
�

�

�

�

� �

��������	�

��������	
�
��
��������
����������

Chapter 8 FPGA Implementation of Soft AODV

163

This chapter has described digital implementation of Artificial Neural Network (ANN), using

VHDL programming language. The Very high speed integrated circuit Hardware Description

Language (VHDL) is used for programming of ANN architecture. VHDL simplifies the development of

complex system of ANNs. FPGA implementation is described for MLP architecture (3 layered 2 inputs

and 1 output). AODV parameters adaptively selected using ANFIS for performance optimization of

WANET.

Before beginning a hardware implementation of an ANN, a number format (fixed, floating point

etc.) must be considered for the inputs, weights and activation function. And also the precision (number

of bits) should be considered. Increasing the precision of the design elements significantly increases the

resources used. Accuracy has a great impact in the learning phase; so the precision of the numbers must

be as high as possible during training. However during the propagation phase, lower precisions are

acceptable. The resulting difference will be small enough to be neglected especially in classification

applications.

Many applications require numbers that aren’t integers. There are a number of ways that non-

integers can be represented. Adding two such numbers can be done with an integer add, whereas

multiplication requires some extra shifting. There is various ways to represent the number systems.

However, only one non-integer representation has gained widespread use, and that is floating point [1].

The number systems available today on common processors and digital hardware are broadly

categorized as floating-point and fixed-point. In a floating-point representation, the total number of bits

available is partitioned into an exponent and mantissa [2]. Generally speaking, the mantissa stores the

"significant digits" of the value while the exponent scales the significant digits to the desired magnitude.

The action of the exponent is to move, or "float," the decimal point depending on the magnitude being

represented; thus the term "floating-point." Because floating-point representations are typically at least 32

bits long (IEEE-754 is a popular standard for 32-bit and 64-bit floating-point numbers) [3], there exists

simultaneously high precision and high dynamic range. These traits of floating-point numbers allow most

algorithms to be ported directly to floating-point implementations with little or no change, and this is the

key reason floating-point representations are highly desirable. The disadvantage of floating-point

implementations is that they require a significant amount of extra hardware over fixed-point

implementations, which translates to higher parts costs, higher power consumption, slower execution,

larger chip area, or a combination of these [4].

As the term "fixed-point" implies, fixed-point representations have the binary point at a fixed

location. There are two subsets of fixed-point implementations: fractional and integer. In a fractional

fixed-point implementation, the binary point is always assumed to be to the left of the most significant

Chapter 8 FPGA Implementation of Soft AODV

164

digit. In an integer fixed-point implementation, the binary point is to the right of the least-significant digit.

In either case, the arithmetic operations implemented in the hardware are essentially integer, which results

in a much simpler arithmetic logic unit in hardware that allows lower cost, lower power consumption,

faster execution, smaller chip area, or a combination of these, over that of floating-point implementations.

In this implementation we have used the fractional fixed-point representation to represent the real

numbers. Some examples are discussed below for fixed point arithmetic [5], Which we have used in the

representation of weights of ANN (which is in real number) and its multiplication and other arithmetic

operations done based on the calculation in VHDL programming shown in Table 8.1.

Historically, before the floating-point arithmetic was introduced, the only way to develop

software calculations was to use fixed-point arithmetic, which is a form of limited precision arithmetic.

• Fixed-point numbers have a fixed number of digits after the decimal point and sometimes

also a fixed number of digits before the decimal point.

• This arithmetic is very fast and easy to install.

• However, a programmer has to “handle” the decimal point.

 Fixed point is a step between integer math and floating point [5]. This has the advantage of being

almost as fast as numeric_std arithmetic, but able to represent numbers that are less than 1.0. A fixed-

point number has an assigned width and an assigned location for the decimal point. As long as the number

is big enough to provide enough precision, fixed point is fine for most DSP applications [6]. Because it is

based on integer math, it is extremely efficient – as long as the data does not vary too much in magnitude

[7].

In Fixed point number system has two new data types are defined as follows:

1) “ufixed” is the unsigned fixed point,

2) “sfixed” is the signed fixed point.

type ufixed is array (INTEGER range <>) of STD_LOGIC;

type sfixed is array (INTEGER range <>) of STD_LOGIC;

Fixed point arithmetic can be performed using fixed point package available in library ieee_proposed.

