid MLI with PS
technique

=@ & | LM R D - =

a1 __________________ ___________________ =
oy,

-4n
0 0.002 0.004 0.006 0.002 0.01 0oz 0014 DolE 0.og 0oz

1

[}

Time offset: 0O

Fig. 4.40 Single phase output for symmetrical multilevel inverter for PS modulation
Fig. 4.40 shows 5 level output voltage where each source is 20V and phase shift
modulation technique is applied. Frequency modulation index is approximately 43. Thus

output can be changed with different modulation index for amplitude and frequency
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hence THD will change accordingly. Fig. 4.41 corresponds to FFT analysis giving THD

at 23" cycle with 1500 Hz as maximum frequency.
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Fig. 4.41 FFT analysis and THD for single phase symmetrical hybrid multilevel
inverter with PS modulation

4.2.2.3 Three Phase Symmetrical Hybrid Multilevel Inverter with Phase Shift
Modulation Technique
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Fig. 4.42 Three phase output for symmetric multilevel inverter for PS modulation
Output for three phase symmetric hybrid multilevel inverter is shown in Fig. 4.42
with DC sources as 20V. Control signals are phase shifted by 120°. Fig. 4.43 shows nine

level output for single leg of three phase symmetric hybrid multilevel inverter. Fig. 4.44
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corresponds to FFT analysis giving THD at 23" cycle with 1500 Hz as maximum
frequency. Other parameters remain same as above.
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Fig. 4.43 One phase output from three phase symmetric hybrid multilevel inverter
PS modulation technique
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Fig. 4.44 FFT analysis and THD for three phase symmetric hybrid multilevel
inverter with PS modulation technique

4.2.3 HALF BRIDGE MODULES BASED HYBRID MULTILEVEL INVERTER

Block diagram structure for single phase half bridge module based hybrid
multilevel inverter is shown in Fig. 4.45. DC voltage sources are equal. In this topology
half bridges are connected as shown and as per connection output is asymmetric four

level output with positive levels greater than negative levels. Hence as shown in Fig.4.45
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constant is added to obtain symmetric output across zero level [Fig. 4.4].
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Fig. 4.45 Simulink block for half bridge module based hybrid multilevel inverter

4.2.3.1 Single Phase Half Bridge Modules Based Hybrid Multilevel Inverter with
Phase Disposition Modulation Technique
Fig. 4.46 shows carrier and modulating signal for PD technique for single phase

half bridge modules based hybrid multilevel inverter.
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Fig. 4.46 Carrier and modulating signal for half bridge module based hybrid MLI
with PD technique
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Fig. 4.47 shows 4 level output voltage where each source is 20V and phase
disposition modulation technique is applied. Frequency modulation index is
approximately 43. Thus output can be changed with different modulation index for
amplitude and frequency hence THD will change accordingly. Fig. 4.48 corresponds to
FFT analysis giving THD at 23" cycle with 1500 Hz as maximum frequency.
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Fig. 4.47 Single phase output for half bridge modules based hybrid multilevel
inverter for PD modulation

— Signal to analyze — Awailable signals
(&) Display selected signal () Display FET window S hatares
Selected signal: 25 cycles. FFET window (in red): 23 cycles [topaz B
Input :
é‘inpul 1 v_i

Signal number:

1 ~]

— FFT window

Time (=) Start time (=) D ]
— FFT analysis —_—
Mumber of cycles: |23 |
Fundamental (80Hz) = 27 |, THD= 1.88% Fundamental frequency (Hz):
05} |s0
= =
= 0.4 r — FFT settings
g Dizplay style
E 03f |Bar rrelative to fundamental) |
£ |
[
w2 0.2
; Frequency axis:
= p —
= 01} i l l l l 1 |Harmonic order |
| | Max Frequency (Hz):
T ! |
(4] 1o

15 20 25 el {1500
Harmonic arder

| Display | [ Close ]

Fig. 4.48 FFT analysis and THD for single phase half bridge module based hybrid
multilevel inverter with PD modulation
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4.2.3.2 Three Phase Half Bridge Module Based Hybrid Multilevel Inverter with
Phase Disposition Modulation Technique

=2 | a|w| s LR B a8 &

(=13

100 T T T T T T T T T
20 -

B0 |-

40

0

[uj -

=20 |-

Tal SIS PR

-0

-20

-100

i i i i i i i i i
o 0002 0004 0006 0008 ood 001z 0014 o016  0o01s 002

Time= offset: 0

Fig. 4.49 Three phase output for half bridge module based multilevel inverter for
PD modulation

Output for three phase half bridge module based hybrid multilevel inverter is shown in
Fig. 4.49 with DC sources as 30V. Control signals are phase shifted by 120°.

Fig. 4.50 shows seven level output for single leg of three phase symmetric hybrid
multilevel inverter. Fig. 4.51 corresponds to FFT analysis giving THD at 231 cycle with

1500 Hz as maximum frequency. Other parameters remain same as above.
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Fig. 4.50 One phase output from three phase half bridge module based hybrid
multilevel inverter PD modulation technique
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Fig. 4.51 FFT analysis and THD for three phase half bridge module based hybrid
multilevel inverter with PD modulation technique

Table 4.1 MATLAB simulation summary

. . Output | THD
Topology Phase | Modulation Technique Levels %

1 - 5 21.92

1 PD 5 1.31

Cascaded multilevel inverter 1 - 7 9.51
1 PD 7 0.93

1 - 9 5.3

1 HYBRID 5 0.8

Asymmetric hybrid multilevel inverter 1 PD 5 1.17
3 HYBRID 9 0.64

. ) . . 1 PS 5 1.27
Symmetrical hybrid multilevel inverter 3 PS 9 07
Half bridge modules based hybrid 1 PD 4 1.88
multilevel inverter 3 PD 7 1.59

4.3 SUMMARY

Different MATLAB simulations are done for cascaded multilevel inverter and

hybrid multilevel inverter. Comparison is done on basis of THD. Results are summarized

in Table 4.1. It is observed that for particular modulation index THD does not vary much

with change in modulation technique. Number of stages, number of switches, number of

sources, number of capacitors, overall cost etc. are the selection criteria for given

application.
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CHAPTER 5

SIMULATIONS RESULTS
for
SELECTED HYBIRD
MULTILEVEL INVERTER




Circuit topology selected for the hardware implementation is as shown below.
Circuit selection was done from many available HMLI topologies at the time of
registration. As per norms registered topology cannot be changed hence it was
implemented but hardware was done for the proposed topology only.

In this chapter MATLAB simulations done for selected configuration of hybrid
multilevel inverter are described and analyzed. Simulations are carried out for single
phase and three phase. Different modulation techniques implemented are PD, POD,
APOD, PS, inverted sine and hybrid modulation technique which are described in
chapter 3. Modulation index is taken either 0.9 or 1 specified with respective output
figures while frequency modulation index is 21. For better visualization figures are
resolved, but simulations and THD measurement are done as per the values specified and
not for the resolved one.

Further sections describe MATLAB simulations for selected configuration of
single phase and three phase HMLI.
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Chapter 5 Simulation Results for Selected HMLI

5.1 SIMULATIONS FOR SINGLE PHASE HYBRID
MULTILEVEL INVERTER

Fig. 5.1 is simulation block for selected single phase HMLI for which simulations
are done in MATLAB and hardware is also implemented which is described in further
chapters. Simulations are done for different modulation techniques. Working principle
for this HMLI is explained in chapter 2. Solver ode23tb is used as suggested by
MATLAB Help.

