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Chapter—-4

Modeling & Optimization

Data obtained from experiments need ‘. ' be treated in a number of different ways to get
meaningful insight into the system being studied. Numerous modeling techniques and multiple
models may be developed for e:ngines system. It is important to select a suitable modeling
technique to capture the relationship between input and output of the system accurately and
efficiently. For systems involving mutually conflicting out comes effected by a number of input
variables, it is essential to determine the optimum state of the system to achieve desired output
by setting appropriate levels of inputs. For this purpose, use of suitable optimization technique is

an essential.
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Fig.4.1 Complexity of System & Precision Level of Different Models

With increase in knowledge about a system or process; its complexity decreases and
understanding increases. Decrease in complexity leads to increase in precision afforded by
computational methods useful in modeling of the system or process. As seen in Fig. 4.1, for
systems that are little complex and hence little uncertain, closed form mathematical models
provide precise description of system‘. For systems little more complex but for which signiﬁcaﬁt
data is available, model free methods like artificial neural networks provide powerful and robust
means to reduce uncertainty using pattern based learning. For most complex systeins where little
numerical data exists and where only ambiguous or imprecise information may be available,
fuzzy models provide a method to understand and represent system behaviour by interpolation
between observed inputs and outputs.

In order to use optimization algorithms in engineering design activities, the first task is to
formulate the optimization problem. The formulation process begins with identifying the
important design variables that can be changed in a design. The other design parameters are
usually kept fixed. Thereafter, constraints associated with the design are formulated. The
constraints may arise due to resource limitations such as deflection limitations, strength

- limitations, frequency limitations, and others. Constraints may also arise due to codal restrictions

that govern the design. The next task is to formulate the objective function which the designer is

oof
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interested in minimizing or maximizing. The final task of the formulation phase is to identify
some bounding limits for the design variables.

The formulation of an optimization problem can be more difficult than solving the
optimization problem. Every optimization problem requires different considerations for
formulating objectives, constraints and variable bounds [77].

Section 4.1 is concerned with the ANN modeling applied to predict thermal performance
and engine emission constituents using the extensive experimental data compiled during
experimentation. Section 4.1.1 describes the approach adopted for both the thermal performance
evaluation and constituents of engine emissions. The selection of modeling tool is presented in
Section 4.1.2 while modeling strategy is given section 4.1.3. Section 4.1.4 gives the ANN
modeling applied in the present investigation using the experimental data on the thermal
performance. Using the experimental data on the exhaust gas emission constituents, ANN
modeling is carried out and is given in Section 4.1.5 and finally the result and discussion is
presented in Section 4.1.6.

The optimization of the CI engine performance in terms of both thermal performance and
gas emission constituents carried out using genetic algorithm is discussed in Section 4.2. Single
objective optimization is discussed in Section 4.2.1 while Section 4.2.2 deals with multi

objective optimization.
4.1 Artificial Neural Network

In the recent years, many models and simulations have been tried to give a clear view
about the diesel engine performance, fuel characteristics, emission etc. under varied conditions
of speed, load and other operating parameters. One of these techniques is the artificial neural
network (ANN). ANN modeling (neural networks) encompasses very sophisticated techniques
capable of modeling complex functions and processes. The true power and advantage of neural
networks lies in their ability to represent both linear and nonlinear relationships as well as having
the capability of learning by example. For processes that have non-linear characteristics such as
those found in diesel engine performance modeling, traditional linear models are simply
inadequate. In comparison to traditional computing methods, neural networks offer a different

way to analyze data and to recognize patterns within that data by being generic non-linear
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approximators [77, 78]. Artificial Intelligence (AI) techniques seem to be best solution for

predicting engine emissions since they do not demand any additional sensor installation [81].

When mathematical models fail to capture the input/output relationship within the limits (

of permissible error and sufficient data regarding the system available, artificial neural network
/is a pertinent tool to model successfully the system behaviour. ANNs are called model free
models since they don’t rely upon a pre-defined mathematical equation to relate system
input/output. A proper ANN structure is developed for each system to capture the system
behavior of ‘a complex system. With high complexity of combustion relations and emission

- phenomena, it is suitable to model by ANN. ANNs have been used for two main tasks: 1) -
function approximation and 2) classification problems. Neural networks offer a general
framework for representing non-linear mappings. The application of neural networks to predict
thermal performance and exhaust gas constituents belongs to the class of function approXimation

applications.

4.1.1 Neural Network Modeling Approach

Devéloping a suitable model for thermal performance and exhaust gas emissions of a
compression ignition (CI) engine for evaluating the effect of hydrogen induction poses the
problem of absence of widely accepted correlations. Artificial neural networks are found apt in
such a scenario to capture the relationship between the responsé parameters and the control
parameters selected as per the design of experiments. A model is desirable to simulate the engine
performance and help predict the effect of load, speed and different hydrogen induction rates on
the thermal performance and exhaust gas constituents to have a clear idea of benefits of
hydrogen induction.

" In correlation based analysis, the expéﬁmental data is normally converted into parameters
such as brake powe‘r, diesel fuel consumption in order to get significance of variables and
compact correlations. The problem often observed with such correlation based thermal analyses
is that the parameters predicted strongly depend on the definition of these parameters and in
absence of such established correlations as for exhaust gas constituents; an iterative procedure td

obtain reasonable correlations becomes cumbersome.
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An approach to development of a neural network model to simulate the functioning of the

- CI engine can help predict the same parameters. ANN does not need definition of experimental
correlations and iterative methods. ANNSs offer a method to simulate the nonlinear, complex and
uncertain systems without- any explicit knowledge about the input/output relationship.
Developing an ANN with appropriate network architecture allows approximation of any

- continuous or nonlinear function as seen in complex systems like a CI engine. Looking at the
analysis of the performance and engine emissions, it is observed that the analysis is much more

- complex, critical and involves a number of correlations. Based on this observation, the ANN

modeling for the diesel engine operated by hydrogen diesel mixture is planned in two phases:

i) Development of ANN model for thermal bcrformance, and
i1) Development of ANN model for gaseous emission constituents.

A multi layer feed forward ANN model also termed as a multi layer perceptron (MLP) is
selected for two reasons. Firstly, a two layered network is not expected to handle the complex
relationship between the inputs and outputs of a CI engine operated with hydrogen induction
following the explanations of Minsky and Papert [93] regarding the limitations of two layered
networks. Secondly, the recurrent network is preferred when the feedback system is to be
simulated for dynamic regulation of inputs and outputs. This not being the case, a unidirectional
feed forward network is preferred.

