

Integration of Dynamic Power Management Strategies for
System-Level Power Optimization (Low-Power Design) with

Its Formal Verification and Implementation

A thesis submitted
for award of the degree of

Doctor of Philosophy

In

Electrical Engineering
By:

Bhatt Kiritkumar Ramanbhai

DEPARTMENT OF ELECTRICAL ENGINEERING

FACULTY OF TECHNOLOGY & ENGINEERING

 (KALABHAVAN)

THE MAHARAJA SAYAJIRAO UNIVERSITY OF BARODA

VADODARA – 390 001 GUJARAT, INDIA

OCTOBER – 2012

“Integration of Dynamic Power Management Strategies for

System-Level Power Optimization (Low-Power Design)

with Its Formal Verification and Implementation”

A thesis submitted
for the award of the degree of

DOCTOR OF PHILOSOPHY

in

Electrical Engineering

By

Bhatt Kiritkumar Ramanbhai

DEPARTMENT OF ELECTRICAL ENGINEERING

FACULTY OF TECHNOLOGY & ENGINEERING

THE MAHARAJA SAYAJIRAO UNIVERSITY OF BARODA

VADODARA – 390 001 GUJARAT, INDIA

OCTOBER – 2012

i

CERTIFICATE

This is to certify that the thesis titled, “Integration of Dynamic Power Management

Strategies for System-Level Power Optimization (Low-Power Design) with Its

Formal Verification and Implementation” submitted by Shri Bhatt Kiritkumar

Ramanbhai in fulfilment of the degree of DOCTOR OF PHILOSOPHY in Electrical

Engineering Department, Faculty of Technology & Engineering, The M. S. University of

Baroda, Vadodara is a bonafide record of investigations carried out by him in the

Department of Electrical Engineering, Faculty of Technology & Engineering, M. S.

University of Baroda, Vadodara under my guidance and supervision. In my opinion this

has attained the standard fulfilling the requirements of the Ph.D. Degree as prescribed in

the regulations of the University.

OCTOBER, 2012

Guide:

Prof. A. I. Trivedi
Department of Electrical Engineering,
Faculty of Technology & Engineering,

 The Maharaja Sayajirao University of Baroda
 Vadodara – 390 001

Head: Dean:

Prof. S. K. Shah Dr.Prof. A. N. Misra
Department of Electrical Engineering, Faculty of Technology & Engineering,
Faculty of Technology & Engineering, The Maharaja Sayajirao University of
The Maharaja Sayajirao University of Baroda
Baroda Vadodara – 390 001
Vadodara – 390 001

ii

DECLARATION

I, Shri Bhatt Kiritkumar Ramanbhai hereby declare that the work reported in this

thesis titled, “Integration of Dynamic Power Management Strategies for System-Level

Power Optimization (Low-Power Design) with Its Formal Verification and

Implementation” submitted for the award of the degree of DOCTOR OF

PHILOSOPHY in Electrical Engineering Department, Faculty of Technology &

Engineering, The M. S. University of Baroda, Vadodara is original and was carried out in

the Department of Electrical Engineering, Faculty of Technology & Engineering, M. S.

University of Baroda, Vadodara. I further declare that this thesis is not substantially the

same as one, which has already been submitted in part or in full for the award of any

degree or academic qualification of this University or any other Institution or examining

body in India or abroad.

October, 2012 Shri Bhatt Kiritkumar Ramanbhai

iii

Acknowledgements

First and foremost, I offer my utmost gratitude to the omnipresent God, for providing me

inspiration, strength, energy and patience to start and accomplish my goal.

I sincerely thanks with deep sense of gratitude to my guide Prof. A. I. Trivedi, who has

been the main source of inspiration. His guidance and motivation has been of the greatest

help to me in bringing out this work in its present shape. The direction, advice,

discussions and constant encouragement given by him have been so helpful that it

enabled me to complete work successfully. He created and pointed to the path and helped

in every way to reach this final destination.

I would like to show my gratitude towards Prof. S.K. Shah, Head of Electrical

Engineering Department, Faculty of Technology & Engineering, M.S. University of

Baroda, who always been a catalyst and the effective source of inspiration.

My parents showered blessings with love and affection on me. They guided me through

my first steps to this milestone in my life and always supported me. They taught me to

read, think and analyze.

I owe my deepest gratitude to Dr.Prof. S K Joshi, Prof. Manish J Desai and Prof. P P

Nehte who constantly supported me during my entire time-span of Ph.D. work. Their

mental and moral support encouraged me to all the time to do my work. I am also

thankful to all the other staff members including the supporting staff of Electrical Engg.

Dept., M S University of Baroda for their timely help.

I express my sincere thanks to my friends Ekata Mehul and Saifee Muffadal who were

always ready to help especially during the project testing and verification phase.

I would also like to thank my Institute authorities and management, colleagues and

other faculty members for their direct and indirect support.

I express my thanks to my wife Manisha and sweet children Vedanshi and Bhavyang

for all the support, inspiration and love given to me despite of all inconvenience caused to

them due to my preoccupation with Ph.D. work.

Finally, last but not least, I thank all persons, who helped me in my Ph.D. work, but

whose names may have been missed.

October - 2012 Bhatt Kiritkumar Ramanbhai

iv

Dedicated

To
My Parents Sri. Ramanbhai & Smt.

Hansaben,

My Wife Manisha and

My Children Vedanshi & Bhavyang

v

Abstract

Minimization of power consumption in portable and battery operated embedded systems

has become an important aspect in recent era of system design and there are several

reasons why power efficiency is becoming increasingly important. Most importantly

portable systems which are powered by batteries performing tasks need increasing

computational performance. At the same time these systems are becoming physically

smaller and battery weight is becoming more significant. Users demand longer battery

life, this can only be obtained either by increasing the capacity of the battery or by

increasing the efficiency of the logic. The rate of progress in battery technology is very

slow; hence the focus is on the digital designer to improve the logic efficiency. Also

researchers believe that there are lots of opportunities for power optimization and

tradeoffs emphasizing low power are available across the entire design hierarchy.

The Ph.D. thesis described here addresses the problem of system level power

optimization. In the early stage, a state-of-the-art consolidated review of many existing

low – power techniques is presented, which can be applied at many levels of the design

hierarchy. And in later stage, several power minimization techniques have been proposed

along with some of the design decisions, which are implemented at the system hardware

design level. The proposed techniques include memory access stage removal, resource

sharing, novel RAM addressing scheme and clock gating. These suggested modifications

are less expensive and are very useful to evaluate the system power consumption at the

early stage of the system design. It also helps to limit the time to market.

For verification and validation of the proposed energy saving techniques, a conventional

32 – bit 5 – stage pipeline processor working on RISC principle is taken as system under

consideration and its construction is discussed; upon which the proposed power reducing

strategies are implemented and a modified processor with 4 – stage pipeline structure is

developed, which results in power consumption improvement without affecting the

performance of the system. The power analysis is done after implementation of each

vi

strategy and the power improvement is achieved. This newly developed system is

implemented on the Xilinx – SPARTEN – 3E FPGA. The power comparison between

conventional 5 – stage CPU and modified 4 – stage CPU is presented at the end and also

the system performance at different frequencies of operation has been verified.

The proposed work is simulated, synthesized, tested and verified by using tools such as

VHDL simulator, Xilinx Sparten – 3E FPGA as target device, Xilinx XPower Estimator

-11.1 for power estimation, Xilinx ISE Suit – 13.1 tool for simulation and synthesis,

XPower Analyzer for power analysis and ModelSim SE PLUS-6.5 for simulated

waveform generation.

Keywords:

32 – bit Low Power Processor , Power Efficient Embedded Processor, Power

Optimization, Energy Efficient Design, Low-Power Architecture, Low – Power Design,

Low – Power System, Low – Power Pipelined Processor, System Level Power

Optimization, System Design, Power Optimization, FPGA Implementation.

vii

Table of Contents

Certificate i

Declaration ii

Acknowledgement iii

Dedication iv

Abstract v

Table of Contents vii

List of Figures xi

List of Tables xiv

Chapter 1 Introduction .. 1

1.1 Introduction .. 1
1.1.1 Leakage Current .. 2
1.1.2 Short – circuit Current ... 2
1.1.3 Switching Current ... 2
1.1.4 Process Technology ... 3
1.1.5 Reduce Leakage Power ... 3
1.1.6 Reducing Supply Power .. 4
1.1.7 Higher Density of Integration .. 4
1.1.8 Reducing Switching Activity .. 4

1.2 Motivation .. 5

1.3 Research Objectives .. 7

1.4 Contribution to the Thesis .. 8

1.5 Thesis Organization .. 10

Chapter 2 Background Work .. 12

2.1 Commercially Available FPGAs ... 12
2.1.1 Introduction .. 12
2.1.2 FPGA Basis ... 12

2.1.2.1 FPGA Architectures .. 12
2.1.2.2 Logic Blocks .. 13
2.1.2.3 Interconnect Resources ... 13
2.1.2.4 Classes of commercial FPGAs .. 14

2.1.3 Currently available FPGAs Technology ... 15
2.1.3.1 Programming Technology .. 15
2.1.3.2 Logic Blocks Architecture ... 19
2.1.3.3 Interconnections .. 21
2.1.3.4 I/O Structures .. 24
2.1.3.5 Other Resources .. 24

2.2 Power Consumption Model of MOS-based Circuits .. 26

viii

2.2.1 Introduction .. 26
2.2.1.1 The CMOS Inverter .. 26

2.2.2 Power Consumption of Complementary CMOS ... 29
2.2.2.1 Static Power ... 29
2.2.2.2 Dynamic Power Caused by Load Capacitance ... 31
2.2.2.3 Dynamic Power Caused by Short-Circuit Currents .. 32

2.2.3 Power Consumption of SRAM ... 33
2.2.4 Power Consumption of Input / Output Circuits .. 34

2.2.4.1 Input Circuits ... 34
2.2.4.2 Output circuits ... 35

2.2.5 Power Consumption in Clock Circuits ... 37

2.3 Power Consumption in SRAM-based FPGAs. .. 37

2.4 Conclusion .. 38

Chapter 3 Power Reduction Techniques for Embedded Systems ... 40

3.1 Introduction .. 40

3.2 Defining Power Dissipation in CMOS Circuits ... 41

3.3 Power Reduction Methodologies for Various Abstraction Levels ... 43
3.3.1 Logic and Circuit Level Power Reduction Techniques ... 43

3.3.1.1 Transistor Sizing ... 43
3.3.1.2 Transistor Reordering .. 44
3.3.1.3 Half Frequency and Half Swing Clocks ... 45
3.3.1.4 Logic Gates Restructuring .. 45
3.3.1.5 Technology Mapping ... 46
3.3.1.6 Low Power Flip-Flops ... 46
3.3.1.7 Low – Power Control Logic Design .. 47
3.3.1.8 Delay-Based Dynamic Supply Voltage Adjustment ... 47

3.3.2 Low – Power Techniques for Interconnect ... 47
3.3.2.1 Bus Encoding and Cross Talk ... 48
3.3.2.2 Low Swing Buses .. 48
3.3.2.3 Bus Segmentation .. 49
3.3.2.4 Adiabatic Buses .. 50
3.3.2.5 Network-On-Chip ... 50

3.3.3 Low Power Techniques for Memories and Memory Hierarchies ... 51
3.3.3.1 Splitting Memories into Smaller Sub-systems ... 51
3.3.3.2 Augmenting the Memory Hierarchy with Specialized Cache Structures 52

3.3.4 Power Reduction at Architecture Level .. 53
3.3.4.1 Adaptive Cache .. 53
3.3.4.2 Adaptive Instructive Queues ... 54
3.3.4.3 Algorithms for Reconfiguring Multiple Structures... 55

3.3.5 Dynamic Voltage Scaling (DVS) ... 55
3.3.5.1 Unpredictable Nature of Workloads ... 56
3.3.5.2 Indeterminism and Anomalies in Real Systems ... 56
3.3.5.3 Interval – Based Approaches ... 57
3.3.5.4 Inter task Approaches .. 57
3.3.5.5 Intra task Approaches .. 58
3.3.5.6 The Implications of Memory Bounded Code ... 59

ix

3.3.5.7 Dynamic Voltage Scaling in Multiple Clock Domain Architectures .. 60
3.3.6 Algorithmic Level Power Reduction Techniques ... 60

3.4 Introduction to Emerging Technologies for Power Reduction .. 64
3.4.1 Fuel Cells ... 64
3.4.2 MEMS .. 65

3.5 Conclusion .. 66

Chapter 4 System Architecture .. 68

4.1 Introduction .. 68

4.2 Processor Architecture .. 68
4.2.1 IF Stage .. 70
4.2.2 DC Stage .. 70
4.2.3 EX stage ... 74

4.2.3.1 Data memory access .. 74
4.2.3.2 ALU .. 74

4.2.4 WB stage ... 75

4.3 Instruction Set Formation ... 75

4.4 Sub-modules of Processor .. 78
4.4.1 ALU Design .. 79
4.4.2 Register File Design ... 79
4.4.3 Data Memory Design .. 80
4.4.4 Instruction Memory Design .. 80
4.4.5 Instruction Decoder .. 80
4.4.6 Control Unit Design ... 83

4.5 Multiplier Unit & Its Logic ... 85

4.6 Clock Distribution Network ... 87

4.7 Data Forwarding and Data Dependency .. 91
4.7.1 Structural Hazards ... 92
4.7.2 Data Hazards ... 92
4.7.3 Control Hazards... 93

4.8 External Interface ... 94

4.9 Instruction Simulation and Verification .. 94

4.10 FPGA Design Flow ... 94

4.11 Summary of Synthesis Report ... 95

4.12 Power Estimation Reports of Complete Architecture ... 96

4.13 Conclusion .. 99

Chapter 5 Proposed Strategies for Power Optimization ...101

5.1 Introduction .. 101

5.2 Architecture of 32 – bit 5 – Stage Pipeline (Conventional/Standard) CPU ... 101

5.3 Proposed Strategies for Power Reduction .. 109
5.3.1 Memory Access Stage Removal Technique .. 109

x

5.3.2 Resource Sharing Technique ... 116
5.3.3 Novel RAM Addressing Scheme .. 119
5.3.4 Clock Gating .. 120

5.4 Verification of 4- Stages CPU After Implementation of Power Optimization Strategies 128
5.4.1 Performance Verification .. 128
5.4.2 Graphical Representation of Power Requirement .. 133

5.5 Conclusion .. 136

Chapter 6 Conclusions and Future Work ...138

6.1 Summary and Contributions ... 138

6. 2 Future Work ... 139

6.3 Closing Remark ... 140

List of Publication...141

Bibliography...143

xi

List of Figures

Figure 1.1: Power Reduction Opportunities .. 3

Figure 2.1: Anti Fuse - Switch ... 16

Figure 2.2: The EPROM Transistor ... 16

Figure 2.3: SRAM Cell with (a) Pass – Transistor, (b) Transmission Gate, (c) Multiplexer 18

Figure 2.4: HRL SRAM Cell ... 18

Figure 2.5: A 2- Input LUT ... 19

Figure 2.6: Multiplexer – Based Logic Cell ... 20

Figure 2.7: Multiplexer and Basic Gates LCELL Proposed by Atmel TM (Courtesy of AtmelTM Co.) 21

Figure 2.8: ActelTM ACT1 Interconnect Architecture (Row – Based) .. 22

Figure 2.9: XC4000E/XL/XV Interconnect Architecture (Segmented – Based) (Courtesy of XilinxTM Corporation)
 ... 23

Figure 2.10: XC4000 Series Interconnect Resources (Courtesy of XilinxTM Co) .. 23

Figure 2.11: Hierarchical Interconnect (Courtesy of AlteraTM Corporation) ... 24

Figure 2.12: Embedded Memory (a) Block, (b) Distributed Cells ... 25

Figure 2.13: Standard CMOS Inverter ... 26

Figure 2.14: DC Transfer Characteristics of a CMOS Inverter, (a) Voltage and (b) Current 27

Figure 2.15: Input Voltage and Short – Circuit Current .. 32

Figure 2.16: TTL Input Buffer .. 35

Figure 2.17: Tri – State Output Buffer .. 36

Figure 3.1: Transistor Reordering .. 44

Figure 3.2: Gate restructuring (Figure adapted from the Pennsylvania State University Microsystems Design
Laboratory’s tutorial on Low Power Design) ... 45

Figure 3.3: Low Voltage Differential Signalling .. 49

Figure 3.4: Bus Segmentation .. 49

Figure 3.5: Two Bit Charge Recovery Bus .. 50

Figure 3.6: Dead Block Elimination .. 54

Figure 3.7: Performance Versus Power ... 62

Figure 4.1: Detailed Architecture of 4 – Stage Pipelined Processor Under Consideration 71

Figure 4.2: An ALU Architecture for 4 – Stage CPU .. 75

Figure 4.3: Formats for Various Instructions ... 77

Figure 4.4: Detailed Internal Architecture of Instruction Decoder .. 81

Figure 4.5: Internal Architecture of Multiplexer .. 82

Figure 4.6: Diagram of Instruction Decoder with all relevant Signals .. 83

Figure 4.7: Main Features of Multiplier Block ... 85

xii

Figure 4.8: Pin Diagram of MULT18X18SIO ... 86

Figure 4.9: Four possible Configures for the B_INPUT Attribute and BREG Attribute ... 87

Figure 4.10: Xilinx SPARTAN – 3E Clock Distribution Network (Courtesy of XilinxTM Co.) 88

Figure 4.11: Internal Element of 2 – to -1 Multiplexer (Courtesy of XilinxTM Co.) .. 89

Figure 4.12: Quadrant – Based Clock Routing (Courtesy of XilinxTM Co.) .. 90

Figure 4.13: Data Dependency and Data Forwarding .. 94

Figure 4.14: External Interface ... 94

Figure 4.15: FPGA Design Flow ... 95

Figure 4.16: Summary of Estimated Power Distribution Report .. 97

Figure 4.17: Graphical Representation of Estimated Power Requirements for Internal Modules and Effect of
Various Parameters on Power Consumption .. 98

Figure 5.1: Detailed Architecture of 5 – Stage Pipelined Conventional CPU ... 102

Figure 5.2: Summary of Power Consumption Report for 5 – Stage Pipeline CPU ... 103

Figure 5.3: Instruction Fetch for 5 - Stage CPU ... 104

Figure 5.4: Instruction Decode for 5 – Stage CPU .. 105

Figure 5.5: RAM Address for 5 – stage CPU ... 106

Figure 5.6: Instruction Execute for 5 - Stage CPU .. 107

Figure 5.7: Write Back Stage for 5 – Stage CPU ... 108

Figure 5.8: Summary of Power Consumption Report for 4 – Stage Pipeline CPU (After Implementation of
Memory Access Stage Removal ... 111

Figure 5.9: Instruction Fetch for 4 – Stage CPU ... 112

Figure 5.10: Instruction Decode and Operand Fetch for 4 – Stage CPU ... 113

Figure 5.11: Instruction Execute for 4 – Stage CPU .. 114

Figure 5.12: Write Back for 4 – Stage CPU .. 115

Figure 5.13: MUX for Resource Optimization ... 117

Figure 5.14: MUX with Opcode as Selection Logic ... 118

Figure 5.15: Summary of Power Consumption Report for 4 – Stage Pipeline CPU (After Implementation of
Resource Sharing Strategy) ... 119

Figure 5.16: RAM Address Multiplexer ... 120

Figure 5.17: Clock – Enabled Global Buffer Resource ... 121

Figure 5.18: Gated Clock – Not Preferable ... 121

Figure 5.19: Clock Enable – Efficient way of Gating a Clock Signal ... 121

Figure 5.20: Summary of Power Consumption Report for 4 – Stage Pipeline CPU (After Implementation of RAM
Addressing Scheme and Clock Gating along with earlier Techniques) .. 125

Figure 5.21: Simulated Waveforms for Clk_gating Signal Varification for ALU Related Instructions 126

Figure 5.22: Simulated Waveforms for Clk_gating Signal Verifcation during RAM Access Instructions 127

Figure 5.23: Verification of Instruction Fetch for 4 – Stage CPU ... 129

Figure 5.24: Verification of Instruction Decode and Operand Fetch for 4 – Stage CPU 130

Figure 5.25: Verification of Instruction Execute for 4 – Stage CPU .. 131

xiii

Figure 5.26: Verification of Write Back Operation of 4 – Stage CPU .. 132

Figure 5.27: Graphical Representation of Estimated and Actual Power Consumption of 5 – Stage CPU 133

Figure 5.28: Power Consumption Requirement after Implementation of Power Saving Techniques 134

Figure 5.29: Overall Power Consumption Comparisons .. 135

Figure 5.30: Graphical View of Power Consumption Comparison at Different Clock Frequencies 136

xiv

List of Tables

Table 1.1: Power Dissipation of Microprocessors (Source: UK Electronics Forum) ... 5

Table 1.2: Technological Evolutions (Source: Semiconductor Industry Association) .. 6

Table 1.3: Allowable maximum powers for the coming years (Source: ITRS) ... 6

Table 2.1: Commercially Available FPGA Architecture .. 15

Table 4.1: Summary of All the Instructions Supported by this Processor ... 77

Table 4.2: Summary of Control Signals .. 83

Table 4.3: Pipeline Registers Flow Through Different Stages of Pipeline .. 91

Table 4.4: Summary of Synthesis Report ... 96

Table 5.1: List of Instructions under Consideration ... 116

Table 5.2: Summary of Power Results ... 133

Table 5.3: Summarizes the Results of Power Requirements ... 134

Table 5.4: Power Consumption of CPUs at Different Frequencies .. 135

1

Chapter 1
 Introduction

1.1 Introduction

There are many possible facts because of which the power efficiency is becoming important

consideration. The most portable systems used in recent era, which are powered by batteries,

are performing tasks requiring lots of computations. At the same time these systems are

becoming physically smaller in size and battery weight is becoming more important factor.

Users demand longer battery life and this can only be obtained either by increasing the

battery capacity or by increasing the logic efficiency. The rate of development in battery

technology is very slow; hence, to improve efficiency the focus is on the system designers.

There are many other reasons because of which the system power consumption is becoming

important aspect. As the heat dissipation of components increases it becomes more difficult

to provide sufficient cooling through the good packages, heat sinks or fans and it also

increases the cost. Furthermore, higher temperatures increase the strain on the component and

hence reduce its trustworthiness. Other electrical issues are also need attention, to provide a

supply with proper capacity demands a big number of bond wires between the chip and the

package, and a huge amount of the potential signal routing space is occupied by power

distribution. High current densities can lead to electro-migration and at the system level,

higher power requirement demands larger and expensive power supplies. These factors, and

many others which are presented in [1], together made power efficiency an important factor

for the design of digital systems.

Designing low – power system requires some methodologies to be implemented at every

level of abstractions such as system level, architecture, algorithm level and circuit level. The

prime components of such methodologies are estimation and optimisation as discussed in [2],

to understand these components one must know that how the energy is getting dissipated. It is

understood that low-power design technology means system should dissipate lowest energy

when actually it performs and in case of CMOS technology; it is proved that it consumes

2

considerably less amount of energy. There are three major sources of power consumption in

CMOS circuits as described in [3]. Power dissipation is either static or dynamic. Static power

dissipation is caused due to leakage and short circuit currents while dynamic power

dissipation is due to occurrence of switching activities within the circuit. Dynamic power is

the biggest contributor to the power dissipation within the system and hence it catches

attention. The proposed power reduction strategies intend to reduce dynamic power by

reducing unwanted transitions within the system and hence, the total power consumption.

1.1.1 Leakage Current

It is primarily determined by the technology used in its fabrication and consists of reverse

bias current in the parasitic diodes formed between source and drain diffusions and the bulk

region in a MOS transistor described in [4]. The Sub threshold current that arises from the

inversion charges that exists at the gate voltage between the threshold voltages. This is also

known as static power consumption and is proportional to the number of transistors which are

in the OFF state.

 1.1.2 Short – circuit Current

It is due to DC path between the supply rails during the output transitions explained in [5].

1.1.3 Switching Current

It is dissipated when capacitive loads are charged and discharged during logic changes. In

any digital System, to understand the whole power estimation of a system one must

understand the CMOS inverter and its internal structure presented in [6] [7].

A low level of the design space is not of much use for the designer, since the defined design

flow ends at the gate level. Techniques that effect lower levels are out of the scope for this

dissertation work. Even though, the given information is relevant for a complete

understanding of the matter. At the higher level of abstraction at which a methodology is

applied, the more promising and effective savings on power dissipation can be achieved

which is described through Figure 1.1. This thesis focuses only to deal with system level

(Behaviour Level) where up to 25% power reduction possibilities yet to be explored as per

3

25%

5%
50%

20%

Power Reduction Opportunities

System Level

Register Transfer Level

Transistor Level

Unchanged

ITRS reports and the other two levels i.e. transistor level and a layout levels are not within

the scope of this work.

1.1.4 Process Technology

To give a complete picture on low power techniques, there is no relevance for the designers,

as the described effects base on a level of design abstraction which is not in designer’s scope.

In reducing capacitance is the effective methodology of reducing power supply voltage.

Power savings through higher density of integration can be done and the reducing

Capacitance Cout can be described as the sum of three capacitances:

 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐶𝐶𝑓𝑓0 + 𝐶𝐶𝑤𝑤 + 𝐶𝐶𝑝𝑝 [1.1]

Cfo is the input capacitance of fan-out gates, Cw the wiring and Cp the parasitic capacitance.

For deep sub-micron technologies Cw is the most dominant component and also difficult to

estimate. And the effect of “cross-talk” have to be considered. Designers are not in charge of

placing and routing a design below gate level and have therefore no major role to play. Only

lay-designer and technology vendors are able to deal with this parameter.

1.1.5 Reduce Leakage Power

Figure 1.1: Power Reduction Opportunities

4

Generally, Pdynamic outweighs Pleakage, if the design is idle most of the time and switching

activity is low [8]; then these effects are out of our design flow. The technology vendor is

responsible for the design flow at this level of abstraction.

1.1.6 Reducing Supply Power

Reducing supply voltage is the best way of saving power since its influence is quadratic; but

the drawback is that it reduces the switching speed as suggested by equation 1.2.

 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐾𝐾 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 𝑉𝑉𝑑𝑑𝑑𝑑 2 f [1.2]

Usually a circuit is designed to meet certain timing constraints which will be violated when

the supply voltage is reduced. The solution is called “architecture-driven voltage scaling”.

The level of concurrency is raised by adding more hardware to the design. Typical

methodologies are pipelining and parallelization. This eases the timing restrictions. In spite of

having more hardware that is consuming power, the overall power dissipation is reduced

because of the quadratic influence of Vdd [9] [10].

1.1.7 Higher Density of Integration

By minimizing the scale of a circuit, its capacitances and therefore its dynamic power

dissipation can be reduced. The technology is fixed to the structures of the vendors’

technology; hence, there is no scope for designers.

1.1.8 Reducing Switching Activity

In order to reduce power dissipation effectively, the low power methodologies must target

this source to control. As discussed, earlier the designers have no control on Vdd and only a

minor one on Cout, then the switching activity is left and is a component upon which we can

concentrate [11] [12]. Many existing along with the newly suggested methodologies can be

tried to reduce the switching activity to a greater extent at the system level [13].

The existing techniques are Minimization of Glitches; Minimization of the Number of

Operations; Low Power Bus/Bus Inversion; Charge Recovery and Adiabatic Systems;

5

Scheduling and Binding Optimization ; Power Down Modes ; Power Supply Shutdown ;

Clock Gating; Enabled Flip-Flops; Memory Partitioning; Routing approach to reduce the

Glitches; Priority Selection; Pipeline Structures ; Switching algorithm; Use of don’t care

conditions; Use of Gray coding in place of Binary coding; Logic Optimisation ; Supply

Voltage Adjustment ; Retiming ; Pre-computation ; Clocking Schemes and Asynchronous

Logic ; Data-path activity management, etc..

1.2 Motivation

From above discussion, it is clear that power is a key control for high-performance systems.

With large integration density and improved speed of operation, systems with high clock

frequency are emerging. These systems are based on high-speed products such as

microprocessors. The cost associated with packaging, cooling and fans required by these

systems are increasing significantly. The Table 1.1 shows the power consumption of various

microprocessors that operate in a range of 50 to 300 MHz. These data shows that power

consumption becomes too excessive at higher frequencies.

Another issue related to power consumption is reliability. An excessive increase in power

dissipation can reduce the performance of the circuit [10], which may sometimes enables the

failure mechanism such as silicon interconnect fatigue, package related failure, electrical

parameter shift, electro-migration and junction fatigue. Reliability problems coupled with

power consumption issues, when scaling down to 0.5μm, have driven the electronics industry
Table 1.1: Power Dissipation of Microprocessors (Source: UK Electronics Forum)

Processor
Clock

(MHz)

Technology

(µm)

VDD

(Volts)

Power Peak

(Watts)

Intel Pentium & Onwards 53 0.80 5.00 16

DEC Alpha 21064 200 0.75 3.30 30

DEC Alpha 21164 300 0.50 3.30 50

Power PC 620 133 0.50 3.30 30

MIPS R10000 200 0.50 3.30 30

UltraSparc 167 0.45 3.30 30

6

to adopt lower supply voltages. New standards for ICs operating voltage such as 3.3 volts, 2.5

volts and 1.8 volts are adopted. The effect of lowering the supply voltage results into low

power consumption. But since size, density, frequency and the number of I/O per package are

increasing drastically, power dissipation increases also. The Table 1.2 shows the evolution of

ICs technology and the increment of power consumption.