Continuous

I . . =
l—ll——Dc:1 JLJ]%S&"

B =

Uniwversal Brndge

S ubsyste mz

| (= >——~ 1
f T

Yoltage

Scope

S LI

Fig. 5.1 Simulink block for single phase HMLI
5.1.1 SIMULATIONS FOR HMLI WITH PD MODULATION TECHNIQUE
Fig. 5.2 shows the output for single phase HMLI with phase disposition
modulation technique and equal DC sources which are equal to 20V. Thus five level
output is obtained. While Fig. 5.3 corresponds to FFT analysis giving THD at 23 cycle
with 1500 Hz as maximum frequency. Other parameters remain same as mentioned in
previous chapter.

For all simulation results on Y-axis voltage in volts is taken and on X-axis
time is taken in seconds.
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Fig. 5.2 Simulink output for single phase HMLI with PD modulation technique
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Fig. 5.3 FFT analysis and THD for single phase HMLI with PD modulation
technique

5.1.2 SIMULATIONS FOR HMLI WITH POD MODULATION TECHNIQUE
Fig. 5.4 shows the output for single phase HMLI with phase opposition
disposition modulation technique and equal DC sources which are equal to 20V. Thus
five level output is obtained. While Fig. 5.5 corresponds to FFT analysis giving THD at
23" cycle with 1500 Hz as maximum frequency. Other parameters remain same as

mentioned in previous chapter.

93



Chapter 5 Simulation Results for Selected HMLI

o | @) o LM e | B @ R -

OUTPUT »OLTAGE

40

30

20

(LT N SRR SRR R 1 S SRR TR SRTRE SR

] S L SO P 51 L N SR SR

AD e T 1.1 L O T

P L L L 1.

BOL e SRR R R T : H ------- .
-40 L L 1 L 1 1 L

1 1 1 1 1 1
u] 000z 0004 0005 0002 oo ooz 0014 001s 0012 0.0z

Time off=et: O

Fig. 5.4 Simulink output for single phase HMLI with POD modulation technique
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Fig. 5.5 FFT analysis and THD for single phase HMLI with POD modulation
technique

5.1.3 SIMULATIONS FOR HMLI WITH APOD MODULATION TECHNIQUE

Fig. 5.6 shows the output for single phase HMLI with alternative phase
opposition disposition modulation technique and equal DC sources which are equal to
20V. Thus five level output is obtained. While Fig. 5.7 corresponds to FFT analysis
giving THD at 23" cycle with 1500 Hz as maximum frequency. Other parameters remain

same as mentioned in previous chapter.
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Fig. 5.6 Simulink output for single phase HMLI with APOD modulation technique
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Fig. 5.7 FFT analysis and THD for single phase HMLI with APOD modulation
technique

5.1.4 SIMULATIONS FOR HMLI WITH PS MODULATION TECHNIQUE

Fig. 5.8 shows the output for single phase HMLI with phase shifted modulation
technique and equal DC sources which are equal to 20V. Thus five level output is
obtained. While Fig. 5.9 corresponds to FFT analysis giving THD at 23" cycle with 1500
Hz as maximum frequency.

Other parameters remain same as mentioned in previous chapter.

95



Chapter 5 Simulation Results for Selected HMLI

) Scope =13
= e | & s | CHEER B a & -

an OUTRPUT »OLTAGE

bclull -

20

vo AR S

o R ........ PR

P A . TR SRR || Be— UURT . ”wm
2ol L O SO 1 : I : 1

%) . S S S S T .| {11 — |

40

i L i H 1 i
u] o.o0z 0004 0005 O00o0s 0.0 oolz ool4 o001 o0ois ooz

Time offset: 0

Fig. 5.8 Simulink output for single phase HMLI with PS modulation technique
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Fig. 5.9 FFT analysis and THD for single phase HMLI with PS modulation
technique

5.1.5 SIMULATIONS FOR HMLI WITH HYBRID MODULATION
TECHNIQUE

Fig. 5.10 shows the output for single phase HMLI with hybrid modulation
technique and equal DC sources which are equal to 20V. Thus five level output is
obtained. While Fig. 5.11 corresponds to FFT analysis giving THD at 23" cycle with

1500 Hz as maximum frequency. Other parameters remain same as previous chapter.
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Fig. 5.10 Simulink output for single phase HMLI with hybrid modulation technique
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Fig. 5.11 FFT analysis and THD for single phase HMLI with hybrid modulation
technique

5.1.6 SIMULATIONS FOR HMLI WITH THIRD HARMONIC INJECTION
MODULATION TECHNIQUE
Fig. 5.12 shows control block for single phase HMLI with third harmonic

injection modulation technique. Fig. 5.13 shows the output for single phase HMLI with
third harmonic injection modulation technique and equal DC sources which is equal to
20V. Thus five level output is obtained. While Fig. 5.14 corresponds to FFT analysis

giving THD at 23" cycle with 1500 Hz as maximum frequency. As explained in chapter
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3 this modulation technique is applicable for three phase system due to addition of third

harmonic in each reference hence THD obtained is high for single phase HMLI.
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Fig. 5.12 Control block for HMLI with third harmonic injection modulation
technique
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Fig. 5.13 Simulink output for single phase HMLI with third harmonic injection
modulation technique

98



Chapter 5 Simulation Results for Selected HMLI

— Signal to analyze — Available signals—————————
(&) Display selected signal () Display FFT windaw St en
Selected signal: 25 cycles. FET window (in red): 23 cycles bl plthirdhar 2 R
<8 Inpawst ©
2 ;input 2 |
o Signal numkber:
20 [ =
-40 — FFT window————————
0.05 015 025 D3 035 04 045 e
T'me (=] Start time (=X o
— FFT analysis .-
Fumber of cycles: |23
Fundamental (50Hz) = 40,03 , THD= 22 . 46%: A P e
of =
— FFT =settings
B E Dizplay style :
= Eéar (relative to specified ba... v.
= 4 -
EBaze value: |10
Fregquency axis:
2r T é‘H‘érmon‘i‘t‘: order v
Max F Hz):
o i " " P 7R Y T § i L - SehEe el
i] 5 10 15 20 25 30 {1500
Harmonic order 5 2 :
[Tospay ] [ ciose |

Fig. 5.14 FFT analysis and THD for single phase HMLI with third harmonic
injection modulation technique

5.1.7 SIMULATIONS FOR HMLI WITH ISPWM TECHNIQUE
Fig. 5.15 shows the control block for single phase HMLI with ISPWM technique.
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Fig. 5.15 Control block for HMLI with ISPWM technique
Fig. 5.16 shows the output for single phase HMLI with ISPWM technique and

equal DC sources which is equal to 20V. Thus five level output is obtained. While Fig.
5.17 corresponds to FFT analysis giving THD at 1* cycle with 1500 Hz as maximum
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frequency. It was observed that for increased number of cycles THD remains unchanged.
For ISPWM carrier frequency is 1 kHz. Output is not half wave symmetrical thus even

harmonics are also present hence THD is more.
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Fig. 5.16 Simulink output for single phase HMLI with inverted sine modulation
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Fig. 5.17 FFT analysis and THD for single phase HMLI with inverted sine
modulation technique

5.2 SIMULATIONS FOR THREE PHASE HYBRID
MULTILEVEL INVERTER

Fig. 5.18 is simulation block for selected three phase HMLI for which

simulations are done in MATLAB and hardware is also implemented which is described
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in further chapters. Simulations are done for different modulation techniques. Working

principle for this HMLI is explained in chapter 2.

i

A

TR R e

| —
Pt ergui Wabe >
i+ "

i

[5T3] Q1
otz Q2 (a1 3}
Ot Out 2 Outz
Ot Cutd o3
Subeyeberm Subsystemd Outd
Subsystems
. e
—al 4 9 = g =~
ﬂ_ ﬂ_ DCcz2
Do Doz T :
17 S e S By il
. r e | CH iy e

Universal Bridgez
Universal Bridge Universal Bridgel

Subsystems

[Ty ]
O
[t}
[

Ot s
Dutf
SubswstemG
Subsysten
=]
+
2l J A
11t

C
Universal Bridges

Subsy=tem3

Fig. 5.18 Simulink block for three phase HMLI

5.2.1 SIMULATIONS FOR THREE PHASE HMLI WITH PD MODULATION
TECHNIQUE
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Fig. 5.19 Simulink output for three phase HMLI with PD modulation technique
Fig. 5.19 shows the output for three phase HMLI with phase disposition

modulation technique.
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Fig. 5.20 One phase output from three phase HMLI PD modulation
technique

DC source is 80V for three phase inverter and 40V for single phase 3 H bridges.