The most popular learning algorithm of error back propagation is selected fof &aining

purpose as seen in all the literature cited in Chapter 2.
4.1.2  Selection of Modeling Tool

There are many ways to implement artificial neural networks. It is difficult to find
optimal network architecture, considering the uniqueness of each system or problem. Usually, a
priori choice, such as selection of network topology, training algorithm and network size should
be made based on experience in order to keep the task to a manageable proportion. Further, for
modeling of systems an appropriate modeling platform is essential. Artificial neural network

“models for any system can be developed using one of the following three tools given in Fig. 4.2.
There are numerous neural network simulation software available which allow fast development

of neural networks. These software provide menus and graphics to define the network in terms of
Lt { ‘
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layers and cells in each layers, the propagation rule, activation rule, output function and learning

algorithm.
TOOLS FOR ANN
MODELING
Dedicated Toolboxes of Using Standard ANN
. : . Simulation Softwares
Programming Using Platforms like

(freewares and
Programming Matlab.Scilab, licensed softwares)
like EasyNN. SANN.

JNN. Emergent.
ForTranX. C++. Java NeuralWorks

Languages Like Mathematica. etc.

Fig. 4.2 Toolsfor ANN Modeling

They allow feeding of input/output matched pairs termed as patterns for learning and
validation. The permissible error for the validation set can also be specified. The weights and
bias are updated and the network is tuned. The learning terminates either on the basis of number
of cycles permitted for learning and validation or on achievement of error values less than the

target values specified.

Such simulation softwares can be further divided into executables and open source
softwares. The executables like EasyNN, NeuralWorks etc. come with binary code and provide
predefined functionality. This predefined functionality cannot be altered or extended by
programming. The behaviour of the software in terms of definition of various network elements
is predefined and cannot be modified if this behaviour is not satisfactory for a particular system.
Further, the set of functions defined is also fixed. If neither of the functions in this set is suitable
for the modeling of a particular system, the software is rendered /inappropriate for modeling of
that system. On the other hand, the open source softwares, in addition to providing some

predefined functionalities, come with the source code and permit the modification and extension
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A

of the software definition. SANN, Genesis etc. are examples of such neural network simulation

software with open source.

If these software do not satisfy the problem requirement, the next choice is to use the
neural network modeling toolboxes available with programming ?Iatforms like MATLAB and
-Sciiab.v These toolboxes provide fast development platform since ready to use ANN specific
functions are made available as library functions. Graphical functions of these platforms permit
faster development. If these ready libraries do not satisfy certain peculiar system, the most
flexible yet most time consuming option is to develop a dedicated program using any of the
programming language syntax. All the graphics and other functionalities have to be defined in

this case. ' -

For the purpose of development of ANN model for thermal performance and exhaust gas
constituents, the first choice is to use standard executable software. Comparative features of
‘several simulation softwares are provided in Appendix V. The software selected for neural
network modeling is EasyNN purély because-of its simplicity in developing and training models
involving feed forward multilayered neural networks with back-propagation training algorithm.
EasyNN grows multi-layer neural networks from the data in a Grid. The neural network input
and output layers are created to match the grid input and output columns. Hidden layers
| connecting to the input and output layers can then be grown to hold the optimum number of
nodes. Each node contains a neuron and its connection addresses. The data grid containing
input/output matched pairs for training and validation of the neural network is produced by
importing data from spreadsheet files, tab separated plain text files, comma separated files,
bitmap files or binary files. The grid can also be produced manually using the EasyNN grid
editing facilities. Numeric,' text, image or combinations of the data types in the grid can be used
to grow the neural networks. The neural networks learn the training data in the grid and they can
use the validating data in the grid to self validate at the same time. When training finishes the
neural networks can be tested using the querying data in the grid, using the interactive query
facilities or using querying data in separate files. The steps that are required to produce neural
networks are automated in EasyNN. The learning can be terminated by specifying maximum

number of cycles or the targeted maximum error.
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4.1.3 Modeling Strategy

ANN requires matched pairs of inputs and outputs for the development of suitable
network architecture and its training to simulate the system being modeled. The data is divided
using the 80-20 rule, with 80% of the available data being used for training of the network and
20% being used for validation or pruning. The data required for the training of the neural
networks is generated through series of experimental tests conducted on four stroke four cylinder
compression ignitioﬁ engine using hydrogen — diesel blends as fuel. This yields the data required
for training and validation of the ANN model for the diesel engine. The data is genei'ated from
the experiments by varying speed and load of engine at various hydrogen induction rates. The
sample of input and output experimental results for modeling purpose is listed in Table 4.1. (This

exp;erimental data set is the same as given in Appendix II).

The table represents a sample of input and output data that is used in the ANN modeling of
engine performance énd exhaust gas emission constituents. The engine speed is véried’ from 1000
to 2000 rpm with a step of 250 rpm, load in terms of Ampere is changed from 0 Amp. to 2 Amp
with a step of 0.5 Amp., while the hydrogen induction rate is varied from 0 to 18 1/min with a
step of 1 I/min. The data reduction is carried out for a constant engine speed of 1000 rpm under
no load oi)erating conditiqn and 0 to 18 I/min hydrogen induction rate. By using the experimental
data, a neural network model can be ‘developed for gas emission constituents and engine
performance. The general approach for ANN modeling of a given problem is described in Fig.

43, Once the type network topology and training algorithm is selected, the next task is to decide

on some network parameters and operational rules. These can be listed as under:

1. Identify Inputs: The input variables to the system need to be identified which decides the
number of cells in the input layer. For predicting thermal performance and exhaust gas
constituer_lts, the control variables such as speed, load and induction rate of hydrogen are the

inputs. This implies that the number of inputs for ANN modeling is three.

2. Identify Outputs: The output variables for prediction of thermal performance considered are
brake power and diesel fuel consumption. Brake thermal efficiency is the parameter
conventionally used to represent thermal performance but this is not selected as output since the

engine is operated with hydrogen - diesel fuel blend and objective is to determine the effect of
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hydrogen induction on the performance. Further, the CI engine as a system allows control of
speed and load and experimental setup is designed to control hydrogen induction which implies
that the diesel fuel consumption is determined based on the power requirement and is effectively
a response parameter to be treated as a direct outcome of the values of control variables. Hence,
for thermal performance the number of outputs is two. For predicting the exhaust gas
constituents five major constituents namely, CO, CO,, HC, NOx and SO; are selected as the five

outputs.

3. Select the propagation rule: This decides how the net input to each cell is calculated. The
commonly implemented weighted sum rule is selected as the propagation rule. The weights are . -
initialized randomly and no weights are applie& on the input connections of the cells in input

layer.

4. Select the activation function: The logistic activation function is selected which allows

scaling of the effect of inputs in a nonlinear fashion.

5. Select the output function: The identity function matches best with the logistic identity

function in order to relay the output of the activated neuron as the response.

6. Number of layers & cells in them: Set the limits on minimum and maximum number of
hidden layers and the least and most number of cells in each of these hidden layers. This
requires some experience and trial & error on part of the modeler to achieve a suitable network.
Usually a number of networks are tried and the one giving the least error after training and best

coefficient of determination is selected as best model.