Signal a: ufixed (8 downto –23);

A negative index is used to separate the fraction part of the floating-point number from the

exponent. The top bit is the sign bit (‘high), the next bits are the exponent (‘high-1 downto 0), and the

negative bits are the fraction (–1 downto ‘low). For a 32-bit representation, that specification makes

the number look as follows:

Chapter 8 FPGA Implementation of Soft AODV

165

0 00000000 0000000000000000000000

| |-----------| |---------------------------------|

8 7 to 0 (-1 to -23)

 +/- exp . fraction
Where the sign is bit 8, the exponent is contained in bits 7–0 (8 bits) with bit 7 being the MSB,

and the mantissa is contained in bits –1 -– –23 (32 – 8– 1 = 23 bits) where bit –1 is the MSB. The data

widths in the fixed-point package were designed so that there is no possibility of an overflow. This is a

departure from the “numeric_std” model, which simply throws away underflow and overflow bits.

According to size of input variables size of output variables can be determined which is shown in Table

8.1.

For fixed point: Operation Result Range
A + B Max(A'left, B'left)+1 downto Min(A'right, B'right)
A - B Max(A'left, B'left)+1 downto Min(A'right, B'right)
A * B A'left + B'left+1 downto A'right + B'right
A rem B Min(A’left, B'left) downto Min(A’right, B'right)
Signed / A'left - B'right+1 downto A'right - B'left
Signed A mod B Min(A'left, B’left) downto Min(A'right, B’right)
Signed Reciprocal(A) -A'right downto -A'left-1
Abs(A) A’left +1 downto A’right
- A A’left +1 downto A’right
Unsigned / A'left - B'right downto A'right - B'left -1
Unsigned A mod B B’left downto Min(A'right, B’right)
Unsigned Reciprocal(A) -A'right +1 downto -A'left

Table 8.1: Fixed point Signal size after operation

���� For Unsigned numbers
signal n1,n2 : ufixed(4 downto -3);

signal n3 : ufixed(5 downto -3);

signal n4 :ufixed(2 downto -4);

signal n5 : ufixed (8 downto -6);

signal n6 : ufixed(9 dwonto -6);

n1 <= to_ufixed (5.75,n1);

n2 <= to_ufixed (6.5,n2);

Chapter 8 FPGA Implementation of Soft AODV

166

Operands operations Coding Comment

 n1 = 5.75

+ n2 = 6.5

 n3 = 12.25

 00101110

+ 00110100

 01100010

 n3 <= n1+n2; 5.75= 0 0101.110 (4 downto -3)

 6.5 = 0 0110.100 (4 downto -3)

12.25= 0 01100.010 (5 downto -3)

 n1 = 5.75

- n2 = 6.5

n3 = 0.75

 00101110

- 00110100

 00000110

 n3 <= n1-n2; 5.75= 0 010.1110 (4 downto -3)

 6.5 = 0 011.0100 (4 downto -3)

0.75 = 0 00000.110 (5 downto -3)

n1 = 5.75
n2 = 6.5
n6 = 37.375

 00101110
* 00110100
0000100101011000

 n3 <= n1*n2; 5.75= 0 010.1110 (4 downto -3)
 6.5 = 0 011.0100 (4 downto -3)
37.375= 0 000100101.011000
(9(4+4+1) downto -6(3+3))

n1 = 6.75
n4 = 1.5
n5 = 1.5

 00110110
/ 0011000
000000100100000

 n3 <= n1 / n2;

6.75 = 00110.110 (4 downto -3)
1.5 = 0011000 (2 downto -4)
1.5 = 000000100100000
 (8(4-(-4)) downto -6(-3-2-1))

Table 8.2: Arithmetic fixed point operation for unsigned numbers

���� For Signed numbers
signal s1,s2 : sfixed(4 downto -3);

signal s3 : sfixed(5 downto -3);

s1 <= to_sfixed (5.75,n1);

s2 <= to_sfixed (6.5,n2);

For signed number if the number is with negative sign then number should be in 2’s complement

format with sign bit as ‘1’ and all other arithmetic operations are same as unsigned numbers. Size of the

answer signals can be determined from the Table 8.1. Addition of signed numbers is shown in following

Table 8.3.