Table 1.2: Technological Evolutions (Source: Semiconductor Industry Association)

We must consider that most recent processors can work at 1GHz or more. The power

consumption trends for MPUs and high performance ASICs shown in the following Table 1.3

predicted by the ITRS; which are classified into three categories.

Table 1.3: Allowable maximum powers for the coming years (Source: ITRS)

For High-performance desktop applications, the heat sink on package is permitted; for cost-

performance, the economical power management solutions of the highest performance are the

most important and the portable battery operations.

Parameters 1995 1998 2001 2004 2007 2010

Technology (µm) 0.35 0.25 0.18 0.13 0.1 0.07

DRAM size Bits 64M 256M 1G 4G 16G 64G

Transistors per µP 12M 28M 64M 150M 350M 800M

Gates ASIC 5M 14M 26M 50M 210M 430M

Frequency (MHz) 300 450 600 800 1000 1100

Metal Layer 5 5 6 6 7 8

Supply (Volts) 3.3 2.5 1.8 1.5 1.2 0.9

Power (Watts) 80 100 120 140 160 180

Category 2012 2014 2016 2018 2020

High-Performance with Heat sink (W) 198 198 189 198 198

Cost – Performance (W) 125 137 151 151 157

Battery (W) – (Low Cost/Hand Held) 3.0 3.0 3.0 3.0 3.0

7

The power consumption is continued to increase even though the use of a low supply voltage.

The increased power consumption is due to higher chip operating frequency; the higher

interconnect overall capacitance and resistance, the increasing gate leakage which is

exponentially growing and scaling on-chip transistors. The saturation in battery technology,

the data given in Table 1.1, Table 1.2 & Table 1.3 and the high speed applications in current

era demands the strategic development of system level designing methodology which meets

the power requirement.

Dynamic power management strategies is the domain which has very strong potential to meet

the objective and as mentioned in Figure 1.1 there are passages lies for further development.

Many techniques have been developed in recent years and the conventional power techniques

have been tried on most systems. But still there is a scope for development which covers

many system specific techniques to overcome certain limitations and helps to optimize the

average power consumption of the system to the greater extent.

Hence, main motivation of the work is to design, develop and implement various dynamic

power saving strategies together upon the specific system, which can optimize the system

level power consumption.

1.3 Research Objectives

In this work, Xilinx SPARTAN-3E FPGA platform is used for implementation and the main

objectives behind the work are listed below:

• To understand the requirement for the processors and to design the 32 – bit processor with

4 – stage pipeline structure based on RISC Principle along with its RTL coding.

• Separate memory for both code and data is used and on chip Data memory (2048X32 bits)

as well as code memory (2048X40 bits) are made using Xilinx block memory for both

types of memory of the processor, complete architecture is to be developed along with

Data Forward Unit which is required to provide proper data flow to the ALU and Hazard

Detection Unit to sense the various data hazards because of which proper data forwarding

is not restricted and the pipeline stages stalls for one or two cycles in order to ensure the

instruction execution with the correct data set, Formation of instructions (not all but sub-

8

set) are mainly for three types i.e. register type, immediate type and the branch type, which

are to be used to carry out the work.

• To develop Whole system using VHDL simulator and validated through waveforms

generated using ModelSim SE – 6.5. The power estimation and analysis is to be carried by

using Xilinx ISE – 13.1 using Xpower Estimator -11.1 and Xilinx Xpower Analyser. Also

synthesized for Xilinx Family FPGA target board and synthesis report is produced.

• To develop and implement various low – power strategies to be implemented at hardware

level up on the system under consideration for power reduction purpose.

• To verify the implementation to claim as low-power embedded system by making power

comparisons using the results received from the Xpower Analyzer with and without power

considerations.

• To implement a suggested novel strategies at system level and to carry overall Dynamic

Power analysis for the developed system.

1.4 Contribution to the Thesis

• 32- bit processor has been developed with 5 and 4 - pipeline stages based on RISC

principle comprising of Data forward unit and Hazard Detection Unit. RTL coding for

processor has developed and verified. Formation of required instructions for the processor

has been done with verification. These instructions are mainly of three types: Immediate,

register and branch.

• System as a whole is developed using VHDL listing, synthesized and tested by down

loading into Xilinx family FPGA and generated the synthesis reports for with and without

modification of the implementation.

• Normal pipeline stages have been modified and reconfigured pipeline stages have been

implemented with special data path activity management logic.

9

• Normally, recognition of dependency is carried in EX stage. In our processor design, we

do it in DC stage and use pipeline registers to transfer to EX stage. DC stage save some

hardware like logic gates by using common logic with other decode circuits in shared

fashion. Also time utilized by EX stage will be reduces because the signals like ADEPEN

and BDEPEN which are available immediately at the beginning of EX stage.

• The newly developed power reduction logic is employed along with multiplexers; which

decide whether to bypass the data or to send to the next stage, the control block generate

the control signal which act as select signal for the multiplexers.

• The controlled mechanism for clock signal is developed using a unique logic, which uses

the status of the current instruction and the control signal generated by control unit to

forward the signal to the concern pipeline stage only, that is the pipeline registers for write

operation are to be disabled for the duration of execution cycle, it is employed at the

architecture level also to prevent the clock signals to reach to various modules of the

processors when it is not in use. The absence of clock signal prevents register and/or flip-

flops from changing values, hence input to combinational circuits remains unchanged and

no switching takes place during this period. It is possible because the architecture of ALU

is designed in modular form; the execution logic is developed in a way so the operation

performed by ALU is done in sub-part inside the ALU. As almost all the instructions use

ALU, hence only those parts of the ALU should remain ON which is to be used by the

current instruction and rest are to remain OFF. Each of the modules of the ALU is

preceded by a set of transmission logic gates controlled through the ALU control unit;

which allow the data to pass through, otherwise they simply put that portion of ALU in an

electrically disconnected state.

• It is known that buses are the biggest source of power consumption, for the data to be

transmitted over the bus; the care has been taken for hardware/software partitioning and

system has been designed by keeping view that very less communication is to be done

with IO and the most of all components are made available on chip, so power consumption

load from the buses has been eliminated.

• Thus, Power results are achieved by implementing the various power saving techniques

such as memory access stage removal, resource sharing, RAM Addressing Scheme and a

10

Clock Gating on the system under consideration at hardware level and finally the power

dissipation comparison for modified 4 – stage pipeline CPU with the conventional 5 –

stage CPU has been made to the satisfactory level.

1.5 Thesis Organization

The main goal in this thesis is to construct a complex system such as CPU and implement it

on Xilinx FPGA family; also discusses the power consumption in FPGA and implements

various proposed strategies at the design level to reduce the dynamic power to have system

level low power design without making any change at the architecture level of the existing

FPGA.

This dissertation thesis is organised in six chapters. This chapter has discussed introduction,

research objectives and motivation for the low-power design and the detailed discussions on

relevant issues are presented in the subsequent chapters.

Chapter 2 is based on a literature survey and it presents the brief description of different

FPGAs technologies, its internal architectures and programming technologies and an

overview of various static and dynamic power consumption sources in the MOS – Based

circuits.

Chapter 3 describes the various abstraction levels of the system design and also discusses the

various system level dynamic power reducing techniques which can be applied at different

levels of the system, this chapter is also on the basis of literature survey and incorporates the

survey of system level power reduction methodologies.

Chapter 4 includes the complete construction of modified 4 – stage pipelined CPU as a

system under consideration, formation of its instruction set. The instructions considered here

are only those which are useful to carry out the work, not a whole instruction set. The

construction of CPU is represented in this chapter and its verification is discueed in Chapter 5

through the simulated waveforms. This chapter also presents the power estimation as power

budget is essential component for designer to have power optimization.

11

Chapter 5 deals with the design of conventional 5 – stage CPU and the development &

implementation of newer strategies called resource sharing and memory access stage

removal, A Novel RAM Addressing Scheme and Clock Gating, which are applied on the

system under consideration and derive the comparison of power dissipation for with and

without implementation of these newer strategies. It also includes implementation and

verification of low-power CPU designed using VHDL coding, power analysis has been

carried by using Xpower Analysis and synthesized on Xilinx FPGA. Results from the

experimental set – up is also a part of the chapter. It incorporates the summary of power

reports and different power consumption comparisons for the system under consideration.

Finally, Chapter 6 incorporates our conclusions and the future work. This chapter is

concluded by proposing some future research axes that can be explored by using this

dissertation as start point in the area of low-power designs.

12

Chapter 2
 Background Work

The proposed work is to be implemented on the Xilinx FPGA; hence it is necessary to study

the FPGAs, its power consumption sources and the related mathematics to understand the

system implementation completely, also the related work is presented in [14] [15] . The

following sections of this chapter are based on a literature survey on FPGA technologies, its

internal architectures and programming technologies. It also incorporates an overview of

various static and dynamic power consumption sources.

2.1 Commercially Available FPGAs

2.1.1 Introduction

An FPGA comprises of an array of logic blocks which are interconnected through

interconnection resources and has three main components: Logic Blocks, I/O blocks and

programmable routing and recent FPGAs also contain the embedded memory cells and

Phase-Locked Loop (PLL) blocks. This section discusses the different FPGA architectures,

the basic technologies used to make FPGAs programmable, the different types of logic

blocks, I/O elements, and interconnect elements are also included. It also covers most of

programming technologies and SRAM based FPGA architectures.

2.1.2 FPGA Basis

2.1.2.1 FPGA Architectures

There are large number of varieties of FPGAs are available in the market with different

internal architecture, such as the size and structure of logic blocks and that of the interconnect

resources.

13

The FPGA architectures can be categorised based on the size and flexibility (or granularity)

of the Logic Cell (LC), and based on the routing (or interconnect) architecture [16] . Also the

FPGAs can be classified based only in their routing architecture [17]. The following

discussion describes both types of classifications.

2.1.2.2 Logic Blocks

The structure and content of a LC (or logic cell/block) can be as simple as 2-input NAND

gates or can be more complex structure with a Multiplexer or Look-Up Tables (LUT). For

some FPGAs, a logic block (LB) corresponds to an entire PAL-like structure. There is

number possibilities to define the logic block as a more complex circuit, consisting of several

sub-circuits and having more than one output. But most logic cells contain D-type Flip-Flops

in order to implement sequential circuits.

Logic blocks can often classified by their granularity. The granularity of a LC can be defined

in different ways, such as the number of transistors, the number of Boolean operations that

can be realized by the LB, or the number of inputs and outputs of the block, which can also

be classified into two categories:

1. The fine-grain logic blocks architecture consists of few transistors with programmable

interconnect resources. The advantage of this type is the high LB utilization can be

achieved, but they need many wires and programmable switches which increases

additional chip area, timing delay and power consumption.

2. Coarse-grain architectures are based on the ability of a multiplexer that connects each of

its input to a constant or to a signal to implement different logic functions.

The most important advantage of Multiplexer-based LBs is that they provide a high degree of

functionality with a less number of transistors which is achieved at the cost of big number of

input requirements capable to place a high demand on routing resources e.g. ACTELTM

FPGA Logic Block.

2.1.2.3 Interconnect Resources

14

The routing architecture of an FPGA is the way in which the programmable switches and the

wires are placed into the circuit to allow the programmable interconnection between the logic

and I/O blocks which includes wire segments of varying lengths and interconnection blocks.

The number of wires in a FPGA affects the density achieved by the device, if the used wires

are inadequate, then a small number of logic blocks are achieved. On the other hand, an

excessive number of wiring segments can increase the die size and reduce the utilization

efficiency.

Routing architectures of FPGAs have to accomplice two constraints: routability and speed.

The routability is the capability of the FPGA to accommodate all nets for a typical

application even if the number of wire has to be predefined for blank (or unprogrammed)

FPGA configuration. FPGAs are classified into three basic architectural groups based on the

logic blocks size, functionality and, the structure of the interconnect resources [16] [17]:

1. Row-based FPGA architecture which consists of coarse-grain logic blocks in rows, which

are divided horizontally by programmable routing channels. The programmable routing

contains wire segments of different lengths e.g. ACTELTM FPGAs.

2. Symmetrical FPGAs are based on large grain logic blocks called Configurable Logic

Blocks (CLBs), it is a matrix of CLBs with horizontal and vertical routing channels and

can also be visualized as a net of programmable wires for direct (or neighbourhood)

connections, along with general purpose and long lines e.g. XilinxTN, LucentTM and

AtmelTM devices.

3. The cellular architecture consists of two-dimensional symmetrical arrays of Logic Cells

with a hierarchical interconnect structure in which LCs can be connected directly about

each other by using a low level of interconnect (or local interconnect). The longer

connections use a high level of interconnect (formed by long wires) to reach one section

from another, or one LCELL to an I/O cell e.g. MotorolaTM and AlteraTM FPGAs.

2.1.2.4 Classes of commercial FPGAs

In general, there are two kinds of FPGA architectures: fine-grained and coarse-grained. Fine-

grained devices consist of a large number of relatively simple logic blocks such as either a

two-input logic function or a 4-to-1 multiplexer and a D-type flip-flop (i.e. ActelTM,

15

AtmelTM); whereas coarse-grained comprises of large logic blocks having two or more look-

up tables (LUT) and DFFs. Usually, these architectures are based on 4-input LUTs (i.e.

AlteraTM, LucentTM, VantisTM and XilinxTM). The Table 2.1 summarizes the classification of

some FPGA architectures:

Table 2.1: Commercially Available FPGA Architecture

2.1.3 Currently available FPGAs Technology

2.1.3.1 Programming Technology

In this section we expose the different programming technologies. FPGAs consist of two

layers: a programmable layer that contains programmable elements, such as low resistance

and low-capacitance interconnect switches; and a logic layer which contains logic blocks, I/O

elements and interconnect. The programming elements are used to implement the

programmable connections among all the internal logic elements. Several different

programming technologies are used to implement the programmable switches in FPGAs. In

the following section we will describe some of the currently used technologies.

a) Anti-fuse

The anti-fuse switch or a silicon composition is a device with two-terminal having un-

programmed state provides a very high resistance between its terminals. When a high voltage

(from 11 to 21 volts) is applied between both terminals, the anti-fuse is blown to create a low-

resistive and permanent link. The anti-fuse developed by ActelTM consists of three layers. The

top layer is a conductor made of poly-silicon. The middle layer consists of an oxide-nitride-

oxide (ONO) chemical composition used as insulator. The bottom layer is a conductor of

Architecture Anti-Fuse Flash EPROM SRAM

Coarse-grained QuickLogic (pASIC) Cypress (Delta) Cypress (Ultra)

Altera (Flex, Apex)
Atmel (AT40K)
Lucent (Orca)
Vantis (VFI)

Xilinx (XC3000,
XC4000, Spartan,

Virtex)

Fine-grained Actel (ACT) Actel (ProAsic)
GateField

GateField
(GF260)

Actel (SPGA)
Atmel (AT6K)

16

negatively doped diffusion. Un-programmed, the ONO anti-fuse insulates the top layer of

metal from the bottom layer.

When the anti-fuse is programmed, a current of about 5 mA is passing through the device.

This procedure generates enough heat in the dielectric to cause it to melt and form a

conductive link between the poly-Si and the n+ diffusion shown in Figure 2.1. Both, the

bottom layer and top layer of the anti-fuse are connected to metal wires. When the anti-fuse is

programmed, a very low resistance connection is formed between the two metals wires.

Many other vendors have developed the many other ways to form anti-fuse switch.

b) EPROM

EPROM programming technology is used by many developers such as AlteraTM, AtmelTM,

CypressTM and XilinxTM FPGAs, which is same as that used in EPROM memories. Figure 2.1

shows the EPROM transistor which is based on the NMOS transistor and has two gates [15]:

a floating gate and a select gate. The floating gate is positioned between the selected gate and

the transistor’s channel which is called "floating" because it is not electrically connected to

any circuit. During the unprogrammed state, no charge is stored on the floating gate and the

EPROM transistor can be turned ON by applying a voltage in the selected gate (like a

Figure 2.1: Anti Fuse - Switch

Figure 2.2: The EPROM Transistor

17

NMOS). When the transistor is programmed, a charge is trapped under the floating gate. This

charge forces the transistor to be permanently turning OFF.

An EPROM transistor gets re-programmed by eliminating the trapped charge from the

floating gate. This can be done by exposing the gate to ultraviolet light exits the trapped

electrons to the point where they can pass through the gate oxide into substrate. The EPROM

transistor in an FPGA is used as a pull – down device for logic block inputs. This circuit

scheme has one wire called “word line” which is connected to the select gate of the EPROM

transistor. As long as the transistor has not been programmed into the OFF state, the word

line can cause the "bit line", which is connected to a logic block input, to be pulled to logic

zero. Since a pull-up resistor is present on the bit line, this scheme allows the EPROM

transistor to not only implement connections but also to realize wired-AND logic functions.

A disadvantage of this approach is that the resistor consumes static power.

The EEPROM approach is similar to the EPROM technology except that EEPROM transistor

can be re-programmed in-circuit. The disadvantage of using EEPROM is that they consume

twice the chip area as EPROM transistor. Also EEPROM requires multiple voltage sources.

c) Flash Memory

The flash memory is a type of non-volatile memory (NVM) and can retain information even

when power supply is disconnected. The major advantages are like it can be erased and

reprogrammed most of the time with no special voltages requirement; it is low cost and

available with high density than EPROM.

A flash memory cell is like a transistor with an extra gate between the source and drain, and

the control gate, there is a second gate called "floating gate" which can be used as a charge

storage mechanism. When a sufficiently large voltage goes across the source and the control

gate, electrons tunnel through the oxide layer and accumulate in the floating gate called

"channel hot electron injection". This extra-negative charge in the floating gate reaches the

threshold voltage writing a zero in the cell. To erase the cell, the control gate must be

connected to ground, and the programming voltage must be applied to the source. It removes

electrons from the floating gate and turns the cell back to a one.

d) Static RAM

18

Static RAM is the widely accepted technology used to build programmable logic. These cells

are used to configure programmable wires and logic cells. In case of the pass-transistor

approach, the SRAM cell controls whether the pass-gate is on or off. When off, the pass-gate

provides a very high resistance between the two wires to which it is attached, and when on, it

forms a low resistance connection between the two wires.

Figure 2.3 (b) illustrates a transmission gate formed by two pass-transistors (NMOS and

PMOS), where an SRAM cell controls both NMOS and PMOS transistors. For the

Multiplexer approach, the SRAM cells allow the MUX to select one routing wire and connect

it to a Logic Cell. This scheme would typically be used to optionally connect one of several

wires to a single input of a logic block.

Another memory cell configuration is shown in Figure 2.4, where, high-resistance polysilicon

load replace the PMOS pull-up devices. The area of this cell could be about 40% smaller than

the CMOS six-transistor memory cell. This cell is also called High Resistive Load (HRL)

memory cell.

l

The high-state storage node (H) can be pulled down with time due to two sources of leakage

currents [15], the leakage currents flowing through the drain junction, and the subthreshold

current.

Figure 2.3: SRAM Cell with (a) Pass – Transistor, (b) Transmission Gate, (c) Multiplexer

Figure 2.4: HRL SRAM Cell

19

A SRAM cell is re-programmable, unlike anti-fuse elements, which are physically altered

when programmed, but are volatile in nature meaning is that the states of memory cells are

lost when power is not applied. SRAM-based FPGAs must be programmed each time the

circuit is powered up. Compared with other programming technologies the area required by

SRAM is large, because of the number of transistors needed for each SRAM cell, as well as

the additional transistor for the passgates or multiplexers.

The major advantage of this technology is that the FPGAs can be reconfigured very quickly

and it can be produced using a standard CMOS process technology, which is advantageous

for low power design compared to other technologies.

2.1.3.2 Logic Blocks Architecture

Logic blocks (or cells) have a great influence in the speed and area efficiency. There are a

large number of possibilities for the design of a logic block. Here, some of the possibilities

explored by the FPGA vendors are presented.

a) Look-Up Table based Logic Cell

Most recent FPGAs are based on Look-up Table (LUT) logic cells. A k-input LUT requires

2k memory cells and a 2k-input multiplexer to implement any Boolean function of k-inputs

As mentioned in [18]. Figure 2.5 illustrates a 2-input LUT. In this case, 4 SRAM cells are

required to store the truth table of the desired function. Since LUT-based logic cells are used,

the FPGA research group from University of Toronto demonstrated that LUTs with 4 inputs

lead to FPGAs with the greatest area-efficiency. The LUT-based cell developed by AlteraTM

Figure 2.5: A 2- Input LUT

20

in FlexTM and ApexTM devices consist, in general, of three elements: a 4-input LUT, a

programmable DFF (D-type Flip Flop) and programmable resources that permits the logic

element to implement cascade chain and carry chain operations. XilinxTM devices contain

LUT-based logic blocks. These blocks, called Configurable Logic Block (CLB) which are

formed by two 4-input LUTs, one 3-input LUT that can be used as multiplexor, and two

DFFs. This structure permits to build Boolean functions with 8 inputs. The CLB can be also

configured as a 16 x 2 or a 32 x 1 memory cell.

b) Multiplexer-based

The Multiplexer-based logic block developed by ActelTM is presented in Figure 2.6 which

contains three N-input Multiplexer controlled by a certain number of gates (AND, OR).

These modules can implement any of several hundred functions of the inputs and any larger

functions can be built by cascading several logic cells. The advantage of this structure is that

it requires small area and hence, it allows the circuit area to be reduced.

c) Multiplexer and basic Gates or Symmetrical Cell

Figure 2.7 shows the logic block developed by AtmelTM

, which is similar to the Multiplexer-

based one. It contains four multiplexers named X and Y (two input multiplexers and two

output multiplexers), a DFF, and two 8-bit LUTs.

Figure 2.6: Multiplexer – Based Logic
C ll

21

This logic block has 8 inputs and 8 outputs, two pairs for each cardinal side and can be

accessed by the four cardinal points; this represents an advantage for routing.

2.1.3.3 Interconnections

In general, FPGAs can be categorised in three groups based on their routing architecture:

Row-based, segmented channel routing, and hierarchical routing.

a) Row-based FPGAs

A row-based FPGA proposed by ActelTM consists of rows of logic blocks that are separated

by horizontal routing channels, which are formed by wires of various lengths and separated

by routing switches and adjacent wires can be connected to have longer segments if required

as shown in Figure 2.8. Dedicated vertical segments are used to connect the inputs and

outputs of logic blocks to the interconnect resources via the routing switches.

Figure 2.7: Multiplexer and Basic Gates LCELL Proposed by Atmel TM (Courtesy of AtmelTM Co.)

22

There are also some vertical wires called "feed-through" used to connect one routing channel

to another.

b) Segment-based FPGAs

Figure 2.9 shows a segment-based (also called island style) architecture developed in

XilinxTM devices in which the logic cells are surrounded by routing segments. Input or output

pins of the LCELL can be connected to some or all of the wiring segments in the channel

adjacent to it through a programmable connector switch.

These switches allow a segment wire to be connected to another to form longer segments or

to connect a horizontal segment with a vertical segment and vice-versa. Long wires that

traverse the entire device are dedicated to distribute some important signals like clock, reset,

enable, etc.

Figure 2.8: ActelTM ACT1 Interconnect Architecture (Row – Based)

23

The following figure shows the interconnect resources of the XC4000 series:

c) Hierarchical Routing

Figure 2.11 shows the interconnect architecture developed by AlteraTM. Here, the FPGA is

organized in long blocks called LABs (Logic Array Block) containing eight logic cells

(LCELL). Each LCELL can communicate with the other LCELL of the same LAB by using

local wires and can be connected to adjacent blocks by using direct connections.

Figure 2.9: XC4000E/XL/XV Interconnect Architecture (Segmented – Based) (Courtesy of XilinxTM
Corporation)

Figure 2.10: XC4000 Series Interconnect Resources (Courtesy of XilinxTM Co)

24

LCELLS can reach other cells or I/O cells by lines, called "fast tracks” that traverse the entire

device. This structure identifies three levels of interconnect resources: local (or LAB)

interconnect, direct-paths (cascade and carry chain) and fast tracks.

2.1.3.4 I/O Structures

There could be different I/O block structures, but majority are of DFF-Multiplexer arrays

with a slew rate control. The I/O blocks can be configured as Input, Output or bidirectional.

I/O units are directly connected to the routing resources of the device (AlteraTM). Some

FPGAs have "dedicated inputs"; these inputs normally are used for Clocks, Reset, and Enable

signals and are directly connected to the internal registers of device. The existing I/O

elements use two DFF registers for Input and Output separately. This reduce control signals

when use I/O as Bi-directional representing also an advantage for routing (XilinxTM).

2.1.3.5 Other Resources

Figure 2.11: Hierarchical Interconnect (Courtesy of AlteraTM Corporation)

25

Recent FPGAs contain other structures such as embedded memory cells, programmable

Phase Lock-Loop (PLL) and, in some cases, thermal sensors. Embedded memory cells can be

used to build large memory blocks or to implement logic operations. PLLs are used in FPGAs

for generation of internal clock signals and also useful when implementing parallel

architectures.

a) Embedded RAM Cells

Embedded memory cells can be placed inside the FPGA in big blocks and at the centre of the

device such as Flex 10K devices, or in small blocks distributed in the device as used in the

AT40K family with specific routing wires and a logic cell which are dedicated to optimize

the memory access as in Figure 2.12. Some commercial FPGAs use logic blocks to build

memory (i.e. XilinxTM devices). In this kind of components, there are no embedded cells, and

memory blocks are built at the cost of a reduction of the available number of logic blocks.

Embedded cells can be used to build SRAM, Dual-Port RAM, FIFO (First-in, First-out),

LIFO (Last-in, First-Out), and other memory structures like CAM. They can be used to build

big logic blocks such as state machines or long logic tables.

b) Phase Lock-loop

PLLs are normally used to generate internal clock signals from an external clock signal. They

allow us to copy the global clock and change its phase. The clock phase can be adjusted by

90º increments for phase shifting of 90º, 180º, and 270º. PLLs are also used to generate two

Figure 2.12: Embedded Memory (a) Block, (b) Distributed Cells

26

or more internal clock signals with different frequencies by multiplying or dividing the clock

frequency. The use of synchronous PLLs to generate the internal clock allows us to reduce

the clock delay and skew within a device. This reduction minimizes clock-to-output and setup

times while maintaining zero hold times. Internal PLLs can also be used to create an external

clock signal to other devices.

2.2 Power Consumption Model of MOS-based Circuits

2.2.1 Introduction

Most of the models used to explain the power consumption behaviour of ICs are based on the

equations derived from the analysis of the CMOS inverter. To understand its functionality

and to introduce the equations and terms expressed in further sections, an overview of the

CMOS inverter is discussed in [19].

2.2.1.1 The CMOS Inverter

The following Figure 2.13 shows the basic complementary CMOS inverter:

When VIN=VDD, VGSn=VIN=VDD and VGSp=VIN-VDD=0. In this case, VGSn>VTn, and

VGSp|<|VTp|. The NMOS is ON and the PMOS is OFF. The NMOS device provides a current

path to GROUND (GND), and VO=0. When the PMOS is OFF and the VDS of NMOS device

Figure 2.13: Standard CMOS Inverter

27

is equal to zero. The DC current from VDD to GND is controlled by the sub-threshold current

of the PMOS device. If the VTp (extrapolated threshold voltage) is low enough, the sub-

threshold current can be considered negligible; on the other hand, if VTp is high, the sub-

threshold current is not negligible. In this case, the output voltage is not exactly at zero and

can have values of tens of mV.

When VIN is low (0 volts) VGSn<VTn and |VGSp|>|VTp|, The PMOS device is ON and the

NMOS transistor is OFF. The output voltage is VO=VDD. The Figure 2.14 shows the DC

transfer characteristic of a CMOS inverter with the different regions of operation.

We can notice that the curve is divided into five regions of operation that can be described as

follows:

For region A when 0 ≤VIN<VTn, the NMOS device is operating in the subthreshold region and

the current is considered zero. The PMOS is in the linear region, and the current flowing

through this device is also considered zero. Thus, VO=VDD. For region B When

VTn<VIN<VINV and VINV is defined as the input voltage at which the gain of the inverter is

maximum and is also defined as the gate threshold voltage. In this case, the NMOS device is

operating in the saturation region and the PMOS is operating in the linear region. Since the

current in both devices is the same, we have IDSp=IDSn. The current flowing through the

PMOS device is given by [15]:

𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷 = −𝛽𝛽𝑝𝑝 �(𝑉𝑉𝐼𝐼𝐼𝐼 − 𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑉𝑉𝑇𝑇𝑇𝑇)(𝑉𝑉𝑂𝑂 − 𝑉𝑉𝐷𝐷𝐷𝐷) − 1
2

 (𝑉𝑉𝑂𝑂 − 𝑉𝑉𝐷𝐷𝐷𝐷)2� [2.2.1]

Figure 2.14: DC Transfer Characteristics of a CMOS Inverter, (a) Voltage and (b) Current

28

where 𝛽𝛽𝑝𝑝 = 𝑘𝑘𝑝𝑝 𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒

𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒
 [2.2.2]

𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑉𝑉𝐼𝐼𝐼𝐼 − 𝑉𝑉𝐷𝐷𝐷𝐷 [2.2.3]

and 𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑉𝑉𝑂𝑂 − 𝑉𝑉𝐷𝐷𝐷𝐷 [2.2.4]

𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒 is the effective channel width, 𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒 is the effective channel length, and 𝐾𝐾𝑝𝑝 is a process-

depend parameter that is defined as 𝐾𝐾𝑝𝑝 = μ𝐶𝐶𝑂𝑂𝑂𝑂 , where μ is the mobility of electrons in the

channel of the MOS transistor. 𝐶𝐶𝑂𝑂𝑂𝑂 is the gate oxide capacitance per unit area which is given

by 𝐶𝐶𝑂𝑂𝑂𝑂 = 𝜀𝜀0
𝑙𝑙𝑂𝑂𝑂𝑂

 , where ε0 is the oxide permittivity and ιox is the gate oxide thickness.