7. Termination Criteria: The tfaining procedure is stopped when the error is within an
acceptable value. The acceptable value is established on basis of practical needs or relevant
literature. An error of 10% is generally acceptable for predictive models. However, infinite time
cannot be allowed to 2 model to achieve the error and some models may not even be capable to
capture the relationship and train to acceptable error. For this reason, a limit in number of

i
f
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training cycles is also specified.

Table 4.1 Neural Network Input and Output Data Sample for Engine Performance and
Exhaust Gas Emissions Constituents

Output
Input - -
Thermal Performance Emission Constituents
Hydmgen Diesel Fu.el Brake
it | | duton | Commpion | b | co | co. | me | o | so
(I/min) (kg/s)
1000 0 0 183 0 0.09 | 2.15 0.16 78 141
1000 0 1 175 0 023 1 2.19 0.18 79 195
1000 0 2 173 0 036 | 222 0.19 80 249 -
1000 0 3 170 0 0.50 | 2.23 0.20 81 314
1000 0 4 167 0 0.63 1 2.23 0.22 79 378
1000 0 S 162 0 0.76 | 2.23 0.24 78 445
1000 0 6 156 0 0.89 { 2.23 0.26 78 512
1000 0 7 154 0 099 | 230 | 0.30 78 579
1000 0 8 152 0 1.10 | 2.37 0.35 77 645
1000 0 9 150 0 1.19 | 2.37 0.45 78 728
1000 0 10 150 - 0 1.29 | 2.37 0.56 77 811
1000 0 11 148 0 1.38 | 2.41 0.69 77 876
10060 0 12 147 0 1.47 | 2.45 0.83 75 941
1000 0 13 144 0 1.57 { 2.45 0.84 - 76 1032
1000 0 14 139 0 1.67 } 245 |  0.86 76 1123
1000 0 15 134 0 1.78 | 2.49 0.86- 75 1219
1000 0 16 129 0 1.89 | 2.52 0.87 75 - 1315
1000 -0 17 123 0 1.98 | 2.52 1.39 75 1407
1000 0 18 119 0 2.07 | 2.52 1.92 74 1499
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Decide the inputs to the ANN.
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input layer

Y

Decide the outputs desired from
the ANN
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Is number of cells in
last hidden layer <

Increase one cell

i inthe last hidden
layer max.?
Introduce one hidden | VYes | Is number of
layer with minimum hidden layers less
cells than max.?

Change the propagation
rule and activation and

A

output functions

Fig. 4.3 Flow Chart for Neural Network Modeling Approach

The application of this general modeling approach to each of the cases of predicting

thermal performance and exhaust gas constituents is discussed in subsequent sections.

4.1.4 ANN Model for Thermal Performance

The complete specification of engine performance comes in terms of diesel fuel
consumption (DFC) and brake power (BP). Both are merely dependent upon engine speed,
engine load, and hydrogen induction rate. Thus, in order to develop a model in neural network
technique which predicts the performance of CI engine working with hydrogen — diesel biends,

the operation condition such as engine rate speed, engine load, and hydrogen induction
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rates are accepted as the input while the diesel consumption rate and brake power are to be
determined as the output variables. Fig. 4.4 shows the layout of the neural network model for

engine performance.

Engine speed, Cl Engine Operated With Diesel fuel
engine load and . . »
& : . Hydrogen — Diesel Mix consumption,
hydrogen induction Brak
ate ) rake power
Engine rate speed, Artificial Neural Network :
Diesel fuel
Engine load, Model with consumption,
Hydrogen induction Appropriate Architecture ™  Brake power
rate

Fig. 4.4 Layout of Artificial Neural Network Model for Engine Performance

The neural network training data listed in Appendix II and Table 4.1 are used for
developing individual neural network model. The central block representing CI engine in Fig. 4.4
is replaced by different architectures of neural networks and an appropriate architecture is
determined which limits all the errors within 2%. The steps listed in the flow chart for
development of neural network models shown in Fig. 4.3 are applied to this case as given in
Table 4.2.

As per Table 4.2, beginning with a three layered neural network model having ten cells in
the hidden layer, the number of cells in hidden layer is increased up to 50 while monitoring the
error résulting at the end of training. The criteria for the termination of training selected are a)

permissible error and b) maximum number of cycles in training and validation.

Error for each case is defined as

A, —A
Errorvs = e " Ao | 4.1)
where, A, = The output value as obtained from theoretical analysis
Ap = The output value predicted by the neural network model
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The average error for entire epoch (complete set of input-output pairs) is defined as

LS A —AL
Ei']‘gr '0// prosni— ..,,....'f.‘.....___....p.;__
W %= }; A
4.2)
The maximum error is defined as
NA, A
Eﬂ-orzx\ax %= max(z Lﬁ?{“&’l} (43)
i=t e
and the minimum error is defined as
NITA . —A
Error,,, % = min()_ g——-ﬂ;—ﬁ—g} (4.4)
il e
For each architecture of neural network model the root mean square value of error is
L&A -Ar Y
Errop,, ==Y | ——— (4.5)

NG A®

For determination of the rms error, the maximum error out of the five output nodes for

CO, CO,, HC, NOx and SO is used. -

The confidence R and scatter © test can be used to decide upon the best architecture. The

R and o values can be determined as

R—liR -—iiAe (4.6)

N&G ' NGA® o
1 N

c:\/WZ{RmRi)Z 4.7
NS
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Table 4.2 Neural Network Modeling for Engine Performance .

Network Type Feed Forward

Input for the neural network model engine speed, engine load, and
hydrogen induction rate

Number of cells in input layer = Three

Number of inputs to the neural network

model

Output from the neural network model Diesel fuel consumption and brake
power

Number of cells in output layer = Two

Number of outputs from the neural
network model

Initial Number of Hidden Layers 1

Maximum Number of Hidden Layers 3

Initial Number of Cells in a Hidden Layer 10

Maximum Number of Cells in a Hidden 50

Layer

Propagation Rule Weighted Sum Rule
Activation Function Logistic Function
Qutput Function Identity Function
Learning Rule Back Propagation

For this model, the limiting value for all the errors over the entire data is selected as 0.02

(2%) while the permissible error for validation sets is specified as 3% of the target value. The
maximum number of training cycles is limited to 1000000 for each learning set. The training
stops when any one of the above criteria, namely, all errors beinglless than 0.005, all validation

~ points within 0.3% of target values or 100000 training cycles being completed. The learning rate
is kept as 0 6 and momentum as 0.8 for the stable learmng and convergence of weights. The
number of learnmg cycles before any validation cycle is executed is set to 1000. The number of
validation cyeles in one instance of validation is set to 100. These values are set in the controls
window of the software as shown in Fig. 4.5. The 80-20 rule for neural networks are used for
training and for validation similar to that employed in the case of ANN modeling on exhaust gas

emission constituents.
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Fig. 4.5 Setting Learning Controlsfor Training of ANN Model

As given in Table 4.2, beginning with three cells in input layer, ten cells in the hidden
layer, and two cells in output layer, the neural network model appears as indicated in Fig.
4.6. Such architecture is denoted as 3,10,9,2 architecture, the numbers denoting the number

of cells in input layer, hidden layer and output layer respectively.
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"SArTanorT” . )
Bias Positive Weight