Operands operations Coding Comment

s1 = 5.75

s2 = -6.5

s3 = -0.75

 00101110

+ 11001100

 111111010

s3 <= s1+s2; 5.75= 0 0101.110 (4 downto -3)

 6.5 = 1 1001.100 (4 downto -3)

-0.75= 1 11111.010 (5 downto -3)

Table 8.3: Operation of signed numbers

Chapter 8 FPGA Implementation of Soft AODV

167

8.1 FPGA Implementation of ANN
There are several options for an electronic system designer to implement any digital logic. These

options include discreet logic devices such as Small-Scale Integrated Circuits (SSIC); Programmable

Logic Devices (PLDs); Masked-Programmed Gate Arrays (MPGAs) and Field Programmable Gate

Arrays (FPGAs). Programming of such a device often involves placing the chip into a special

Programming unit, but some chips can also be configured “in-system”. Another name for PLDs is Field

Programmable Devices (FPDs). A Programmable Logic Device (PLD) is a set of fully connected macro

cells. These macro cells are typically comprised of some amount of combinational logic (for example,

AND-OR gates) and a flip-flop. In other words, a small Boolean logic equation can be built within each

macro cell .

The Field-Programmable Gate Array (FPGA) has matured over the past years from an in-product

personalization of Gate Arrays to a carrier of innovative computing styles. The initial gate array contained

a prefabricated collection of transistors and low-level wire segments, that could be personalized by a last

series of contact and interconnect fabrication steps. Often support was given from a library of final masks

for logic cells. The main purpose was to bring the lumped logic elements of a computing architecture into

a single container and thereby save valuable board space [6]. With the advance of microelectronic

technology, the capacity of the gate array increased to a level on which it could even contain entire

application specific circuits, the ASIC. Still, personalization was performed at the foundry and, though the

amount of prefabrication brought some of the cost benefits of mass production, a product series was

required to make the concept effective.

Field Programmable Gate Array (FPGAs) are a family of programmable device based on an array

of configurable logic blocks (CLBs), which gives a great flexibility in prototyping, designing and

development of complex hardware real time systems. Each block is programmed to perform a logic

function that can be interconnected, so that the complete logic functions are implemented. The main

advantage of FPGA is the flexibility that they afford. ”Field Programmable” means that the FPGA’s

function is defined by a user’s program rather than by the manufacturer of the device.

ANNs are biologically inspired and require parallel computations in their nature. Microprocessors

and DSPs are not suitable for parallel designs. Designing fully parallel modules can be available by

ASICs and VLSIs but it is expensive and time consuming to develop such chips. In addition the design

results in an ANN suited only for one target application. FPGAs not only offer parallelism but also

flexible designs, savings in cost and design cycle.

The Very high speed integrated circuit Hardware Description Language (VHDL) [8] is heavily

used for FPGA programming. VHDL is very powerful (HDL) but very complex syntax language. VHDL

Chapter 8 FPGA Implementation of Soft AODV

168

simplifies the development of complex system such as ANNs, because it is possible to model and

simulate a digital system from a high level of abstraction with important facilities for modular design.

VHDL is a programming language that has been designed and optimized for describing the behavior of

digital systems. It has many features appropriate for describing the behavior of electronic components

ranging from simple logic gates to complete microprocessors and custom chips. One of the most

important applications of VHDL is to capture the performance specification for a circuit, in the form of

what is commonly referred to as a test bench.

In this paper an expandable on-chip backpropagation (BP) learning neural network proposed.

Large-scale neural networks with arbitrary layers and discretional neurons per layer can be constructed by

combining a certain number of such unit networks. A novel neuron circuit with programmable

International Journal of Information Technology and Knowledge Management parameters, which

generates not only the sigmoid function but also its derivative, is proposed [9]. The back-propagation

(BP) algorithm often provides a practical approach to a wide range of problems. There have been many

examples of implementations of general-purpose neural networks with on-chip BP learning.