The saturation current of the NMOS device is:

𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷 = 𝛽𝛽𝑛𝑛 (𝑉𝑉𝐼𝐼𝐼𝐼− 𝑉𝑉𝑇𝑇𝑇𝑇)2

2
 [2.2.5]

Where 𝛽𝛽𝑛𝑛 = 𝑘𝑘𝑛𝑛 𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒

𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒
 [2.2.6]

𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑉𝑉𝐼𝐼𝐼𝐼 [2.2.7]

Using equations [2.2.1,2.2.5], we can obtain an expression that represents the output voltage

(Figure 2.14(a)):

𝑉𝑉𝑂𝑂 = �𝑉𝑉𝐼𝐼𝐼𝐼 − 𝑉𝑉𝑇𝑇𝑇𝑇� +

 �

(𝑉𝑉𝐼𝐼𝐼𝐼 − 𝑉𝑉𝑇𝑇𝑇𝑇)2 − 2 �𝑉𝑉𝐼𝐼𝐼𝐼 −
𝑉𝑉𝐷𝐷𝐷𝐷

2
− 𝑉𝑉𝑇𝑇𝑇𝑇� 𝑉𝑉𝐷𝐷𝐷𝐷 −

𝛽𝛽𝑛𝑛
𝛽𝛽𝑝𝑝

(𝑉𝑉𝐼𝐼𝐼𝐼 − 𝑉𝑉𝑇𝑇𝑇𝑇)2
 [2.2.8]

In Region C, When 𝑉𝑉𝐼𝐼𝐼𝐼 = 𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼 . In this case, both, NMOS and PMOS devices are in the

saturation region. The PMOS current is given by:

𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷 = −𝛽𝛽𝑝𝑝 (𝑉𝑉𝐼𝐼𝐼𝐼− 𝑉𝑉𝑇𝑇𝑇𝑇)2

2
 [2.2.9]

The current flowing through the NMOS device is given by the equation [2.2.5]. By

equalizing both equations [2.2.5, 2.2.9] we can obtain the expression that represents the 𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼 :

𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑉𝑉𝐷𝐷𝐷𝐷 + 𝑉𝑉𝑇𝑇𝑇𝑇 +𝑉𝑉𝑇𝑇𝑇𝑇 �𝛽𝛽
1+ �𝛽𝛽

 [2.2.10]

Where β = 𝛽𝛽𝑛𝑛
𝛽𝛽𝑝𝑝

 and 𝑉𝑉𝑇𝑇𝑇𝑇 = 𝑉𝑉𝑇𝑇𝑇𝑇 . If we consider β𝑛𝑛 = β𝑝𝑝 in a CMOS process defined by:

𝑘𝑘𝑛𝑛
𝑘𝑘𝑝𝑝

 = 𝜇𝜇𝑛𝑛
𝜇𝜇𝑝𝑝

 ≈ 2 − 3 [2.2.11]

29

If we consider the following dimension ratio:

 �𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒

𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒
� 𝑝𝑝 = 2.5 �𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒

𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒
� 𝑛𝑛 [2.2.12]

We obtain 𝑉𝑉𝐼𝐼𝐼𝐼 = 𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑉𝑉𝐷𝐷𝐷𝐷

2
 [2.2.13]

This kind of inverter is called "symmetrical gate". Nevertheless, the output voltage is not

necessarily equal to VDD/2 and is given by VIN − VTn < Vo < VIN + VTp.

In Region D, When VINV < VIN < (VDD +VTp). In this case, the NMOS is in the linear region

and the PMOS is in the saturation region. If we consider the same conditions from Region B,

we can obtain:

𝑉𝑉𝑜𝑜 = (𝑉𝑉𝐼𝐼𝐼𝐼 − 𝑉𝑉𝑇𝑇𝑇𝑇) − �(𝑉𝑉𝐼𝐼𝐼𝐼 − 𝑉𝑉𝑇𝑇𝑇𝑇)2 − 𝛽𝛽𝑝𝑝
𝛽𝛽𝑛𝑛

(𝑉𝑉𝐼𝐼𝐼𝐼 − 𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑉𝑉𝑇𝑇𝑇𝑇)2 [2.2.14]

In Region E, When (𝑉𝑉𝐷𝐷𝐷𝐷 + 𝑉𝑉𝑇𝑇𝑇𝑇) < 𝑉𝑉𝐼𝐼𝐼𝐼 ≤ 𝑉𝑉𝐷𝐷𝐷𝐷 . In this case, the NMOS is ON and the PMOS

is operating into the sub-threshold region. If we assume that the current flowing through this

device is almost zero, then VO = 0. From Figure 2.14(b), we can notice that when VIN = VINV,

the DC power dissipation is maximal. It is also called short circuit power consumption.

2.2.2 Power Consumption of Complementary CMOS

The power consumed by the CMOS inverter, and by all CMOS circuits, can be divided into

three components [20] [21] [22]:

1. The Static Power Consumption because of the leakage current Ileak and static current IST

due to the supplied input voltage.

2. The Dynamic Power Consumption takes place due to the charge and discharge of the total

output capacitance CL.

3. The Dynamic Power Consumption caused due to the short-circuit current ISC during the

switching transient (also called short-circuit Power Consumption).

2.2.2.1 Static Power

30

There are two sources of static power in a complementary CMOS inverter: the leakage

currents; and current drawn from the supply due to the input voltage. The total static power

consumption can be expressed by the following equation:

𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑃𝑃𝑑𝑑𝑑𝑑 [2.2.15]

The leakage currents are caused by the parasitic diodes in a CMOS inverter. When the input

voltage is not changing, the parasitic diodes are not conducting. According to [19] the current

in a diode is given by:

 Id = Is (𝑒𝑒
𝑞𝑞𝑞𝑞 𝑑𝑑
𝑛𝑛𝑛𝑛𝑛𝑛 - 1) [2.2.16]

 Where n is the diode emission co-efficient (sometimes n=1) and Vd is the voltage applied to

the diode. The total power consumption caused by the leakage currents is:

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = ∑ 𝐼𝐼𝑑𝑑𝑑𝑑𝑉𝑉𝐷𝐷𝐷𝐷𝑖𝑖 [2.2.17]

A typical value of Id is 1 fA per device. In a pure CMOS circuit containing a million of

devices, the total Pleak would be equals to 0.01 μW. The power dissipation due to the leakage

currents could be neglected. Anyway in circuits containing memory cells, this power

consumption could be more important and another component of the static power is a

function of the input voltage. Assume that the input of the pull-down NMOS is at a voltage

0≤VIN<VT. In this case, the current is given by the sub-threshold expression:

𝐼𝐼𝑑𝑑𝑑𝑑 = 𝐼𝐼𝑜𝑜
𝑊𝑊𝑒𝑒𝑓𝑓𝑓𝑓

𝑊𝑊𝑜𝑜
10

(𝑉𝑉𝐼𝐼𝐼𝐼 − 𝑉𝑉𝑇𝑇)
𝑆𝑆 [2.2.18]

Where VT is the constant-current threshold voltage, Io and Wo are the drain current and the

gate width to define VT, and S is the sub-threshold swing parameter. The current Io is related

to VDS by:

𝐼𝐼𝑜𝑜 = 𝐼𝐼𝑜𝑜′ (1 − 𝑒𝑒
𝑉𝑉𝐷𝐷𝐷𝐷
𝑉𝑉𝑡𝑡) [2.2.19]

According to [23] the sub-threshold swing is given by:

𝑆𝑆 ≈ 2.3 𝑉𝑉𝑡𝑡 (1 + 𝐶𝐶𝑑𝑑
𝐶𝐶𝑜𝑜𝑜𝑜

) 𝑉𝑉
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 [2.2.20]

31

Where Cd is the depletion-layer capacitance of the source/drain junctions, S has a theoretical

minimum limit of 60 mV/decade and When VIN > VT, the current can be expressed as

follows:

𝐼𝐼𝑑𝑑𝑑𝑑 = 𝑊𝑊

𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜
 (𝑉𝑉𝐼𝐼𝐼𝐼 − 𝑉𝑉𝑇𝑇)1.5 [2.2.21]

Where COX is the gate oxide capacitance, L and W are the average width and length of the

device. The power dissipation caused by the direct-paths currents is:

𝑃𝑃𝑑𝑑𝑑𝑑 = 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑉𝑉𝐷𝐷𝐷𝐷 [2.2.22]

For a CMOS circuit with more than a million of transistors, this source of static power

consumption could be important. Static power consumption increases with temperature. Even

if CMOS circuits have been designed to consume energy only during switching, in recent

low-power applications with CMOS, the VT is becoming low and the static power due to

direct-pats current is becoming important.

2.2.2.2 Dynamic Power Caused by Load Capacitance

This source of power consumption is due to the currents needed to charge and discharge the

effective load capacitance CL of Figure 2.14. Let us assume a step input so neither the N and

P devices are ON simultaneously. The average dynamic power Pd required to charge and

discharges the CL during a clock period T is:

𝑃𝑃𝑑𝑑 = 1
𝑇𝑇 ∫ 𝑖𝑖0 (𝑡𝑡)𝑉𝑉0(𝑡𝑡)𝑑𝑑𝑑𝑑𝑇𝑇

0 [2.2.23]

The output current needed to charge 𝐶𝐶𝐿𝐿 is given by:

𝑖𝑖𝑂𝑂 = 𝑖𝑖𝑝𝑝 = 𝐶𝐶𝐿𝐿
𝑑𝑑𝑑𝑑𝑂𝑂
𝑑𝑑𝑑𝑑

 [2.2.24]

And the current flowing through the NMOS during the discharge phase is:

 𝑖𝑖𝑂𝑂 = 𝑖𝑖𝑛𝑛 = −𝐶𝐶𝐿𝐿
𝑑𝑑𝑑𝑑𝑂𝑂
𝑑𝑑𝑑𝑑

 [2.2.25]

The equation 2.2.23 becomes:

32

𝑃𝑃𝑑𝑑 = 1
𝑇𝑇

 �∫ 𝐶𝐶𝐿𝐿𝑉𝑉𝑂𝑂𝑑𝑑𝑑𝑑𝑂𝑂 − ∫ 𝐶𝐶𝐿𝐿𝑉𝑉𝑂𝑂𝑑𝑑𝑑𝑑𝑂𝑂
0
𝑉𝑉𝐷𝐷𝐷𝐷

𝑉𝑉𝐷𝐷𝐷𝐷
0 � [2.2.26]

The dynamic power dissipation can be expressed [15]as:

𝑃𝑃𝑑𝑑 = 𝐶𝐶𝐿𝐿𝑉𝑉𝐷𝐷𝐷𝐷
2

𝑇𝑇
= 𝐶𝐶𝐿𝐿𝑉𝑉𝐷𝐷𝐷𝐷2 𝐹𝐹 [2.2.27]

Where F is operation frequency and the dynamic power consumption is proportional to F and

VDD. If the supply voltage is reduced, power consumption will be reduced by a quadratic

factor. This equation is only valid for the CMOS-Inverter, but it can be used to determine an

equivalent expression for a any complex circuit.

2.2.2.3 Dynamic Power Caused by Short-Circuit Currents

Even if there are no load capacitance on the output and the parasitic capacitance are

negligible, the CMOS-Inverter would still dissipate switching energy. If the Input voltage

changes slowly, both the P and N devices are ON. An excess power is dissipated due to the

short-circuit current. If we assume that the falling and rising times are equivalent, the power

consumed by the short-circuit current is:

 𝑃𝑃𝑆𝑆𝑆𝑆 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑉𝑉𝐷𝐷𝐷𝐷 [2.2.28]

Where 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is estimated using the Figure 2.15.

Figure 2.15: Input Voltage and Short – Circuit Current

33

Let us assume that β𝑛𝑛 = β𝑝𝑝 = β And 𝑉𝑉𝑇𝑇𝑇𝑇 = 𝑉𝑉𝑇𝑇𝑇𝑇 = 𝑉𝑉𝑇𝑇 and if the rising time is equals to

the falling time of the input signal (τ𝑟𝑟 = τ𝑓𝑓 = τ). The mean short-circuit current is given

by:

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 2𝑋𝑋 1
𝑇𝑇

 �∫ 𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡2
𝑡𝑡1

+ ∫ 𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡3
𝑡𝑡2

� [2.2.29]

Because property of symmetry, we have:

 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 4
𝑇𝑇

 �∫ 𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡2
𝑡𝑡1

� [2.2.30]

Since the NMOS is operating in the saturation region, the above equation becomes:

 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 4
𝑇𝑇

 �∫ 𝛽𝛽
2

𝑡𝑡2
𝑡𝑡1

 (𝑉𝑉𝐼𝐼𝐼𝐼(𝑡𝑡) − 𝑉𝑉𝑇𝑇)2 𝑑𝑑𝑑𝑑� [2.2.31]

The input voltage is:

𝑉𝑉𝐼𝐼𝐼𝐼(𝑡𝑡) = 𝑉𝑉𝐷𝐷𝐷𝐷
𝜏𝜏
𝑡𝑡 [2.2.32]

It can be derived from figure 2.15 that 𝑡𝑡1 = 𝑉𝑉𝑇𝑇
𝑉𝑉𝐷𝐷𝐷𝐷

𝜏𝜏 and𝑡𝑡2 = 𝜏𝜏
2
. Then the integral leads to:

𝑃𝑃𝑆𝑆𝑆𝑆 = 𝛽𝛽
12

 (𝑉𝑉𝐷𝐷𝐷𝐷 − 2 𝑉𝑉𝑇𝑇)3𝜏𝜏 𝐹𝐹 [2.2.33]

Eq. 2.2.33 describes that the short-circuit power consumption is proportional to the

frequency. And for a system with equal rising and falling duration, the short-circuit power

dissipation may be less than 20% of the total power consumption.

2.2.3 Power Consumption of SRAM

Different sources of power consumption can be identified using the SRAM architecture and

the total power consumption can be divided in two components that are active and the

standby power consumption. The active power is the sum of the power dissipated by the

decoders and the memory array. If m is the number of memory cells connected to the same

word line, the active power of the memory array in read mode can be expressed [15] as:

34

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 −𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑚𝑚𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 + (𝑛𝑛 − 1)𝑚𝑚 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑚𝑚𝐼𝐼𝐷𝐷𝐷𝐷∆𝑡𝑡𝑡𝑡𝑉𝑉𝐷𝐷𝐷𝐷 [2.2.34]

Where Pact is the power dissipated in active mode when selecting the m cells and Pleak is the

data retention (standby power) of the unselected memory cells in the m X n array. The third

term is due to the DC current, IDC, during the read operation. Δt is the activation time of the

DC consuming parts and F is the operating frequency (F = 1
𝑡𝑡𝑅𝑅𝑅𝑅

). The standby power of an

SRAM has a major contribution from the memory cells in the array if the sense amplifiers are

disabled in this mode. It can be given by:

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑚𝑚𝑚𝑚𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 [2.2.35]

2.2.4 Power Consumption of Input / Output Circuits

The Input/Output (I/O) circuits allow the on-chip logic circuitry to communicate to the

external world. The I/O circuits are important in the limitation of speed and power

consumption of the entire circuit. There are several kinds of I/O circuits, such as input and

output buffers, clock distribution, clock buffering and low-swing I/O. In this section, an

overview of I/O circuits based on [24] is presented.

2.2.4.1 Input Circuits

In order to distribute an input signal to the whole circuit, an input buffer is needed which are

formed by at least one inverter. In this section, the power consumption behaviour of a TTL to

CMOS input circuit is discussed. The power consumed by this circuit is divided in two

components: Static and dynamic.

a) Static Power Dissipation

The CMOS input buffer is used to translate the TTL (Transistor-Transistor Logic) or the

Low-Voltage TTL levels to CMOS levels. The inverters that form the input buffer are

designed by setting their W/L ratio such that the switching point of the buffer is near at

middle of VIL and VIH. However, since the TTL voltage swing is limited to 1.2 volts, the

35

input buffer is always dissipating DC power. The circuit shown in Figure 2.16 is an example

of a 2-stage input buffer.

If the first inverter cannot be able to transfer the TTL level, the second one will dissipate

some DC power. The static power consumption of this buffer is:

 𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑉𝑉𝐷𝐷𝐷𝐷𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 [2.2.36]

Where, 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷1 + 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2 [2.2.37]

IDTTL is the average current flowing through both inverters when the input is at low and high

levels. When the number of a TTL input pads is large, the DC current of the input buffers

becomes important.

b) Dynamic Power Consumption

For a circuit that contains several I/O pads, the total dynamic power consumption of all input

pads can be expressed as follows:

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑁𝑁𝑖𝑖𝐸𝐸𝑖𝑖𝑖𝑖𝐹𝐹 [2.2.38]

Where α is the switching activity, Ni is the number if input pads, Eii is the internal energy of

the input pad in Watt/Hz and F is the operational frequency of the circuit.

2.2.4.2 Output circuits

The output buffer must be able to drive the load capacitance (fan-out) maintaining adequate

rise and fall times. Usually, an inverter chain that can handle the large capacitance formed by

Figure 2.16: TTL Input Buffer

36

the pad, the package wiring and the off-chip load forms the output circuit. Figure 2.17 shows

a tri-state output buffer.

When the Output Enable (OE) is high, the output data is the same that the input data. When

OE is low, the pad is set to high impedance (Z) and both (NMOS & PMOS) are cut-off.

a) Power Consumption of output circuits

The power consumed by the output pads can be divided into two components: static and

dynamic. The static power consumption is caused by the junction leakage currents of the

transistors that form the buffers and by the sub-threshold current from the input voltage.

When VT is small, the DC power dissipation becomes important due to the subthreshold

currents. The static power consumption for the output pads when driving a CMOS TTL load

is given by:

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑁𝑁𝑂𝑂𝑉𝑉𝐷𝐷𝐷𝐷(𝐼𝐼𝐷𝐷𝐷𝐷_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) [2.2.39]

Where NO is the number of output pads, IDS_mean is the average sub-threshold current when

the input is low and high, and Ileak is the current caused by junctions. If the output pad has to

drive a bipolar TTL charge, the output buffer is forced to sink significant amount of currents

(due to the bipolar input transistor). The static power consumed by one output buffer driving

a bipolar input pad is:

𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 _𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑉𝑉𝑂𝑂𝑂𝑂𝐼𝐼𝑂𝑂𝑂𝑂 [2.2.40]

Figure 2.17: Tri – State Output Buffer

37

Where IOL is the current sunk by the output buffer and is equals to the sum of the current

from all the bipolar inputs. VOL is the minimal output voltage when the output data is ’0’

(VOL = 0.4 volts). The dynamic power consumed by the output circuits can be expressed [15]

by the following equation:

𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷 = 𝛼𝛼�𝑁𝑁𝑂𝑂𝐸𝐸𝑖𝑖𝑜𝑜 + 𝑁𝑁𝑂𝑂𝐶𝐶𝑂𝑂𝑉𝑉𝐷𝐷𝐷𝐷2�𝐹𝐹 [2.2.41]

Where EiO is the internal switching energy of the output pad, CO is the average output load

capacitance, NO is the number of output pads, F is the clock frequency and α is the average

switching rate of all output pads.

2.2.5 Power Consumption in Clock Circuits

The current way to distribute the clock signal on-chip is using input buffers that have the

ability to drive high internal load with fast fall/rise times. Consider a 3.3-volt micro-

controller working at 200 MHz, with an internal load for the clock driver equals to 3.2 nF. In

this case, the rise/fall times should be equal to 0.5 nS (Tclock = 5 nS); according to [25], the

average transient current would be:

𝐼𝐼𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐶𝐶 ∆𝑉𝑉
∆𝑡𝑡

= 3.2𝑋𝑋10−9𝑋𝑋 3.3
0.5𝑋𝑋10−9 = 21𝐴𝐴 [2.2.42]

And the dynamic power consumed only by this clock circuit is:

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐶𝐶𝑉𝑉𝐷𝐷𝐷𝐷2𝐹𝐹 ≈ 7𝑊𝑊 [2.2.43]

This explains the importance of the clock circuit in terms of power. An architectural strategy

should be used to distribute the clock signal to the whole circuit with minimum clock skew

and low-power consumption. The clock distribution network can be planned in different ways

to reduce the power dissipation of the clock buffer. The equivalent load capacitance of the

clock buffer can be reduced by using low capacitance clock routing lines and the use of low-

swing drivers at the top level of the clock tree can help in optimizing power consumption.

2.3 Power Consumption in SRAM-based FPGAs.

38

Recent FPGA architectures are formed by different types of technologies and elements. Logic

Elements are formed by LUTs and DFFs. LUTs can be constructed using SRAM cells, and

DFF is normally a CMOS device. Embedded Memory Cells must be constructed using

SRAM cells. Finally, the interconnect resources must be programmed using SRAM cells that

controls pass-transistors. Pass-transistors are used like switch to enable or disable all the

internal elements of a FPGA. If we consider all these elements, the SRAM-based FPGAs are

formed by three different technologies: SRAM, pure CMOS and Pass-Transistors. It means

that the power consumption modelling in FPGAs becomes more complex than pure CMOS

[26]. Power in FPGAs is not only a function of 𝑉𝑉𝐷𝐷𝐷𝐷2. Since they contain a lot of pass-

transistors, short-circuit currents are not negligible in these devices. According to equation

2.2.33, power consumption must be also a function of𝑉𝑉𝐷𝐷𝐷𝐷3. Finally, the direct-paths current

in pass-transistor structures becomes important, this factor added to the static current

dissipated for all the SRAM cells used in a FPGA, makes that the static power consumed by a

FPGA must be considered and it is not negligible. The Total power consumption of a FPGA

can be represented using the following equation:

𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝛼𝛼𝑉𝑉𝐷𝐷𝐷𝐷3 + 𝛽𝛽𝑉𝑉𝐷𝐷𝐷𝐷2 + 𝛿𝛿𝑉𝑉𝐷𝐷𝐷𝐷 [2.2.44]

Where α is the element that corresponds to the dynamic power consumption caused by short-

circuit currents (VDD - 2VT), and by a portion of the static power caused by direct-path

currents and β corresponds to the dynamic power caused by the charge and discharge of the

load capacitance and δ corresponds to the static power consumption.

2.4 Conclusion

In the first section of this chapter, we have described the different internal architectures of

FPGAs in a generic way as any commercial architecture was used to explain the complexity

of FPGA architectures. Initially we identified the internal elements that form all FPGA

architectures:

• Logic Blocks which are formed by 4-input and 3-input Look-Up Tables with a

programmable D-type flip-flop.

• Input / Output cells which can be programmed as input, output or bi-directional. Each I/O

cell contains at least one programmable D-type flip-flop.

39

• Interconnect resources, formed by different types of wires with different lengths, and by

programmable interconnect switches.

• The embedded memory cells which are used to build RAM, ROM, DPRAM, FIFO or

LIFO blocks.

The next Section, is an overview of the power consumption in MOS-based circuitry. First of

all, we have explained the CMOS-inverter, since this component is the base for most of the

CMOS power consumption model.

Based on all theoretical elements, and the specific FPGA architectures formed by CMOS

logic and pass-transistors, the power consumption behaviour in FPGAs is different to other

circuits (like Micro-Controllers, DSPs or ASICs). Equation [2.2.44] summarizes all the

theoretical aspects presented in this chapter.

In the following chapter we will present the state-of-the-art literature survey on different

existing power management techniques which can be applied at the various abstraction levels

of the system especially for the design of power optimized microprocessor and/or

microcomputer.

40

Chapter 3
 Power Reduction Techniques

for Embedded Systems

3.1 Introduction

Minimization of power consumption in portable and battery – operated embedded systems

has become an important aspect of the embedded system designing and power efficient

design requires reducing power dissipation in all the parts of the design also during all stages

of the design process without compromising the system performance and the quality of

services. The opportunities for power optimization are available across the entire design

hierarchy. Many techniques can be applied at various levels ranging from circuits to

architectures, architectures to system software and system software to applications [27]. We

believe that power management is many-sided discipline that is continually expanding with

new techniques being developed at every level.

The increasing usage of portable electronics devices has become a driving force in the design

of new computational elements in very large-scale integration (VLSI) systems on a chip. As

the recent focus is on mobile appliance, a rethinking of design optimizations targeting

increasing performance and high clock rates at any cost are required in order to optimize

battery life and extend the utility of these devices. The trend in the embedded system of

continuous growth in complexity and size in terms of micro-architecture needs to be re-

examined, as the tradeoffs in energy consumption versus the improved performance obtained

by different set of design choices. Power consumption arises as a third axis in the

optimization space in addition to the traditional speed (performance) and area (cost)

dimensions. Improvements in circuit density and the corresponding increase in heat

generation must be addressed even for high-end systems and in recent era the CMOS circuits

cannot be reliably sustained without considering power consumption issues. Environmental

41

concerns relating to energy consumption by computers and other electrical equipment are

another reason for interest in low-power designs and design techniques.

Low-power design can be an important to reduce the system cost. Smaller packages,

batteries, and reduced thermal management overhead result in less costly products, with

higher reliability as an added benefit. Size, power budget, and weight of a device are

important metrics, and the power source is the main factor of these metrics. In Power

efficient design, the system minimizes the peak demands on the source and improves its

operating efficiency. The rate of energy use can have a dramatic effect on the amount of

energy available from a battery source as well as its cost [28] [29], which minimize average

power consumption and peak power consumption as well.

Hence, opportunities for design tradeoffs emphasizing low power are available across the

entire spectrum of design process for a portable system, and are effectively applied at many

levels of the design hierarchy, from algorithm selection to silicon process technology.

Generally, it is observed that power saving possibilities is lies with the higher the level of

abstraction.

This chapter includes the study for different power aware design methodologies and

techniques in broad range discussed in [30], which are targeted for an embedded systems

development and can be apply at various abstraction levels. This dissertation work is carried

out by considering dynamic power reduction techniques which are applied at the system level

[31], architecture level and logic level without making any change at the circuit/device

structure level.

3.2 Defining Power Dissipation in CMOS Circuits

Here, Power dissipated in CMOS circuits consists of several generic components [32] as

indicated in equation (3.2.1) discussed to focus the power saving techniques.

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ℎ𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 [3.2.1]

All the components mentioned in Eq. 3.2.1 represent the power required to charge a

capacitive load (𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ℎ𝑖𝑖𝑖𝑖𝑖𝑖), short circuit power consumed for CMOS gate as the input

42

switches (𝑃𝑃𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜), static power consumed (𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), and leakage power consumed is

(𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙). 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ℎ𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑃𝑃𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 are active when a device is actively changing state,

while 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 are available regardless of state changes. The biggest contribution

is due to 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ℎ𝑖𝑖𝑖𝑖𝑖𝑖 , which is defined as

 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐶𝐶 ∗ 𝑉𝑉𝑑𝑑𝑑𝑑 ∗ 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝛼𝛼 ∗ 𝑓𝑓 [3.2.2]

Where C is the capacitance, 𝑉𝑉𝑑𝑑𝑑𝑑 is the supply voltage, 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is related to the change in

voltage level of the switching capacitance, 𝛼𝛼 is switching activity factor depends on the

probability of an output transition, and 𝑓𝑓 is the frequency of operation. The product 𝛼𝛼 ∗ 𝐶𝐶 is

the effective switched capacitance, or Ceff. In most designs, 𝑉𝑉𝑠𝑠𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 is equal to𝑉𝑉𝑑𝑑𝑑𝑑 , so (Eq.

3.2.2) can be

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 𝑉𝑉𝑑𝑑𝑑𝑑 2 ∗ 𝑓𝑓 [3.2.3]

The term 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ℎ𝑖𝑖𝑖𝑖𝑖𝑖 occurs due to the overlapped conductance of both the PMOS and NMOS

transistors forming a CMOS logic gate as the input signal transitions. This term has a

complicated derivation, but in simplified form can be written as [6],

𝑃𝑃𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝑉𝑉𝑑𝑑𝑑𝑑 [3.2.4]

where 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the average current. 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is lowered for a single gate with short input rise/

fall times, and with long output transition times, and shows tradeoffs in device sizing. 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

related to pure CMOS designs, as it is not drawn by a CMOS gate, but few circuit

architectures like voltage references, constant current sources, sense amplifiers, etc.. which

exists in CMOS systems and add to overall power. 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is due to leakage currents from

reversed biased PN junctions and subthreshold conduction currents and it is proportional to

area and temperature. The subthreshold leakage component is dependent on device threshold

voltages, and also important as supply voltage scaling is used to lower power. For systems

having high ratio of standby operation to active operation, 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 may be the principal

factor in affecting overall battery life.

Optimization of all above discussed components in designing low-power systems and active

power minimization involves reduction of the magnitude of each of the components in (Eq.