Thus nine level output is obtained. While Fig. 5.21 corresponds to FFT analysis giving

THD at 23" cycle with 1500 Hz as maximum frequency. Other parameters remain same

as previous chapter.
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Fig. 5.21 FFT analysis and THD for HMLI with PD modulation technique
5.2.2 SIMULATIONS FOR THREE PHASE HMLI WITH POD MODULATION

TECHNIQUE

Fig. 5.22 shows the output for three phase HMLI with phase opposition

disposition modulation technique.
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Fig. 5.22 Simulink output for three phase HMLI with POD modulation technique
DC source is 24V for three phase inverter and 12V for single phase 3 H bridges.
Thus nine level output is obtained. While Fig. 5.24 corresponds to FFT analysis giving
THD at 23" cycle with 1500 Hz as maximum frequency. Other parameters remain same

as previous chapter.
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Fig. 5.23 One phase output from three phase HMLI POD modulation technique
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Fig. 5.24 FFT analysis and THD for HMLI with POD modulation technique

5.2.3 SIMULATIONS FOR THREE PHASE HMLI WITH APOD
MODULATION TECHNIQUE
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Fig. 5.25 Simulink output for three phase HMLI with APOD modulation technique

Fig. 5.25 shows the output for three phase HMLI with alternative phase
opposition disposition modulation technique. DC source is 24V for three phase inverter
and 12V for single phase 3 H bridges. Thus nine level output is obtained. While Fig. 5.27
corresponds to FFT analysis giving THD at 23 cycle with 1500 Hz as maximum

frequency. Other parameters remain same as previous chapter.
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Fig. 5.26 One phase output from three phase HMLI APOD modulation technique
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Fig. 5.27 FFT analysis and THD for HMLI with APOD modulation technique

5.2.4 SIMULATIONS FOR THREE PHASE HMLI WITH PS MODULATION
TECHNIQUE

Fig. 5.28 shows the output for three phase HMLI with phase shifted modulation
technique. DC source is 40 V for three phase inverter and 20 V for single phase 3 H
bridges. Thus nine level output is obtained. While Fig. 5.30 corresponds to FFT analysis
giving THD at 23" cycle with 1500 Hz as maximum frequency. Other parameters remain

same as previous chapter.
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Fig. 5.28 Simulink output for three phase HMLI with PS modulation technique
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Fig. 5.29 One phase output from three phase HMLI PS modulation technique
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Fig. 5.30 FFT analysis and THD for HMLI with PS modulation technique

5.2.5 SIMULATIONS FOR THREE PHASE HMLI WITH HYBRID

MODULATION TECHNIQUE
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Fig. 5.31 Simulink output for three phase HMLI with hybrid modulation technique

Fig. 5.29 shows the output for three phase HMLI with hybrid modulation

technique. DC source is 80 V for three phase inverter and 40 V for single phase 3 H

bridges. Thus nine level output is obtained. While Fig. 5.31 corresponds to FFT analysis

giving THD at 23" cycle with 1500 Hz as maximum frequency. Other parameters remain

same as previous chapter.
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Fig. 5.32 One phase output from three phase HMLI hybrid modulation techniqu
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Fig. 5.33 FFT analysis and THD for HMLI with hybrid modulation technique

5.2.6 SIMULATIONS FOR HMLI WITH THIRD HARMONIC INJECTION
MODULATION TECHNIQUE

Fig. 5.32 shows the output for three phase HMLI with phase shifted modulation
technique. DC source is 80 V for three phase inverter and 40 V for single phase 3 H
bridges. Thus nine level output is obtained. While Fig. 5.34 corresponds to FFT analysis
giving THD at 23" cycle with 1500 Hz as maximum frequency. Other parameters remain

same as previous chapter.
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Fig. 5.34 Simulink output for three phase HMLI with third harmonic injection
modulation technique
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Fig. 5.35 One phase output from three phase HMLI third harmonic injection
modulation technique
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Fig. 5.36 FFT analysis and THD for HMLI with third harmonic injection
modulation technique

Table 5.1 MATLAB simulation summary for HMLI

Phase Modul.ation Output THD
Technique Levels
PD 5 1.17
POD 5 1.21
APOD 5 1.15
Single PS 5 1.39
HYBRID 5 1.52
THIRD HARMONIC
INJECTION > 22.46
ISPWM 5 28.82
PD 9 0.98
POD 9 .99
APOD 9 1.02
Three PS 9 1.23
HYBRID 9 1.41
THIRD HARMONIC
INJECTION 9 0.84
5.3 SUMMARY

Different MATLAB simulations are done for selected hybrid multilevel inverter.

Comparison is done on basis of THD. Results are summarized in Table 5.1. It is

observed that for particular modulation index THD does not vary much with change in

modulation technique. Number of stages, number of switches, number of sources,

number of capacitors, overall cost etc. are the selection criteria for given application.
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Following block diagram shows the procedure for the simulation, control signal

generation and implementation.
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REQUIREMENTS
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Block diagram for simulation, control signal generation and implementation

¢  Simulink model generated and optimal THD is obtained.

¢  Building of Simulink model with CCS3.3, code generated is loaded to Emulator
xds510usb, control signal generation from DSP28335.

e  Control signals obtained applied to buffer, opto isolation and driver circuits.

e  Control signals generated are given to power circuit.

e  Power circuit results are observed on DSO.



Chapter 6 Control Signal Generation

This chapter dicusses the processor used for gating signals applied to switches in
power circuit. As discussed earlier 18 switches are there in 3 phase Hybrid Multilevel
Inverter controlled separately with different modulation techniques as per requirement.
Thus processor chosen should provide minimum 18 separate pulses at the output.
Though complimentary pulses can be used but to avoid leg short circuiting and
intentional delay separate pulses are used in this topology.

Analog control can be used but for implementation of various modulation
techniques digital control is suggested. Control signals can be obtained using different
high level languages like C/C++ programming. But as per advancement in technology
control signals can directly be obtained using MATLAB SIMULINK Blocks with Code
Composer Studio and Emulator. All these interfaces are discussed in detail.

This chapter describes steps involved in generation and application of control
signals to power circuit.

6.1 DIGITAL SIGNAL PROCESSOR

Fig. 6.1 depicts EPB 28335. The EPB28335 is a stand-alone card allowing
developers to evaluate the TMS320F28335 digital signal processor (DSP) to determine if
it meets their application requirements. Furthermore, the module is an excellent platform
to develop and run software for the TMS320F28335 processor. The EPB28335 is
shipped with a TMS320F28335 DSP. The EPB28335 allows full speed verification of
F28335 code. To simplify code development and reduce debugging time, a C2000 Code
Composer Studio driver is provided. In addition, an onboard JTAG connector provides
interface to emulators, with assembly language and ‘C’ high level language debug.
Following features of EPB28335 and TMS320F28335 DSP can be summarized in brief
[1-3].

e Fast, 150 MHz clock/instruction cycle.

e High speed A/D converter, 12.5 MHz max sample rate, 16 channels, 12-bits.