8.1.1 Algorithm for FPGA implementation of ANN based Reactive

routing protocol
The application selected in this work is an AODV Reactive Routing protocol for Mobile Ad-Hoc

Network to decide the frequency of Hello Interval to optimize the power [10]. A 2-4-1 feed forward

network (two neurons in the input layer, four neurons in the hidden layer and one neuron in the output

layer) is implemented on a XILINX Virtex-5 Kit [11]. First the network is trained in MATLAB Neural

Networks Processing Toolbox. The output of ANN is given to Qualnet to test the result of Routing

protocol in Mobile Ad-hoc Network. Then calculated weights of ANN using MATLAB are written to a

VHDL Package file. This file, along with other VHDL coding is compiled, synthesized and implemented

with Xilinx ISE software tools. Simulation results are visualized using ISIM and ModelSim. Finally the

design is realized on a Xilinx Virtex-5 demo board [11] having the Xilinx FPGA chip. Figure 8.1 shows

the process of implementation of ANN based reactive routing protocol on FPGA Chip. This process is

offline and can be make it online by set up the links between software.

Chapter 8 FPGA Implementation of Soft AODV

169

Figure 8.1: Process of FPGA Based ANN for Reactive Routing Protocol for MANET

• Algorithm for FPGA implementation of ANN based Reactive routing protocol

1. Decide the input parameters to the ANN.

2. Decide the output parameter from the ANN.

3. Calculate the input and output training pairs of ANN. In this paper it is decided by the

Fuzzy Inference System.

4. Train the ANN using the training pairs. After training, obtain the trained ANN.

5. Obtain the weights and biases from the Trained ANN and input it to the VHDL code of

ANN.

6. Execute the VHDL code for the decided input, weights and biases for ANN.

7. Observe the results Using Modelsim OR ISIM.

8. Repeat the steps 3 to 7 for different inputs and verify the outputs.

9. Compare the results with MATLAB based ANN.

10. If the results are satisfactory then load the VHDL code in FPGA Chip.

8.1.2 System Block Diagram
In this project work Hello Interval of AODV reactive routing protocol is controlled by ANN for

WANET is implemented on FPGA. The process for implementation and execution of VHDL code for

FPGA Board is discussed in appendix. For the implementation of VHDL code ISE Design Suite 13.1 [13]

was used. For the loading of VHDL code in FPGA chip was done using iMPACT. The Hardware

Implementation includes the FPGA Evaluation board XCV5LX110T, Logic Analyzer, I/O port, LCD

Chapter 8 FPGA Implementation of Soft AODV

170

Module, USB JTAG Cable. The System Block Diagram of FPGA Implementation of ANN based HI is

shown in Figure 8.2.

Figure 8.2: System Block Diagram of FPGA Implementation of ANN AODV

 In this VHDL code is loaded to the FPGA Board using USB JTAG cable from the PROM. PROM

is used to store the program from which FPGA board can execute the program. External asynchronous

memories and memory mapped devices can be added to the FPGA Board, including nonvolatile memory

that can be used to boot the DSK upon reset. The output is given to General Purpose Input Output Port

(GPIO) and the Output devices like LCD and Logic analyzer can be interfaced with the GPIO to analyze

the output.

8.1.3 System Software simulation Results
Simulation of AODV routing protocol with ANN were carried out in Qualnet simulator version 5

on the Mobile Ad-Hoc network with the 50 nodes [10]. The MATLAB was used to design ANN. The

hardware implementation of ANN is done on FPGA kit with the programming language of VHDL. The

Simulation results visualized using ISIM and compared with the MATLAB implementation.

The Device utilization summary for the Purelin type ANN when the output of ANN observed on

GPIO pins using logic analyzer is shown in Table 8.4 while for Tansig type ANN is shown in Table 8.5.

Chapter 8 FPGA Implementation of Soft AODV

171

Table 8.4: Device Utilization Summary of Purelin ANN from Xilinx ISE 13.1

Table 8.5: Device Utilization Summary of Tansig ANN from Xilinx ISE 13.1

Figure 8.3 (a) shows the output of Purelin ANN model observed from the ISIM tool after

simulating the program for XILINX Virtex-5 Kit [11]. In the simulation output waveforms it shows 14 bit

inputs (Transmission Power and Mobility of nodes) viz. p1_1 and p2_1 and the 14 bit output (Hello

Interval) viz. l3purelin_out.