Error Below Prune Weight

Fig. 4.6 ANN Model of Engine Performance with Architecture 3,10,9,2

Error Maximum Average Minimum
1.00

0.90

Learning rate: 0.60 Momentum: 0.80 Minimum Error: 0.0000 Average Error: 0.0068 Maximum Error: 0.0200
Target Error: 0.0200 Network not learning. Nodes: 1=3 H1=9 H2=8 H3=0 0=2

Fig. 4.7 ANN Model Training & Error Propagation With Increasing Number of Training
Cycles for the 3,10, 2.
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On training of the network, the error propagation graph for each training cycle is
obtained as given in Fig. 4.7. The maximum, average and minimum error are all seen to
reduce at a fast pace in the early training period. But, towards the last training cycles, there is
very small change in these error values. Further, the training ends with average error value
less than 2% permitted as the target error value. The training does not achieve the limiting
error value of 3% of target value selected for the validation set. The training stops after
numbers of training cycles without the error limit set for validation points being achieved

because no further reduction in error is seen for a number of consecutive cycles.

Table 4.3 shows the results for different architectures tried for the same data as in
Table 4.1. Table 4.3 lists the training and test errors which can be used for selection of the

most appropriate network architecture.

Table 4.3 Neural Network Architectures & Corresponding Training Results

Model Avg. Min. | Max. \{ali'dati.on Set Remarks
NO. Structure Error | Error | Error | within Limiting
% Ye % Error%

1 3,25,2 5.09 0.0601 | 0.059 3
2 3,26,2 517 0.0190 | 0.057 3
3 3,27,2 5.28 0.0188 | 0.060 3 Training Stopped
4 3,28,2 502 | 0.0277 | 0.058 3 with all errors being
5 3,29,2 5.13 0.0748 | 0.058 3 within 2%
6 3,9,8,2 5.06 0.0223 | 0.057 3
7 3,10,10,2 5.02 0.0194 | 0.057 3
8 3,9,9,2 5.14 0.0104 0.059 3
9 3,10,8,2 5.10 0.0470 | 0.058 3
10 3,10,9,2 5.09 0.0608 | 0.057 3

As seen from Table 4.3, the error values and the percentage of validation sets within
limiting error are almost identical. In such situation, deciding which architecture is best
representative model of the system becomes difficult. The R and o test is the most popular
approach to handle this situation. The values of rms error, R and ¢ are evaluated using Egs. (4.5)

to (4.7). The training and test errors for the networks are listed in Table 4.4.
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Table 4.4 Training and Test Errors for Neural Network Architectures for Engine Thermal

Performance
Model Training Error Test Error
Structure Max. RMS R c
Error% Error%
3,25,2 9.998 0.0590 1.0381 0.0331
3,26,2 5.971 0.0578 1.0420 0.0323
3,27,2 9.993 0.0601 1.0397 0.0321
3,28,2 9.975 0.0580 1.0405 0.0322
3,29,2 9.993 0.0581 1.0412 0.0317
3,9,8,2 9.997 0.0579 1.0399 0.0329
3,10,10,2 9.992 0.0577 1.0399 0.0318
3,9,9,2 9.976 0.0590 1.0393 0.0322
3,10,8,2 9.981 0.0581 1.0359 0.0309
3,10,9,2 9.995 0.0578 1.0413 0.0312

It is seen that the values of error are well within specified limits for all the neural network
model architectures evaluated. On the basis of R and ¢ values, the 3,10,8,2 is the good model for
which value of R is closest to unity and value of ¢ is least is selected as the best representative
model for the engine gas emission constituents. Though few other models have lesser maximum
and rms error values but the spread and accuracy of determination being better for this model, it

is selected as the representative model.

4.1.5 ANN Model for Exhaust Gas Emission Constituents

For gas emission constituents completely specified in terms of CO, CO,, HC, NOx, and
SO, are merely dependent upon engine speed, engine load, and hydrogen induction rate. Thus, in
order to develop a neural network which rates the engine gas emission constituents for diesel
engine working with hydrogen ~ diesel blends, the operation condition such as engine rate speed,
engine load, and hydrogen induction rates are accepted as the input, while the variables of the
gas emission constituents are to be determined as the output variables. However, the neural
network model for CI engine gas emission constituents will schematically appear as indicated in

Fig. 4.8.
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Enginespeed, . |* (i Engine Operated with €0, €O, HC,
engine load.and g0 . . » NO,, and SO
| Eneine foadan " Hydrogen — Diesel Mix % and 5%
hydrogen induction : ratios
rate
1 "Enginespeed, | T . 0. l
Lo . Artificial Neural Network €O, CO,, HC,
engineloadand | o . NO.. and SO
~hydrogeninduction | | = Model with ) e
1 rate | | Appropriate Architecture ratios

- . Fig: 4.8 Schematic of Artificial Neural Network Model for CI Engine Gas Emission
Constituents
The neural network training data listed in Appendix II and Table 4.1 are used for
developing individual neural network model. The CI engine operated during experimentation
shown in central block in Fig. 4.8 is replaced by different architectures of neural networks and an
appropriate architécture is determined which limits all the errors within 2%. The steps listed in
the flow chart for development of neural network models shown in Fig. 4.3 are applied to this

case as given in Table 4.5,

- .. Table 4-5 Neural Network Modeling for Emission Constituents

[ Network Type Feed Forward
-/ Input for.the neural network model Engine Speed, Engine Load, and
[ IR Hydrogen Induction Rate
Number of cells in input layer = Three
Number of inputs to the neural network
| model
| Output from the neural network model CO, CO», HC, NOx and SO, ratios
1:‘Number of cells in output layer = Five
Number of outputs from the neural
network model :
~ | Initial Number of Hidden Layers 1
| Maximum Number of Hidden Layers 3
| Initial Number of Cells in a Hidden Layer | 10
Maximum Number of Cells in a Hidden 50
Layer ‘ )
Propagation Rule Weighted Sum Rule
| Activation Function Logistic Function
_Output Function Identity Function
Learning Rule Back Propagation
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As per Table 4.5, beginning with a three layered neural network model having ten cells in
the hidden layer, the number of cells in hidden layer is increased up to 50 while monitoring the
error resulting at the end of training. The criteria for the termination of training selected are a)
permissible error and b) maximum number of cycles in training and validation are discussed

above and given by Egs. (4.1) to (4.7).

The limiting value for all the errors over the entire data is selected as 0.02 (2%) while the
permissible error for validation sets is specified as 3% of the target value. The maximum number
of training cycles is limited to 1000000 for each learning set. The training stops when any one of
the above criteria, namely, all errors being less than 0.6.1 , all validation points within 3% of
target values or 100000 training cycles being completed. The learning rate is kept as 0.6 and
momentum as 0.8 for the stable learning and convergence of weights. The number of learning
cycles before any validation cycle is executed is set to 1000. The number of validation cycles in
one instance of validation is set to 100. These values are set in the controls window of the

software as shown in Fig. 4.9. The 80-20 rule for neural networks training and validation is used.