¢ 80-ns conversion rate (12.5 MHz)

e A/D includes two parallel sample and hold circuits.

¢ Nominally a 32-bit machine.

e 34 K words (16-bit) of on-chip static random access memory (RAM).

e 256 K words (16-bit) of flash read only memory (ROM).

® 6 high resolution (150 picosecond) pulse width modulators. Can readily be used

to implement D/A converters.
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Possesses a rich set of peripheral interface devices

6 high resolution pulse width modulator outputs

Three 32-bit timers

Serial port peripherals

On chip 32-bit floating point unit

68K bytes on-chip RAM

512K bytes on-chip Flash memory

On board 1M bytes (64kx16) off-chip SRAM memory

9-volt only operation with supplied AC adapter

On board Power-On LED indication

Connector for Watchdog timer output

20 Pin (10x2 header) Connector for 16 GPIO lines

DB25 Connector for 8 Digital Input and 8 Digital Output interface with +5V
compatibility

Error + Trip +5V compatible connector for Inverter control module

On board USB Connector for UART-A interface with LED indication

On board USB for Flashing

On board DB9 connector for UART-A interface

On board LED indication for Transmit and Receive data at UART-A

On board 3 pin header for UART-B interface

On board DB9 connector for CAN-A interface (Loop back mode possible)
On board 4 pin header for CAN-B interface (Loop back mode possible)
On board DB9 connector for 6 channel capture interface

On board DB25 connector for 12 channel PWM interface

On board DB15 connector for 8 Channel On-Chip ADC-A interface (with 3V
protection using Op-Amps with unity gain output)

On board DB15 connector for 8 Channel On-Chip ADC-B interface (with 3V
protection using Op-Amps with unity gain output)

On board Potentiometer to test On-Chip ADC

On board DB9 connector for 4 channel SPI based External DAC interface
On board 12C based Off-Chip EEPROM interface

On board 12C based Off-Chip RTC interface
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® On board Reset Switch with LED indication

® On board Switch for Run/Program mode switching

® On board Switch for boot mode selection

¢ On board IEEE 1149.1 JTAG emulation connector (7x2 pins) with LED
indication

e Test points for All the PWM channels

e Test points for All the ADC channels

e Test points for Power signals

¢ On board LED at GPIO Pin as GPIO Test point

e 88 configurable general purpose I/0 (GPIO) pins

|/0 PORT ASK PORT

USB ° 9Vdc

5CI-A - -

- JTAG

CAPTURE PWM ADC-B pc.a DA
Fig. 6.1 EPB 28335 with peripherals
On the 2833x/2823x devices, the GPIO signals are assigned to 32-bit ports. The
GPIO control and data registers have been moved from peripheral frame 2 (16-bit access
only) to peripheral frame 1, which allows for 32-bit as well as 16-bit operations on the
registers. The GPIO MUX logic has been redesigned to allow for a higher level of
peripheral multiplexing. The 2833x/2823x GPIO MUX can multiplex up to three
independent peripheral signals into a signal GPIO pin, in addition to providing individual
pin toggling 1/O capability. There are two MUX registers for each GPIO port. For each

of the GPIO pins one can enable or disable an internal pullup resistor through software.
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Thus features utilised are GPIO and I/O ports for 18 control signals. JTAG for
interfacing emulator with DSP.
6.2 FLOW OF CONTROL SIGNALS
As discussed control signals are obtained in following steps:

Step 1 : Open CCSSTUDIO Setup as shown in Fig. 6.2.

¥ Code Composer Studio Setup
File Edit wiew Help

Swstem Configuration fvailable Fackory Boards Family TPlat .. | Endi, | &8
lal ~|lan ~|lan «|
E BR: aRM7 Simulator, Big... ARMZ  sim.., big
B ARM7 Simulator, Litk,.. ARMF =im... little
S ARM7 XDSS10 Emul... ARMT xds... *
ER: aRM7 xD3560 Emul...  ARMT wxds. .. *
B ARM9 XDSS10 Emul... ARMO xds... *
B AR XDSS60 Emul... ARMS xds... *
BR: 4R M226E]-5 Simulak, .. ARM2 SiM. . little
B AR M9e Simulator, Bi... ARM2 sim... big
B AR M9e Simulator, lik... ARMI sim... little
ER:Fz240 <D3S10USE E... C24x xds... *
ER:Fz41 #»D3S10USE E... C24x xds. .. * 2
— i 4 3 b st —— . w |
E® Factory Boards | E® Custom Boards I % C 4 | > |
i Save & Quit § | I |

Drag a dewice driver to the left ko add a board to the swskem.

Fig. 6.2 CCS setup
Step 2: Select family, platform and add to system Do the settings as shown in Fig. 6.3.

T Code Composer Studio Setup EJ@lFEl
File Edit Wew Help

Family | PlatF... | Endi...
[cza = |||xdss ~||an ~|
CZ8xx  wdsB... *¥

C25xx =dsS..,
C28xx  =dsS..,
CZ8xx  xdsS...

System Configuration fwailable Fackory Boards

R Fz801 #D3510USE
=B F25335 ¥D3510USE Emulatar EH:Fz306 “DSS10USE

* cpu_0 B F2308 XDSS10USE
R F2810 £D5510UsE
ER:Fz511 XDSS10USE Czge wdsS..,
ERFZ812 XD3510USE E... C28xx xdsS...
ER:F23332 ¥DS510USE E... C28xx  xdsS..,
ER:F23334 ¥DSS10USE E... C28wx  xdsS..,
B F28335 “DS510058 E... C28xx xdsh...

mmmmmm

*¥ ¥ ¥ ¥ ¥ ¥ O ¥

i
E® Factory Boards |ﬂ Customn Boards J o Creal 4 [ »]

Sawve & Cluit | | Remow I |

Drag a device driver to the left ko add a board to the system.

Fig. 6.3 Emulator selection
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Step 3: Save and quit.

Control Signal Generation

Step 4: MATLAB SIMULINK model execution(.mdl file).
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leaog Lk g
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28N I
L EERSA L3
SRPIO Do
EE

Fig. 6.4 MATLAB SIMULINK model for control signals
Custom board is selected from target prferences and as DSP is 28335 hence board

selected is C2000 and processor is F28335. Fig. 6.4 shows MATLAB SIMULINK model

for generation of control signals.
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Fig. 6.5 Building model in MATLAB SIMULINK

In Fig. 6.4 six signals are shown similarly 18 signals can be obtained. GPIO pins

and PWM port used for obtaining pulses are summarized as below: GPIO 48-52, 54,
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Chapter 6 Control Signal Generation

57,59-63 and PWM 1A,1B,2A,2B,3Aand 3B configured to GPIO 0,1,2,3,4 and 5 are
used for control signals.

Step 5: After execution of .mdl file build model as shown in Fig. 6.5. Project is built in
CCS as shown in Fig. 6.6 and loaded to emulator with no error and control signals are

loaded in DSP. Thus 3.3V pulses are obtained GPIO pins specified.

' JF28335 Device Simulator/CPU - TMS320C28xx (Simulatar) - Code C... [Z |[B]EX]
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Fig. 6.6 Project built in CCS
6.3 DRIVER CIRCUIT

The gate pulses obtained from DSP go through buffer, isolation and driver stage
before reaching to the power devices. As DSP can drive maximum up to 200mA current
and signals taken are 18 hence buffer is required. The isolation is must when gate pulses
are given to power devices connected in inverter configuration. The isolation is normally
provided to gate pulses through optocouplers, which isolates power circuit and low
power control circuit optically. Further these optically coupled signals are given to the
driver circuit. The gate pulse, which is given to the MOSFET, is with respect to the
source terminal. Fig. 6.7 shows circuit for buffer, isolation and driver which are
described in brief.