Figure 8.3(a): Output of Purelin ANN from ISIM Using VHDL code

Chapter 8 FPGA Implementation of Soft AODV

172

Figure 8.3(b): Output of Tansig ANN from ISIM Using VHDL code

 Figure 8.3(b) shows the output of Tansig ANN model input and output waveforms observed in

the ISIM tool after simulating the program for XILINX Virtex-5 Kit. The inputs (Transmission Power

and mobility of nodes) viz. p1_1 and P2_1 of 14 bit and the output viz. Hello Interval decided by ANN as

fout signal of 14 bit can be visualized from it.

ANN model has the two inputs one is Tx power and other input is mobility and the output is hello

interval. The output is tested with the input value of Tx power in the range of 8mW to 14 mW and

mobility is in the range of 5 m/s to 15 m/s for WANET. The result of both types viz. Purelin and Tansig

ANN using MATLAB and VHDL code implemented is verified by calculating relative error.

Implementation of Tansig and Purelin type ANN was implemented on MATLAB and then it is

realized on Xilinx ISE13.1 using VHDL code. This VHDL code then loaded on FPGA Virtex -5

Evaluation Platform. The relative difference between Hardware and Software Implementation of ANN

was compared in the terms of relative difference. The relative difference of MATLAB and VHDL result

for corresponding mobility and transmission power of the nodes in WANET in terms of Bar chart is

shown in Figure 8.4 (a) and (b) for Purelin and Tansig type ANN respectively.

Chapter 8 FPGA Implementation of Soft AODV

173

Figure 8.4 (a): Relative difference of Purelin type ANN

Figure 8.4(b): Relative difference of Tansig type ANN

Table 8.6 shows the results comparisons of the implementation of Purelin and Tansig type ANN

in MATLAB and VHDL in terms of the relative difference between both the implementations.

�

���

���

���

���

�

���

���

� � � � 	 �
 � �

Purelin ANN �
��

� �����

����������

�

���

���

���

���

�

���

� � � � 	 �
 � �

Tansig ��� �
��

� �����

����������

Chapter 8 FPGA Implementation of Soft AODV

174

Input Parameter
Purelin ANN Based

Hello Interval Relative

Difference

Tansig ANN Based

Hello Interval Relative

Difference
Txpower Mobility

USING

MATLAB

USING

FPGA

USING

MATLAB

USING

FPGA

8 5 0.6833 0.6828 0.0006 0.6130 0.6124 0.0006

9 8 0.6505 0.6504 0.0001 0.4978 0.4497 0.0461

12 12 0.8671 0.8672 0.0001 0.8206 0.8191 0.0015

10 9 0.7437 0.7435 0.0002 0.5430 0.5395 0.0035

11 15 0.5217 0.5224 0.0007 0.4610 0.4652 0.0042

8 14 0.1159 0.1164 0.0005 0.4020 0.4082 0.0062

8 6 0.6202 0.6203 0.0001 0.5213 0.5241 0.0028

13 11 1.0860 1.0859 0.0001 0.9999 0.9999 0.0000

12 06 1.2460 1.2451 0.0009 1.0000 1.0000 0.0000

Table 8.6: Comparison of results of MATLAB and FPGA Implementation of Purelin ANN

8.1.4 Hardware Setup and Implementation
The hardware setup of Implementation of Tansig and Purelin type ANN on XCV5LX110T FPGA

kit with the Xilinx ISE 13.1 is shown in Figure 8.5(a), 8.5(b) and 8.5(c).

Figure 8.5(a): Hardware setup of FPGA Implementation of ANN based HI

Chapter 8 FPGA Implementation of Soft AODV

175

Figure 8.5(b): Hardware Setup of FPGA implementation of ANN

Figure 8.5(c): Enlarge View of FPGA Board in Hardware Setup

The Outputs were kept on GPIO pins of FPGA Kit and observed on Logic analyzer is shown in

Figure 8.6(a) for Purelin and in Figure 8.6(b) for Tansig type ANN.