Fig. 4.9 Setting Learning Controls for Training of ANN Model
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With three cells in input layer, starting by ten cells in the hidden layer and five cells
in output layer, the neural network model appears as given in Fig. 4.10. Such architecture is
denoted as 3.10,5 architecture. The numbers denote the number of cells in input layer,

hidden layer and output layer respectively.

M* trv*jt f**gativ« Wight
Activation Positive W~ghl
Gik<

Error Mow Prur* W*grt

Fig. 4-10 ANN Model of Engine Gas Emission Constituents with Architecture 3,10,5
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Table 4.6 Neural Network Architectures & Corresponding Training Results for Gas

Emission
Validation Set
NO Model Avg. Min. Max. within Remarks
" | Strueture Error % Error % Error % Limiting
Error%
1 3,28.28.5 5.048 0.0239 9.99 3
2 3,30,30,5 5.215 0.0484 998 3 Training
3 332325 5.114 0.0432 9.99 3
4 | 333335 5150 0.0613 9.99 3 Stopped
5 3.34.34,5 5.081 0.0504 9.99 3 with all
6 3,35,35.5 5.097 0.0063 9.99 3 errors
7 3,36,36,5 5.165 0.0180 9.99 3 being
8 3.40.40,5 5.103 0.0629 9.99 3 wi thi:x
9 13,20,20,20,5 5.092 0.0345 9.99 3
10 | 3.23.23.23.5 1801 0.0090 9.99 3 2%
1T |32424245 5.088 0.0302 9.99 3
12 13,25.25,25,5 5.160 0.0375 9.99 3
13 ]3,26,26,26,5 5.124 0.0601 9.99 3
14 |3,27.27.275 5.073 0.0382 9.99 3

As seen from Table 4.6, the error values and the percentage of validation sets within limiting
error are almost identical. In such situation, deciding which architecture is best representative
model of the system becomes difficult. The R and o test is the most popular approach to handle
this situation. The values of rms error, R and ¢ are evaluated using Egs. (4.5) to (4.7). The

training and test errors for the networks are listed in Table 4.7.

It is seen that the values of error are well within specified limits for all the neural network
model architectures evaluated. On the basis of R, ¢, and rms test, the 3,28,28.5 is the good
model for which value of R is closest to unity and value of ¢ is least is selected as the best

representative model for the engine gas emission constituents.
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Table 4.7 Training and Test Errors for Neural Network Architectures for Exhaust Gas
Emission Constituents Model

Model Training Error Test Error
Structure Max. RMS R o
Error% Error%

3,28,28,5 9.99 0.0582 1.0541 0.0322
3,30,30,5 9.98 0.0584 1.0548 0.0323
3,32,32,5 9.99 0.0589 1.0548 0.0326
3,33,335 9.99 0.0589 1.0551 0.0326
3,34,34,5 9.99 0.0583 1.0544 0.0326
3,35,35,5 9.99 0.0593 1.0547 0.0339
3,36,36,5 9.99 0.0591 1.0554 0.0325
3,40,40,5 9.99 0.0585 1.0547 0.0332
3,20,20,20,5 9.99 0.0582 1.0545 0.0324
3,23,23,23,5 9.99 0.0598 1.0564 0.0331
3,24,24,24,5 9.99 0.0587 1.0545 0.0332
3,25,25,25,5 9.99 0.0591 1.0553 0.0321
3,26,26,26,5 9.99 0.0587 1.0549 0.0324
3,27,27,27,5 9.99 0.0586 1.0543 0.0340

4.1.6 Results and Discussion

It is seen from the modeling for prediction of thermal performance and exhaust gas
emission constituents that ANN models can successfully capture the complex input-output
relationships and still provide small prediction errors. In order to determine the best ANN model,
a number of architectures are tried and tested for error, spread and coefficient of determination.
The representative model selected for exhaust gas constituents has an architecture of 3,28,28.5. It
has an average error of nearly 5%, minimum error of 0.02%, maximum error of 10% and rms
error value of 0.05%. The coefficient of determination is very close to unity being 1.054 and the
spread is 0.032. This ensures that in the test range under consideration, if this model is subjected
to any condition for which experiment is not conducted, the error will not exceed 5% on an
average and 10% maximum. This is shown by applying the model to two cases: i) speed of 1300
rpm, no load condition equivalent to 0 Amp and the range of hydrogen induction rate
experimentally investigated from 1 {/min to I8 l/min and ii) speed of 1800 rpm, a full load
equivalent to 2 Amp and the range of hydrogen induction rate experimentally investigated from |
I/min to 18 {/min. The results predicted by 3,28,28,5 ANN model are compared with values
found by interpolating on graphical plot of experimental results and the error is evaluated and

listed in Table 4.8 and Table 4.9,
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On similar lines, the representative model selected for thermal performance has an
architecture of 3,10,8,2. 1t has an average error of nearly 5.1%, nﬁnimum error of 0.01%,
maximum error of 10% and rms error value of 0.06%. The coefficient of determination is
very close to unity being 1.035 and the spread is 0.031. This ensures that in the test range, if
this model is subjected to any condition for which experiment is not conducted, the error will

not exceed 5% on an average and 10% maximum.

For the ANN models .selected for both thermal performance and exhaust gas

_ constituents, the average prediction error is hence close to 5% which is in line with the
model errors reported in most literature reviewed. Further, the ANN model for thermal
performance modeling required one hidden layer while that for exhaust gas constituents
required two. The number of cells in these hidden layers is larger for exhaust gas
constituents. This indicates a much more complex relationship between the exhaust gas

constituents and the input parameters as compared to the thermal performance parameters.

- 4.2 Genetic Algorithm for Optimization

The problem of finding the optimum value of hydrogen induction from the point of
view of maximizing brake power and minimizing fuel consumption and probortion of exhaust
gas emission constituents poses a multi-objective and multimodal scenario. For all the
reasons discussed, GA is selected as the optimization tool for the determination of optimum
hydrogen induction rate. The procedure for implementing algorithms like GA can be
represented in general as given in Fig..4.12. Few aspects of GA are ‘gi\;en in Appendix-V.

As mentioned earlier, the implementation of such algorithms requires computer
.implementation. Appropriate software is to be selected for. implementing GA. Similar to the
discussion for ANN modeling, possibility extends from ready freéware and open source
softwares to toolboxes of celebrated platforms like MATLAB and requirement of hand
coding where inbuilt facilities of these software do not satisfy peculiarity of the specific
problem. The MATLAB Genetic Optimization toolbox is selected as the implementation tool.
This toolbox
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Selection of -
Appropriate Computer
Tool

Develop Mathematical Relationship Between
Output Variables and Control Variables

h 4

e FunctionFormulate the Objectiv
(Maximization or Minimization)

y
- For Multiobjective Optimization associate weights for
each objective and formulate fithess funciton

y
Implement the Algorithmic
steps and carry out iterations to

determine optimum

Fig. 4.12 Procedure to Implement GA

provides for solving the minimization problem. Hence, the optimization is carried out in three
ways to determine the optimum hydrogen induction rate and corresponding load and speed
values.