Circuit is designed as per requirement of gate pulse. Buffer selected [4] can drive
maximum 6 signals hence for 18 pulses three buffers are used. Buffer supply is 5V. 4049
inverting buffer is used. Component list is given in Table 6.1. R;, R, R; and Ry are
selected as standard current limiting, pull-up resistors. Similarly C; and C, are by pass

capacitors while C; is used for floating supply as per requirement of driver IC IR2110
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[5]. Diode D; is fast switching diode for boost up. High speed opto isolator 2630 is used

for isolation [6].

|+5V +15V
1 R, = C D,
5 4“,__ T m
1
- ; R4 _
1C-1 - S
1C-3 éé D, !
R, 3 +15V
3 [ e VoV NIl Dy
o n G
n n = 1 Ry
415 2
| n
7 6 /57. S,
9 10
8
4L

Fig. 6.7 Control circuit for generating gating signal
Table 6.1 Component List

Component Value
R, 330 Q
R» 10 kQ
R3 1 kQ
R4 3.3kQ
C 0.1 pF
&) 0.47uF
Cs 100pF
D, IN4148
D, 11DF4
IC-1 4049
IC-2 2630
IC-3 IR2110

64 SUMMARY

In this chapter, procedure to obtain control signals is described. Signals obtained
from DSP are 3.3V compatible which are not enough for gate drive hence buffer and
driver circuits are introduced. As power circuit operates at very high voltage, isolation is

compulsory hence opto isolator is used.
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POWER CIRCUIT DESIGN




This chapter describes design of hybrid multilevel inverter. Single phase hybrid
multilevel inverter is designed and is repeated for three phase. Regulated power supply is
designed for 40 V and 80 V DC output. As discussed in previous chapter gating signals
are applied through digital signal processor, buffer, isolation and driver.

7.1 DESIGN OF HYBRID MULTILEVEL INVERTER

HMLI is designed for 110V, 5A rating. Gate pulse is obtained from circuit shown

in previous chapter. MOSFET is chosen for high frequency switching, high voltage and

high current operation. As shown in Fig. 7.1 separate DC voltages are connected.

o
40V | G—III

- - -
o | M G: | ke G | e
- I H H
sov L .
- - -
k_ G6’ I‘_ ”
G | - 6" | 1

Fig. 7.1 Three phase hybrid multilevel inverter circuit diagram

7.1.1 DESIGN OF SINGLE AND THREE PHASE HYBRID MULTI LEVEL
INVERTER

As shown in Fig 7.2 half bridge inverter is connected with H bridge inverter to
form single leg of HMLI. As discussed switching is done at approximately 2.1 kHz
frequency. Care is taken that switch has low saturation voltage and breakdown voltage is

two to three times the supply voltage. Similarly for 3 phase such design is repeated.
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Fig. 7.2 Single leg of hybrid multilevel inverter circuit diagram

7.1.2 MOSFET SELECTION
As circuit operates at 110V rms and SA current MOSFET is chosen accordingly.
IRF840N Power MOSFET is used. Features of IRF840 [1] are as follows:
-Vps 500V
-Ip 8A(continuous)
-Rps (on) Low i.e 0.85 Q
-Exceptional dv/dt

-Low Gate Charge
-Application Oriented Characterization
- Low gate drive requirements

100KQ resistance is connected as high impedance gate of MOSFET
K-1 type heat sink is used for MOSFET
7.1.3 DESIGN OF MOSFET SNUBBER
An RC snubber, placed across each switch can be used to reduce the peak voltage at
turn-off and to damp the ringing. Design for snubber is given below.
f;=2kHz
Edc =40V, ii=2A
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Let L =25 uH
tr= 66x107 s
where t; is fall time
fs switching frequency

C =1psts/ Eqc

=6 *1t/40
C=0.01pF
L =Eqg*t./iL
t.=1.26 ps
where t, is rise time
di/d; = i/t

=1.58 A/us

Switch ON
di/d; = 0.395 A/us
R = V(4*L/C)
R =100 Q

Hence values for snubber are chosen as 100 Q,1W and 0.01pF/400V.
7.2 DESIGN OF REGULATED POWER SUPPLY

Step down transformers of rating 230V/45V and 230V/70V are used to obtain
40V and 80V DC respectively from voltage regulator. Current rating is SA as design is
for 110V rms from output with SA current.

Controlled transistor series regulator circuit is designed and implemented as
shown in Fig. 7.3 Components are chosen as per requirement. Selection of transistors Ty,
T,, T3is done on basis of Vcgo, gain and power rating from datasheet [2-5]. Due to high
power dissipation heat sink is included in circuit.

Working principle can be explained as follows: Unregulated DC voltage is passed
through filter capacitor C and bleeder resistances Rg and as per change in output load
current regulation is obtained from regulator circuit. If current through load increases
drop across Rg increases which increases base current of T; thus increasing collector
current of T3, which increases base current of T; through T, thus finally reducing
emitter current of T; and regulating output current and voltage. R, R; and C, form filter
and current limiting path for Ts. Zener diode gives minimum emitter voltage of T3 with

C, as filter for zener diode. Component choice is done as per requirement. Darlington
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pair of transistor T; and T, is control element and is called pass transistor as all load
current flows through it. Zener diode and resistor R; act as reference element. The
voltage divider Rs, Rg and R; samples output voltage and delivers a negative feedback
voltage to the base of transistor T3 [6] Design and practical readings for regulated power

supply are given in Appendix A. While hardware setup is given in appendix B.
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Fig. 7.3 Regulated power supply

Table 7.1 Component list

Component Value

R, 10 kQ/1W-----22 kQ/2W (for 80V)
R» 470 Q/0.5W

R3 1 kQ/0.5W

R4 100 €/0.25W

Rs 6.2 kQ------ 10 KQ(for 80V)

Rg 500 Q preset

R; 1 kQ

C 100 pF/16V

C, 47uF/63V-----47uF/160V

Cs 100pF/63V

D, 6.2V/1W

T, 2N3773----2N3773(for 80V)

T, 2N3501----2N3773(for 80V)

T3 BD139-----TIP122

Bridge rectifier 3510 35 A, 1000V

Bleeder resistance Ry 1 kQ/10W ----2.2 kQ/10W (for 80V)
Filter capacitor C 4700 pF/100V-----1800uF/160V (for 80V)

7.3 SUMMARY

In this chapter power circuit design is explained. Linear regulated power supply
is also designed and its design is discussed. Hybrid multilevel inverter is designed.
MOSEFET switches were selected on design basis. Heat sink is selected as per dissipation.

R-C snubber is also designed.
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Chapter 8 Experimental Results

In this chapter, results obtained from hardware implementation are compared
with simulation results for selected scheme. Comparison is on basis of THD, output
voltage obtained and fundamental voltage from FFT analysis. Hardware testing is done
with lower as well as higher voltage. For lower voltage 12V batteries are taken as supply
for single phase as well as three phase. Initially single leg is tested with and without
modulation. Similar three cards are made and tested individually then three phase
connections are done. In three phase output is obtained for different modulation
techniques which have been already discussed in previous chapters. Modulation index is
taken either 0.9 while frequency modulation index is 21.Control signals are applied using
SIMULINK-CCS3.1-EMULATOR C2000 USB- DSP KIT 28335 as discussed in
chapter 6.