Logic
Analyzer

PC

LCD XCV5LX110T
FPGA Board

I/O
PORT

USB JTAG
Loader

Power
Supply

Chapter 8 FPGA Implementation of Soft AODV

176

Figure 8.6(a): Snap Shot of Output of Purelin ANN on Logic Analyzer

The 14 bit output of ANN was given to the GPIO pins and logic analyzer was interfaced it to

visualize the status of each pin. In the Logic analyzer Pod 1 was used of 16 bit with the GPIO pins. My

bus of 16 bit with the bus bit 0 indicates LSB and bus bit 14 indicates MSB of the observed output signal.

Figure 8.6(b): Snap Shot of the output of Tansig ANN observed on GPIO pins using Logic Analyzer

The results displayed on LCD with the information of inputs and output of both the type of ANN

viz. Purelin and Tansig. The inputs are Transmission power (POW) measured in mW and Mobility

(MOB) (m/s) of nodes and output of ANN as Hello Interval (HI) measured in seconds shown in Figure

8.7.

Chapter 8 FPGA Implementation of Soft AODV

177

Figure 8.7: Hardware Setup of FPGA implementation of ANN with LCD

Output of Tansig ANN with the transmission power of 10 mW (0A h) and mobility of the nodes

with 5 m/s (05h), output as Hello Interval (HI) of 0.994 sec (0.FEh) decided by ANN displayed on LCD

after loading the program in FPGA kit is shown in Figure 8.8(a).

Figure 8.8(a): Snap Shot of Tansig type ANN Input and Outputs Are Displayed on LCD

Output of Purelin ANN with the transmission power of 10 mW (0A h) and mobility of the nodes

with 5 m/s (05h), output as Hello Interval (HI) of 0.994 sec (0.FEh) decided by ANN displayed on LCD

after loading the program in FPGA kit is shown in Figure 8.8(b).

Chapter 8 FPGA Implementation of Soft AODV

178

Figure 8.8(b): Snap Shot of Tansig type ANN Input and Outputs Are Displayed on LCD

8.2 Files Used for FPGA Implementation of ANN

Table 8.7 is a list of VHDL files and VHDL packages used to Implement Purelin and

Tansig type ANN in Xilinx ISE 13.1(xxx241.* = purelin/tansig), while Table 8.8 gives list of

Libraries used for both implementation.
Sr.No. Name Purpose

1. xxx241.xise Xilinx ISE 13.1 project file

2. xxx241.vhd Vhdl file to write the vhdl code

3. xxxlayers.vhd Vhdl package for implementing layers of ANN

4. xxx241_pin.ucf Assignment of hardware pins of FPGA board to the

input and output variables.

5. xxx241.mcs PROM files are PROM programming files generated by

iMPACT using the PROM Formatter tab in the File

Generation mode. They are ASCII text files used to

specify configuration data.

6. xxx241.bit Bit files are Xilinx FPGA configuration files generated

by the Xilinx FPGA design software. They are

proprietary format binary files containing configuration

information.

7. xxx.ncd Timing Analyzer opens with the timing report which

Chapter 8 FPGA Implementation of Soft AODV

179

was created during the Generate Post-Map Static Timing

process and the Post-Map NCD loaded.

8. xxx.ngc A binary Xilinx implementation netlist. The logic

implementation of certain CORE Generator IP is

described by a combination of a top level EDN or NGC

and possibly one or more lower level NGC files.

9. xxx241.ngd Native generic database file. This is a translated netlist

file that describes the logical design reduced to Xilinx®

primitives. It is sometimes called the design file, and

serves as input to the mapper.

10. xxx241.ngr Timing Analyzer opens with the timing report which

was created during the Generate Post-Map Static Timing

process and the Post-Map NCD loaded.

11. xxx241.par When you run the Place and Route (PAR) process, this

process is run automatically and a Post-Place and Route

Static Timing Report is automatically generated.

12. xxx241functions16novxcf32p.iaf An iMPACT Archive file is generated by the Save

Archive menu command. This command collects all

configurations and configuration related files together

and creates a context independent directory structure

containing all these files.

13. xxx41.bld After running the Implement Design process, you can

analyze the reports generated during the underlying

Translate, Map, and Place and Route processes to find

out if we need to improve design performance prior to

programming and configuring your device. The

Translation Report (.bld extension), Map Report (.mrp

extension), and Place and Route Report (.par extension)

are output to your project directory, and we can view

these reports in the Design Summary.