A correlation relating the output variables namely the brake power, diesel
consumption and each of the exhaust gas constituents to the control variables namely speed,
load and hydrogen induction rate is required. Feasible region is bounded by practical limit of
control variables. These represent maximum and minimum values set in the design of
experiment for each of the control variables. The optimization is carried out as single
objective optimization treating minimization of exhaust gas constituents and diesel
copsumption, maximizing the brake power (actually minimizing the inverse of brake power)

and a single fitness function to minimize emissions and inverse of brake power.
4.2.1 Single Objective Optimization

The following are the preliminary steps to be taken for the optimization of the
performance of a compression ignition engine by taking in to consideration of thermal

performance and exhaust gas emission constituents.
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1. Select Single objective optimization function for minimizing individy
NOx, SO», HC and diesel fuel consumption.

p . . . . . . ~ . . .. » i
2. Select single objective optimization function for maximizing brake power.

3. Formulate a single objective function (fitness function) to minimize emissions and
fuel consumption and inverse of brake power.

4. Give different weights to different parameters in the objective functions. For example, since
the primary reason for operating and CI engine is to generate power, the brake power is to
be maximized if one considers it as the most important parameters and therefore, the
contribution of this parameter is given maximum weightage.

5. Give next significant weightage to duel consumption rate as lowering the same will
not only reduce the operating cost and conserve fuel but also reduce the emission
constituents.

6. Give equal weightage to all emission constituents, keeping in mind that the sum of all

weights is unity.

The procedure for the solution of the single objective optimization problem for the
minimization of the exhaust gas content CO as a case study is as under: The same steps can

be followed for all the other cases of exhaust gas constituents

1. Develop mathematical equation to relate the input and output parameters. The Datafit
software developed by Oakdale engineering, USA is used to develop or obtain the
mathematical function relating output parameters with the input control variables.
Numerous functions are evaluated the best of which are

Square: Y = aX? + bX3 + X3 + dX, +eX, +X; +gX; X, + X5 +iX, X3 +j

Cubic: Y=ag+X]+byXj+cy X3 +a XZ+bX2 + X5 +dX, +eX, +X; +
gX; +X, +hX, X5 +iX; X3 +jX, X, X3 +k

Y faX i+bX2+c X3+

Exponential: =¢e

Linear with constant: Y= aX+bXo+cX3+d
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Linear without constant: Y= aX{+bX+cX3

The selection of best mathematical model fitting the data is made based on minimum error

and best value of coefficient of determination (R?) value for all parameters.

Cubic polynomial is found the best for both criterion and for all output parameters. Table

4.10 gives the cubic polynomial performance in comparison with other models fitted.

Table 4.10 Cubic Polynomial Error Test Coefficient in Comparison with Other Function

Coefficient
Standard Residual

Model Error | “Residual Sum Average RSS R Ra’
Cubic 49.91 5.08773E-06 1.0711E-08 1148335 | 0.9652 | 0.9642
Square 57.27 1.06184E-10 2.23544E-13 1525251 0.9537 | 0.9528
Exponential 75.94 -3582.495 -7.542095612 2715892 | 09177 | 0.9171
(no I:::::: ant) 124.95 -4.43379E-12 -9.33429E-15 7353478 07771 | 0.7757
Linear 177.18 12229.050 25.74536975 14815220 | 0.5510 | 0.5491

The equation thus obtained is defined as a function in MATLAB and saved as a .m file.

This function is called as the fitness function for optimization in MATLAB.

2. Use the single objective optimization function ga from the GENETIC
OPTIMIZATION and DIRECT SEARCH tool box of MATLAB for defining and
solving the problem. Fig. 4.13 shows the single objective optimization problem

definition screen.
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Fig. 4.13 Single Objective Genetic Optimization Editorfrom MATLAB

Record the value of the optimum and the result after a few repeated trials to eliminate

the effects of specific initialization.

Results and Discussion

Fig. 4-14 shows the variation of fitness value with the generation for single objective

optimization of compression ignition engine brake power when it is fuelled by hydrogen

diesel blend. It can be noted that the fithess value varies linearly till the generation is about

63 and shows fluctuating trend thereafter till the generation of 100. The minimum optima

shown at the generation of 100 indicates the maximum brake power. The program display

result which indicates that the maximum brake power is at 2000 rpm and 2 Amp load with

the hydrogen induction rate of 18 1/min is shown in Fig. 4.15.
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Fig. 4-14 Variation of Fitness Value with Generation Growth for Single Objective

Optimization of Brake Power
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Optimization Tool
File Help

Problem Setup and Results

Solver: ga - Genetic Algorithm K.
Problem
Fitness function: @BP_obj

Number of variables: 3

Constraints:

Linear inequalities: A

Linear equalities: Aeq: beq:

Bounds: Lower: [f Upper: [2000,2,18]

Nonlinear constraint function:

Run solver and view results

|| Use random states from previous run

[ Start |

Current iteration: 51 | Clear Results |

Fig. 4.15 MATLAB Screen to Show Single Objective Optimization of Brake Power

Fig. 4,I€ presents the variation of fitness value with the generation for single
objective optimization of compression ignition engine in the case of diesel fuel consumption
when hydrogen diesel blend is used. The fitness value is found to continuously decrease
from a high value of 0.27 at the smallest generation and then damped to reach the optimum
value of diesel fuel consumption at about 54 generation with fitness value of about 0.12. Fig.
4.17 gives the corresponding program display result which indicates that the minimum
diesel fuel consumption occurs at a speed of1000 rpm, with the load at 0 or 0.5 Amp when

the hydrogen induction rate is 18 1/min.
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Fig. 4.16 Variation of Fitness Value with Generation Growth for Single Objective
Optimization of Diesel Fuel Consumption
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} Optimization Tool
File Help

Problem Setup and Results

Solver.
Problem m

Fitness function: @mf_obj

Number of variables: 3

Constraints:

Linear inequalities: A
Linear equalities: Aeq: beq:
Bounds: Lower:[1000,0,0] Upper: [2000,2,18]

Nonlinear constraint function:
Run solver and view results
| 1 Use random states from previous run

[ Start

Fig. 4.17 MATLAB Screen to Show Single Objective Optimization of Diesel Fuel
Consumption

Similar single objective optimization technique is also employed to find individually the
optimal combination of speed, load and hydrogen induction rate needed to minimize each of
the exhaust gas emission constituents. Figs. 4.18 to 4.27 show the variation of the fitness
value with generation growth and program screen result for each of the constituent gas such
as CO, COz HC, SO: and NO\ respectively. It can be seen there is a convergent between the
results obtained from single object optimization and that from experiment. Further, It can be
noted that the fitness value reach to the optimum with generation between 50 and 60 which is

relatively not high.
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Fig. 4.18 Variation of Fitness Value with Generation Growth for Single Objective Optimization of CO
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Optimization Tool
File Help