43

3.2.3). With its quadratic contribution in the power equation, reduction of supply voltage is

an understandable method for power reduction, and can be applied to an entire

implementation. Reducing supply voltage by a factor of two results in a factor of four

reductions in 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ℎ𝑖𝑖𝑖𝑖𝑖𝑖 . There are limitations to supply voltage scaling, however, since the

performance of a gate is reduced as 𝑉𝑉𝑑𝑑𝑑𝑑 is lowered, due to the lowered saturation current

available to charge and discharge load capacitance. Gate delay dependence on 𝑉𝑉𝑑𝑑𝑑𝑑 is

approximated [19] by

𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∝ 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∗ 𝑉𝑉𝑑𝑑𝑑𝑑
(𝑉𝑉𝑑𝑑𝑑𝑑 − 𝑉𝑉𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟 ℎ𝑜𝑜𝑜𝑜𝑜𝑜)1.5 [3.2.5]

The energy-delay product is minimized when 𝑉𝑉𝑑𝑑𝑑𝑑 is equal to2 ∗ 𝑉𝑉𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 . Reducing

𝑉𝑉𝑑𝑑𝑑𝑑 from 3∗ 𝑉𝑉𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 (a typical value for 0.18 m technology) to 2 ∗ 𝑉𝑉𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑜𝑜 results in an

approximate 50% decrease in performance while using only 44% of the power. It would seem

that reducing threshold voltage of the devices and, thus, a corresponding reduction in 𝑉𝑉𝑑𝑑𝑑𝑑

offers low-power consumption. But, there are practical limits to the degree that 𝑉𝑉𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 can

be lowered, due to reduced noise margins and since exponentially increased leakage current

becomes a limiting factor in contribution to 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 [33]. Controllability of variations in

𝑉𝑉𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 is also an issue in manufacturing, and provides a lower bound on supply voltage

scaling [34] [35].

3.3 Power Reduction Methodologies for Various Abstraction

Levels

Power reduction techniques may be applied at all the levels of the system design hierarchy,

which include Algorithmic, Architectural, Logic and Circuit and Device Technology. A brief

description of each is given in the following section with some suitable example, wherever it

is needed.

3.3.1 Logic and Circuit Level Power Reduction Techniques

3.3.1.1 Transistor Sizing

44

ON A

ON B

OFF C

C1

C2

Ground
(a)

Vdd

Ground
(b)

OFF A

ON B

ON C

C1

C2

Vdd

Transistor sizing reduces the width of transistors to reduce their dynamic power consumption,

but reducing the width also increases the transistor’s delay; hence the transistors that lie away

from the critical paths of a circuit are usually the best suited for this technique. Algorithms

for applying this technique usually associate with each transistor a tolerable delay, which tries

to scale each transistor to be as small as possible without violating its tolerable delay.

3.3.1.2 Transistor Reordering

The arrangement of transistors in a circuit affects energy consumption. Figure 3.1 shows two

possible implementations of the same circuit that differ only in their placement of the

transistors marked A and B. Suppose that the input to transistor A is 1, for B is 1 and for C is

0. Then transistors A and B will be on, allowing current from 𝑉𝑉𝑑𝑑𝑑𝑑 to flow through them and

charge the capacitors C1 and C2.

Now, suppose the inputs change and that A’s input becomes 0, and for C it is 1. Then A will

be off while B and C will be on. Now the implementations in (a) and (b) will differ in the

amounts of switching activity. In (a), current from ground will flow through B and C,

discharging both the capacitors C1 and C2. However, in (b), the current from ground will

only flow through C2 it will not pass through A since A is turned off. Thus it will only

discharge the capacitor C2, rather than both C1 and C2 as in part (a). Thus the

implementation in (b) will consume less power than that in (a). Transistor reordering [36]

rearranges transistors to minimize their switching activity.

Figure 3.1: Transistor Reordering

45

3.3.1.3 Half Frequency and Half Swing Clocks

Half-frequency and half-swing clocks reduce frequency and voltage, respectively.

Traditionally, hardware events such as register file writes occur on a rising clock edge. Half-

frequency clocks synchronize events using both edges, and tick at half the speed of regular

clocks, thus cutting clock switching power in half. Reduced-swing clocks use a lower

voltage signal and thus reduce power quadratically.

3.3.1.4 Logic Gates Restructuring

There are many ways to connect a circuit using logic gates but the way the gates and their

signals are connected affects power consumption. Consider two implementations of a four-

input AND gate shown in Figure 3.2 with signal probabilities (1 or 0) at each of the primary

inputs (A,B,C,D) with the transition probabilities (0→1) for each output (W, X, F, Y, Z). If

each input has an equal probability of being a 1 or a 0, then the calculation shows that

implementation (a) is likely to switch less than the implementation (b). This is because each

gate in (a) has a lower probability of having a 0→1transition . In (b) some gates may share a

parent (in the tree topology) instead of being directly connected together. These gates could

have the same transition probabilities. The circuit (a) do not necessarily save more energy

than Circuit (b). There may be many other issues such as glitches or spurious transitions

which occur when a gate does not receive all of its inputs at the same time.

These glitches are more common in (a) where signals can travel along different paths having

widely varying delays. There are many solutions such as path balancing, retiming etc.

3/16
W

0.5 A

0.5 B

C
0.5

7/64
X

Z
0.5

15/256
F

(a)

15/256
F

3/16
Y

Z
3/16

O.5 A

O.5 B

O.5 C

O.5 D

(b)

Figure 3.2: Gate restructuring (Figure adapted from the Pennsylvania State University Microsystems Design
Laboratory’s tutorial on Low Power Design)

46

3.3.1.5 Technology Mapping

Technology mapping [37] [38] is the process which constructs a gate-level representation of a

circuit with the constraints such as area, delay, and power and for power it depends on gate-

level power models and a library which makes the gates available along with their design

constraints. Initially circuit is described at logic level before it is presented in the form of

gates. The problem is to design the circuit out of logic gates in a way so that it will reduce the

total power consumption under delay and cost limitations. The remedy is to break the circuit

into a set of trees and find the optimal mapping for each sub-tree using standard algorithms.

3.3.1.6 Low Power Flip-Flops

Flip-flops are the basic building blocks of small memories such as register files. A standard

master-slave flip-flop requires two latches with clock and data as inputs to the master latch

and for the slave latch that are the inverse of the clock signal and the output of master latch.

Hence, when the clock is high, the master latch is turned ON, and the slave latch is turned

OFF. In this phase, the master samples whatever inputs it receives and outputs them. The

slave does not sample its inputs but outputs whatever it has most recently stored. On the

falling edge of the clock, the master turns OFF and the slave turns ON. Thus the master saves

its most recent input and stops sampling further inputs. The slave samples the new inputs it

receives from the master and outputs it. The other options are the pulse-triggered flip-flop

and sense-amplifier flip-flop. All these designs share some common sources of power

consumption, such as power dissipated from the clock signal, internal switching activity and

when the outputs transition occurs.

Researchers have proposed several alternative low power designs for flip-flops. Most of these

approaches reduce the switching activity or the power dissipated by the clock signal as in

case of the self-gating flip-flop. This design inhibits the clock signal to the flip-flop when the

inputs will produce no change in the outputs proposed by [39].

Another low-power flip-flop is the conditional capture flip-flop. This flip-flop detects when

its inputs produce no change in the output and stops these redundant inputs from causing any

spurious internal current switches. There are many variations in this concept, such as the

conditional discharge flip-flops and conditional pre-charge flip-flops [40] which eliminate

unnecessary pre-charging and discharging of internal elements.

47

3.3.1.7 Low – Power Control Logic Design

The Finite State Machine (FSM) can be viewed as the control logic of a processor, which

specifies the possible processor states and conditions for switching between the states and

generates the signals that activate the appropriate circuitry for each state. Usually, control

logic optimizations targeted performance, but in recent era also targeting power. One way of

reducing power is to encode the FSM states in a way that minimizes the switching activity

throughout the processor. Another approach is decomposing the FSM into sub-FSMs and

activating only the circuitry needed for the currently executing sub-FSM.

3.3.1.8 Delay-Based Dynamic Supply Voltage Adjustment

Many processors run at multiple clock speed uses a lookup table built for worst-case analysis

to decide what supply voltage to select for a given clock speed. But ARM Inc. has been

developed a more efficient runtime solution known as the Razor pipeline [41], in which

instead of using a lookup table, Razor adjusts the supply voltage based on the delay in the

circuit. The purpose is that whenever the voltage is reduced, the circuit slows down, causing

timing errors if the clock frequency chosen for that voltage is too high. Because of these

errors, some instructions produce inconsistent results or fail altogether. The Razor pipeline

periodically monitors how many such errors occur. If the number of errors exceeds a

threshold, it increases the supply voltage. If the number of errors is below a threshold, it

scales the voltage further to save more energy [42].

This solution requires extra hardware to detect and correct circuit errors. To detect errors, it

adds the flip-flops in delay-critical regions of the circuit with shadow-latches which receive

the same inputs as the flip-flops but are clocked more slowly to adapt to the reduced supply

voltage. If the output of the flip-flop differs from that of its shadow-latch, then this signifies

an error. In the event of such an error, the circuit propagates the output of the shadow-latch

instead of the flip-flop, delaying the pipeline for a cycle if necessary.

3.3.2 Low – Power Techniques for Interconnect

48

Interconnect heavily affects power consumption as it is the medium of most electrical

activity. Efforts to improve chip performance are resulting in smaller chips with more

transistors and more densely packed wires carrying larger currents. The wires in a chip often

use materials with poor thermal conductivity [43]. Many techniques are available to reduce

the switching and few of them are surveyed and discussed below.

3.3.2.1 Bus Encoding and Cross Talk

Reducing the power consumed in buses the effective way is to reduce the switching activity

through some bus encoding schemes, such as bus-inversion [44]. Buses consist of wires to

transmit bits. For every data transmission on a bus, the number of wires that switch depends

on the current and previous values transmitted. If the Hamming distance between these values

is more than half the number of wires, then most of the wires on the bus will switch current.

To prevent this from happening, bus-inversion transmits the inverse of the intended value and

asserts a control signal alerting recipients of the inversion. It also ensures that at most half of

the bus wires switch during a bus transaction. However, because of the cost of the logic

required to invert the bus lines, this technique is mainly used in external buses rather than the

internal chip interconnect. It is also possible that as chips become smaller, there arise

additional sources of power consumption and one of these sources is crosstalk, which is

spurious activity on a wire that is caused by activities in neighbouring wires. Also because of

increasing delays and impairing circuit integrity, crosstalk can increase power consumption.

One of the ways to reduce crosstalk is to insert a shield wire between adjacent bus wires.

Since the shield remains disserted, no adjacent wires switch in opposite directions, but it

doubles the number of wires. However, the vision behind it, is to develop self-shielding codes

[45], which are resistive to crosstalk. As in traditional bus encoding, a value is encoded and

then transmitted, but the code chosen avoids opposing transitions on adjacent bus wires.

3.3.2.2 Low Swing Buses

Bus-encoding schemes used to reduce transitions on the bus. Alternatively, a bus can transmit

the same information but at a lower voltage. This is the principle behind low swing buses.

Traditionally, logical one is represented by +5 volts and logical zero is represented by −5

volts. In a low-swing system shown in Figure 3.3, logical one and zero are encoded using

lower voltages, such as +300mV and −300mV. Typically, these systems are implemented

49

with differential signalling. An input signal is split into two signals of opposite polarity

bounded by a smaller voltage range. The receiver sees the difference between the two

transmitted signals as the actual signal and amplifies it back to normal voltage.

Low Swing Differential Signalling has several advantages in addition to reduced power

consumption. It is immune to crosstalk and electromagnetic radiation effects. Since the two

transmitted signals are close together, any spurious activity will affect both equally without

affecting the difference between them. For implementation of this technique, one needs to

consider the costs of increased hardware at the encoder and decoder.

3.3.2.3 Bus Segmentation

Bus segmentation is another strategy, in shared bus architecture; the entire bus is charged and

discharged upon every access. Figure 3.4 shows that it splits a bus into multiple segments

connected by links that regulate the traffic between adjacent segments and links connecting

paths essential to a communication are activated, with most of the bus to remain powered

down.

Ideally, devices communicating frequently should be in the same or nearby segments to avoid

powering many links. The algorithm discussed in [46] begins with an undirected graph whose

B C

D E F

A H
Activated Paths

(a)

B C

D E F

A H

(b)

-5v

Encoder Decoder

30mv 30mv 20mv

-20mv 30mv -30mv

+5v

0v

Figure 3.3: Low Voltage Differential Signalling

Figure 3.4: Bus Segmentation

50

nodes are devices, edges connect communicating devices, and edge weights display

communication frequency.

3.3.2.4 Adiabatic Buses

The techniques discussed above are targeting the reduction of switching activity or voltage,

whereas, adiabatic circuits reduces total capacitance. These circuits reuse existing electrical

charge to avoid creating new charge. Generally, when a wire becomes disserted, its previous

charge is wasted. A charge-recovery bus recycles the charge for wires about to be asserted.

Figure 3.5 is a design for a two-bit adiabatic bus [47]. A comparator in each bit-line tests

whether the current bit is equal to the previously sent bit. Inequality signifies a transition and

connects the bit-line to a shorting wire used for sharing charge across bit-lines. For eg. Bit-

line1 has a falling transition while Bit-line0 has a rising transition. As Bit-line1 falls, its

positive charge transfers to Bit-line0, allowing Bit-line0 to rise. The power saving depends on

transition patterns. No energy is saved when all lines rise. The most energy is saved when an

equal number of lines rise and fall simultaneously. The biggest drawback of adiabatic circuits

is a delay for transferring shared charge.

3.3.2.5 Network-On-Chip

In all above techniques multiple functional units share one or more buses having many

drawbacks related to power and performance. The inherent bus bandwidth limits the speed

and volume of data transfers which is not suitable for varying requirements of different

execution units. Only one unit can access the bus at a time, even though many other may be

requesting simultaneously. Unlike simple data transfers, every bus transaction involves

multiple clock cycles of handshaking signals that increase power requirement and introduce

delay.

Bitline1

Bitline0

Latch

Latch

= ?

= ?

Shorting Wire

1 -> 0

0 -> 1

Reused Charge

Figure 3.5: Two Bit Charge Recovery Bus

51

The hardware-level optimizations for different sources of power consumption are discussed

in [48] for an on-chip network. It has proposed a segmented crossbar network topology, in

order to reduce the power consumption of data transfers. When data is transferred over a

regular network, all rows and columns corresponding to the intersection points; end up

switching current even though only parts of these rows and columns are actually traversed.

To eliminate this switching, the said topology divides the rows and columns into segments

using tri-state buffers. The different segments are selectively activated as the data traverses

through them, hence confining current switches to only those segments along which the data

actually passes.

3.3.3 Low Power Techniques for Memories and Memory Hierarchies

For computation purpose the storage is the essential, also the memory size optimization is the

earlier focus, but with the technological advancement the cost per bit is too low; hence

memory size is not an issue but its performance and power needs are the constraints in system

design. Some strategies are discussed below to provide the solutions to these problems.

Memory can be classified into two categories, Random Access Memories (RAM) and Read-

Only- Memories (ROM). There are two kinds of RAMs, static RAMs (SRAM) and dynamic

RAMs (DRAM) which differ in a way they store data. SRAMs store data using flip-flops and

DRAMs store each bit of data as a charge on a capacitor; thus DRAMs need to refresh their

data periodically. SRAMs allow faster accesses than DRAMs but require more area and are

more expensive. As a result, normally only register files, caches, and high bandwidth parts of

the system are made up of SRAM cells, while main memory is made up of DRAM cells.

Although these cells have slower access times than SRAMs, they contain fewer transistors

and are less expensive than SRAM cells. The power reducing techniques are not confined to

any specific type of memory. Rather they are high-level architectural principles that apply

across the spectrum of memories to the extent that the required technology is available. They

attempt to reduce the energy dissipation of memory accesses in two ways, either by reducing

the energy dissipated in a memory accesses, or by reducing the number of memory accesses.

3.3.3.1 Splitting Memories into Smaller Sub-systems

52

An effective way to reduce the energy consumed in memory access is to activate only the

needed memory circuits in each access, meaning is to partition memories into smaller,

independently accessible components. This can be done as different granularities, at lowest

granularity, one can design a main memory system that is split up into multiple banks each of

which can independently transit into different power modes [30] [49] and at higher

granularity, it is possible to partition the separate banks of a partitioned memory into sub-

banks and activate only the relevant sub-bank in every memory access. In a normal cache

access, the set-selection step involves transferring all blocks in all banks onto tag-comparison

latches. Since the requested word is at a known offset in these blocks, energy can be saved by

transferring only words at that offset. Cache sub-banking splits the block array of each cache

line into multiple banks. During set-selection, only the relevant bank from each line is active.

Since a single sub-bank is active at a time, all sub-banks of a line share the same output

latches and sense amplifiers to reduce hardware complexity. Sub-banking saves energy

without increasing memory access time. In addition to that, it is independent of program

locality patterns.

3.3.3.2 Augmenting the Memory Hierarchy with Specialized Cache

Structures

The other way to lower energy consumption in the memory is to reduce the number of

memory hierarchy accesses. The paper [50] discussed a simple but effective technique for

this and they integrate a specialized cache into the memory hierarchy of a today’s processor,

this hierarchy has one or more levels of caches. They proposed a catch deployed between the

processor and first level cache and smaller in size than the first level cache and hence

dissipate less energy. But when a data request misses this cache would it require searching

higher levels of cache, and the penalty for a miss would be offset by redirecting more

memory references to this smaller, more energy efficient cache. This was the principle behind

the filter cache. Even though this is a simple idea, it is used by many of the low-power cache

designs today, ranging from simple cache hierarchy to the scratch pad memories used in

embedded systems, and the complex trace caches used in high-end processors. Trace caches

were developed for performance but have been studied recently for their power benefits.

Instead of storing instructions in their compiled order, a trace cache stores traces of

instructions in their executed order. If an instruction sequence is already in the trace cache,

then it need not be fetched from the instruction cache but can be decoded directly from the

53

trace cache. This saves power by lowering the number of instruction cache accesses. Low-

power designs for trace caches intend to lower the number of instruction cache accesses. One

alternative is the dynamic direction prediction-based trace cache discussed in [51], uses

branch prediction to decide where to fetch instructions from. If the branch predictor predicts

the next trace with high confidence and that trace is in the trace cache, then the instructions

are fetched from the trace cache rather than the instruction cache.

3.3.4 Power Reduction at Architecture Level

Formation of instruction set, structure of pipelining and Parallelism have great impact in

lowering the power consumption at the architectural level. Architecture-driven voltage

scaling technique for power reduction is discussed in [52]. It lowers the voltage to reduce

power consumption, and then to apply parallelism and/or pipelining to maintain throughput

as the speed of a unit is decreased, it is used if enough parallelism exists at the application

level to keep the pipeline full, but trades off increased latency and additional area overhead in

the form of duplicated structures or pipeline register overhead. The overhead for these

schemes results in extra energy consumption, and additionally, incorrect speculation results

in discarding of operations, an additional waste of energy. Low-power designs tend to avoid

these deeply pipelined approaches unless the amount of speculation is limited, the overhead

for speculation is low, and the accuracy of speculation is high. Meeting required performance

for an application without overdesigning a solution is a fundamental optimization. Additional

circuitry designed to dynamically extract more parallelism can actually be detrimental, since

the power consumption overhead of this logic is not controllable, and will be present even

when the additional parallelism is absent from the application.

So far we have described the energy saving features of hardware. However, software exhibit

wide variations in behaviour. Researchers have been developing hardware structures whose

parameters can be adjusted on demand so that one can save energy by activating just the

minimum hardware resources needed for the code that is executing.

3.3.4.1 Adaptive Cache

Caches whose storage elements can be selectively activated based on the application

workload. One example of such a cache is the Deep-Submicron Instruction (DRI) cache,

54

which permits to deactivate its individual sets on demand by gating their supply voltages. To

decide what sets to activate at any given time, the cache uses a hardware profiler that

monitors the application’s cache-miss patterns. Whenever the cache misses exceed a

threshold, the DRI cache activates previously deactivated sets. Likewise, whenever the miss

rate falls below a threshold, the DRI deactivates some of these sets by inhibiting their supply

voltages, but the problem is that dormant memory cells lose data and need more time to be

reactivated for their next use. So the solution is to reduce their voltages as low as possible

without losing data. This is the aim of the drowsy cache, a cache whose lines can be placed in

a drowsy mode [53] where they dissipate minimal power but retain data and can be

reactivated faster. Figure 3.6 illustrates a typical drowsy cache line discussed in [54].

There are many other strategies for controlling cache lines. Dead-block elimination powers

down cache lines containing basic blocks that have reached their final use. It is a compiler-

directed technique that requires a static control flow analysis to identify these blocks. Since

block B1 executes only once, its cache lines can power down once control reaches B2.

Similarly, the lines containing B2 and B3 can power down once control reaches B4.

3.3.4.2 Adaptive Instructive Queues

One of the first adaptive instruction issue queues is presented in [55], a 32-bit queue

consisting of four equal size partitions each one consists of wakeup logic that decides when

instructions are ready to execute and readout logic that dispatches ready instructions into the

pipeline. At any time, only the partitions that contain the currently executing instructions are

activated. Many other methods have been developed for configuring these queues, few of

them measures the rate at which instructions are executed per processor clock cycles, or IPC.

And others find that when a program has little parallelism, the most recent part of the

instruction issue queue contributes very little to the overall IPC in that instructions in this part

are often committed late. Thus their heuristic monitors the contribution of the youngest part

of this queue and deactivates this part when its contribution is minimal.

B2 B1 B3 B4

Figure 3.6: Dead Block Elimination

55

3.3.4.3 Algorithms for Reconfiguring Multiple Structures

In addition to this work, the problem of reconfiguring multiple hardware units simultaneously

has also been taken care. The heuristics for combining hardware adaptations with dynamic

voltage scaling for multimedia applications have been presented in [56] [57] with the strategy

to run two algorithms while individual video frames are being processed. A global algorithm

chooses the initial DVS setting and baseline hardware configuration for each frame, while a

local algorithm tunes various hardware parameters (e.g., instruction window sizes) while the

frame is executing to use up any remaining slack periods.

Another heuristics discussed in [58], which adjust the pipeline width and register update unit

(RUU) size for different hotspots or frequently executed program regions. To detect these

hotspots, the technique counts the number of times each branch instruction is taken. When a

branch is taken enough times, it is marked as a candidate branch. To detect how often

candidate branches are taken, the technique uses a hotspot detection counter. To measure

energy at runtime, the heuristic relies on hardware that monitors usage statistics of the most

power hungry units and calculates the total power based on energy per access values. [59]

Discusses the other method, which provide hardware solution at the granularity of

subroutines and uses offline profiling to plot an energy-delay trade-off curve. Each point in

the curve represents the energy and delay trade-off of applying an adaptation to a subroutine.

There are three regions in the curve. The first includes adaptations that save energy without

impairing performance; these are the adaptations that will always be applied. The third

represents adaptations that worsen both performance and energy; these are the adaptations

that will never be applied. Between these two extremes are adaptations that trade

performance for energy savings; some of these may be applied depending on the tolerable

performance loss. The main idea is to trace the curve from the origin and apply every

adaptation that one encounters until the cumulative performance loss from applying all the

encountered adaptations reaches the maximum tolerable performance loss.

The heuristic for controlling other structures such as issue queues is occupancy based. It

measures how often different components of these structures fill up with data and uses this

information to decide whether to upsize or downsize the structure.

3.3.5 Dynamic Voltage Scaling (DVS)

56

The Dynamic voltage scaling addresses the problem about the way a processor’s clock

frequency gets modulated and supply voltage in lockstep as programs execute. The base is

that a processor’s workloads vary and that when the processor has less work, it can be slowed

down without affecting performance adversely. For example, if the system has only one task

and it has a workload that requires 10 cycles to execute and a deadline of 100 seconds, the

processor can slow down to 1/10 cycles/sec, saving power and meeting the deadline right on

time. This is presumably more efficient than running the task at full speed and idling for the

remainder of the period. Though it appears straightforward, this task of how DVS works is

highly simplified and hides serious real world complexities [60] [61].

3.3.5.1 Unpredictable Nature of Workloads

To predict workloads with accuracy require knowing what tasks will execute at any given

time and the work required for these tasks. There are two issues, first one is that tasks can be

pre-empted at arbitrary times because of user and I/O device requests and second one is that it

is not possible to predict the future runtime of an arbitrary algorithm accurately every time.

Especially in case of pipelining, hyper threading and out-of-order execution; it is difficult to

predict execution times. Along with many other inputs a compiler also needs to know how

instructions are interleaved in the pipeline, what the probabilities are that different branches

are taken, and when cache misses and pipeline hazards are likely to occur which needs to

develop a model for pipeline and memory hierarchy. A number of researchers have attempted

to integrate complete pipeline and cache models into compilers. It remains nontrivial to

develop models that can be used efficiently in a compiler and that capture all the complexities

inherent in current systems.

3.3.5.2 Indeterminism and Anomalies in Real Systems

There is no direct relationship between clock frequency, execution time, and power

consumption at the system level and theoretical studies are made on voltage scaling are based

on certain assumptions which might be reasonable but are not guaranteed in real systems. It is

also believed that total microprocessor system power is quadratic in supply voltage. But using

the CMOS transistor model, the power dissipation of individual transistors is quadratic in

their supply voltages, but there remains no precise way of estimating the power dissipation of

an entire system.

57

Another misconception is that it is most power efficient to run a task at the slowest constant

speed that allows it to exactly meet its deadline. Several theoretical studies attempt to prove

this claim. These proofs rest on idealistic assumptions such as “power is a convex linearly

increasing function of frequency”, assumptions that ignore how DVS affects the system as a

whole. When the processor slows down, peripheral devices may remain activated longer,

consuming more power. An important study of this issue was done by [62] who shown that,

for specific DRAM architectures, the energy versus slowdown curve is “U” shaped. As the

processor slows down, CPU energy decreases but the cumulative energy consumed in active

memory banks increases. Thus the optimal speed is actually higher than the processor’s

lowest speed; any speed lower than this causes memory energy dissipation to overshadow the

effects of DVS.

A third one is that the clock frequency and execution time are in inversely proportion.

Actually it is a problem defines how slowing down the processor affects the execution time

of any application. DVS may result in nonlinearities.

All of these issues show that theoretical studies are insufficient for understanding how DVS

will affect system state. One needs to develop an experimental approach driven by heuristics

and evaluate the tradeoffs of these heuristics empirically. Most of the existing DVS

approaches can be classified as interval-based approaches, inter task approaches, or intra task

approaches.

3.3.5.3 Interval – Based Approaches

Interval-based DVS algorithms measure how busy the processor is over some interval or

intervals, estimate how busy it will be in the next interval, and adjust the processor speed

accordingly. These algorithms differ in how they estimate future processor utilization.

3.3.5.4 Inter task Approaches

Inter task DVS algorithms assign different speeds for different tasks. These speeds remain

fixed for the duration of each task’s execution. Inter task DVS has two drawbacks. First, task

workloads are usually unknown until tasks finish running. Thus traditional algorithms either

58

assume perfect knowledge of these workloads or estimate future workloads based on prior

workloads. When workloads are irregular, estimating them is nontrivial.

The second drawback of inter task approaches is that they are unaware of program structure.

A program’s structure may provide insight into the work required for it, insight that, in turn,

may provide opportunities for techniques such as voltage scaling. Within specific program

regions, for example, the processor may spend significant time waiting for memory or disk

accesses to complete. During the execution of these regions, the processor can be slowed

down to meet pipeline stall delays.

3.3.5.5 Intra task Approaches

In this approach, the processor speed and voltage are adjusted within tasks. There are many

approaches available, few of them splits each task into fixed length timeslots. The algorithm

assigns each timeslot the lowest speed that allows it to complete within its preferred

execution time which is measured as the worst case execution time minus the elapsed

execution time up to the current timeslot. Moreover, the algorithm is pessimistic since tasks

could finish before their worst case execution time. It is also insensitive to program structure.

In addition to these schemes, there have been a number of intra task policies implemented at

the compiler level.

[63] represents the one of the first of these algorithms, they noticed that programs have

multiple execution paths, some more time consuming than others, and that whenever control

flows away from a critical path, there are opportunities for the processor to slow down and

still finish the programs within their deadlines. Based on this observation, a tool that profiles

a program offline to determine worst case and average cycles for different execution paths

was developed, and then inserting instructions to change the processor frequency at the start

of different paths based on this information.

Another approach, program check-pointing, annotates a program with checkpoints and

assigns timing constraints for executing code between checkpoints. It then profiles the

program offline to determine the average number of cycles between different checkpoints.

Based on this profiling information and timing constraints, it adjusts the CPU speed at each

checkpoint.

59

The most well known approach is given in [64], which profile a program offline with respect

to all possible combinations of clock frequencies assigned to different regions and then build

a table describing how each combination affects execution time and power consumption.

Using this table, selection of the combination of regions and frequencies are made that saves

the most power without increasing runtime beyond a threshold.

3.3.5.6 The Implications of Memory Bounded Code

Applications with memory are on target for DVS algorithms because the time for a memory

access is independent of processor speed. But if the memory is required to access frequently,

it affects the time for program execution and due to this “memory wall”, the processor can

actually run slower and save a lot of energy without losing as much performance as it would

if it were slowing down a through compute-intensive code.

But there are many assumptions used at work, like the assumption that a DVS algorithm can

predict with complete accuracy a program’s future behaviour and switch the clock frequency

without any hidden costs. But the fundamental problem is how to detect program regions

during which the processor stalls, waiting for a memory, disk, or network access to complete.

Modern processors contain counters that measure event such as cache misses, but it is

difficult to extrapolate the nature of these stalls from observing these events.

The researchers are developing techniques for modulating the processor frequency based on

memory access patterns. Because it is difficult to reason abstractly about the complex events

occurring in modern processors, the research in this area has a strong experimental flavour;

many of the techniques used are heuristics that are validated through detailed simulations and

experiments on real systems.