14. d12.cfi A Configuration Format Information file is created by

PROMGen and used for 8, 16, and 32 MB PROMs.

Table 8.7: VHDL files related to FPGA Implementation of ANN

Chapter 8 FPGA Implementation of Soft AODV

180

Library Name Files
ieee std_logic_1164
 std_logic_arith
 std_logic_signed
 numeric_std
 math_real
 math_complex
ieee_proposed fixed_pkg
 float_pkg

Table 8.8: libraries used in FPGA Implementation of ANN

8.3 Neuro-Fuzzy AODV
The acronym ANFIS derives its name from Adaptive Neuro-Fuzzy Inference System. Using a

given input/output data set, the toolbox function ANFIS constructs a fuzzy inference system (FIS) whose

membership function parameters are tuned (adjusted) using either a backpropagation algorithm alone or

in combination with a least squares type of method to facilitate the fuzzy systems to learn from the data.

ANFIS maps input through input membership functions and associated parameters, and then through

output membership functions and associated parameters to outputs, can be used to interpret the

input/output map.

The parameters associated with the membership functions changes through the learning process.

The computation of these parameters (or their adjustment) is facilitated by a gradient vector. This gradient

vector provides a measure of how well the fuzzy inference system is modeling the input/output data for a

given set of parameters. When the gradient vector is obtained, any of several optimization routines can be

applied in order to adjust the parameters to reduce some error measure. This error measure is usually

defined by the sum of the squared difference between actual and desired outputs. ANFIS uses either back

propagation or a combination of least squares estimation and backpropagation for membership function

parameter estimation [13].

8.3.1 ANFIS Based AODV1
The transmission power, strength by which signal is sent, is a parameter that determines the

number of neighbours for nodes in MANET.

1 Published Paper in 4th IEEE INTERNATIONAL CONFERENCE proceeding “Performance Evaluation

of Reactive Routing Protocol using Parametric Decision based on ANFIS for MANET using Qualnet” in
International Journal of Computing Science & Communication Technologies (IJCSCT, ISSN-0974-
3375) of International Conference On Advance Computing And Communication Technologies
ICACCT- 2010”sponsored by IEEE Delhi Section, IEEE Computer Society Chapter, Delhi Section & IETE
Delhi Centre on 30th October 2010.

Chapter 8 FPGA Implementation of Soft AODV

181

If it is too low, signal will reach a few neighbours only and its links with those neighbours are

easy to break. Hello interval must be small enough to get a fast update for neighbourhood changes. In

contrast high transmission power leads to a high average number of its neighbours and increases the

lifetime of its links. Hello interval must be long due to fewer changes in the node’s neighbourhood. The

high speed of a node in MANET results in a high probability of losing some of the current neighbours and

acquiring new ones. As the nodes moves fast their links lifetime with their neighbours is small. Hello

Interval time is small to send more Hello messages to check the expected links breaks.

The potential benefits of Adaptive Neuro-Fuzzy Inference System (ANFIS) [14] extend beyond

the high computation rates provided by massive parallelism. The neural network models are specified by

the net topology, node characteristics, and training or learning rules. These rules specify an initial set of

weights and indicate how weights should be adapted during use to improve performance. Inputs of the

ANFIS are Transmission power and Mobility of the node (speed) and the output of the system is hello

interval which is shown in the Figure 8.9. The neural Network is trained to decide the hello interval based

on information transmission power and speed/mobility of nodes.

Figure 8.9: Block Schematic of ANFIS

8.3.2 ANFIS Configuration
Since it is possible to generate I/O training pairs from the existing environment and classical

procedures, we have selected a feed forward ANN with multi layers perceptron model, with 2 nodes in

the input Layer, 10 hidden layers and 1 node in the output layer. The input layer neurons have linear

activation characteristics while the hidden and output layers have a hyperbolic tan-type activation

function to produce bipolar outputs. C module has been developed to generate I/O pairs (P, T) for

training ANFIS. P indicates input and T indicates target output. Conventional Back propagation training

method is used. The MATLAB [15] is used to load the training pairs decided by the Sugeno Fuzzy

Inference System (FIS) to train the neural network using ANFIS Editor:

ANFIS is a network-type structure similar to that of a neural network, which maps inputs through

input membership functions and associated parameters, and then through output membership functions

and associated parameters to outputs, can be used to interpret the input/output map. The parameters

Chapter 8 FPGA Implementation of Soft AODV

182

associated with the membership functions will change through the learning process. The computation of

these parameters (or their adjustment) is facilitated by a gradient vector, which provides a measure of how

well the fuzzy inference system is modelling the input/output data for a given set of parameters [14].