Problem Setup and Results

Solver: R

Problem
Fitness function: [@co_obj —1
Number of variables: 3
Constraints:
Linear inequalities: A b: U
Linear equalities: Aeq: | beq:
Bounds: Lower: j[1000,0,0] Upper: [2000,2,18]

Nonlinear constraint function:
Run solver and view results
| | Use random states from previous run
[ sStart
Current iteration: 51 [ Clear Results ]
Optimi*it.ion naming

Optimiution termirated
ObJertive tinction value -0.0363903373S33092X

Optiimi >abion btnninated: average change in tiie <itj /alue leu than options Toiruri
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Fig. 4.19 MATIA.B Screen to Show Single Objective Optimization of CO
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Fitness of Each Individual
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Fig. 4.20 Variation of Fitness Value with Generation Growth for Single Objective
Optimization of CO2
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Optimization Tool
File Help

Problem Setup and Results

Solver: i
Problem
Fitness Function: @co2_obj

Number of variables: 3

Constraints:

Linear inequalities: A: b:
Linear equalities: Aeq: beq:
Bounds: Lower: [1000,0,0] Upper: !|[2000,2,18]

Nonlinear constraint function:

Run solver and view results

| | Use random states from previous run

Start Pause Stop

Fig. 4.21 MATLAB Screen to Show Single Objective Optimization of CO2

Fitness of Each Individual

Fig. 4.22 Variation of Fitness Value with Generation Growth for Single Objective
Optimization ofHC
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Optimization Tool
File Help

Problem Setup and Results

Solver.

Problem
Fitness function: <3>HC_obj
(Slumber of variables: 13

Constraints:

Linear inequalities: A “]. |_

- !
Linear equalities: Aeq beq: - -
Bounds: Lower [€10©0.0.01
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Run solver and view results
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Fig. 4.23 MATLAB Screen to Show Single Objective Optimization HC
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Fig. 4.24 Variation of Fitness Value with Generation Growth for Single Objective
Optimization of SO2
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Fig. 4.25 MATLAB Screen to Show Single Objective Optimization of SOz
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Fig. 4.26 Variation of Fitness Value with Generation Growth for Single Objective
Optimization of NO\
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Fig. 4.27 MATLAB Screen to Show Single Objective Optimization of NO\

Table 4.11 summarizes the results of the single objective optimization applied to minimize
exhaust gas emission constituents like CO, COz2, SOz, HC, NOX, and diesel fuel consumption
and maximize brake power (minimizing the inverse of brake power is equivalent to
maximizing brake power). It is seen that the constituents of exhaust gases such as CO, COz,
SOz2, and HC are always minimum under no load condition when CI engine operates without
hydrogen induction while NOX emission is minimum when hydrogen induction at the rate of
6.67 1/min along with diesel. However, when the diesel fuel consumption is considered as the
minimizing parameter, the optimum is found with diesel blended with hydrogen inducted at
the rate of 16.87 1/min. Similarly, the brake power is maximum when the engine is operated
at full load of about 2.0 A when the induction rate is 17.3 1/min. From the above observations
for the engine running at 1000 rpm, it can be concluded that the optimum thermal
performance of the compression ignition engine is possible with diesel blended with a higher
rate of hydrogen induction to the tune of 16 to 17 1/min while exhaust gas emission is found
to be minimum without hydrogen induction for CO, COg2 SO2 and HC. However,
minimizing NOX emission needs hydrogen induction at the rate of about 7 1/min. Single
objective optimization, thus helps one to minimise or maximize parameters individually but

not collectively.
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Table 4.11 Single Objective Optimization for Brake Power, Diesel Fuel Consumption and

Gas Emission Constituents

Minimize ‘ Speed : Load H, ‘Remarks
Co 1000 0 0 Least emission at lowest
fuel consumption and other
€0 1000 0 0 minima captured around 7
SO, 1000 0 0 Ipm of Hydrogen induction
HC 1000 0 0
NOy 1000 0 6.67
Minimum at lowest speed
Diesel and load corresponding to
' 1000 0 16.87 . ]
Consumption maximum hydrogen
induction rate
At highest speed and load
Inverse of Brake X pes
1995 1.957 17.3 with maximum H,
Power
induction

4.2.2 Multi Objective Optimization

As mentioned earlier, the problem of finding the optimum value of hydrogen induction from
the point of view of maximizing brake power and minimizing fuel consumption and

. proportion of exhaust gas emission ‘constituents poses a multi-objective and multimodal
scenario. Therefore, multi objective optimization technique is selected as the optimization

~. tool for the determination of optimum hydrogen induction rate simultaneously taking in to
"considetation of maximizing thermal performance parameters and minimizing exhaust gas

constituents

The procedure for the solution of multi objective optimization problem is as follows:

1- Develop mathematical equation to relate the input and output parameters. Again, the
Datafit software developed by Oakdale engineering, USA is used to develop or obtain
the mathematical function relating output parameters with the input control variables.

Polynomials, exponentials and power functions are evaluated. The selection of best
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mathematical model fitting the data is made based on minimum error and best value of
coefficient of determination (R~) value for all parameters. Cubic polynomial is found the
best on both criterion and for all output parameters. Table 4.12 gives the comparison of
the cubic polynomial performance with other models fitted.

Table 4.12 Cubic polynomial error test coefficient in comparison with otherfunction

coefficient
Standard Residual Residual
Model error Sum Average RSS R2 Raz
power three 49.90 5.08773E-06 1.0711E-08 1148335 0.9652 0.9642
Square 57.27 1.06184E-10 2.23544E-13 1525251 0.9537 0.9528
exp(a*x1 +b*x2+c*x3+d) 75.93 -3582.495 -7.542095612 2715892 0.9177 0.9171
a*x1+b*x2+c*x3+d 124.94 -4.4337E-12 -0.33429E-15 7353478 0.7771 0.7757
ar*x1+b*x2+c*x3 177.16 12229.050 25.74536975 14815220 0.5510 0.5491

The equation thus obtained is defined as a function in MATLAB and saved as a .m file.
This function is called as the fitness function for optimization in MATLAB.

2. Use the multi objective optimization function GA from the GENETIC
OPTIMIZATION and DIRECT SEARCH tool box of MATLAB for defining and
solving the problem. Fig. 4.29 shows the single objective optimization problem
definition screen.

3.  Record the value of the optimum and the result after a few repeated trials to eliminate

the effects of specific initialization.