Unlike the previous approaches which attempt to monitor memory boundedness, a recent

technique expressed in [65] attempts to monitor CPU boundedness. Their algorithm

periodically measures the rate at which instructions are executed to determine how compute-

intensive the workload is. The authors find that this approach is as accurate as other

approaches that measure memory boundedness, but may be easier to implement because of its

simpler cost model.

60

3.3.5.7 Dynamic Voltage Scaling in Multiple Clock Domain Architectures

The GALS (Globally Asynchronous, Locally Synchronous) chips are split into multiple

domains, each of which has its own local clock. Each domain is synchronous with respect to

its clock, but the different domains are mutually asynchronous in that they may run at

different clock frequencies, having certain advantages such as the clocks that power different

domains are able to distribute their signals over smaller areas, thus reducing clock skew, the

effects of changing the clock frequency are felt less outside the given domain. This is an

important advantage that GALS has over conventional CPUs. When a conventional CPU

scales its clock frequency, all of the hardware structures that receive the clock signal slow

down causing widespread performance loss. In GALS, one can slow down some parts of the

circuit, while allowing others to operate at maximum frequencies which provides more

opportunities for saving energy. In compute bound applications, GALS system can keep the

critical paths of the circuit running as fast as possible but slow down other parts of the circuit.

One of the first compiler-based algorithms for controlling GALS systems is presented in [66]

[67]. The main algorithm is called the shaker algorithm due to its resemblance to a salt

shaker. It repeatedly traverses the Directed Acyclic Graph (DAG) representation of a

program from root to leaves and from leaves to root, searching for operations whose energy

dissipation exceeds a threshold. It stretches out the workload of such operations until the

energy dissipation is below a given threshold, repeating this process until either no more

operations dissipate excessive energy or until all of the operations have used up their slack.

The information provided by this algorithm would be used by a compiler to select clock

frequencies for different GALS domains in different program regions.

3.3.6 Algorithmic Level Power Reduction Techniques

Algorithmic-level power reduction techniques focus on minimizing the number of operations

weighted by the cost of those operations. Selection of an algorithm is generally based on

implementation such as the energy cost of an addition versus a logical operation, the cost of a

memory access, and whether locality of reference, both spatially and temporally can be

maximized. The presence and structure of cache memory, for example, may cause a different

set of operations to be selected, since the cost of a memory access relative to an arithmetic

operation changes. In general, reducing the number of operations to be performed is a first-

order goal, although in some situations, re-computation of an intermediate result may be

61

cheaper than spilling to and reloading from memory. Techniques used by optimizing

compilers, such as strength reduction, common sub-expression elimination, and optimizations

to minimize memory traffic are also useful in most circumstances in reducing power [68].

Loop unrolling may also be of benefit, as it results in minimized loop overhead as well as the

potential for intermediate result reuse.

In addition all above, there are many ways a compiler can help reduce power, also

reconfigures hardware units or activates power reduction mechanisms, compilers can apply

common performance-oriented optimizations that also save energy by reducing the execution

time, optimizations such as Common Sub-expression Elimination, Partial Redundancy

Elimination, and Strength Reduction. However, some performance optimizations increase

code size or parallelism, sometimes increasing resource usage and peak power dissipation.

Researchers have developed models for relating performance and power, but these models

are relative to specific architectures.

There is no fixed relationship between performance and power across all architectures and

applications. The Figure 3.7 compares the power dissipation and execution time of doing two

additions in parallel [69](as in VLIW architecture) (a) and doing them in succession (b).

Doing two additions in parallel activates twice as many adders over a shorter period. It

induces higher peak resource usage but fewer execution cycles and is better for performance.

To determine which scenario saves more energy, one needs more information such as the

peak power increase in scenario Figure 3.7(a), the execution cycle increase in scenario Figure

3.7(b), and the total energy dissipation per cycle for Figure 3.7(a and b). For ease of

illustration, it is expressed that the peak power in Figure 3.7(a) to be twice that of Figure

3.7(b), but all of these parameters may vary with respect to the architecture.

62

Number representations offer another domain for algorithmic power optimization. For

example, using a fixed point or a floating-point representation for data types can make

significant difference in power consumption during arithmetic operations. Selection of sign-

magnitude versus two’s complement representation for certain signal processing applications

can result in significant power reduction if the input samples are uncorrelated and dynamic

range is minimized . Operator precision, or bit length, can be selected to minimize power at

the cost of accuracy. In floating point algorithms, full precision can be avoided, and

mantissa and exponent width reduced below the standard 23 and 8 bits, respectively, for

single precision IEEE floating point. In [70], the authors show that for an interesting set of

applications involving speech recognition, pattern classification, and image processing,

mantissa bit width may be reduced by more than 50% to 11 bits with no corresponding loss

of accuracy. In addition to improved circuit delays, energy consumption of the floating point

multiplier was reduced 20%–70% for mantissa reductions to 16 and 8 bits, respectively.

Truncation of low-order bits of partial sum terms when performing a 16-bit fixed-point

multiplication has been shown to result in power savings of 30% due mainly to reduction in

area [71] [72].

CYCLE ADDER1 ADDER2

1

a

a + 1

n

CYCLE ADDER1 ADDER2

1

a

a + 1

n

ADD

ADD

Time

Power

ADD ADD

Time

Power

(a)
(b)

Figure 3.7: Performance Versus Power

63

Compilers can reduce memory accesses by eliminating redundant and load and store

operations to reduce energy dissipated. Another way is to keep data as close as possible to the

processor, may be in the registers and lower-level caches, using aggressive register allocation

techniques and optimizations improving cache usage. Several loop transformations alter data

traversal patterns to make better use of the cache. The assignment of data to memory

locations also influences how long data remains in the cache. Though all these techniques

reduce power consumption, they might be suboptimal along others. For example, to exploit

the full bandwidth, banked memory architecture provides, one may need to disperse data

across multiple memory banks at the expense of cache locality and energy.

A new domain of research for compilers involves compiling and executing applications

jointly, having challenges such as the decision of what program sections to compile or

execute remotely, between mobile devices and powerful servers to reduce execution time and

increase battery life. Other issues include partitioning between multiple servers and

handhelds, application migration, and fault tolerance.

The compiler-based approaches have demerits as a compiler’s view is usually limited to the

programs it is compiling and can address two problems. (1) Compilers have incomplete

information about how a program will actually behave. Hence, compilers with static

optimization usually depend on profiling data which is collected prior to execution, to

determine which optimization should be applied in various program regions. A program’s

actual runtime behaviour may be different from its behaviour during simulation. (2) The

compiler optimizations treat programs as if they work in a vacuum. But this may be ideal for

embedded systems execution behaviour is predictable, real systems tend to be more complex.

The events occurring within them continuously change and compete for processor and

memory resources.

Dynamic compilation addresses some of these problems by introducing a feedback loop. A

program is compiled but is then also monitored as it executes. As the behaviour of the

program changes, possibly along with other changes in the runtime environment (e.g.,

resource levels), the program is recompiled to adapt to these changes. Since the program is

continuously recompiled in response to runtime feedback, its code is of a significantly higher

quality than it would have been if it had been generated by a static compiler.

64

There are a number of scenarios where continuous compilation can be effective. For example,

as battery capacity decreases, a continuous compiler can apply more aggressive

transformations that trade the quality of data output for reduced power consumption. (For

example, a compiler can replace expensive floating point operations with integer operations,

or generate code that dims the display.) However, there are tradeoffs. For example, the cost

function for a dynamic compiler needs to weigh the overhead of recompiling a program with

the energy that can be saved.

3.4 Introduction to Emerging Technologies for Power Reduction

A brief discussion on two of the upcoming technologies has been represented here, which

may likely to prove as important technologies over the next decade. The focus of these

techniques is on improving energy efficiency [30]. The techniques include fuel cells and

MEMS systems. The researchers believe that these technologies will eventually resolve the

energy constraint.

3.4.1 Fuel Cells

Fuel cells are being developed with the objective to replace the batteries used in mobile

devices, as they have limited charge storage capacity and once depleted, they must be

discarded or recharged if rechargeable. Also recharging can take several hours and its quality

eventually slips down. In addition to all these, battery technology has low development rate

and building more efficient batteries are not suited for small mobile devices as it may be

bigger in size and weight.

Fuel cells are alternatives to batteries in which they generate electricity by means of a

chemical reaction but they can supply energy indefinitely principally. The main components

of a fuel cell are an anode, a cathode, a membrane separating the anode from the cathode, and

a link to transfer the generated electricity. The fuel enters the anode, where it reacts with a

catalyst and splits into protons and electrons. The protons diffuse through the membrane,

while the electrons are forced to travel through the link generating electricity. When the

protons reach the cathode, they combine with Oxygen in the air to produce water and heat as

by-products. If the fuel cell uses a water-diluted fuel, then this waste water can be recycled

back to the anode.

65

Fuel cells have a number of advantages such as fuels (e.g., hydrogen) are abundantly

available from a wide variety of natural resources, and many offer energy densities high

enough to allow portable devices to run far longer than they do on batteries. Another

advantage is that refuelling is significantly faster than recharging a battery. In some cases, it

merely involves spraying more fuel into a tank. A third advantage is that there is no limit to

how many times a fuel cell can be refuelled. As long as it contains fuel, it generates

electricity.

Several companies took very aggressive initiative to develop fuel cell technologies for

portable devices including Micro Fuel Cell Inc., NEC, Toshiba, Medis, Panasonic, Motorola,

Samsung, and Neah Systems and already a number of prototype cells have emerged as well

as prototype mobile computers powered by hydrogen or alcohol based fuels. Even with the

rapid advancement, few industries believe that it will take another 5-10 years for fuel cells to

make it available in mobile applications.

Fuel cells also have several drawbacks and also very risky because they can get very hot

(e.g., 500- 1000 Celsius). Also they need very expensive metallic materials and mechanical

components that they are composed of. The fuel cells are highly flammable. In particular,

fuel-powered devices will require high degree of safety measures as well as more flexible

laws allowing them inside airplanes.

3.4.2 MEMS

MEMS (Micro-electrical and Mechanical Systems) are miniature versions of large scale

devices that convert mechanical energy into electrical energy. Researchers are exploring the

ways of using them to solve the energy problem. They are developing prototype millimetre

scale versions of the gigantic gas turbine engines that power airplanes and drive electrical

generators. These micro engines will give mobile computers unprecedented amounts of

lifetime.

The micro engines work using similar principles as their large scale counterparts. They suck

air into a compressor and ignite it with fuel. The compressed air then spins a set of turbines

66

that are connected to a generator to generate electrical power. The fuels used could be

hydrogen, diesel based, or more energy-dense solid fuels.

Made from layers of silicon wafers, these tiny engines are supposed to output the same levels

of electrical power per unit of fuel as their large scale counterparts. Their proponents claim

they have two advantages. First, they can output far more power using less fuel than fuel cells

or batteries alone. In fact, the ones under development are expected to output 10 to 100 Watts

of power almost effortlessly and keep mobile devices powered for days. Moreover, as a result

of their high energy density, these engines would require less space than either fuel cells or

batteries.

However, it is too early to tell whether it will in fact replace batteries and fuel cells. One

problem is that jet engines produce hot exhaust gases that could raise chip temperatures to

dangerous levels, possibly requiring new materials for a chip to withstand these temperatures.

Other issues include flammability and the power dissipation of the rotating turbines.

3.5 Conclusion

Power and energy management has grown into a multifaceted effort that brings together

researchers from such diverse areas as physics, mechanical engineering, electrical

engineering, design automation, logic and high-level synthesis, computer architecture,

operating systems, compiler design, and application development. Above discussion is on

how the power problem arises and how the problem has been addressed along multiple levels

ranging from transistors to applications. Because Low-power design requires taking care of

the power dissipation problem at all levels of the design hierarchy, No single target will be

sufficient to extract the efficiency required for future handheld products [73].

Voltage scaling has limits that will require additional advanced techniques to be applied at

the algorithmic and architectural level for additional power savings. Dynamic voltage scaling

based on system loading and processing requirements is an emerging technique with great

promise. Clock power optimizations will remain a challenge as higher frequencies and

increased pipelining are applied to extract increased performance. Parallelism must be

efficiently extracted without sacrificing the goal of low power. Software generation strategies

that are based on power cost functions will be increasingly common in these future systems.

67

Even though a broad range of power reducing techniques have been proposed, the challenge

still remains to integrate them into a design flow in which power plays as large a role as

performance. Here in this chapter an in depth survey of major commercial power

management technologies has been presented and also through some light on emerging

technologies.

It is concluded with the understanding that the field is still active, and researchers are

continually developing new algorithms, hardware level techniques and heuristics along each

level as well as exploring how to integrate algorithms from multiple levels. Given the wide

variety of micro-architectural and software techniques available today and the few that will

be available in the future, it is highly preferred to overcome the limits imposed by high power

consumption and continue to build processors offering greater levels of performance and

versatility.

However, only time will tell which approaches will ultimately succeed in solving the power

problem.

The following chapters will be based on complete construction of 32 – bit processor working

on RISC principle with 4 – pipeline stages having many other features, this processor will be

used as the system under consideration and will be implemented on FPGA as low power

implementation through incorporation of low power design strategies and hence, the power

saving features will be taken care and a power consumption comparison will be made with

the conventional 5 – stage pipeline processor.

68

Chapter 4
 System Architecture

4.1 Introduction

The system under consideration for this Ph.D. work is a prototype model of 32 –bit processor

unit, which is designed considering the base of RISC principle and is targeted for

implementation on Xilinx SPARTAN – 3E FPGA device. The embedded processors found in

everyday appliances such as cell phones, personal digital assistants, and handheld game

systems, are far more powerful compared to earlier ones. The embedded processor is a

processor that has been embedded into a target device such as FPGA and it can be

programmed to interact with different pieces of hardware. It is essential to have these

embedded processors a low power processor as it becomes a part of everyday life and the

expansion of battery life time, is an important aspect for the mobility of modern electronic

gadgets, it also increases the device reliability [74] [75]. Embedded processors are accepted

widely because they are small in size and are cost effective to fabricate, also very flexible as

one can change the application or the specification very easily just by changing the software

only. Low power design strategies, implemented at various abstraction levels of the system,

also reduces the heat dissipation to a greater extent, which in turn reduces the packaging cost

of the system as cooling arrangement may be simpler [76] [77].

This chapter includes the design of 32 – bit processor using RISC principle with 4 – stage

pipeline [78] which allow the simpler implementation using the load / store mechanism and

supports the predefined instruction set [79] .

4.2 Processor Architecture

The processor to be discussed here is 4 – stage pipelined processor with instruction and data

memory within the FPGA chip and 32 – bits are the width of instructions and data. Due to the

69

difference in time taken to access a register as compared to a memory location, it is much

faster to perform the operation on-chip register rather than memory. To eliminate the latency

of memory operations, MIPS (Microprocessor without interlocked pipeline stages) processor

uses the load/store architecture where the access to memory is only through load and store

instructions. There are total 16 general purpose registers identified as R0 to R15 and the size of

each one is 32 – bit. Most of the instructions have two operands, one is a register operand

(RD for destination) and the other is a register operand (RS for source) or an immediate or a

direct or an indirect address in case of load store instruction. The operand result is written

back to RD. The RD and RS registers can be one of the 16 general purpose 32 – bit registers

i.e. from R0 to R15. Other special function registers discussed below are also designed which

are essential for the pipeline operations.

Program counter (PC): It is a 32 – bit long register, holds the address of the next instruction

which is to be fetched from the memory during the next clock cycle and to be executed.

Normally PC is incremented by one during each clock cycle unless a branch instruction

executed. In case of branch instruction is encountered the PC will jump to the branch offset

address and start pointing to fetch the next instruction to be executed [80].

Instruction Register (IR): It is a 32 – bit register used by CPU itself. The instruction pointed

by PC and fetched from the memory is loaded into this register. IR is not programmable and

cannot be accessed.

Two Registers (A and B): The size of both the registers is 32 – bit, and used to hold two

source operands.

Register (C): It is 32 – bit register used to hold the result of the operations, it is a destination

operand.

Single bit register (Z): It is used to hold the zero flag for conditional branching. The branch

instructions will be evaluated using this register.

The detailed architecture of a processor is given in Figure 4.1, it explains the 4 – pipeline

stages of the processor, which are Instruction Fetch (IF), Decode and Operand Fetch (DC),

Execution or Memory Access (EX) and Write Back (WB). All these stages [81]can be

detailed hierarchically as shown below.

Pipelining structures are used in the processors to permit overlapping execution of multiple

instructions within the same circuitry. This system is divided into the number of stages which

70

includes instruction decoding, arithmetic, registers fetching stages, and also has a pipeline

structure, where one instruction is processed in each stage at a time.
Processor_32_bit
 |
 |_____Instr_Fetch
 |

 |_____Inst_Decode

 | |
 | |_________ROM
 | |
 | |_________Instruction_Decoder
 |
 |_____ Operand _Fetch_Sel
 |
 |_____Inst_Execute
 | |
 | |_________ALU
 | |
 | |_________RAM
 |
 |_____Write_Back

Along with the pipeline structure, the processor architecture also incorporates the data

forward unit and the hazard detection unit to maintain the proper data flow through the

pipeline stages. Each of the stage of the pipeline along with the data forward and hazard

detection unit are described in detailed as follows:

4.2.1 IF Stage

This stage consists of Program counter (PC), Instruction Memory and the Branch detection

Unit. In this stage, the content of PC is sent to ROM location from which the next instruction

to be executed is to be fetched. At the same time the PC predictor predicts the next

instruction. If in previous instructions decode stage a branch taken is detected then, according

to the sign, immediate value is incremented to or decremented from PC else PC is

incremented by 1.

4.2.2 DC Stage

In this stage the instruction is now in the instruction register to be decoded and corresponding

operand is to be fetched. The control unit generates the control signals, which are utilized for

proper synchronization and operation of the overall system. The various signals decoded by

the instruction decoder, which can be used for read and write operations for register bank and

71

program memory, which are as described in the following section. It also generates the

signals which decide the usage of multiplier and ALU, and also generates the flags used by

branch unit and produces the clock gating signals for ALU control. Instruction decoder

decodes the following signals:

Figure 4.1: Detailed Architecture of 4 – Stage Pipelined Processor Under Consideration

72

• Btaken: 1 bit signal Branch taken to indicate that current instruction is one of the three

branch instruction.

• Regwrite: 1 bit signal indicating that current instruction will write to a destination register.

Nop, store and all three branch instruction don’t generate this signal. For all other

instructions this bit is decoded to logic 1.

• Load: 1 bit signal indicating that current instruction is a load instruction and data will be

loaded from data memory to the destination register.

• Store: 1 bit signal indicating that current instruction is a store instruction and data will be

stored to data memory from the source register.

• Op: 6 bit opcode is decoded in to this register. Opcode is detected to be either Mov, Add,

Sub, Mul, Or, And, Xor, Ror, Rol, Slr, Sll, Inc, Dec, Cmp and Clr.

• a_depen: It’s a 1 bit destination register dependency signal indicating that current

instruction destination register is same as the previous instruction source or destination

register. It is used by ALU operand A as selection signal; and if it go high, the data of

register C is selected and forwarded, otherwise, the data of register A is selected.

• b_depen: It’s a 1 bit source register dependency signal indicating that current instruction

source register is same as the previous instruction source or destination register. It is used

by ALU operand B as selection signal; and if go high, the content of register C is selected

and forwarded, otherwise, the data of register B is selected.

• Immed: This 1 bit signal indicates that the current instruction is one of the instructions that

operates on the immediate data using immediate addressing mode.

• Immed_data: This 32 bit register holds the 30 bit immediate value for the instruction

involving operations on immediate data or 5 bit of shift or rotate for the two shift and two

rotate instruction or 32 bit branch data for the three branch instruction.

• Sign: As Sign is a bit controllable signal, it indicates whether the branch will cause the

program counter to be incremented or decremented by the immediate value.

• Ra: Destination register operand is decoded into this 4 bit register.

• Rb: Source register operand is decoded into this 4 bit register.

Data dependencies are detected in this stage so accordingly data forwarding can be done from

write back stage to execute stage. Branch prediction is also done in this stage. For the data

dependency, consider the following sequence of operations of pipeline executions mentioned

as I1, I2, and I3.

73

I1: ADD R1, R2 ; R1 R1 + R2

I2: SUB R3, R1 ; R3 R3 - R1

I3: SUBI R1, 1 ; R1 R1 – 1

In case of instruction I2, it reads R3 and R1 from the register file in the Decode and Operand

Fetch stage, and writes them to A and B registers respectively and at the same time, the

instruction I1 add R1 and R2 and write it to C; then store the sum to R1 in the next stage.

Hence, I2 will receive the previous data from register file and write it to B. If I2 uses it to

perform subtraction, it will result into wrong output. But when I3 reading R1, there will not

be any trouble. The remedy is to insert NOP instruction between I1 and I2 to introduce delay

for the execution of I2, but the performance will be affected. Hence, a data path is to be

designed in a way that it should solve this problem and a dependency detection block should

be able to identify the dependencies if any. Once the data dependency is detected, the source

data required for ALU operation is passed from C via multiplexer, instead of from A or B.

The data dependencies occurs under certain conditions, which are like (a) the operand A / B

of the current instruction is a register operand (cRD / cRS), (b) the result of the previous

instruction will be written into register file (pRD) and (c) cRD/cRS and pRD are the same

register.

The detection of dependency is done in EX stage. In this processor design, we do this

operation in DC stage, and make use of pipeline registers to transfer to EX stage. This

arrangement offers few advantages, which are (1) The dependency detection in DC stage will

reduce the use of number of gates because a common logic can be shared with other decode

circuits. (2) The time required by EX stage will be shortened because the signals a_depen and

b_depen are made available immediately at the beginning of EX stage. For the control

dependency, we use a delay branch method. In the proposed processor design, the branch

target address is evaluated in DC stage and it introduce one delay cycle for which an

additional adder is required for address evaluation. This technique is implemented in this wok

to achieve the optimization by rearranging the instruction codes described in detail in Chapter

5.

Operation fetch module fetches the data from the register file corresponding to source and

destination operand.

74

• Sig_da: This 32 bit register holds the value of register pointed by destination operand.

• Sig_db: This 32 bit register holds the value of register pointed by source operand.

• B_select: This 32 bit register holds the value of register pointed by source operand or 32

bit immediate value depending on the status of immed signal.

4.2.3 EX stage

In the execution stage depending on the instructions either data is fetched from the data

memory or stored into it or an ALU operation is performed. This stage includes ALU, ALU

control Unit and Multiplier.

4.2.3.1 Data memory access

Block RAM of Xilinx is used as data memory. For writing data to memory, address is

provided along with data, but the data reading operation has latency of one clock. So when

there is load instruction to load data from memory to register, RAM address is generated one

clock cycle earlier. Also depending on the dependency signal for RAM address, address is

given by b_select or forwarded through c_forward, it depends on the status of b_depen

signal. Similarly data to be written to memory is either given by sig_da or c_forward

depending on a_depen signal if there is dependency between two consecutive instructions.

4.2.3.2 ALU

ALU is responsible for all arithmetic and logic operations that take place within the

processor. These operations can have one or two operands, and these values are coming either

from the registers or may be immediate value from the instruction directly. Either A or B

register is selected according to the a_depen and b_depen signals and given to ALU. ALU

then performs operation depending on the opcode and generate the result into register C. Zero

flag is generated if the result in C is zero. A complete architecture of ALU unit is shown in

Figure 4.2.

75

4.2.4 WB stage

During this stage the result generated by the instruction is written back into the one of the

general purpose registers. In this stage the regwrite signal pipelined to this stage is checked

for 1, if it is one indicating that destination register is to be updated. Thus the value in C

register is updated to the corresponding destination register out of 16 general purpose

registers.

4.3 Instruction Set Formation

Figure 4.2: An ALU Architecture for 4 – Stage CPU

76

The set of instructions is interpreted directly by the CPU. These instructions are encoded as

bit strings in memory and are fetched and executed one by one by the processor. They

perform primitive operations such as “add 2 to register i1”, “store contents of R6 into

memory location 0xFF32”, This processor architecture supports mainly three types of the

instructions such as (a) register type, for which both the operands are registers; (b) the

immediate type, which consists of register as one of the operands and an immediate value as

another operand; and the third one is (c) branch type instructions. The instruction formats for

all these types of instructions are as given below. The format length is 40-bit.

(a) Register Type: Format for all instructions where both operands are registers. It includes

the instructions such as

 add, sub, mul,

 or, and, xor, move,

 load, store,

 rotate right, rotate left, shift right, shift left.

(b) Immediate Type: Format for all instructions where one operand is register and other is an

immediate data it includes the instructions such as

 add, sub, mul,

or, and, xor,

move, load, store,

rotate right, rotate left, shift right, shift left.

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1

0

6 bits opcode
4 bits

Operand 1
4 bits

Operand 2
26 bits All 0’s

6 bits opcode
4 bits

Operand
1

30 bits immediate value

77

Format for instructions given below which operates on a following register.

Increment, decrement,

Clear, Complement

(c) Branch Type: Below is the instruction format for the three predefined branch instruction

and two update instructions.

Following Table 4.1 summarizes all the instruction supported by this processor. It is not a

complete instruction set for this processor, only a part of the complete instruction has been

developed to deal with this processor to carry out the work in this thesis. In list op1, op2 and

op are of 4 – bits indicating the register operand. The immediate and direct address is 30 bit

value and the branch address and update are 32 – bit value.

Table 4.1: Summary of All the Instructions Supported by this Processor

No Instruction Operation Opcode Instruction Format
1 Nop No operation 000000 (000000)(All 0’s)
2 Add Add operand 2 to 1 000001 (000001)(op1)(op2)(all 0’s)
3 Sub Subtract operand 2 to 1 000010 (000010)(op1)(op2)(all 0’s)
4 Mul Multiply operand 2 to 1 000011 (000011)(op1)(op2)(all 0’s)
5 Or Oring operand 2 to 1 000100 (000100)(op1)(op2)(all 0’s)
6 And Anding operand 2 to 1 000101 (000101)(op1)(op2)(all 0’s)
7 Xor Xoring operand 2 to 1 000110 (000110)(op1)(op2)(all 0’s)
8 Mov Move operand 2 to 1 000111 (000111)(op1)(op2)(all 0’s)
9 Ror Rotate right operand 1 by amount

specified in operand 2
001000 (001000)(op1)(op2)(all 0’s)

10 Rol Rotate left operand 1 by amount
specified in operand 2

001001 (001001)(op1)(op2)(all 0’s)

11 Slr Shift right operand 1 by amount
specified in operand 2

001010 (001010)(op1)(op2)(all 0’s)

12 Sll Shift left operand 1 by amount 001011 (001011)(op1)(op2)(all 0’s)

6 bits opcode
4 bits

Operand
1

30 bits All 0’s

6 bits opcode

2
bits
both

0

32 bits branch or update value.

Figure 4.3: Formats for Various Instructions

78

specified in operand 2
13 Load Load value to register pointed by

operand 1 from memory location
pointed by operand 2

001100 (001100)(op1)(op2)(all 0’s)

14 Store Store value from register pointed by
operand 1 to memory location pointed

by operand 2

001101 (001101)(op1)(op2)(all 0’s)

15 Addi Add 30 bit immediate value to
operand 1

001110 (001110)(op)(immediate)

16 Subi Subtract 30 bit immediate value to
operand 1

001111 (001111)(op)(immediate)

17 Muli Multiply 30 bit immediate value to
operand 1

010000 (010000)(op)(immediate)

18 Ori Or 30 bit immediate value to operand
1

010001 (010001)(op)(immediate)

19 Andi And 30 bit immediate value to
operand 1

010010 (010010)(op)(immediate)

20 Xori Xor 30 bit immediate value to operand
1

010011 (010011)(op)(immediate)

21 Movi Move 30 bit immediate value to
operand 1

010100 (010100)(op)(immediate)

22 Rori Rotate right operand 1 by amount
specified by 5 bit immediate

010101 (010101)(op)(immediate)

23 Roli Rotate left operand 1 by amount
specified by 5 bit immediate

010110 (010110)(op)(immediate)

24 Slri Shift right operand 1 by amount
specified by 5 bit immediate

010111 (010111)(op)(immediate)

25 Slli Shift left operand 1 by amount
specified by 5 bit immediate

011000 (011000)(op)(immediate)

26 Loadi Load value to register pointed by
operand 1 from memory location

indicated by 11 bit immediate

011001 (011001)(op)(direct address)

27 Storei Store value from register pointed by
operand 1 to memory location
indicated by 11 bit immediate

011010 (011010)(op)(direct address)

28 Bz Branch if Zero and start fetching
instructions from location specified by

32 bit immediate address

011011 (011011)(2 bit 0’s)(Branch
Add)

29 Bnz Branch if not Zero and start fetching
instructions from location specified by

32 bit immediate address

011100 (011100)(2 bit 0’s)(Branch
Add)

30 Br Branch and start fetching instructions
from location specified by 32 bit

immediate address

011101 (011101)(2 bit 0’s)(Branch
Add)

31 Sr0l Update R0 register least significant
word

011110 (011110)(2 bit 0’s)(update
value)

32 Sr0h Update R0 register most significant
word

011111 (011111)(2 bit 0’s)(update
value)

33 Inc Increment operand by 1 100000 (100001)(op)(All 0’s)
34 Dec Decrement operand by 1 100001 (100010)(op)(All 0’s)
35 Cmp Complement operand 100010 (100011)(op)(All 0’s)
36 Clr Clear operand 100011 (100100)(op)(All 0’s)

4.4 Sub-modules of Processor

79

The processor is designed in modular fashion and includes ALU, Register File, Instruction

Memory, Data Memory, Decoder, Pipeline registers, and multiplexors as major modules. The

four pipeline stages are presented in the Figure 4.1. Following section discusses the major

sub-modules incorporated in this processor.