Once the gradient vector is obtained, any of several optimization routines could be applied in

order to adjust the parameters so as to reduce some error measure (usually defined by the sum of the

squared difference between actual and desired outputs). ANFIS uses either back propagation or a

combination of least squares estimation and gradient method for membership function parameter

estimation. The internal architecture of ANFIS is shown in Figure 8.10.

Figure 8.10: Internal architecture of ANFIS

Figure 8.11 shows the training pairs loaded to train the neural network using ANFIS editor in

MATLAB.

Figure 8.11: Training data loaded for ANFIS Figure 8.12: Training Error of ANFIS for Hello

Chapter 8

Training of ANFIS tries to minimize the error within 20 epochs.

error of the ANFIS network.

Figure 8.13: Average Packet Delivery Ratio V/S
Pause time for nodes 30, 40

Figure.8.13 shows the Packet Delivery Ratio

AODV protocol for the number of nodes 30 and 40.The Packet Delivery Performance for the hello

interval determined using ANFIS is better for higher number of nodes.

packets performance for the ANFIS Hello interval is als

comparison of the nodes 30 and 40.

Figure 8.15: Average End to End Delay V/S
Pause Time for nodes 30, 40

 FPGA Implementation of Soft AODV

Interval (HI)

Training of ANFIS tries to minimize the error within 20 epochs. Figure 8.12

: Average Packet Delivery Ratio V/S

Pause time for nodes 30, 40
Figure 8.14: Average Throughput V/S Pause

Time for nodes 30, 40

Packet Delivery Ratio and Figure 8.14 shows Average Throughput

AODV protocol for the number of nodes 30 and 40.The Packet Delivery Performance for the hello

interval determined using ANFIS is better for higher number of nodes. The Throughput and Received

packets performance for the ANFIS Hello interval is also better for the higher node density in the

.

Average End to End Delay V/S

Pause Time for nodes 30, 40
Figure 8.16: Average Received Packets V/S

Pause Time for nodes 30, 40

ementation of Soft AODV

183

 shows the training

Average Throughput V/S Pause

Time for nodes 30, 40

shows Average Throughput of the

AODV protocol for the number of nodes 30 and 40.The Packet Delivery Performance for the hello

The Throughput and Received

the higher node density in the

Average Received Packets V/S

Pause Time for nodes 30, 40

Chapter 8 FPGA Implementation of Soft AODV

184

Here the Average end to end delay is higher in the case of nodes=30 while it is less in nodes=40,

which can be observed from the Figure.8.15. Average Received Packets for the node density of 30 and 40

is shown in Figure 8.16.

Figure 8.17: Average comparison of performance metrics for nodes 30 and 40.

Figure 8.17 shows the performance of the proposed method using pie chart for the nodes 30 and

40 and we can observe from that for the higher density of nodes proposed method performs better. From

the figure we can also observe that the packet delivery ration and the number of received packets for the

node density 40 is higher than the node density 30, also the throughput of the node density 40 is

equivalent to the node density 30. The Average End to end delay for higher density node is less.

Summary

In this chapter FPGA implementation of ANN based Hello Interval parameter of reactive routing

protocol AODV has been described. Feed forward type Multilayer Perceptron (MLP) neural network of

the Purelin and Tansig type is used to decide interval between hello messages instead of using fixed

interval of 1 sec or 1.5 sec. Result comparison of the FPGA implementation of Purelin and Tansig type

ANN with the Matlab implementation done by calculating relative error. Also the same Hello interval

parameter for reactive routing protocol AODV is decided by ANFIS. The results of ANFIS based Hello

Interval is compared with the traditional fixed values of Hello Interval of 1sec and 1.5 sec.