Fig. 4.28 Multi Genetic Editorfrom MATLAB.
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4.2.2.1 Results and Discussion

Fig. 4.29 shows the application of multi objective optimization of thermal performance to
find the maximum power with minimum diesel fuel consumption for the compression
ignition engine operated by hydrogen-diesel blend. The multi objective genetic algorithm
from MATLAB (GAMULTIOBJ) works on a population using a set of operators that are
applied to the population. A population is a set of points in the design space. The initial
population is generated randomly by default. The next generation of the population is
computed using the non-dominated rank and a distance measure of the individuals in the
current generation. The scatter of the average distance between individuals with respect to
generation is depicted in Fig. 4.29 Brake power and fuel consumption are considered as
objective | and objective 2 respectively in the pareto-optimal solution. The development of
paretofront by mapping objective 2 with objective | is also given in the figure. The mapping
depicts how objective 2 (fuel consumption rate) grow to a minimum level at 0.9 to match the
maximum of objective 1 (brake power). It is also seen that the average distance between the
individuals become closer and the number of generation increases to find the global optima in
multi objective case.

Average Distance Between Individuals
600

Avergae Distance

50 100 150 200 250 300 350 400 450 500 550
Generat tion

Rank histogram

Fig. 4.29 Variation of Pareto Average Distance between Individual Point and Number of
Individuals for Brake Power and Diesel Fuel Consumption
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Fig. 4.30 shows the display screen of MATLAB program that illustrates a typical result of
multi objective optimization of engine performance to find the maximum power and

minimum diesel fuel consumption.

Problem Setup and Results

Solver:  Famultiobj - Multiobjective optimization us \rl
Problem
Fitness function:

Number of variables:

Constraints:

Linear inequalities: A: b:
Linear equalities: Aeq: beq:
Bounds: Lower: [1000,0,0] Upper: [2000,2,18]

Run solver and view results

I | Use random states from previous run

Start Pause Stop

Qurrent iteration: 430 Clear Results

Pareto front - function values and decision variables

Index » fl f2 x1 X2 x3
1 0.118 0.294 1,012.702 0.539 12.213 A
2 0.283 0.067 1,055.64 1.58 11.459
3 0.197 0.098 1,022.546 1.267 12.073
4 0.398 0.048 1,088.729 1.883 9.827
5 0.483 0.043 1,204.008 1.964 9.003
6 0.814 0.037 1,777.568 1.979 2.53
7 0.654 0.039 1,456.194 1.989 3.999
8 0.905 0.035 1,921.518 2 2.322
9 0.153 0.148 1,037.36 0.957 11.998
10 0.759 0.037 1,744.909 1.977 6.01
11 0.179 0.127 1,061.305 1.064 11.299
12 0.585 0.041 1,291.995 1.999 4.246
13 0.341 0.055 1,087.74 1.752 11.537
14 0.442 0.047 1,089.762 1.912 6.591
15 0.138 0.198 1,051.249 0.764 11.773 \V4

Fig. 4.30 Display Screen of MATLAB Program for Multi Objective Optimization of
Maximum Brake Power and Minimum Diesel Fuel Consumption
Similar scheme can also be employed for determining the speed, power and hydrogen

induction rate for the minimization of exhaust gas constituents.

Fig. 4.30 gives the variation of pareto average distance between individual points and
number of individuals for maximum power, minimum diesel fuel consumption and minimum
gas emission constituents using multi objective optimization technique. The trends to go for
minimum level indicate that the program helps to find the optima values from different
generation which have closed average distance. Fig. 4.32 shows the screen display of

program for multi objective optimization in which the name of file and the specification of
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program run are indicated. It should be noted that the program handles a large number of data
and thus unable to depict on the screen the pareto- front function values and decision

variables.

Alrage Distance Between Individuals Pareto front

500 8
450
400.
6
350 v
_—*«<.. - — it
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Generation Objective 1

Rank histogram

Rank
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Fig. 4.31 Variation of Pareto Average Distance between Individual Point and Number of
Individuals for Brake Power, Diesel Fuel Consumption and Gas Emission Constituents

Optimization Tool
File Help

Problem Setup and Re

Solver: (=3
Problem

Fitness function: ita=>dureid_multiot»Jective

Number of variables: [3

Constraints:

Fig. 4.32 Display Screen of MATLAB Program for Multi Objective Optimization of
Maximum Brake Power and Minimum Diesel Fuel Consumption and Gas Emission
Constituents
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Table 4.13 gives few combinations of the results of the engine performance and exhaust gas

emission constituents optimization through multi objective optimization method. It is seen

that the hydrogen induction in to a compression ignition engine along with diésel oil helps

not only improvement in thermal performance but decreases pollutant emission gases.

. Hydrogen induction rate of 7 /min in to the engine with diesel oil as primary fuel minimises

the exhaust gaseous pollutants such as CO, CO,, SO,, HC and NOy giving equal weightage to

each of them.

Table 4.-13 Multi Objective Optimization for Thermal Performance and Gas Emission Constituents

power and 50% to fuel consumption

" Minimize .. - | Speed | Load | HJ Remarks
Emissions Least emission at lowest
_ S L fuel consumption and other
Y= Sum of CO + CO, + SO, + HC + | .
S .. o 1000 0 6.67 | minima captured around 7
NOx considering equal weightage to
] o ‘ ¥ 1/min of Hydrogen
each constituent
induction
Diesel Consumption .+ Inverse of At rated speed the fuel
Brake Power (thermal :performance consumption is  found
maximization with equal weightage to | minimum at 6 Vmin
' - 1500 | 0.5 6
fuel & power) . without too much
compromise on  brake
power
Minimize Emissions- & Maximize. Minimum speed low load
thermal performance considering 40% |. iéCO 05 g and 8 UVmin hydrogen
weightage to emissions, 30% to brake | . ' induction for low emission.
power and 30% to fuel consumption
Minimize Emissions .-& Maximize Highest weightage to
thermal performance considering 30% | power and less weightage
weightage to emissions, 20% to brake | 1990 | 1.94 8 to fuel consumption leads

to higher speeds being

favorable.
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The thermal performance alone by considering the minimisation of diesel oil consumption
and maximization of brake power on equal weightage basis shows that the hydrogen

- induction rate of 6 /min in to the engine operated on diesel oil is the best option.

The combined optimum operation considering 40 % weightage to lower emissions
and 60 % weightage to thermal performance with equal weightage to both brake power and
diesel oil consumption is possible at lower speed and load with a hydrogen induction rate of 8

/min. Full load operation of the

engine giving less weightage to gas emissions (30%) and more to thermal performance (50%
to fuel consumption and 20% to brake power) demands higher speeds with 8 I/min hydrogen
induction. In short, the operation of a compression ignition engine with diesel oil as primary
fuel when blended with hydrogen by inducting in to the intake manifold at the rate of 6 — 8
/min results in the optimum operation considering both thermal performancé and exhaust gas
emission constituents. The results of the optimization through GA agree well with the present
experimental evidence and that of Saravanan et al. [52]. It should , however, be noted that
Saravanan primarly used the technique of exhaust gas recirculation along with the hydrogen
induction in the intake manifold and suggested an optimum hydrogen induction rate of 7

I/min.
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