4.4.1 ALU Design

 The ALU of the processor implemented here performs 14 different operations. A 6 - bit

signal ALU_op selects the ALU operation shown in Figure 4.2. The 14 operations along with

the possible variations defined whish are to be performed by this ALU are listed below.

1) MOV (for MOV, MOVI and SR0H)

2) OR (for OR, ORI and SR0L)

3) XOR (for XOR and XORI)

4) AND (for AND and ANDI)

5) SUB (for SUB and SUBI)

6) ADD (for ADD and ADDI).

7) MUL (for MUL and MULI)

8) INC (for INC)

9) DEC (for DEC)

10) CMP (for CMP)

11) CLR (for CLR)

12) ROR (for ROR and RORI)

13) ROL (for ROL and ROLI)

14) SLR (for SLR and SLRI)

15) SLR (for SLL and SLLI)

4.4.2 Register File Design

Register is a storage location directly on the CPU, used for temporary storage of small

amount of data during processing. In this processor implementation, we have constructed 16

general purpose registers R0 – R15, each one is 32 bit wide. Hence, four bits are required to

use for addressing the register file i.e. 16 × 32 bits having two read ports and a write port. It

can be implemented with 16, 32-bit registers and a pair of 16-to-1 multiplexors and each one

is of 32 bits wide for read ports and uses a 4-to-16 decoder for write control.

80

4.4.3 Data Memory Design

Memory array is randomly accessible to memory bytes, each one identified by a unique

address. Flat memory models, segmented memory models, and hybrid models exists which

are distinguished by the way the locations are referenced and potentially divided into

sections. As proposed processor development is based on Harvard architecture, there must be

provisions for separated instruction memory module and data memory module. Data memory

has 2048 x 32 bits. We use Xilinx block RAM modules to build on-chip memory. For this

implementation the Xilinx coregen block memory generator is used for generating RAM. It

made memory access possible once at each cycle. The load and store instructions are used to

access this module.

4.4.4 Instruction Memory Design

This unit contains the instructions that are executed by the processor. Instruction memory has

2048 × 40 bits. For the instruction memory design, we have used Xilinx coregen block

memory generator. The ROM is initialized to a known value with the coe file at the time of

ROM generation. Coe file hold the instruction that are dumped into ROM at the time of core

generation.

4.4.5 Instruction Decoder

The internal structure of instruction decoder is made up of multiplexers, comparators and the

logic gates. Figure 4.4 explain the detailed internal architecture of instruction decoder, the

operational role of the multiplexer is defined in Figure 4.5 and the useful signals which are

utilized during the operations such as instruction fetch execution and write back as shown in

Figure 4.6 .

81

Figure 4.4: Detailed Internal Architecture of Instruction Decoder

82

Figure 4.5: Internal Architecture of Multiplexer

83

4.4.6 Control Unit Design

The control unit produce all the necessary control signals which are to be utilized for the

synchronization among all the components of the processor. This unit also provides the

signals that control all the read and write operations of the register file and also for decision

about when to use the multiplier and when to use the ALU. It also generates appropriate

branch flags that are used by the Branch Decide Unit. In addition to all these, this unit

provides clock gating signals for the ALU control and the Branch Adder module. In short,

this unit generates all the control signals for controlling all the data path activities. Summary

of all the control signals is given in Table 4.2.

Table 4.2: Summary of Control Signals

Sr. No. Signal Description of Signal

01
BTAKEN

Branch Taken

If branch is taken, BTAKEN go high to select the branch address for

instruction to be fetched in the next clock cycle.

02 RA<3:0>

Used to point out the number of the destination register RD, but RD

can also be source 1 register (RD = RD op RS); almost all the

instructions keep the number of RD in a fixed position for the

instruction format, but for SR0L and SR0H instructions, the number

Figure 4.6: Diagram of Instruction Decoder with all relevant Signals

immed_data (31 downto 0) 0)

Instruction Decoder

op(5 downto 0)

ra(3 downto)

rb(3 downto 0)

Instruction_reg (39 downto)

R_RE

Zero

a_depe

b_depe

b_take
 immed

load

regwrite

sign

store

zerowrit

result_id (3 downto 0)

84

of RD is always 0 for these instructions.

03 RB<3:0>

It shows the register number of RS which is the source 2 register. The

Most of the instructions put the number of RS in a fixed position, but

few instructions use it as immediate data in that position.

04
IMMED

Immediate Selection

When the source 2 operand is an immediate, IMMED go high for the

selection of immediate, not register operand.

05
IMMED_DATA<31:0>

Immediate

When it is 32-bit immediate data. Depending upon instructions, it can

be produced with different extension techniques. The

IMMED_DATA<31:0> is used for the source 2 operand of ALU

operations and also for the branch target address calculation.

06
OP<5:0>

ALU Operation Control
This signal will be generated based on instructions.

07
ADEPEN

(A Dependent)

It is the selection signal for ALU operand A, if high; the forwarding

data of register C is selected, else the data of register A is selected.

08
BDEPEN

(B Dependent)

It is the selection signal for ALU operand B; if high, the forwarding

data of register C is selected, else the data of register B is selected.

09
STORE

Store

It is called memory-write control signal, if it go high, a memory write

operation performed.

10
LOAD

Load

When this signal LOAD is high, the register C will be written with the

loaded data from data memory.

11
ZEROWRITE

Zero Register Write
When ZR WRITE is high, zero flag register will be updated.

12 RA2<3:0>

It is the same signal as RA<3:0> of DC stage and is pipelined to retain

the number of destination register for the purpose to be written in the

write back stage.

13
REGWRITE

(Register Write)

It is the register-write control signal. If it goes high, then the register

C content will be shifted into register file.

All of the control signals are generated within the DC stage. However, few of them are
actually utilized in EX and WB stages. To handle this situation, pipeline registers are used to
assign a proper signal to the corresponding stages. In our processor design the control unit is
divided into five blocks and each block generates the relevant signal. These blocks are
described as follows with related signals.

• Branch block generates BTAKEN,

• Register address block generates RA<3:0> and RB<3:0>,

• ALU control block generates OP<5:0>, ZEROWRITE, and REGWRITE,

• Immediate block generates IMMED and IMMED_DATA <31:0>,

• Dependent block generates A_DEPEN and B_DEPEN.

85

4.5 Multiplier Unit & Its Logic

For multiplication to be done in the Spartan 3e FPGA, the dedicated multipliers are used, it

provides 4 to 36 dedicated multiplier blocks per device. The multipliers are located together

with the block RAM in one or two columns depending on device density. The multiplier

blocks primarily perform two’s complement numerical multiplication and it can also perform

some less obvious applications, such as simple data storage and barrel shifting. Logic slices

also implement efficient small multipliers and thereby supplement the dedicated multipliers.

Each multiplier performs the principle operation P = A X B ; where ‘A’ and ‘B’ are 18 – bit

words in two’s complement form, and ‘P’ is the full-precision 36 – bit product, also in two’s

complement form. The 18 – bit inputs represent values ranging from -131,07210 to

+131,07110 with a resulting product ranging from –17,179,738,11210 to +

17,179,869,18410.

Wider multiplication operation can be possible by combining the dedicated multipliers and

slice-based logic in any viable combination or by time-sharing a single multiplier, perform

unsigned multiplication by restricting the inputs to the positive range. Tie the most-

significant bit low and represent the unsigned value in the remaining 17 lesser-significant

bits. Figure 4.7 show that each multiplier block has optional registers on each of the

multiplier inputs and the output. The registers are named AREG, BREG and PREG and can

be used in any combination. The clock input is common to all the registers within a block, but

each register has an independent clock enable and synchronous reset controls making them

Figure 4.7: Main Features of Multiplier Block

86

ideal for storing data samples and coefficients. When used for pipelining, the registers boost

the multiplier clock rate, which is beneficial for higher performance applications. The

MULTI8X18SIO primitive shown in Figure 4.8 is used to instantiate a multiplier within a

design. Although high-level logic synthesis software usually automatically infers a multiplier,

adding the pipeline registers might require the MULT18X18SIO primitive. Connect the

appropriate signals to the MULT18X18SIO multiplier ports and set the individual AREG,

BREG, and PREG attributes to ‘1’ to insert the associated register, or to 0 to remove it and

make the signal path combinatorial.

The MULT18X18SIO primitive has two additional ports called BCIN and BCOUT to

cascade or share the multiplier’s ‘B’ input among several multiplier blocks. The 18-bit BCIN

“cascade” input port offers an alternate input source from the more typical ‘B’ input. The

B_INPUT attribute specifies whether the specific implementation uses the BCIN or ‘B’ input

path. Setting B_INPUT to DIRECT chooses the ‘B’ input. Setting B_INPUT to CASCADE

selects the alternate BCIN input. The BREG register then optionally holds the selected input

value, if required. BCOUT is an 18-bit output port that always reflects the value that is

applied to the multiplier’s second input, which is either the ‘B’ input, the cascaded value

from the BCIN input, or the output of the BREG if it is inserted. Figure 4.9 illustrates the

four possible configurations using different settings for the B_INPUT attribute and the BREG

attribute.

Figure 4.8: Pin Diagram of MULT18X18SIO

87

The BCIN and BCOUT ports have associated dedicated routing that connects adjacent

multipliers within the same column. Via the cascade connection, the BCOUT port of one

multiplier block drives the BCIN port of the multiplier block directly above it. There is no

connection to the BCIN port of the bottom-most multiplier block in a column or a connection

from the BCOUT port of the top-most block in a column.

4.6 Clock Distribution Network

In this processor design Spartan 3e xc3s500e FPGA device is used for its implementation and

its clock distribution network is utilized for the functionality. The Spartan-3E clock

distribution network is as shown in Figure 4.10, it presents a series of low-capacitance and

low-skew interconnect lines which is suitable to carry high-frequency signals throughout the

FPGA’s blocks. The infrastructure also includes the clock inputs and BUFGMUX clock

buffers/multiplexers. The Xilinx Place-and-Route (PAR) software automatically routes high-

fan out clock signals using these resources. Clock pins can be connected directly to external

clock signals and also to DCMs and BUFGMUX elements. Each Spartan-3E FPGA has 16

Global Clock inputs (GCLK0 through GCLK15) located along the top and bottom edges of

the FPGA. Out of which 8 are Right-Half Clock inputs (RHCLK0 through RHCLK7) located

along the right edge and 8 are Left-Half Clock inputs (LHCLK0 through LHCLK7) located

Figure 4.9: Four possible Configures for the B_INPUT Attribute and BREG Attribute

88

along the left edge. Each clock input is also optionally a user-I/O pin and connects to internal

interconnect. Some clock pad pins are input-only pins.

Clock Buffers/Multiplexers either drive clock input signals directly onto a clock line (BUFG)

or optionally provide a multiplexer to switch between two unrelated, possibly asynchronous

clock signals (BUFGMUX). Each BUFGMUX element, shown in Figure 4.10, is a 2-to-1

multiplexer. The select line, S, chooses which of the two inputs, I0 or I1, drives the

BUFGMUX’s output signal, O. The switching from one clock to the other is glitch-less, and

done in such a way that the output High and Low transition times are never shorter than the

shortest High or Low time of either input clock. The two clock inputs can be asynchronous

with regard to each other, and the S input can change at any time, except for a short setup

time prior to the rising edge of the presently selected clock (I0 or I1).

Figure 4.10: Xilinx SPARTAN – 3E Clock Distribution Network (Courtesy of XilinxTM Co.)

89

The BUFG clock buffer primitive drives a single clock signals onto the clock network and is

essentially the same element as a BUFGMUX, just without the clock select mechanism.

Similarly, the BUFGCE primitive creates an enabled clock buffer using the BUFGMUX

select mechanism. The I0 and I1 inputs to BUFGMUX element originate from clock input

pins, DCMs, or Double-Line interconnect, as shown in above Figure 4.11. As depicted in

Figure 4.10, there are total 24 BUFGMUX elements, which are distributed around the four

edges of the device. Clock signals from the four BUFGMUX elements at the top edge and the

four at the bottom edge are truly global and connect to all clocking quadrants. The eight left-

edge BUFGMUX elements only connect to the two clock quadrants in the left half of the

device. Similarly, the eight right-edge BUFGMUX elements only connect to the right half of

the device. BUFGMUX elements are organized in pairs and share I0 and I1 connections with

adjacent BUFGMUX elements from a common clock switch matrix as shown in Figure 4.11.

For example, the input on I0 of one BUFGMUX is also a shared input to I1 of the adjacent

BUFGMUX. The clock switch matrix for the left- and right-edge BUFGMUX elements

receives signals from any of the three following sources: an LHCLK or RHCLK pin as

appropriate, a Double-Line interconnect, or a DCM in the XC3S1200E and XC3S1600E

devices.

By contrast, the clock switch matrixes on the top and bottom edges receive signals from any

of the five following sources: two GCLK pins, two DCM outputs, or one Double-Line

interconnect. The four BUFGMUX elements on the top edge are paired together and share

Figure 4.11: Internal Element of 2 – to -1 Multiplexer (Courtesy of XilinxTM Co.)

90

inputs from the eight global clock inputs along the top edge. Each BUFGMUX pair connects

to four of the eight global clock inputs, as shown in Figure 4.10. This optionally allows

differential inputs to the global clock inputs without wasting a BUFGMUX element. The

connections for the bottom-edge BUFGMUX elements are similar to the top-edge

connections (see Figure 4.11). On the left and right edges, only two clock inputs feed each

pair of BUFGMUX elements.

The clock routing within the FPGA is quadrant-based, as shown in Figure 4.10. Each clock

quadrant supports eight total clock signals, labelled ‘A’ through ‘H’ as shown in Figure 4.12.

The clock source for an individual clock line originates either from a global BUFGMUX

element along the top and bottom edges or from a BUFGMUX element along the associated

edge, as shown in Figure 4.10. The clock lines provide the synchronous resource elements

(CLBs, IOBs, Block RAM, multipliers and DCMs) within the quadrant. The four quadrants

of the device are: Top Right (TR), Bottom Right (BR), Bottom Left (BL) and Top Left (TL).

The outputs of the top or bottom BUFGMUX elements connect to two vertical spines, each

comprising four vertical clock lines as shown in Figure 4.10. At the centre of the die, these

clock signals connect to the eight-line horizontal clock spine. Outputs of the left and right

BUFGMUX elements are routed onto the left or right horizontal spines, each comprising

eight horizontal clock lines. Each of the eight clock signals in a clock quadrant derives either

from a global clock signal or a half clock signal. In other words, there are up to 24 total

potential clock inputs to the FPGA, eight of which can connect to clocked elements in a

Figure 4.12: Quadrant – Based Clock Routing (Courtesy of XilinxTM Co.)

91

single clock quadrant. Figure 4.12 shows how the clock lines in each quadrant are selected

from associated BUFGMUX sources. For example, if quadrant clock ‘A’ in the bottom left

(BL) quadrant originates from BUFGMUX_X2Y1, then the clock signal from

BUFGMUX_X0Y2 is unavailable in the bottom left quadrant. However, the top left (TL)

quadrant clock ‘A’ can still solely uses the output from either BUFGMUX_X2Y1 or

BUFGMUX_X0Y2 as the source. To minimize the dynamic power dissipation of the clock

network, the Xilinx development software automatically disables all clock segments which

are not in use.

4.7 Data Forwarding and Data Dependency

This unit is responsible for proper data forwarding to ALU and multiplier. The primary

function of this unit is to compare the destination register address of the data waiting in the

EX and WB pipeline registers to be written back to the register file with the current data

needed by the ALU or multiplier and forward the most up-to-date data to these units. By

forwarding the data at the appropriate time, this unit makes sure that the pipeline works

smoothly and does not stall as a result of data dependencies [82]. All pipeline registers shown

below are involved to have smooth flow through different stages of pipeline

Table 4.3: Pipeline Registers Flow Through Different Stages of Pipeline

IF Stage

DC Stage

EX Stage

WB Stage

Zerowrite Zerowrite Zerowrite1

Regwrite Regwrite Regwrite1 Regwrite2

Ra(3 : 0) Ra(3 : 0) Ra1(3 : 0) Ra2(3 : 0)

Rb(3 : 0) Rb(3 : 0) Rb1(3 : 0)

Load Load Load1

Store Store Store1

Op(5 : 0) Op(5 : 0) Op1(5 : 0)

A_depen A_depen A_depen1

B_depen B_depen B_depen1

Immed Immed Immed1

Immed_data(31 : 0) Immed_data(31 : 0)

92

Hazards are the situations in which a pipeline may produce wrong answers by providing

incorrect data. The remedy to this is instructions stalls and/or data forwarding to be used to

overcome such pipeline hazards. Hazard detection unit detects such scenario in which correct

data forwarding is not possible and stalls the pipeline for one or two clock cycles in order to

assure that instructions are executed with the correct data set. If it found that a stall is

necessary, it disables the operation in the instruction decode pipeline registers, stops the

program counter from incrementing, and clears all the control signals generated by the

control unit. There are mainly three types of hazards discussed below.

4.7.1 Structural Hazards

Structural Hazards occur when more than one instruction attempt simultaneously to make use

of same resources or wrong inputs are given to hardware. Specifically, branch instructions

could make use of the same ALU to figure out the target branch address. If the ALU were to

use in the decode stage for the same purpose, an ALU related instructions followed by a

branch would have seen that both the types of instructions tries to use the ALU concurrently.

This conflict is resolved by designing a specialized branch target adder into decode stage.

Float value given to integer instruction is also a structural hazard.

4.7.2 Data Hazards

These types of Hazards observed when an instruction scheduled blindly and if it tries to make

use of data before the data is actually available in the register file. Data dependencies are

mainly of three types for which there could be three types of possibilities for data hazards.

1) Read after Write:

Suppose instruction 1 writes a value which is used later by the next instruction 2. Instruction

1 must come first otherwise instruction 2 will read the older value instead of the newer one.

For example, Instruction J tries to read operand before Instruction I writes it. Caused by

Dependences occur in compiler nomenclature.

I: add r1,r2,r3

J: sub r4,r1,r3

2) Write after Read:

93

Suppose the situation is such that an instruction 1 reads a location which is to be later

overwritten by instruction 2. It is mandatorily required that the instruction must come first, or

it should read the newer updated value instead of the previous one. For example, Instruction J

writes operand before Instruction I read it which is called an anti dependence by compiler

writers. This results because of reusing the name r1.

I: sub r4,r1,r3

J: add r1,r2,r3

K: mul r6,r1,r7

3) Write after Write:

Consider two instructions and both of which tries to write the same location. It is mandatory

requirement that instructions must take place as per their original order. For example,

Instruction J writes operand before the instruction I writes it, Called an output dependence by

compiler writers. This also results due to repetition of name r1.

I: sub r1,r4,r3

J: add r1,r2,r3

K: mul r6,r1,r7

4.7.3 Control Hazards

Control Hazards take place because of conditional and unconditional branching and jumps.

The pipeline structure based on RISC provides solution for branches in the Decode stage, in

which the branch resolution and reoccurrences are two cycles long. For any branch taken, the

instruction which is immediately to be executed after the branch should always be fetched

from instruction memory. If this instruction is being ignored, there will be an introduction of

one cycle per taken branch as penalty, which is quite large. There are four techniques used to

solve this performance problem with branches which are named as (1) Predict not taken; (2)

Branch likely; (3) Branch delay slot and (4) Branch prediction.

In the proposed processor design we have used branch delay slot scheme to prevent control

hazard. After every branch instruction a NOP instruction is there to provide a delay slot in the

pipeline. Also this processor as being a fixed pipeline processor has only read after write data

dependency. This dependency has been identified in the decode stage and data forwarding is

http://en.wikipedia.org/wiki/Instruction_pipeline�

94

done from write back stage to execution stage to eliminate this hazard. The data dependency

and data forwarding are explained by Figure 4.13.

4.8 External Interface

This processor is given two signals as an external input signals which are Clk (System Clock)

and reset_n (Active high Asynchronous Reset) and the interface is as shown in Figure 4.14.

4.9 Instruction Simulation and Verification

All the instructions supported by the processor are simulated using VHDL coding and

verified through the generation of waveforms. Thus the performance of the processor as

whole system has been checked, tested and verified by simulating variety of instructions. The

overall performance of the CPU is discussed in detailed in the Chapter 5.

4.10 FPGA Design Flow

Figure 4.13: Data Dependency and Data Forwarding

 Figure 4.14: External Interface

95

Schematic Entry

Synthesis

Place and Route

Configuration

Verification

Verification

Verification

Whole system has been developed by using the VHDL and then implemented into the FPGA.

A typical FPGA design flow has been followed and each and every step of the flow is shown

in the following Figure 4.15.

Schematic Entry: The design is entered into a synthesis design system using a hardware

description language. The language used for this research work was VHDL and editor used

for this purpose is one which is provided by Xilinx Integrated Environment (ISE Version

13.1).

Synthesis : A netlist is generated using VHDL code and Xilinx synthesis tool.

Place and Route: The place process decides the best location of the cells, the best routing

strategy for the given design and for desired performance. The route process makes the

connections between the cells and the blocks. This process is done by using Xilinx ISE.

Configuration: Creates the PLD configuration data and downloads the configuration data to

the PLD (FPGA) and enables the configuration on the PLD to be verified for correctness.

Verification: At each and every step of the design process, the processor architecture has

been verified using the software simulation. ModelSim XE – II has been used for simulating

the VHDL coding.

4.11 Summary of Synthesis Report

Whole architecture has been synthesized for FPGA implementation using the Xilinx ISE –

13.1 suit and the summary of synthesis report has been presentation in Table 4.4.

Figure 4.15: FPGA Design Flow

96

Table 4.4: Summary of Synthesis Report

Device Utilization Summary

Selected Device : XC3s500efg320 – 4 (SPARTAN – 3E FPGA)

Devices
Device Utilization

Devices Used Out of % Utilization

Number of Slices 2017 4656 43%

Number of Slice Flip

Flops
697 9312 7%

Number of 4 Input LUTs 3066 9312 32%

Number of bonded IOBs 2 232 0%

Number of BRAMs 9 20 45%

Number of

MULT18X18SIOs
1 20 5%

Number of GCLKs 1 24 4%

Number of IOs 2

Timing Summary
Speed Grade Minimum Period Maximum Frequency

4 23.934ns 41.782 MHz

4.12 Power Estimation Reports of Complete Architecture

The XPower Estimator (XPE) – 11.1spreadsheet is a power estimation tool typically used in

the pre-design and pre-implementation phases of a project. XPE assists with architecture

evaluation, device selection, appropriate power supply components and thermal management

components specific for the targeted application. XPE considers design’s resource usage,

toggle rates, I/O loading, and many other factors which it combines with the device models to

calculate the estimated power distribution. The accuracy of XPE is dependent on two primary

sets of inputs (1) Device utilization, component configuration, clock, enable, and toggle rates,

and other information related to project entered into the tool and (2) Device data models

integrated into the tool. It is a pre-implementation tool to be used in the early stages of a

design cycle or when the RTL description is incomplete. After implementation, the XPower

Analyzer (XPA) tool (available in the ISE® Design Suite software) can be used for more

accurate estimations and power analysis.

The Summary sheet shown in Figure 4.16 is the default sheet on launch and allows designer

to enter all device and environment settings. On this sheet the tool also reports estimated

power; rail-wise and block-wise, so one can quickly review thermal and supply power

97

distribution required within the design. It also gives summary related to clock, logic, IO,

BRAM, DCM and MUL. Important factors in dynamic power calculation are the activity and

the load capacitance that needs to be switched by each net in the design. Some of the factors

in determining the loading capacitance are fanout, wire length, etc. With clocks typically

having higher activity and fanouts, the power associated with clock nets can be significant

and also can be reported in a separate worksheet sheet along with many other reports. The

consolidated summary of estimation report for the design under consideration is shown in

Figure 4.16.

Clock Fanout Column is the number of synchronous elements driven by this clock and for

this design the maximum achievable frequency is 54.7 Mhz and clk fanout is 668. Using

XPower Estimator – 11.1 one can have the separate sheets for each components such as

Logic sheet is used to estimate the power consumed in the CLB resources. The estimated

power accounts for both the logic components and the routing. Here two types of information

are to be entered (1) Utilization – Enter the number of LUTs, Shift Registers and LUT-based

Figure 4.16: Summary of Estimated Power Distribution Report

98

RAMs and ROMs and (2) Activity – Enter the Clock domain as per the logic and then enter

the Toggle Rate the logic is expected to switch and the Average Fanout.

Note: The default setting for Toggle Rate (12.5%) and Average Fanout (3) are based on an

average extracted from a suite of customer designs. In the absence of a better estimation for a

specific design, Xilinx recommends to use the default setting provided in Xpower Estimator.

In our design total no of flip flops are 659 and LUT’s are 3423 used.

With high switching speed and capacitive load, there will be major contribution to the total

power consumption of an FPGA is from switching I/O power. Because of this, it is important

to accurately define all I/O related parameters. Using the I/O sheet, the XPE helps to

calculate the on-chip and, eventually, off-chip power for the system I/O interfaces. There are

three main types of information entered on the I/O sheet (1) IO Settings, (2) Activity and (3)

bank voltage levels and voltage standards. In this design only two input pins of the processor

are used, which are the clock and the reset pin. FPGA devices have dedicated block RAM

resources. The details about the Enable Rate and Write Rate columns used in the Block RAM

sheet can be described as (1) Use the Enable Rate to specify the percentage of time each

block RAM’s ports are enabled for reading and/or writing. To save power, the RAM enable

can be driven low on clock cycles when the block RAM is not used in the design. BRAM

Enable Rate, together with Clock rate is important parameters that must be considered for

Figure 4.17: Graphical Representation of Estimated Power Requirements for Internal Modules and Effect of
Various Parameters on Power Consumption

99

power optimization. (2) The Write Rate represents the percentage of time that each block

RAM port performs write operations. The read rate is understood to be 100% – write rate. We

have used in all 9 block RAMs of 18K: 4 for ROM and 5 for RAM and only 1 Digital Clock

Manage (DCM) is used as there is only one clock source and also present its related

electrical parameters and one multiplier is used as there is only one multiplication

instruction. Graphs are plotted according to the data given as input and are well described in

Figure 4.17, which represents the need of power of each individual module within the system

and also provides the information for power need with reference to junction temperature and

the voltage supplied to the device. It is noted that power consumption increases with the

junction temperature and the increase in the voltage as well.

4.13 Conclusion

This chapter provides the complete details of construction of 4 – stage pipeline processor

architecture and also discusses the types of instruction and their construction along with the

detailed formation of instruction.

Processor’s architecture design and its instruction formation are thoroughly tested using

number of programs and validated through the simulated results in terms of waveform to

solidify the design and observed that the correct functionality is achieved and the simulated

waveforms are discussed in Chapter 5.

It covers the complete construction of decoder unit and multiplier unit along with many other

useful modules such as data forwarding and data hazard detection unit along with the types of

various data hazards and provides the remedies for the same.

We also included the complete clock distribution network and the structure of multiplier unit

along with the details of all the related signals, as the system is targeted to be implemented up

on SPARTAN – 3E FPGA.

At last the power estimation is done using Xpower Estimator -11.1, which will be used for

power comparisons to be done in the next chapter.

100

The following chapter describes the conventional 5 – stage CPU, its power analysis and then

its conversion to 4 – stage CPU along with its power analysis and suggests the newly

developed power reduction techniques such as Memory Access Stage Removal, Resource

Sharing, RAM Addressing Scheme and Clock Gating in order to reduce the dynamic power

consumption and are implemented successfully on FPGA. Also the outcomes are analysed

and verified in order to lower the overall system power consumption.

These techniques are applied at the hardware design level and analyzed for power

requirements. Also the power consumption comparison between conventional 5 – stages CPU

with the newly developed low power CPU with 4 – pipeline stages has been made by

generating the power reports.

101

Chapter 5
 Proposed Strategies

for Power Optimization

5.1 Introduction

The proposed work suggested four out of many possible strategies; and all are implemented

at hardware level for dynamic power reduction on the 32 – bit, 4- stage pipelined CPU whose

architecture is discussed in previous Chapter, and the power comparisons are made with the

conventional 5 – stage pipelined conventional CPU by taking the power reports for both the

CPUs using Xilinx Xpower Analyzer. This chapter also discusses the 5- stage pipeline

processor architecture in brief (for understanding purpose only) and using this processor the

power comparisons are made.

With the prime focus to control the dynamic power along with maintaining the performance

of the processor; we are implementing four strategies out of many other possible strategies

upon the conventional 5 – stage CPU; which are (1) Memory stage Access Stage Removal,

(2) Resource Sharing in 4 – stage CPU, (3) Novel RAM Addressing Scheme and (4) Clock

Gating. After implementation of each technique the system is analysed for the power

dissipation and at last the power comparisons with and without the implementation of these

power reducing techniques on CPU are made and verified.