Output is saved in DSO in .bmp and .csv extension. The file saved in .csv format
is imported in MATLAB R2013a and then THD is found. Limitations of this method are:
i) maximum 1024 points are saved ii) first half cycle output reconstructed from such
points is not proper iii) maximum two cycles are obtained from points saved in .csv
format.

Further sections describe different outputs for various ratings of voltage and

current with different gating pulses for selected configuration of single phase and three

phase HMLI.
8.1 HARDWARE RESULTS FOR SINGLE PHASE HYBRID
MULTILEVEL INVERTER

Single phase hybrid multilevel inverter is tested on 12V batteries and respective
five level output is obtained. Output is taken for R and R-L load.

8.1.1 HARDWARE OUTPUT FOR SINGLE PHASE HMLI WITHOUT
MODULATION

Fig 8.1 shows control signals for six switches. Fig 8.2 shows five level output
220 Q-2 Watt resistor connected as load. Fig. 8.3 is THD obtained from .csv file
imported to MATLAB.
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Fig. 8.1 Control signals for single phase HMLI without modulation
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Fig. 8.2 Five level output for single phase HMLI without modulation
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Fig. 8.3 FFT analysis and THD for single phase HMLI without modulation

8.1.2 HARDWARE OUTPUT FOR SINGLE PHASE HMLI WITH PD
MODULATION TECHNIQUE

Fig 8.4 shows control signals for six switches. Fig 8.5 (a) shows five level output
across 220 Q- 1 Watt resistive load. Fig 8.5 (b) shows five level output across R-L load.
Fig. 8.6 shows current through RL load for single phase HMLI with PD modulation
technique. Fig 8.7 (a) is five level output with FFT for R load as mentioned above.
Control signals are given at sample rate of 10 kHz which is changed to 100 kHz for
better resolution as shown in Fig 8.7 (b). Fig. 8.8 is THD obtained from .csv file
imported to MATLAB. Fig. 8.9 shows similar output for second card.
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Fig. 8.9 Single phase HMLI output with PD modulation technique for R load

8.2 HARDWARE RESULTS FOR THREE PHASE HYBRID
MULTILEVEL INVERTER

Three phase hybrid multilevel inverter is tested on 12V batteries and as discussed
in chapter 7 DC supply for three phase inverter is double the H bridge supply hence two
batteries in series are connected. Testing is also done with regulated power supplies of
value 80V and 40V. Output is measured across resistive load in star configuration.
Control signals are phase shifted by 120°. Different modulation techniques are applied.

8.2.1 HARDWARE OUTPUT FOR THREE PHASE HMLI WITH PD
MODULATION TECHNIQUE
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i) BATTERIES AS SUPPLY
Fig 8.10(a) shows control signals with PD modulation technique for switches of

card 1 and card 2 which are 120° apart.
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Fig. 8.10 Control signals for three phase HMLI with PD modulation technique
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Fig. 8.12 Three phase HMLI output with PD modulation technique
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Fig 8.11(a) shows 9 level line to line output voltage(vgy). 100 Q-1W resistors are
star connected as load. Fig 8.11(b) output voltage vyg. Fig 8.12 (a) output voltage vgp. Fig
8.12(b) shows 7 level vg output voltage while Fig 8.13(a) and (b) shows 7 level output
voltage vy and vp respectively. Control signals were given at sample rate of 25 kHz due
to limitation of MATLAB SIMULINK. Fig. 8.14 shows THD obtained from .csv file

imported to MATLAB for one output and other values are mentioned in Table 8.1.
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Fig. 8.14 FFT analysis and THD for 3 phase HMLI with PD modulation technique
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ii) REGULATED POWER SUPPLY

Fig 8.15(a) and (b) shows 9 level line to line output voltage vgy and vyp
respectively. Three 1 kQ- 10 W resistors are connected in parallel to obtain equivalent
resistor of 330 Q which are star connected as load. Fig 8.16 (a) output voltage vgz and
Fig 8.16 (b) shows 7 level vg phase output voltage. Control signals were given at sample
rate of 25 kHz due to limitation of MATLAB SIMULINK. Fig. 8.17 is THD obtained
from .csv file imported to MATLAB for one output and other values are mentioned in

Table 8.1.
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Fig. 8.17 FFT analysis and THD for three phase Line to line voltage for RY 330 Q
star load

Fig 8.18 (a) shows 9 level line to line output voltage(vgy). 33 Q- 1000 W heater

coil are star connected as load. Fig 8.18 (b) shows output voltage vyg. Fig 8.19 (a) shows

output voltage vgp. Control signals were given at sample rate of 25 kHz due to limitation

MATLAB SIMULINK. Fig. 8.21 is THD obtained from .csv file imported to MATLAB

for one output and other values are mentioned in Table 8.1. Fig. 8.19 (b) shows output

current ig measured across 1 Q resistor connected in series with load. Fig. 8.20(a) and (b)

show output current iy and i respectively.
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Fig. 8.19 Output voltage and current for Three phase HMLI with PD modulation
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Fig. 8.21 FFT analysis and THD for 3 phase HMLI with PD modulation technique

8.2.2 HARDWARE OUTPUT FOR THREE PHASE HMLI WITH POD
MODULATION TECHNIQUE

i) BATTERIES AS SUPPLY

Fig 8.22(b) shows control signals with POD modulation technique for switches of
card 1 and card 2 which are 120° apart. Fig 8.23(a) shows 9 level line to line output
voltage(vgy). 100 Q- 1 W resistors are star connected as load. Fig 8.23(b) shows output
line voltage. Fig 8.24 (a) output voltage vgg. Fig 8.24 (b) shows 7 level vg phase output
voltage while Fig 8.25 (a) and (b) show 7 level phase voltage vy and vp respectively.
Control signals were given at sample rate of 25 kHz due to limitation of MATLAB
SIMULINK.
o STOR | f

CHiz Z.960 GRS 2.080  H S.80ns CHIF 8,000 CHI= 2,060 Wi 7.860 N 5.00ms CHIF G060

, §37E, BA0Es :J*'B. ARG
@ G G, (b) G3 G3
Fig. 8.22 Control signals for three phase HMLI with POD modulation
technique
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Fig. 8.23 Three phase HMLI output voltage with POD modulation technique
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Fig. 8.24 Three phase HMLI output with POD modulation technique
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Fig. 8.25 Three phase HMLI output with POD modulation technique

Fig. 8.26 is THD obtained from .csv file imported to MATLAB for one output

and other values are mentioned in Table 8.1.
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Fig. 8.26 FFT analysis and THD for 3 phase HMLI with POD modulation technique

8.2.3 HARDWARE OUTPUT FOR THREE PHASE HMLI WITH APOD
MODULATION TECHNIQUE

i) BATTERIES AS SUPPLY
Fig 8.27(a) shows control signals with APOD modulation technique for switches
which are 120° apart.
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Fig. 8.27 Control signals for three phase HMLI with APOD modulation technique

Fig 8.28(a) shows 9 level line to line output voltage(vgy).100 Q- 1 W resistors are

star connected as load. Fig 8.28(b) output voltage vyg. Fig 8.29(a) output voltage vgp
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Fig. 8.28 Three phase HMLI output with APOD modulation technique
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Fig. 8.29 Three phase HMLI output with APOD modulation technique
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Fig. 8.30 Three phase HMLI output with APOD modulation technique
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. Fig 8.29(b) shows 7 level vg phase output voltage while Fig 8.30 (a) and (b)
show 7 level output voltages vy and v respectively. Control signals were given at sample
rate of 25 kHz due to limitation of MATLAB SIMULINK. Fig. 8.31 is THD obtained
from .csv file imported to MATLAB for one output and other values are mentioned in

Table 8.1.
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Fig. 8.31 FFT analysis and THD for 3 phase HMLI with APOD modulation

technique

8.2.4 HARDWARE OUTPUT FOR THREE PHASE HMLI WITH THIRD
HARMONIC MODULATION TECHNIQUE (PD)

i) BATTERIES AS SUPPLY

Fig 8.32(b) shows control signals with third harmonic injection modulation
technique for switches which are 120° apart. Fig 8.33(a) shows 9 level line to line output
voltage(vgy). 100 Q- 1 W resistors are star connected as load. Fig 8.33(b) shows output
voltage vyg. Fig 8.34(a) is output voltage vgp. Fig 8.34(b) shows 7 level vg phase output
voltage while Fig 8.35(a) and (b) show 7 level output voltage vy and vg respectively.
Control signals were given at sample rate of 25 kHz due to limitation of MATLAB
SIMULINK. Fig. 8.36 is THD obtained from .csv file imported to MATLAB for one

output and other values are mentioned in Table 8.1.