5.2 Architecture of 32 – bit 5 – Stage Pipeline
(Conventional/Standard) CPU

Following Figure 5.1 describes the detailed architecture of 5- stage pipeline CPU, designed

on the basis of RISC principle. This CPU is not described here in detailed as it is used only

for the purpose of taking power results and then to apply the power reducing strategies to

make it 4 – stage CPU which is discussed in Chapter 4. The power reports are generated

using the Xpower Analyser (Xilinx ISE 13.1 Suit) for both the CPUs’ to compare the power

102

consumption and the performance, which will verify the proposed techniques for dynamic

power reduction. Here, the conventional architecture of 5 – stage CPU includes one more

stage in addition to those of 4 – stage CPU, which are Instruction Fetch (IF), Decode and

Operand Fetch (DC), Execution (EX) and an additional one is Memory Access (MEM) and

Figure 5.1: Detailed Architecture of 5 – Stage Pipelined Conventional CPU

103

Write Back (WB). The memory access (MEM) stage is observed additional in 5 – stage CPU.

For whole system the power analysis has been done and checked the power requirement

using Xpower Analyser of Xilinx ISE – 13.1 suit, the following Figure 5.2 provides the

details of power consumption of normal CPU with 5 – stage pipeline structure.

The performance of above described 5 – stage CPU implementation has been verified for all

the pipeline stages through the waveform generation using ModelSim6.5 and it can be

represented as shown in following figures from Figure 5.3 to Figure 5.7. These simulated

waveforms verifies the CPU performance in terms of execution of all types of instructions

and the behaviour of all the related signals in all the pipeline stages.

Figure 5.2: Summary of Power Consumption Report for 5 – Stage Pipeline CPU

104

Figure 5.3: Instruction Fetch for 5 - Stage CPU

105

Figure 5.4: Instruction Decode for 5 – Stage CPU

106

Figure 5.5: RAM Address for 5 – stage CPU

107

Figure 5.6: Instruction Execute for 5 - Stage CPU

108

Figure 5.7: Write Back Stage for 5 – Stage CPU

109

For the Instruction Fetch stage waveform depicted in Figure 5.3 shows the start of processor

execution. And also shows that after the reset is de-asserted the program counter starts

incrementing. In the Instruction Decode stage described by Figure 5.4, the instructions are

decoded and corresponding signals are generated. As shown above waveforms the various

relevant signals performs the operations.

The signals such as dependency signals (a_depen and b_depen) for handling hazards, branch

signals to indicate a branch, register select for selecting registers, load and store signals for

accessing block RAM, immed signal for indicating that current instruction is immediate,

zerowrite and regwrite for indicating an update of a register after execution of instruction are

involved in this stage.

Here in RAM Address stage in Figure 5.5 the Ram address signals are generated and fed to

RAM, so that data can be made available in next clock cycle.

Instruction is executed during the Instruction Execute stage shown in Figure 5.6 and

depending on types of instructions, either ALU operation is performed or RAM data loading

or storing is done which is described in above waveforms. In Write Back stage detailed by

Figure 5.7 the register bank of 16 registers is updated with the instructions.

5.3 Proposed Strategies for Power Reduction

5.3.1 Memory Access Stage Removal Technique

We are using Xilinx FPGA’s block RAMs to be utilised for RAM requirements of our

system. Any write or storing of data to block RAM requires both address and data to be given

at the same clock edge while data to be read or loaded from block RAM requires address to

be given first and corresponding data will appear on the data line on the consecutive active

clock edge. As data will be available on the next clock edge after issuing the address, one

must keep a stage called memory access in the pipeline where the address is provided and

data made available during the execute stage and should be stored in the corresponding

register. This stage is available in 5- stage CPU.

110

Even though in 5 stage pipeline the memory access stage is available, it can be seen that this

data memory access stage is not used by any of the arithmetic instructions or branch

instructions. It is used only for memory access instructions. Arithmetic and branch

instructions have a ‘NOP’ in the memory access stage. That is all its data are just passed-on

through memory access and gets executed in the execute stage. Transitions during this unused

state cause extra power dissipation. To avoid this wastage, the pipeline is reconfigured to

bypass memory stage by using strategic address forwarding logic from instruction decode and

operand fetch stage.

Thus address is provided to the RAM at instruction decode and operand fetch stage, if

instruction is decoded to be the load instruction. Hence, if the data corresponding to that

address is available in the execute stage and no extra clock or memory access stage is

required. This address forwarding doesn’t affect the other instructions as RAM address

generation logic is independent and does not directly or indirectly affect the logic of the

consecutive or previous instruction in the pipeline.

For example consider add, load and sub instruction in the pipeline. Now while add instruction

is getting executed, load instruction gets decoded and RAM address is provided. If RAM

address is dependent on previous instruction the result generated of add instruction is directly

given to RAM as address through MUX selection. Now if next sub instruction also has data

dependency with the load instruction, then also there is no problem as data will be available

in the execute stage which will be forwarded to sub instruction through data forwarding,

implemented to remove data hazard. Similarly for any instruction in the pipeline there are no

hazards with respect to address forwarding.

Above Figure 5.1 shows the architecture normal five pipeline stages where the memory

access is required by the load instruction because address provided to read the memory in

execute stage causes the read information to come in next clock cycle that is memory access

stage. But for all other instructions these unused transitions do happen for memory access

stage without affecting the normal operation; but these transitions during the unused stage

cause extra power consumption. To avoid this wastage, the normal pipeline structure is

required to modify during the design of architecture of CPU; in a way, so that the correct data

forwarding takes place even for the load/store instructions when actually the memory access

stage is required.

111

Thus, the normal 5 – stage pipeline structure is modified to 4 – stage pipeline structure to

reduce the dynamic power consumption, whose detailed architecture has been explained in

previous chapter in Figure 4.1 and power analysis has been done for this new architecture. It

verifies the justifiable reduction in power dissipation. The summary of power analysis is

shown in Figure 5.8.

Comparing the total power consumption requirement of the standard 5 – stage pipeline CPU,

the 3mW (2.65%) improvement is achieved due to implementation of memory access stage

removal technique.

Up on reduction of one pipeline stage, which was used for memory access, from the standard

5- stage pipeline, it is required to verify the performance of the 4 – stage CPU through the

waveforms for all the stages. It is verified and noted that the power reduction is achieved

without affecting the performance of the implementation. Explanations for waveforms for all

the 4 – stages of CPU given through the Figure 5.9 to Figure 5.12 are same as that of for 5 –

stages given above except the address forwarding is done from decode stage for RAM Access

related instructions as discussed above.

Figure 5.8: Summary of Power Consumption Report for 4 – Stage Pipeline CPU (After Implementation of
Memory Access Stage Removal

112

Figure 5.9: Instruction Fetch for 4 – Stage CPU

113

Figure 5.10: Instruction Decode and Operand Fetch for 4 – Stage CPU

114

Figure 5.11: Instruction Execute for 4 – Stage CPU

115

Figure 5.12: Write Back for 4 – Stage CPU

116

5.3.2 Resource Sharing Technique

The proposed technique is implemented during the designing of the decode stage of the

processor. Most of the processors’ design supports two types of the instructions addressing

modes which are immediate addressing and direct register addressing types. For example, the

arithmetic operation addition can be performed by both the types of addressing modes as

shown below:

Immediate Addressing Type Operation: Addi r1 , 30 – bit Immediate Data

Direct Addressing Type Operation: Add r1 , r2

Here, both the instructions performs almost the same operation i.e. addition where the

operand 1 is common i.e. register r1. The operand 2 can be either immediate data value or a

register depending on the type of instruction. To introduce resource sharing technique both

the opcode is required to decode to same operation that is for addition Addi the opcode is

001110 and for Add the opcode is 000001 is decoded to perform the addition operation and

assigned an opecode which is 000101.

Instead of using the separate resources for both the instructions which perform the same

operation, this technique channelize the instruction into one and hence the saving of half the

resources is achieved from the decode stage which would have been required if both the

instructions were executed differently using their separate resources. Thus in execute stage

only one adder does the work for both types of instructions. Thus much amount of power was

saved by resource sharing just by adding some control signals in the decode stage and

eliminating many flip – flops, comparators and muxes which would have been required in the

later stage.

Through Resource sharing following instructions listed in Table 5.1 are channelized to one

instruction and the considerable power saving was achieved. This technique can be applied to

all the stages with different logic as applied to decode stage here.
Table 5.1: List of Instructions under Consideration

Instruction 1 Instruction 2 Operation Decoded to Opcode

Add (000001) Addi (001110) Addition Addition (000101)

117

Sub(000010) Subi(001111) Subtraction Subtraction(000100)

Mul(000011) Muli(010000 Multiplication Multiplication(000110)

Or(000100) Ori(010001) OR Orring(000001)

And(000101) Andi(010010) AND Anding(000011)

Xor(000110) Xori(010011) XOR Xorring(000010)

Mov(000111) Movi(010100) Move Move(000000)

Ror(001000) Rori(010101) Rotate Right Rotate Right(001000)

Rol(001001) Roli(010110) Rotate Left Rotate Left(001100)

Srl(001010) Srli(010111) Shift Right Shift Right(001101)

Sll(001011) Slli(011000) Shift Left Shift Left(001110)

Load(001100) Loadi(011001) Load Same Load Signal for Both

Store(001101) Stori(011010) Store Same Store signal for Both

Thus from fetching, executing and write back stages considerable amount of resources are

saved. During the instruction fetch operation the Program Counter (PC) is either incremented

by 1 or incremented/decremented by the content of branch address from the current position

of PC. To perform this operation two adders and one subtractor is required. During the design

of processor 2’s complement logic was used for instruction fetching during the branching

operation, which removes one subtractor.

Further, the resource sharing is also used by implementing 2:1 MUX with inputs of value 1

and 2’s complement branch address and a branch signal as select line. This MUX output is

then added to current PC to generate the next PC value. This reduces further one adder as

shown in following Figure 5.13.

Mux

X “00000001”
 PC_incr

PC(31 downto 0)

Branch

Figure 5.13: MUX for Resource Optimization

118

The Program Counter operation can be expressed as follows:

PC = PC + PC_incr;

In Execute Stage the ALU required 2 Adders for the operations such as addition and

increment i.e. one for addition (Add, Addi) and one for Increment (Inc) and 2 subtractors for

subtraction and decrement i.e. one for subtraction(Sub, Subi) and one for Decrement (Dec).

In this proposed work during execute stage instead of using 4 Adders/Subtractors dedicated

to each operation one adder and a multiplexer have been implemented during the design of

the CPU by which the resource utilization is optimized and the power reduction is achieved.

The design and the functionality of the newer logic which is implemented in the CPU can be

explained through the following example and the Figure 5.14 explains the implementation

logic.

Consider four operations which are to be executed:

(1) Add : a + b; (2) Inc : a + 1;

(3) Sub : a – b ; (4) Dec : a – 1;

Opcode(5 downto0)

B

Bin (31 Downto 0)

MUX

X”00000001”

(2’s complement of – 1) X”FFFFFFFF”

(2’s complement of – b) not(b) + 1

 Figure 5.14: MUX with Opcode as Selection Logic

119

To achieve the resource sharing, B register is given the input value through the 4:1 MUX

with the opcode as select line, which is as shown in Figure 5.14. It is concluded after the

implementation of this logic that the single adder is used to generate the results and the logic

used for all the cases can be presented as C = a + b as operation.

After implementation of this logic and the overall power requirements are analysed for the

modified 4- stage CPU and it is observed that 4mW (3.63%) further improvement in the total

power consumption is achieved, the screen shot of the summary of power analysis is show in

Figure 5.15.

5.3.3 Novel RAM Addressing Scheme

Xilinx FPGA’s have asynchronous block RAM. We are using it as simple dual port RAM

through coregen generator for this architecture which provides synchronous interface to this

block RAM as dual port RAM. For write operation write_en is also generated with address

and data is fed to the RAM, but for read, only address is provided which causes data to be

Figure 5.15: Summary of Power Consumption Report for 4 – Stage Pipeline CPU (After Implementation of
Resource Sharing Strategy)

120

read from that memory location. Power will be dissipated for each new address fed to the

RAM as it will require appropriate read or write to that memory location addressed by RAM.

Thus we see that even though instruction is not a RAM related instruction, RAM address will

be generated and corresponding data will be given out by RAM. But as instruction is not a

RAM related instruction, this data will not be propagated to write back stage. Thus what was

done in this power reduction strategy was giving a fixed address of x”7ff” to RAM when

instruction was not a RAM access instruction. Thus the changes in the RAM address

generation were MUXed out and as there was no unnecessary switching takes place the

dynamic power reduction is achieved.

As seen in Figure 5.16 ram_address generated in the execute stage is fed to RAM, if there is load or

store instruction else constant hexadecimal data 7FF is fed. Thus considerable amount of power is

saved by preventing the occurrences of unnecessary switching by feeding constant address during

execution of other instructions.

5.3.4 Clock Gating

Xilinx recommends for using the CLB clock enable pin instead of gated clocks. Gated clocks

can cause glitches, increased clock delay, clock skew and other undesirable effects. Using

clock enable saves clock resources and can improve timing characteristic and analysis of the

design. But for the power reduction purpose if it is required to use a gated clock, most of the

FPGA devices are facilitates with a clock enabled global buffer resource called BUFGCE.

RAM_
ADDRESS_
Multiplexer

X “7ff”

RAMAddress

Store or Load

Actual_Ram_Addres

Figure 5.16: RAM Address Multiplexer

121

However, a clock enable is still a better and preferred method to reduce or stop the clock to

reach to various portions of the design and hence, subsequently to reduce the power.

There are several ways to use clock-enable resources which are available on devices, but to

gate entire clock domains for power reduction purpose; it is preferable to use the clock-

enabled global buffer resource called BUFGCE shown in Figure 5.17.

Now, for applications that only attempt to pause the clock for a few cycles on small areas of

the design, the preferred method is to use the clock-enable pin of the FPGA register. The first

example demonstrated in Figure 5.18 which illustrates an inefficient way of gating clock

signals, while the second example in Figure 5.19 shows a modified version of the code that

map efficiently into the clock-enable pin.

CE
BUFGCE

1 0

 DFF

D Q

CE

 C
GATECLK

DATA

LOAD

IN1
IN2

CLK

OUT

AND3

DFF

D Q

CE

 C

DATA

LOAD

IN1
IN2

CLK

OUT

AND3

ENABLE

Figure 5.17: Clock – Enabled Global Buffer

Figure 5.18: Gated Clock – Not Preferable

Figure 5.19: Clock Enable – Efficient way of Gating a Clock Signal

122

For global clock gating of design, one may use the clock-enable port of global clock buffers

to stop the clock on entire clock domains. And for local level requirement, if clock gating of

few registers of design is the required then following approach can be applied.

• Use the clock-enable port of registers to locally disable the clock.

• Consider replicating the clock-enable signal if it appears to be part of the paths that do not

meet the timing requirements.

In this proposed design there is no scope for global clock gating as processor increments

program counter on every clock and thus some portion of design is always active

corresponding to the instruction fetched and executed. Thus for our processor design local

level clock gating through clock enable pin is achieved. The basic idea over here is that for

different types of instructions, different sets of registers are used, so when a particular

instruction is getting decoded and executed the register corresponding to the other

instructions toggle and get updated but are of no use but contributes heavily to consume the

power. Thus whenever such situation occurs, it is better to do clock gating of registers to

prevent them from toggling, in each pipeline stage, which are not in use by the current

instruction. Following description explains that how the clock gating technique is

implemented at all the stages of the pipelines.

Strategies to achieve the Clock Gating at different stages of pipeline

(1) Instruction Fetch

As program counter is computed and gets updated at every clock cycle; hence, there is no

scope of Clock Gating.

(2) Instruction Decode and Operands Fetch:

In this stage instruction corresponding to program counter is fetched from ROM, since this is

done at every clock cycle and the instruction fetched is combinatorially decoded. Hence

there is no scope of Clock Gating.

(3) Execute Stage:

123

In this stage, the type of instruction is known; hence, accordingly registers corresponding to

other instructions are Clock Gated through clock enable. There are three types of instruction

getting executed in this stage, which are (a) RAM Instructions, (b) ALU Based Instructions

and (c) Branch Instructions or NOP.

(a) RAM Instructions:

There are 4 RAM based instructions, so while these are loading or storing data to or from

RAM, registers corresponding to ALU are Clock Gated. Instructions which require ALU

operations generate regwrite signal in decode stage. This regwrite signal is used as clock

enable signal for all registers corresponding to ALU based instructions. Thus when RAM

instructions are getting executed regwrite will be zero and all the registers whose clock

enable is fed by this regwrite signal will be disabled and considerable amount of power is

saved. Registers which are Clock Gated during RAM instructions are as per the list given

below:

A (32 bit register)

B (32 bit register)

Regwrite2 (1 bit register)

Zerowrite2 (1 bit register)

Ra2 (4 bit register)

(b) ALU Based Instructions:

There are 28 instructions which use ALU during their execution, so all the registers which are

used by RAM instructions can be Clock Gated. Thus clock enable of registers corresponding

to RAM instructions is tied to ANDing of store and load signals generated in decode stage.

Now if instructions are ALU based, load and store both will be zero and thus registers using

ANDing of them as clock enable will remain disabled as shown in Figure 5.18 and Figure

5.19, and subsequently this arrangement turns into saving of power consumption. Registers

Clock Gated during ALU based instructions are listed below:

ram_datain (32 bit register)

ram_addr1 (32 bit register)

load2 (1 bit register)

124

store2 (1 bit register)

(c) Branch Instructions OR NOP:

Three branch instructions and an NOP instruction have no execution in execute stage so

registers corresponding to RAM access and ALU all are Clock Gated. Regwrite, load and

store signals all will be zero and thus above all registers will be clock gated. The Registers

Clock Gated during Branch or NOP instructions are:

A (32 bit register)

B (32 bit register)

Regwrite2 (1 bit register)

Zerowrite2 (1 bit register)

Ra2 (4 bit register)

ram_datain (32 bit register)

ram_addr1 (32 bit register)

load2 (1 bit register)

store2 (1 bit register)

(4) Write back:

In write back stage register bank of 16 registers of 32 bits are updated if an ALU based

instructions was performed. Hence, in case of RAM, Branch or NOP instructions this update

is not required and consumes power. So these registers are Clock Gated by connecting

regwrite signal passed on from execute stage to clock enable pin of these registers. So if

instruction was ALU based then only registers will be updated else they will remain disabled

due to Clock Gating. Registers which are Clock Gated during Write Back Stage are:

R0 (32 bit register)

R1 (32 bit register)

.

.

R15 (32 bit register)

125

After successful implementation of all the logic strategies for power optimization techniques

called Novel RAM Addressing Scheme discussed in section 5.3.3 and Clock Gating

described in section 5.3.4 at the processor architecture level, the CPU functionality has been

tested and verified again to ensure its correctness. The power analysis of complete system has

been done and the considerable amount of power reduction is achieved. It is resulted in

reduction of 17mw (16%) of system power consumption. It is also noted that the Clock

Gating technique is the major contributor in reducing the dynamic power consumption at the

system level. The screen shot of the summary of power analysis is shown in Figure 5.20.

Here the power analysis has been carried after implementation of two techniques together

which are RAM Addressing Scheme and the Clock Gating along with earlier techniques.

Figure 5.20: Summary of Power Consumption Report for 4 – Stage Pipeline CPU (After Implementation of RAM
Addressing Scheme and Clock Gating along with earlier Techniques)

The testing of Clock Gating has been done separately for all types of the instructions and are

represented with the relevant waveforms as shown in following Figure 5.21 and Figure 5.22.

Following waveforms describes the Clk_gating during for ALU related instructions.

126

Figure 5.21: Simulated Waveforms for Clk_gating Signal Varification for ALU Related Instructions

127

Figure 5.22: Simulated Waveforms for Clk_gating Signal Verifcation during RAM Access Instructions

128

It is shown in above Figure 5.21 that the registers such as data_ram, ram_addr, ram_data_in

and load and store registers are clock gated during the execution of ALU related instructions

and it also provides the constant hexademimal “7FF” address which is fed to RAM during

ALU based instructions, because of RAM Address technique implementation which provides

ram_data_in to zero, the details of Clk_gating during RAM Access instruction can be better

explained through the waveforms shown in Figure 5.22.

As can be seen due to store instruction to RAM there is no change in a, b, ra, zerowrite,

regwrite and register bank of 16 registers. When there is a Branch or NOP related instruction

all the registers for both RAM Access and ALU are clock gated shown in Figure 5.22.

5.4 Verification of 4- Stages CPU After Implementation of Power

Optimization Strategies

5.4.1 Performance Verification

All four power optimization strategies Memory Access Stage Removal, Resource Sharing

Strategy, RAM Addressing Scheme and the Clock Gating have been implemented

successfully at the hardware level and the whole system architecture has been tested and

verified by executing many flavours of instructions and the performance of all of them has

been checked for all the 4 – stages of the CPU. Following Figure 5.23 to Figure 5.26

demonstrates the performance of implementation after implementing all the power saving

proposed techniques under different pipeline stages through the waveforms generated by

using ModelSim SE 6.5. All these waveforms are self explanatory. Then after the power

consumption comparison has also been made, in which the power consumption and estimated

power for 5 – stage CPU has been discussed. Then the 5 – stage CPU is converted to 4 –

stage CPU by implementing the Memory Access Stage Removal technique for which the

power consumption is measured. Similarly, after implementation of each technique the power

measurement is done and finally the power saving is achieved which is graphically

represented through the comparison charts. The simulated waveforms for verification of 4 –

stage CPU with Resource Sharing,Clock Gating and RAM Addressing Technique are

demonstrated through following Figure 5.23 to Figure 5.26.

129

Figure 5.23: Verification of Instruction Fetch for 4 – Stage CPU

130

Figure 5.24: Verification of Instruction Decode and Operand Fetch for 4 – Stage CPU

131

Figure 5.25: Verification of Instruction Execute for 4 – Stage CPU

132

Figure 5.26: Verification of Write Back Operation of 4 – Stage CPU

133

0
20
40
60
80

100
120
140

Clock Logic Signals BRAMs MULTs IOs Leakage Dynamic TotalP
o
w
e
r

C
o
n
s
u
m
p
t
i
o
n

i
n

m
W

Sources of Power Consumption

Power Summary for Conventional and Modified CPU

Modified
Conventional
Estimated

5.4.2 Graphical Representation of Power Requirement

Following Figure 5.27 shows the graphical comparison of power requirements of the various

modules of the systems for both the conventional (5 – Stage) and CPU with modified

pipelining structure (4 – Stage), i.e. after implementation of Memory Access Stage Removal

Technique. It is noted that the improvement in power consumption is achieved by 3mW

(2.65%) in the system after the incorporation of this technique at the hardware design step.

Table 5.2 summarizes the results obtained from the power analysis carried on conventional 5

– Stage CPU and 4 – Stage CPU after implementation of Memory Access Stage Removal

Technique. It represents the power consumed by the various modules of the system under

consideration and the results are also compared with the estimated values.

Table 5.2: Summary of Power Results

Category Clock
mW

Logic
mW

Signals
mW

BRAMs
mW

MULTs
mW

IOs
mW

Leakage
Power
mW

Dynamic
Power
mW

Total
Power
mW

Estimated
Requirement 11 10 18 06 01 00 81 49 131

Conventional
CPU (5- Stage) 04 03 18 05 00 00 83 30 113

Modified CPU
(4 – Stage) 03 03 17 05 00 00 83 28 110

Figure 5.27: Graphical Representation of Estimated and Actual Power Consumption of 5 – Stage CPU

134

The following Figure 5.27 shows the graphical view of the power consumption in different

modules of the modified CPU after implementation of all the newly suggested power

reduction techniques such as Memory Access Stage Removal, Resource Sharing, RAM

Addressing Scheme and Clock Gating and finally the power dissipation comparison has made

between the conventional 5 – Stage CPU and the modified 4 – Stage CPU modules. The

power results indicating power consumption requirements are summarizes in Table 5.3.

Figure 5.28: Power Consumption Requirement after Implementation of Power Saving Techniques

Table 5.3: Summarizes the Results of Power Requirements

Hence, the total power requirement of conventional 5 – stage pipeline CPU has been reduced

to 89 mW from its original need of 113 mW i.e. overall 21% of improvement in the power

consumption is achieved. The overall power comparison of the system has been presented in

0

20

40

60

80

100

120

Clock Logic Signals BRAMs MULTs IOs Leakage Dynamic TotalP
o
w
e
r

C
o
n
s
u
m
p
t
i
o
n

i
n

m
W

Sources of Power Consumption

Power Consumption Requirement After Implementation of
Newly Suggested Power Saving Techniques

Conventional CPU

4 - Stage CPU

Resource Sharing

RAM Addressing &
Clock Gating

Category Clock
mW

Logic
mW

Signals
mW

BRAMs
mW

MULTs
mW

IOs
mW

Leakage
Power
mW

Dynamic
Power
mW

Total
Power
mW

Conventional
CPU (5- Stage) 04 03 18 05 00 00 83 30 113

Modified CPU
(4 – Stage) 03 03 17 05 00 00 83 28 110

Resource
Sharing 04 02 13 05 00 00 83 24 106

RAM
Addressing &
Clock Gating

01 01 04 00 00 00 83 07 89

135

the below Figure 5.29, which represents clearly that the power reduction is achieved

successfully.

Figure 5.29: Overall Power Consumption Comparisons

The power consumption of these CPUs is also analyzed at different frequencies applied to the

conventional CPU and the CPU with modified pipeline and also to the CPU after

implementation of all the power saving proposed strategies, the related power figures are

shown in Table 5.4.

Table 5.4: Power Consumption of CPUs at Different Frequencies

Frequency
MHz

Power Consumption in
5 - Stage CPU (mW)

Power Consumption in
4 - Stage CPU (mW)

Power Consumption in
4 - Stage CPU after

Implementation of all
the Techniques (mW)

10 95 95 82
20 102 102 84
30 109 109 87
40 113 110 89
50 119 121 95
60 121 124 98
70 129 127 101
80 132 130 104
90 134 133 106

100 138 137 108

The plot for power consumption versus different clock frequencies for standard and the

modified processors is shown in Figure 5.30.

0

20

40

60

80

100

120

Conventional 5 - Stage CPU Memory Access Stage
Removal

Resource Sharing RAM Addressing & Clock
Gating

P
o
w
e
r

C
o
n
s
u
m
p
t
i
o
n

i
n

m
W

System Power Requirement after Implementation
of Proposed Techniques

Overall Power Consumption Comparison

Dynamic Power Consumption Leakage Power Consumption Overall Power Consumption

136

Figure 5.30: Graphical View of Power Consumption Comparison at Different Clock Frequencies

It is noted from the Figure 5.30 that the power consumption increases as the clock

frequencies increases for all the categories such as standard, modified CPU and the CPU after

implementation of power saving techniques. But the power consumption of modified and

optimized CPU implementation is always less than the standard CPU for all the clock

frequencies.

5.5 Conclusion

In the beginning of this chapter the architecture of 5- stage standard CPU is discussed and its

performance has been successfully verified through the waveform generation and analyzed

for its power requirement using the Xilinx Xpower Analyzer tool.

In order to achieve the prime objective this 5 – stage pipeline structure of CPU is modified to

have 4 – stage pipeline structure by implementing the memory access stage removal

technique. Its performance is verified and power analysis has been done successfully and the

reduction in dynamic power requirement is achieved without affecting the performance of the

processor. Then all other newly suggested techniques which are Resource Sharing, RAM

Addressing Scheme and the Clock Gating are implemented on the modified CPU and finally

power analysis is carried on this CPU successfully.

0

20

40

60

80

100

120

140

160

10 20 30 40 50 60 70 80 90 100P
o
w
e
r

C
o
n
s
u
m
p
t
i
o
n

i
n

m
W

Clock Frequency in MHz

Power Consumption Comparison at Different Clock
Frequency

5- Stage CPU 4 - StageCPU 4 - Stage CPU with All Straegies

137

It is concluded that the proposed techniques have impressively helped to reduce the dynamic

power consumption of the implementation up to approximately 21% and that to without

compromising the performance of the system.

Finally the various power comparisons are made using the data received from the analysis as

an input and are represented graphically. Also the system behaviour is observed as per the

expectation and the considerable amount of power reduction is achieved.

The implementation also analyzed for its power requirement at different clock frequencies

and it is concluded that the power requirement for standard and the modified CPU is

increased with the increase in the frequency but the modified CPU consumes always less

power compared to the standard one.

Following chapter discusses the conclusions and the future scope of the work.

138

Chapter 6
 Conclusions and Future Work

6.1 Summary and Contributions

In early days the system performance was only considered to be an important factor and

hence, the designers were developing the implementations by focusing only on speed and the

performance of the system and the concern for power consumption requirements of the

system was not given sufficient attention. But because of advancement of device technology,

which has doubled the system complexity after almost every 18 – 24 months; and along with

the performance, the system power consumption has also raised to considerable level. This

increased power requirement has introduced newer challenges in connection with the system

power dissipation, thermal parameters and hence the overall system reliability. The power

reduction methodologies can be implemented at various abstraction levels of the

implementation designing.

This dissertation work has proposed very unique power saving techniques which are

implemented at the hardware design level up on the implementation under consideration, in

our case, it is five stage pipelined processor (Standard Processor) based on RISC principle

and the modification in the pipeline architecture of the standard processor has been done and

various proposed dynamic power saving techniques are incorporated in this processor. Then

the system is implemented on SPARTEN – 3E FPGA for testing and verification purpose.

As the system is targeted to be implemented on the FPGA the state-of-the-art literature

survey has been presented in Chapter 2 which includes various FPGA technologies, internal

architectures and also discussed the various dynamic and static power consumption sources

of the MOS based systems. It also discusses the mathematical relevance of the power

consumption resources.