140



Experimental Results

4@kSars

CHi= 2.06U  [G® 2.000 N S.06ns CHLF 8, 0@l
5470, OGRS

(a) Gs Gy (b) Gs Gg
sty TR [—H 5 —] 4BkSass

CHi= 2.06U  [G® 2.000 N S.06ns CHLF 8, 0@l
5470, OGRS

CHI= 2,000 BEE 2,000 i 5.Gans CHLF G.580
U470, BARs
(¢) Gs Gs
Fig. 8.32 Control signals for three phase HMLI with third harmonic injection
modulation technique
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Fig. 8.33 Three phase HMLI output with third harmonic injection modulation
technique
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Fig. 8.34 Three phase HMLI output with third harmonic injection modulation
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Fig. 8.35 Three phase HMLI output with third harmonic injection modulation
technique
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Fig. 8.36 FFT analysis and THD for 3 phase HMLI with third harmonic injection
modulation technique Y-B

ii) REGULATED POWER SUPPLY

Fig 8.37(a) shows 9 level line to line output voltage(vgy). 1 kQ- 10 W resistors
are star connected as load. Fig 8.37(b) output voltage vyg. Fig 8.38(a) output voltage vgp.
Fig 8.38(b) shows 7 level vg output voltage while Fig 8.39(a) and (b) show 7 level output
voltage vy and vp respectively. Control signals were given at sample rate of 25 kHz due
to limitation of MATLAB SIMULINK. Fig. 8.40 is THD obtained from .csv file

imported to MATLAB for one output and other values are mentioned in Table 8.1.
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Fig. 8.37 Three phase HMLI output with third harmonic injection modulation
technique
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Fig. 8.40 FFT analysis and THD for 3 phase HMLI with third harmonic injection
modulation technique
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Table 8.1 Summary of output

Experimental Results

g |g |= g $s £
= |5.]8 | E 53 2%
2% |.F Es| § Ex 5
== £S5 |7 7 77 e
- s | A
load
Vo Vl THD Vo Q V1 THD
Yoy 21‘; 017011 | 96 | 4164|059 | 90 | 100 | 37.88 | 1.26
o 01 9 | 415 | 074 | 90 | 100 | 37.09 | 1.95
Var 017027 | 96 | 4164|053 | 90 | 100 | 37 | 248
Yoy i%‘ 316 | 330 | 1198 | 1.73
PD
- 320 | 330 | 1195 | 18
Yoy i%‘ 02/019 | 320 | 1385 | 049 | 292 | 33 12 | 127
Var 02029 | 320 | 1385 045 | 296 | 33 | 1131 | 138
Vi 02029 | 320 | 1385 | 053 | 296 | 33 | 1116 | 135
Yoy 21‘; 017011 | 96 | 4152| 049 | 96 | 100 | 3897 | 176
POD - 012 | 96 | 4156 058 100
Var 017 | 96 |4157| 065 | 96 | 100 | 3828 | 1.58
Yoy 21‘; 015 4157] 019 | 96 | 100 | 3728 | 1.54
037/,
APOD | vy, 015/.01 arss |97 96 | 100 | 3676 | 182
Var 01/.02 41,53 '12/'6 9 | 100 | 3682 | 1.72
Yoy 21‘; 01 96 |4586| 214 | 96 | 100 | 4657 | 2.44
Vig 019 | 96 |4543| 196 | 96 | 100 | 4598 | 2.41
Third
Harmori | Vg 015 | 96 |4582| 237 | 96 | 100 | 46.13 | 2.52
Injection | i%‘ 019/.02 | 320 | 1526 | 1.51 | 322 1k | 1486 | 1.65
. 019/017 | 320 | 153 | 177 | 322 | 1k | 1504 | 2.06
Var 0197019 | 320 | 1526 | 151 | 322 | 1k | 1511 | 1.64
12
PD vo | 12 01 48 | 24 | 079 | 40 | 100 | 1841 | 461
12

Number of cycles for THD----1

Output levels for 3 phase----9
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Vi----Fundamental voltage
V,----Peak to peak output voltage in volts
THD noted at maximum frequency as 300Hz.

vo----Single phase output
8.3 SUMMARY

In this chapter hardware results are given. Hardware was tested at low voltage
battery and high voltage regulated power supply. Results were compared for low and
high voltage for different modulation techniques. It is observed that there is no much
difference in THD as voltage is increased from low to high.

It is observed that with PD modulation technique THD obtained from simulation
much more less with respect to THD obtained from hardware results for low as well as
high DC voltage applied. POD and APOD modulation techniques are implemented for
low DC voltage. Variation in THD is more for APOD modulation technique when
simulated and applied for hardware as compared to POD modulation technique results.

It was expected that THD would be less for third harmonic injection modulation

technique as compared to other modulation techniques, but practically THD is more.
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Chapter 9 Concluding Remarks and Future Scope

The hybrid multilevel inverter is presented in this work. The project work
presents the design, simulation, analysis and implementation of hybrid multilevel
inverter. Many projects are implemented with this theory and circuit but in this research
work, DSP 28335 with MATLAB/SIMULINK, CCS 3.3 and emulator C2000 series is
used to obtain control signals along with DC regulated power supply. The DSP based
control unit reduces the system hardware and makes it more flexible in comparison with
conventional digital control.

Hybrid multilevel inverter has many merits such as: ability to synthesize
waveforms with better harmonic spectrum, an output voltage level that is higher than
those of the power semiconductor switching devices’, reduced THD, dv/dt stress and

common mode voltage and different approaches to achieve the goal of multilevel output.
9.1 GOALS REACHED

e The work presents the use of different modulation techniques simulation, analysis
and implementation of the control of hybrid multilevel inverter.

e Regulated power supply for DC 40V/80V is developed with 5A current rating.
Load regulation is 7.09%.

e Simulations are done for single phase cascaded multilevel inverters(five level,
seven level and nine level) and THD is compared.

e Simulations are also done for different hybrid multilevel inverters like
asymmetric hybrid multilevel inverter, symmetrical hybrid multilevel inverter
and half bridge module based hybrid multilevel inverter with single phase and
three phase configurations. Simulations are done with and without modulation.
As obvious THD is high for simulated circuits without modulation. For simulated
circuits with modulation THD is varying from 0.6% to 1.8% for different
topologies with different modulation techniques for single phase and three phase
as done in MATLAB R2009a.

e Similarly, simulations are done for selected hybrid multilevel inverter with
different modulation techniques for single phase and three phase and comparison
is done on basis of THD. For single phase THD varies from 1.15% to 1.52% and
for three phase THD varies from 0.84% to 1.41% as done in MATLAB R2009a.