139

The dynamic power reduction possibility lies at different abstraction levels and many

techniques are available which can be applied at device level, architecture, logical or system

architectures level. The detailed survey on existing power reducing techniques is included in

Chapter 3. The span of this Ph. D. work is restricted to the application of newly derived

energy saving techniques implemented at architecture level i.e. at hardware level.

A standard processor with five pipeline stages is constructed in modular fashion. The

formation of subset of instructions is tested and validated through the simulation waveform

for number of the programs and correct functionality is recorded. It is estimated and analysed

for its power requirement using Xilinx Xpower Estimator and Xpower Analyzer, the reported

power consumption is 113 mW. This dissertation work has suggested four unique dynamic

power reducing techniques named as Memory Access Stage Removal, Resource Sharing, A

novel RAM Addressing Scheme and a Clock Gating arrangement.

By applying memory access stage removal the pipeline structure of the standard processor is

modified and made it of four stage pipelined processor. Then the newly formed processor is

analyzed for its power requirement which is 110 mW. Hence, the power reduction of 2.65%

is achieved compared to that of standard processor. The other technique resource sharing is

applied up on the newer processor and analyzed for power consumption which is recorded as

106 mW; means it further reduces the 4 mW (3.63%). The RAM Addressing Scheme and the

Clock Gating is applied together on this improved design which consumes the 89 mW only

without affecting the performance of the processor. Hence, this strategy again reduces the 17

mW (16%). Here Clock Gating has played a major role in reducing the power consumption

and the overall reduction in system power consumption is achieved up to 21%.

6. 2 Future Work

The work presented in this thesis provides suggestions to be implemented at hardware level

to correct the whole system that strongly impact the power consumption of some complex

embedded system and come out with some ideas that efficiently reduces the system power

consumption.

140

However, some interesting points of future research have emerged during the evolution of

this work. Many of them are related to the designed approaches, some of them are referenced

to their implementation trends in recent era.

On the other hand, the approaches presented in this work have been designed from power

optimization view – point. However, the thermal implications of these approaches are needed

to be studied and optimized. It is also required to have in-depth study for these approaches

with reference to their manufacturing processes, fabrication processes and its actual

feasibility. The proposed system can be further optimized by applying many other existing

power saving techniques at different abstraction level.

Finally, the concept of low – power is still in very early stages. It still has to understand the

complex mechanism that appears in the system behaviour when these newly proposed

techniques are applied.

Authors believe that the power management needs multidimensional inputs which are

continually expanding with new techniques being developed at every abstraction levels.

6.3 Closing Remark

In summary, we believe that the system level power optimization is an active research area in

the years ahead. The techniques proposed in this dissertation provide power reduction on the

order of tens of percent, and this is clearly a good beginning. However, further improvements

of the same or even with larger magnitude will be needed as processor usage especially in

mobile applications increases very rapidly.

The research directions discussed above convinced us to judge that there is considerable

space for improvement in the domain of system power consumption.

Yet, it is too early to say that which methodology will help the society to solve the problem

of power dissipation. But it is for sure that this work can be taken as base and one can keep

developing and adding more and more techniques to the proposed implementation at different

levels and can design low – power implementations.

141

List of Publication
Following is the list of our publications which includes the most important papers and
relevant to the work included in this thesis.

• Kiritkumar Bhatt, Prof. A I Trivedi “Memory Access Stage Removal Technique for

Dynamic Power Reduction in Embedded Processors” accepted and to be

presented/published in IEEE International Conference on Computer Applications

Technology, ICCAT’2013, 20-22 Jan’2013, Souse, Tunisia.

• Kiritkumar Bhatt, Prof. A I Trivedi, “Power Estimation and Optimization in Embedded

Processors and Its Implementation” accepted and to be published in International Journal

of Innovative Systems Design and Engineering, in Jan’2013.

• Kiritkumar Bhatt, Prof. A I Trivedi, “Implementation of Resource Sharing Strategy for

Power Optimization in Embedded Processors”, International Journal of Computer

Engineering and Intelligent Systems, Vol.3, No.8, pp. 35 – 45, 2012. Print: ISSN 2222-

1719, Online: ISSN 2222-2863

• Kiritkumar Bhatt, Prof. A I Trivedi, “ Power Optimized Embedded Processor Design with

Parallel Pipelining” International Journal of Programmable Circuits and Systems Vol. 3,

No. 1, pp 6 – 9, Jan- 2012. Print: ISSN 0974 – 973X, Online: ISSN 0974 – 9624

• Kiritkumar Bhatt, Prof. A I Trivedi, “Low – Power Pipelined Processor Design, Its

Verification and Implementation on FPGA” 2012 – 4th IEEE Sponsored International

Conference on Electronics and Computer Technology – ICECT 2012, 6 – 8April’2012,

Int. Conf. Proceedings Vol.1, No.1, pp. 91 – 95, Kanyakumari, India. ISBN: 978-1-4673-

1850-1

• Kiritkumar Bhatt, Prof. A I Trivedi, “Power Estimation of Switching Activity for Low –

Power Implementation on FPGA” International Journal of Programmable Circuits and

Systems Vol. 3, No. 14, pp 803 – 807, Nov - 2011. Print: ISSN 0974 – 973X, Online:

ISSN 0974 – 9624

• Kiritkumar Bhatt, Prof. A I Trivedi, “ Power Computation Model of CMOS Based FPGA

used for Power Optimization” International Journal of Programmable Circuits and

142

Systems Vol. 3, No. 13, pp 759 – 762, Oct- 2011. Print: ISSN 0974 – 973X, Online: ISSN

0974 – 9624

• Kiritkumar Bhatt, Rajshree Jetani, “Low Voltage Resized Design of Programmable

Current Mirror Using 180 NM Technology”, International conference on Information,

Knowledge & Research in Engineering, Technology & Science – 2012 (ICIKR – ETS –

2012) at G K Bharad Institute of Engineering, Rajkot. Pp. 910 – 914. ISBN : 978-81-

906220-3-5/24-25/3,2012

• Kiritkumar Bhatt, Rajshree Jetani, Devang Shah, “Analysis of Bulk-Driven Technique for

Low Voltage/Power Analog Circuit Design”, National Conference on Power Systems,

Embedded Systems, Power Electronics, Communication, Control and Instrumentation –

PEPCCI -2012, pp. 187 – 192 Jan’2012, Vasad, India. ISBN: 978-93-81286-06-7

• Kiritkumar Bhatt, Priya Kulkarni, Rachana Jani “A Survey on Power Management Model

for ARM SA – 1100 CPU” in proceedings of National Conference on “Exploring

Potentialities of Women in Engineering- EPWIE -2009” 3 – 4 July’2009, pp. 1 – 4, CIT -

Changa, India.

• Kiritkumar Bhatt, Priya kulkarni, Rachana Jani, “Dynamic Power Optimization

Technique: A Case Study”, National Paper Contest on Advanced Embedded Networking,

Processing and Communication-AENPC – 2009, IETE Center - Baroda Jan’2009.

• Kiritkumar Bhatt, Prof. A I Trivedi, “Low Power Processor Design and Its Formal

Verification” National Paper Contest on Advanced Embedded Networking, Processing

and Communication-AENPC – 2009, IETE Centre, Baroda Jan’2009.

• Kiritkumar Bhatt, Prof. A I Trivedi, “A Study of Various General Techniques for

Reducing the Dynamic Power Consumption of Integrated Circuits”, State Level Paper

Contest on “Networking: Technology and Applications”, IETE Centre, Baroda

April’2008.

143

Bibliography

[1] P B Endecott, Processor Architectures for Power Efficiency and Asynchronous Implementation,
UK: University of Manchester, 1993.

[2] D Brooks, V Tiwari and M Mortonosi, “A framework for architecture - level power analysis and
optimizations, set processor design and embedded systems,” Int. Symp.on Computer
Architecture, 2000.

[3] T Osmulski, et al., “A probabilistic power prediction tool for Xilinx FPGA,” Int. Wksp. on
Computer Embedded/Distributed HPC Systems and Applications, pp. 776 - 783, May 2000.

[4] J Anderson and F. Najm, “Active leakage power Optimization for FPGAs,” ACM/SIGDA Int. Symp.
on Field Programmable Gate Array, pp. 33 - 41, Monterey, 2004.

[5] S. Turgis, N. Azemard, D. Auvergne, “Explicit evaluation of short - circuit power dissipation for
CMOS logic structures,” in Proc. of ISLPD, 1995.

[6] Jan M Rabey and M Pedram, Low Power Design Methodologies, Boston: Kluwer Academic,
1996.

[7] J P Uyemura, Fundamentals of MOS Digital Integrated Circuits, Addison Wesley, 1988.

[8] J H Anderson, F N Najm, “Active Leakage Power Optimization for FPGA,” IEEE Trans. on
Computer - Aided Design of Integrated Circuits and Systems, vol. 25, no. 3, pp. 63 - 76, March
2006.

[9] J M Chang, M Pedram, “Emergy minimization using multiple supply voltages,” IEEE Trans. on
VLSI Systems, vol. 5, pp. 1-8, 1997.

[10] J L Ayala and M Lopez - Vallejo, “A unified framework for power-aware design of embedded
systems,” in Int. Wksp. on Power and Timing Modelling, Optimization and Simulation,
Sept'2003.

[11] I Brozozowski and A Kos, “Minimization of Power Consumption in Digital Integrated Circuit by
Reduction of Switching Activity,” in 25th Euromico Conf., Sept'1999.

[12] Kiritkumar Bhatt, A I Trivedi, “Power Estimation and Switching Activity for Low-Power
Implementation on FPGA,” Int. Journal of Programmable Devices, Circuits and Systems, vol. 3,
no. 14, pp. 803-806, 2011.

[13] Kiritkumar Bhatt, A I Trivedi, “Power estimation of switching activity for low-power
implementation on FPGA,” Int. Journal of PDCS, vol. 3, no. 14, pp. 803-806, 2011.

144

[14] Jason Helge Anderson, PhD thesis on Power Optimization and Prediction Techniques for FPGAs,
Toronto: Department of Electrical and Computer Engineering, University of Toronto, 2005.

[15] Andres David Garcia Garcia, PhD thesis on Power Consumption and Optimization in Field
Programmable Gate Array, National Superior Telecommunications of Paris, 2000.

[16] A K Sharma, Programmable Logic Handbook, Mc Graw Hill, 1988.

[17] V. Betz, J. Rose, A. Marquardt, Architecture and CAD for Deep Submicron FPGAs, Boston: Kluwer
Academic Publisher, 1999.

[18] V. Betz, J. Rose, A. Marquardt, Architecture and CAD for Deep Submicron FPGAs, Kluwer
Acaademic Publisher, 1999.

[19] A. Bellaouar, M I Flmassy, Low - Power Digital VLSI Design, Circuits and systems, Kluwer
Academic Publisher, 1995.

[20] L.Benini, A. Bogliolo and G. Micheli, “A Survey of design techniques for system - level dynamic
power management,” IEEE Trans.on VLSI Systems, pp. 299 - 316, June 2000.

[21] A P Chandrakasan, S. Sheng and R W Brodersen, “Minimizing Power Computation in Digital
CMOS Circuits,” IEEE Trans. on VLSI Systems, vol. 83, no. 4, pp. 498 - 523, 1995.

[22] J.Lamoureux, G.Lemieux and S.Wilton, “Glitchless: An active glitch minimization technique for
FPGA,” Int. Symp. on Field-Programmable Gate Array, pp. 156-165, 2007.

[23] R Jevtic, C.Carreras and G.Caffarena, “Fast and accurate power estimation of FPGA DSP
components based on high-level switching activity models,” Int. Journal of Electronics, vol. 95,
no. 7, pp. 653-668, 2008.

[24] V. George and J. Rabey, Low - Energy FPGAs: Architecture and Design, Boston: Kluwer Academic
Publisher, 2001.

[25] Fei Li, Deing Chen, Lei He, Jason Cong, “Architecture Evolution for Power Efficient FPGAs,”
Int.Symp. on FPGA, pp. 175 - 184, August 2003.

[26] F.Li, Y.Lin, L.He, D.Chen and J.Cong., “Power Modeling and Characteristics of Field
Programmable Gate Arrays,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol. 24, no. 11, pp. 1712-1724, 2005.

[27] Luca Benini, Giovanni De Micheli, “System - Level Power Optimization : Techniques and Tools,”
ACM Trans. on Design Automation of Electronic systems, vol. 5, no. 2, pp. 115-192, 2005.

[28] R A Powers, “Batteries for Low Power Electronics,” Proc. of IEEE, vol. 83, no. 7, pp. 687-693,
1995.

145

[29] Bill Moyer, “Low-Power Design for Embedded Processors,” Proc. of IEEE, vol. 89, no. 11, pp.
1576-1587, 2001.

[30] Vasanth Venkatachalam, Michael Franz, “Power Reduction Techniques for Microprocessor
Systems,” ACM Trans. on Coputing Surveys, vol. 37, no. 3, pp. 195-237, 2005.

[31] L. Benini, et al., “A Survey of Design Techniques for System-Level Dynamic Power
Management,” IEEE Trans. on VLSI, vol. 8, no. 3, pp. 113-130, 2000.

[32] S R Vemuru and N.Scheinberg, “Short circuit power dissipation estimation for CMOS logic
gates,” IEEE Trans. on Circuits and Systems, vol. 43, no. 10, pp. 762-765, 2009.

[33] D.Dal, A.Nunez and N.Mansouri, “Power island: A high-level techniquefor counteracting leakage
in deep sub-micron,” Int. Symp. on Quality of Electronic Design, pp. 165-170, 2005.

[34] S.Yaldiz, A.Demir and S. Tasiran, “Stochastic modeling and optimization for energy management
in multicore systems: a video decoding case study,” IEEE Trans. on CAD of Integrated Circuits
and Systems , vol. 27, no. 9, pp. 1264-1277, 2008.

[35] E.Nurvitadhi, B.Lee, C.Yu and M.Kim, “A compartative study of dynamic voltage scaling
technique for low-power video decoding,” in Int. Conf. on Embedded Systems and Applications,
2003.

[36] Kursun, E.Ghiasi and Sarrafzadeh.M, “Transistor level budgeting for power optimization,” in
Proc. of 5th Int. Symp. on Quality of Electronic Design, 2004.

[37] Chen D., Cong J., Li F. and He.L., “Low power technology mapping for FPGA architectures with
dual supply voltages,” in Proc. of ACM/SIGDA 12th Int.Symp. on Field Programmable Gate Array,
2004.

[38] Li.H, Katkoori and Mak W.K., “Power minimization algorithms for LUT-based FPGA technology
mapping,” ACM Trans. on Design Automation and ElectronicsSystems, vol. 9, no. 1, pp. 33-51,
2004.

[39] Strollo.A., Napoli.E., Caro.D.D., “New clock-gating techniques for low-power flip-flops,” Proc. of
Int. Symp. on Low Power Electronics and Design, pp. 114-119, 2000.

[40] Zhao.P., Darwshi.T., and Bayoumi.M., “High-performance and low-power conditional discharge
flip-flop,” IEEE Trans. on VLSI Systems, vol. 12, no. 5, pp. 477-484, 2004.

[41] Ernst.D., Kim.N.,Das.S., “A low-powerpipeline based on circuit-level timing speculation,” Proc. of
Int. Symp. on Microarchitecture, IEEE Computer Society, pp. 7-18, 2003.

[42] Pouwelse, et al., “Application Performance Directed Voltage Scaling,” IEEE Trans. on VLSI, vol. 9,
no. 4, pp. 76-85, 2002.

146

[43] Banerhee.K and Malhotra.A., “Global interconnect warming,” IEEE Circuits and Devices
Magazine, vol. 17, no. 5, pp. 16-32, 2001.

[44] Stan. M. and Burleson.W., “Bus-invert coding for low-power I/O,” IEEE Trans. on VLSI, pp. 49-58,
1995.

[45] Patel K. N. and Markov. I. L., “Error-correction and crosstalk avoidance in dsm busses,” Proc. of
Int. Wksp. on System-Level Interconnect Prediction, pp. 9-14, 2003.

[46] Jone.W.B, Wang.J.S, Lu.H.I.,Hsu.I.P., “Design theory and implementation for low-power
segmented bus systems,” ACm Trans.on Design Automation in Electronics Systems, vol. 8, no. 1,
pp. 38-54, 2003.

[47] Bishop.B. and Irwin M.J., “Databus charge recovery: Practical considerations,” Int. Symp on Low
Power Electronics and Design, pp. 85-87, 1999.

[48] Wang.H., Peh.L.S., and Malik.S., “Power driven desing of router microarchitectures in on-chip
networks,” Proc. of Int. Symp. on Microarchitecture, IEEE Computer Society, pp. 105-116, 2003.

[49] Luz. V.D.L., Kademir.M and Kolcu.I., “Automatic data migration for reducing energy
consumption in multi-bank memory systems,” Proc. of Conf. on Design Automation, pp. 213-
218, 2002.

[50] Kin.J.,Gupta.M. and Mangione-Smith.W.H., “The filter cache: An energy efficient memory
structure,” Proc. of Int. Symp. on Microarchitecture, IEEE Computer Society, pp. 184-193, 1997.

[51] Hu.J.,Vijayakrishnan.N.,Irwin.M.and Kandemir.M., “Using dynamic branch behavior for power-
efficient instruction fetch,” Proc. of IEEE Computer Society Annual Symp. on VLSI, pp. 127-132,
2003.

[52] Raja.T., Agrawal V.D. and Bushnell M.L., “CMOS Circuit Design for Minimum Dynamic Power and
Highest Speed,” Proc. of Int. Conf. on VLSI Design , pp. 1035-1040, 2004.

[53] Powell.M, Yang. S.H.,Falsafi.B, Roy.K., “Reducing leakage in a high-performance deep-submicron
instruction cache,” IEEE Trans. on VLSI Systems, vol. 9, no. 1, pp. 77-90, 2001.

[54] Kim. N.S., Flautner.K., Blaauw.D. and Mudge.T., “Drowsy instruction caches: leakage power
reduction using dynamic voltage scaling and cache sub-bank prediction,” Proc. of ACM/IEEE Int.
Symp. on Microarchitecture, IEEE Computer Society, pp. 219-230, 2002.

[55] Buyuktosunoglu.A., Schuster.S., Brooks.D., Bose. P., “An adaptive issue queue for reduced
power at high performance,” Proc. of Int. Wksp. on Power-Aware Computer Systems, pp. 25-39,
2001.

[56] Huges.C.J,Adve.S.V., “A formal approach to frequent energy adaptions for multimedia
applications,” Procs.Int. Symp. on Computer Architecture (ISCA'04), IEEE Computer Society, pp.

147

138-152, 2004.

[57] Huges.C.J., Srinivasan. J. and Adve. S.V., “Saving energy with architectural and frequency
adaption for multimedia applications,” Proc. of Int. Symp. on Microarchitecture, IEEE Computer
Society, pp. 250-261, 2001.

[58] Iyer.A. and Marculescu. D., “Power aware microarchitecture resource scaling,” Proc. of Conf. on
Design automation and Test in Europe, IEEE Press, pp. 190-196, 2001.

[59] Huang.M.C.,Renau.J. and Torrellas.J., “Potional adaptation of processors: application to energy
reduction,” Proc. of Int. Symp. on Computer Architecture(ISCA'03), pp. 157-168, 2003.

[60] Grunwald, et al., “Policies for Dynamic Clock Scheduling,” Proc. of Int. Symp. on Operating
System Design and Implementation, Usenix Association, 2000.

[61] Simunic, et al., “Dynamic Voltage Scaling and Power Management for Portable Systems,” Proc.
of Int. Conf. on Design Automation, 2001.

[62] Fan.X,Ellis.C.S. and Lebeck.A.R., “Synergy between power-aware memory sytems and processor
voltage scaling,” Proc. of Int. wksp. on Power-Aware Computer Systems, pp. 164-179, 2003.

[63] Shin.D., Kim.J. and Lee.S., “Low-energy intra-taskvoltage scheduling using static timing analysis,”
Proc. of Int. Conf. on Design Automation, ACM Press, pp. 438-443, 2001.

[64] Hsu.C.H. and Kremer.U., “The design, implementation and evaluation of compiler algorithm for
CPU energy reduction,” Proc.of Cong. on Programming Language Design and Implementation,
pp. 38-48, 2003.

[65] Hue.C. and Feng.W., “Effective dynamic voltage Scaling through cpu-boundedness detection,”
Proc. of Int. Wksp. on Power Aware Computing Systems, IEEE Computter Society, pp. 122-131,
2004.

[66] Marklis.G.,Scott.M.,Semeraro.G. and Albonesi D.H., “Profile-based dynamic voltage and
frequency scaling for a multiple clock domain microprocessor,” Proc. of Int. Symp. on Computer
Architecture,ACM Press., pp. 14-27, 2003.

[67] Magklis.G.,Semeraro.G.,Albonesi.D.,Dropsho.S.,Dwarkadas.S. and Scott.M., “Dynamic frequency
and voltage scaling form multiple clock-domain microprocessor,” IEEE Trans. on
Microprocessors, vol. 23, no. 6, pp. 62-68, 2003.

[68] X. Guan and Y.Fei, “Reducing power consumption of embedded processors through register file
partitioning and compiler support,” Proc. of Int. Conf. on Application-Specific Systems,
Architectures and Processors, pp. 269-274, 2008.

[69] T.J.Lin,S.K.Chen, T.Y.Kuo,C.W.Liu and P.C.Hsiao, “Design and implementation of a high-
performance and complexx-effective VLIW DSP for multimedia applications,” Int.Journal of VLSI

148

Signal Processing, vol. 51, no. 3, pp. 209-223, 2008.

[70] D.Scoones, “Power Management Technology for Portable Devices,” Proc. of Int. Conf. on Energy
- Efficient Devices, pp. 123-129, 2007.

[71] X.Ma, M.Dong, L.Zhong and Z. Deng, “Statistical Power Consumption Analysis and Modeling for
GPU-Based Computing,” Proc. of Int. Wksp. on Power Aware Computing and Systems, 2009.

[72] D.Snowdon, “OS-Level Power Management,” Ph.D. Thesis, School of Computer Science and
Engineering, University of New South Wales, 2010.

[73] Findlay Shearer, Power Management in Mobile Devices, Newnes, 2008.

[74] K.Scoones , “Power Management tchnologies for portable devices,” Int. Conf. on Energy -
Efficient Design , 2007.

[75] Brad Smith, “ARM and Intel battle over the mobile's chip's future,” IEEE Trans. on Computers,
vol. 41, no. 5, pp. 15-18, 2008.

[76] Intel, “High-performance energy efficient processors for embedded market segments,”
http://www.intel.com/design/embedded/downloads/315336.pdf, 2011.

[77] Steve Furber, ARM-System on-chip Architecture, 3rd Edition, Pearson Education, 2009.

[78] Kiritkumar Bhatt, A I Trivedi, “Power optimized embedded processor design with parallel
pipelining,” Int. Journal of PDCS, vol. 4, no. 1, pp. 54-60, 2012.

[79] Kiritkumar Bhatt, A I Trivedi, “Low-power pipelined processor design, its verification and
implementation on FPGA,” IEEE Int. Conf. on Electronics and Computer Technology, vol. 1, no. 1,
pp. 91-95, 2012.

[80] P.Francesco, P.Antonio, et.al., “Energy efficient microprocessor systems-on-chip for embedded
computing: exploring programming models and their architectural support,” IEEE Trans. on
Computers, vol. 56, pp. 606-621, 2007.

[81] Gautam P.,Parthsarthy R.and Karthi Balasubhramanian, “Low-power pipelined MIPS processor
design,” Proc. of Int. Conf. on ISIC, pp. 462-465, 2009.

[82] A A S Pejman Lofti Kamran, Amir Mohammad Rohmani and A A Kusha, “Stall power reduction in
pipelined atchitecture processor,” Proc. of Int. Conf. on VLSI Design , pp. 541-546, 2008.

	File1
	File2
	PhD_KRB_Thesis1_April'2013.pdf
	Introduction
	1.1 Introduction
	1.1.1 Leakage Current
	1.1.2 Short – circuit Current
	1.1.3 Switching Current
	1.1.4 Process Technology
	1.1.5 Reduce Leakage Power
	1.1.6 Reducing Supply Power
	1.1.7 Higher Density of Integration
	1.1.8 Reducing Switching Activity

	1.2 Motivation
	1.3 Research Objectives
	1.4 Contribution to the Thesis
	1.5 Thesis Organization

	Background Work
	2.1 Commercially Available FPGAs
	2.1.1 Introduction
	2.1.2 FPGA Basis
	2.1.2.1 FPGA Architectures
	2.1.2.2 Logic Blocks
	2.1.2.3 Interconnect Resources
	2.1.2.4 Classes of commercial FPGAs

	2.1.3 Currently available FPGAs Technology
	2.1.3.1 Programming Technology
	2.1.3.2 Logic Blocks Architecture
	2.1.3.3 Interconnections
	2.1.3.4 I/O Structures
	2.1.3.5 Other Resources

	2.2 Power Consumption Model of MOS-based Circuits
	2.2.1 Introduction
	2.2.1.1 The CMOS Inverter

	2.2.2 Power Consumption of Complementary CMOS
	2.2.2.1 Static Power
	2.2.2.2 Dynamic Power Caused by Load Capacitance
	2.2.2.3 Dynamic Power Caused by Short-Circuit Currents

	2.2.3 Power Consumption of SRAM
	2.2.4 Power Consumption of Input / Output Circuits
	2.2.4.1 Input Circuits
	2.2.4.2 Output circuits

	2.2.5 Power Consumption in Clock Circuits

	2.3 Power Consumption in SRAM-based FPGAs.
	2.4 Conclusion

	Power Reduction Techniques for Embedded Systems
	3.1 Introduction
	3.2 Defining Power Dissipation in CMOS Circuits
	3.3 Power Reduction Methodologies for Various Abstraction Levels
	3.3.1 Logic and Circuit Level Power Reduction Techniques
	3.3.1.1 Transistor Sizing
	3.3.1.2 Transistor Reordering
	3.3.1.3 Half Frequency and Half Swing Clocks
	3.3.1.4 Logic Gates Restructuring
	3.3.1.5 Technology Mapping
	3.3.1.6 Low Power Flip-Flops
	3.3.1.7 Low – Power Control Logic Design
	3.3.1.8 Delay-Based Dynamic Supply Voltage Adjustment

	3.3.2 Low – Power Techniques for Interconnect
	3.3.2.1 Bus Encoding and Cross Talk
	3.3.2.2 Low Swing Buses
	3.3.2.3 Bus Segmentation
	3.3.2.4 Adiabatic Buses
	3.3.2.5 Network-On-Chip

	3.3.3 Low Power Techniques for Memories and Memory Hierarchies
	3.3.3.1 Splitting Memories into Smaller Sub-systems
	3.3.3.2 Augmenting the Memory Hierarchy with Specialized Cache Structures

	3.3.4 Power Reduction at Architecture Level
	3.3.4.1 Adaptive Cache
	3.3.4.2 Adaptive Instructive Queues
	3.3.4.3 Algorithms for Reconfiguring Multiple Structures

	3.3.5 Dynamic Voltage Scaling (DVS)
	3.3.5.1 Unpredictable Nature of Workloads
	3.3.5.2 Indeterminism and Anomalies in Real Systems
	3.3.5.3 Interval – Based Approaches
	3.3.5.4 Inter task Approaches
	3.3.5.5 Intra task Approaches
	3.3.5.6 The Implications of Memory Bounded Code
	3.3.5.7 Dynamic Voltage Scaling in Multiple Clock Domain Architectures

	3.3.6 Algorithmic Level Power Reduction Techniques

	3.4 Introduction to Emerging Technologies for Power Reduction
	3.4.1 Fuel Cells
	3.4.2 MEMS

	3.5 Conclusion

	System Architecture
	4.1 Introduction
	4.2 Processor Architecture
	4.2.1 IF Stage
	4.2.2 DC Stage
	4.2.3 EX stage
	4.2.3.1 Data memory access
	4.2.3.2 ALU

	4.2.4 WB stage

	4.3 Instruction Set Formation
	4.4 Sub-modules of Processor
	4.4.1 ALU Design
	4.4.2 Register File Design
	4.4.3 Data Memory Design
	4.4.4 Instruction Memory Design
	4.4.5 Instruction Decoder
	4.4.6 Control Unit Design

	4.5 Multiplier Unit & Its Logic
	4.6 Clock Distribution Network
	4.7 Data Forwarding and Data Dependency
	4.7.1 Structural Hazards
	4.7.2 Data Hazards
	4.7.3 Control Hazards

	4.8 External Interface
	4.9 Instruction Simulation and Verification
	4.10 FPGA Design Flow
	4.11 Summary of Synthesis Report
	4.12 Power Estimation Reports of Complete Architecture
	4.13 Conclusion

	Proposed Strategies for Power Optimization
	5.1 Introduction
	5.2 Architecture of 32 – bit 5 – Stage Pipeline (Conventional/Standard) CPU
	5.3 Proposed Strategies for Power Reduction
	5.3.1 Memory Access Stage Removal Technique
	5.3.2 Resource Sharing Technique
	5.3.3 Novel RAM Addressing Scheme
	5.3.4 Clock Gating

	5.4 Verification of 4- Stages CPU After Implementation of Power Optimization Strategies
	5.4.1 Performance Verification
	5.4.2 Graphical Representation of Power Requirement

	5.5 Conclusion

	Conclusions and Future Work
	6.1 Summary and Contributions
	6. 2 Future Work
	6.3 Closing Remark