® In hardware for single phase hybrid multilevel inverter 5 levels are obtained

using 12V/24V batteries.
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9.2

9.3

The circuit is further developed for three phase hybrid multilevel inverter. In the
project multicarrier modulation techniques including PD, POD, APOD and
THIPDPWM is used for implementation purpose with constant modulation index
which can be changed to achieve different results.

THD obtained as low as 1.2% from hardware and 0.19% from simulations in
MATLAB R2013a as shown in chapter 8. Trying recent tools it may be possible
to modify the system to reduce THD.

This system can work for 1.5KW power output.

INNOVATIONS

The power module and digital controller interface is developed as separate units
with provisions for change of configuration or up gradation in power module as
well as hardware interface to make it suitable for load up to 1.5 KW.

The control signals are developed using combination of MATLAB/SIMULINK,
code composer studio and emulator which eliminates writing a code for the
software. The technique can be used by the user who is not proficient in
programming.

FUTURE PLANS FOR EXTENSION

Software can be generated for closed loop system.

Circuit of HMLI with capacitors as voltage source can be used as other HMLI
topology. For portable HMLI regulated power supply can be replaced with
batteries and rechargeable voltage source, which may be taken as future project.
The power module can be modified to realize other hybrid multilevel inverters
such as symmetrical or asymmetrical hybrid multilevel inverter or half bridge
multilevel inverter for single phase or three phase and modulation techniques
developed in this project can be used with minor modifications.

It is possible to realize different power electronics system applications such as
drives, EV.

As already stated it is possible to modify the power and control circuit so that
HMLI can be used for load more than 3 KW otherwise same power and control
circuit can be used.

With some small modification other topologies can be developed for HMLI.

It is possible to implement this system with digital signal controller and make the

system more cost effective.
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e Other modulation techniques can be applied to this system to reduce THD.

9.4 INDUSTRY, INVOLVEMENT AND INTERACTION

e The wiring for the power module, signal conditioning circuits and assembly work
was done with the help of technical assistant at the Control System Engg., GIDC,
Makarpura, Vadodara manufacturers of drives.

e The software development tools for DSP were supplied by Edutech Systems,
Dandia Bazar, Vadodara. The software engineers of the company helped in

software development and interfacing EPB29335 with power circuit module.
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Appendix A Regulated Power Supply Design

A.1 DESIGN FOR REGULATED POWER SUPPLY

As explained in chapter 7 regulated power supply is controlled transistor series
regulator and equations used to determine values of resistors are standard transistor
equations.

As T is series pass element its Vcgo should be high and as per datasheet of
2N3773 Vcgo is 140V hence this power transistor is selected. For T, current gain and
Vceo should be high and as per datasheet of 2N3501 hgg is 300(maximum) and Vcgo is
150V hence this transistor is selected. BD139 is used for negative feedback from
output.[Ref. Fig. 7.3]

The voltage provided by potential divider R; and R, is equal to sum of base-emmiter

voltage of transistor T3 and zener diode.

Vegst V7=V, = ﬁ Vout

Output voltage required is 40V or 80V, zener is taken as 6.2V for emitter voltage
of T3. Assume value for one of the resistors and find other. Negative feedback gain can
be adjusted by inserting potentiometer in circuit. Current through zener is limited by

resistance R;.
Vi —=Vy
Ry

I; =

where V is unregulated DC obtained from bridge rectifier.

Iz is Igz which is maximum 1A from datasheet (Ic =Ig+Ig) thus Iz taken as less
then 500mA. Hence from equation R; is found.
A.2 PRACTICAL RESULTS FOR REGULATED POWER SUPPLY

Practical readings obtained for voltage regulator are given in Table A.1 and A.2.
Transformer used is 230/40V and 210/40V for testing. Load resistor is varied such that
output current is from 0 to maximum i.e 5A. Load regulation is calculated by given
equation:
% Load Regulation = (VN -VEL)/VaL *100
where Vi is output voltage at no load

Vr is output voltage at full load

166



Appendix A
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Table A.1 Load regulation for 230V input

Unregulated | Regulated Load
output (V) output current(A)
voltage(V)
54.7 42.3 0
50.7 39.9 1.5
49.7 39.8 2
49 39.7 2.5
47.8 39.6 3
46.5 39.5 4
45.5 39.4 4.5
44.5 39.3 5

% Load Regulation = (42.3-39.3)/42.3 *100

=7.09%

Table A.2 Load regulation for 210V input

Unregulated | Regulated Output

output (V) output current(A)
voltage(V)

55.5 40.8 0

51.5 40.4 1.5

50.4 40.3 2

49.3 40.2 2.5

47.9 40.2 3

46.3 39.9 4

45.3 39.6 4.5

449 38.1 5

% Load Regulation = (40.8-38.1)/40.8 *100

=6.61%
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Appendix B Photo Gallery

Fig. B.1 Hardware for control and power circuit
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Fig. B.2 Buffer, optoisolator, driver and power switch
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Fig. B.3 Panel for control and power circuit

Fig. B.4 Gating signals
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Fig. B.6 Hardware for regulated power supply
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Fig. B.7 Panel for regulated power supply

Fig. B.8 Primary voltage selector
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Fig. B.10 Load
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Fig. B.11 System setup

'# JF78335 XDS510USB Emulatorfcpu_0 - TMS320C28xx - Code Composer Stu.

Photo Gallery

File Edit View Project Debug GEL  Option  Profile  Tools DSP/BIOS  Window Help
2 w & ]
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o 3FFO9D4 761F0000 MOV DFP,-
o 3FFODE 2902 CLRC O
3FF9D7 FFED SPM (= |
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Fig. B.12 Emulator connected
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% JF 28335 XD5510USB Emulator/fcpu_O - TMS320C2Bxx - Code Compose... [= |[0][X]
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Enable XINTF in code prior tao use.
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[ =T Build , GEL Output / |Le L ;l_‘

] @ [RUNMING

Fig. B.13 Project built
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Appendix C Workshops attended and
Papers Presented/Published

Workshops attended

e ISTE approved Short Term Training Programme on “ Recent Trends in Electrical
Drives “27™ December 2010 to 1** January 2011 conducted by Department of
Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad.

e Workshop on “Embedded systems and VLSI Design”, April 11-15, 2011,
conducted by Electrical Engineering Department, Faculty of Technology &
Engineering The Maharaja Sayajirao University of Baroda

e  Workshop on “Spoken Tutorial for Latex and Scilab" on 25th and 26th June
2012 at ITM Universe, Vadodara in association with Spoken Tutorial Project, IIT
Bombay.

e  Workshop on “Smart Controllers 2012 Embedded Controllers for Solid State
Drives & Power Converters”, August 21-25, 2012, conducted by Electrical
Engineering Department, Faculty of Technology & Engineering The Maharaja
Sayajirao University of Baroda
Papers Presented/Published

[1] Hina B. Chandwani and Meeta K. Matnani, "A review of hybrid multilevel inverter
configurations and their comparison” Elixir Power Elec. Engg , May 2012, pp.
8483-8486.

[2] Hina B. Chandwani and Meeta K. Matnani, “A review and comparative study of
hybrid multilevel inverter configuration” Elixir Power Elec. Engg, July 2012, pp.
9690-9692

[3] Hina B. Chandwani and Meeta K. Matnani, “A review of modulation techniques
for hybrid multilevel inverter” Emerging Technology Trends in Electronics,
Communication and Networking (ET2ECN), December 2012, pp. 1-7

[4] Hina B. Chandwani and Meeta K. Matnani, “A Review of Multicarrier Modulation
Techniques for Various Hybrid Multilevel Inverter” International Journal of

Engineering Associates, Volume 2 Issue 4 ,Aug 2013, pp. 20-25
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