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Chapter-4

Modeling & Optimization

Data obtained from experiments need . > be treated in a number of different ways to get 

meaningful insight into the system being studied. Numerous modeling techniques and multiple 

models may be developed for engines system. It is important to select a suitable modeling 

technique to capture the relationship between input and output of the system accurately and 

efficiently. For systems involving mutually conflicting out comes effected by a number of input 

variables, it is essential to determine the optimum state of the system to achieve desired output 

by setting appropriate levels of inputs. For this purpose, use of suitable optimization technique is 

an essential.
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Fig. 4.1 Complexity of System & Precision Level of Different Models

With increase in knowledge about a system or process, its complexity decreases and 

understanding increases. Decrease in complexity leads to increase in precision afforded by 

computational methods useful in modeling of the system or process. As seen in Fig. 4.1, for 

systems that are little complex and hence little uncertain, closed form mathematical models 

provide precise description of system. For systems little more complex but for which significant 

data is available, model free methods like artificial neural networks provide powerful and robust 

means to reduce uncertainty using pattern based learning. For most complex systems where little 

numerical data exists and where only ambiguous or imprecise information may be available, 

fuzzy models provide a method to understand and represent system behaviour by interpolation 

between observed inputs and outputs.

In order to use optimization algorithms in engineering design activities, the first task is to 

formulate the optimization problem. The formulation process begins with identifying the 

important design variables that can be changed in a design. The other design parameters are 

usually kept fixed. Thereafter, constraints associated with the design are formulated. The 

constraints may arise due to resource limitations such as deflection limitations, strength 

limitations, frequency limitations, and others. Constraints may also arise due to codal restrictions 

that govern the design. The next task is to formulate the objective function which the designer is
t'

... :f
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interested in minimizing or maximizing. The final task of the formulation phase is to identify 

some bounding limits for the design variables.

The formulation of an optimization problem can be more difficult than solving the 

optimization problem. Every optimization problem requires different considerations for 

formulating objectives, constraints and variable bounds [77],

Section 4.1 is concerned with the ANN modeling applied to predict thermal performance 

and engine emission constituents using the extensive experimental data compiled during 

experimentation. Section 4.1.1 describes the approach adopted for both the thermal performance 

evaluation and constituents of engine emissions. The selection of modeling tool is presented in 

Section 4.1.2 while modeling strategy is given section 4.1.3. Section 4.1.4 gives the ANN 

modeling applied in the present investigation using the experimental data on the thermal 

performance. Using the experimental data on the exhaust gas emission constituents, ANN 

modeling is carried out and is given in Section 4.1.5 and finally the result and discussion is 

presented in Section 4.1.6.

The optimization of the Cl engine performance in terms of both thermal performance and 

gas emission constituents carried out using genetic algorithm is discussed in Section 4.2. Single 

objective optimization is discussed in Section 4.2.1 while Section 4.2.2 deals with multi 

objective optimization.

4.1 Artificial Neural Network

In the recent years, many models and simulations have been tried to give a clear view 

about the diesel engine performance, fuel characteristics, emission etc. under varied conditions 

of speed, load and other operating parameters. One of these techniques is the artificial neural 

network (ANN). ANN modeling (neural networks) encompasses very sophisticated techniques 

capable of modeling complex functions and processes. The true power and advantage of neural 

networks lies in their ability to represent both linear and nonlinear relationships as well as having 

the capability of learning by example. For processes that have non-linear characteristics such as 

those found in diesel engine performance modeling, traditional linear models are simply 

inadequate. In comparison to traditional computing methods, neural networks offer a different 

way to analyze data and to recognize patterns within that data by being generic non-linear
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approximators [77, 78], Artificial Intelligence (AI) techniques seem to be best solution for 

predicting engine emissions since they do not demand any additional sensor installation [81].

When mathematical models fail to capture the input/output relationship within the limits 

of permissible error and sufficient data regarding the system available, artificial neural network 

is a pertinent tool to model successfully the system behaviour. ANNs are called model free 

models since they don’t rely upon a pre-defmed mathematical equation to relate system 

input/output. A proper ANN structure is developed for each system to capture the system 

behavior of a complex system. With high complexity of combustion relations and emission 

phenomena, it is suitable to model by ANN. ANNs have been used for two main tasks: 1) 

function approximation and 2) classification problems. Neural networks offer a general 

framework for representing non-linear mappings. The application of neural networks to predict 

thermal performance and exhaust gas constituents belongs to the class of function approximation 

applications.

4.1.1 Neural Network Modeling Approach

Developing a suitable model for thermal performance and exhaust gas emissions of a 

compression ignition (Cl) engine for evaluating the effect of hydrogen induction poses the 

problem of absence of widely accepted correlations. Artificial neural networks are found apt in 

such a scenario to capture the relationship between the response parameters and the control 

parameters selected as per the design of experiments. A model is desirable to simulate the engine 

performance and help predict the effect of load, speed and different hydrogen induction rates on 

the thermal performance and exhaust gas constituents to have a clear idea of benefits of 

hydrogen induction.

In correlation based analysis, the experimental data is normally converted into parameters 

such as brake power, diesel fuel consumption in order to get significance of variables and 

compact correlations. The problem often observed with such correlation based thermal analyses 

is that the parameters predicted strongly depend on the definition of these parameters and in 

absence of such established correlations as for exhaust gas constituents; an iterative procedure to 

obtain reasonable correlations becomes cumbersome.
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An approach to development of a neural network model to simulate the functioning of the 

Cl engine can help predict the same parameters. ANN does not need definition of experimental 

correlations and iterative methods. ANNs offer a method to simulate the nonlinear, complex and 

uncertain systems without any explicit knowledge about the input/output relationship. 

Developing an ANN with appropriate network architecture allows approximation of any 

continuous or nonlinear function as seen in complex systems like a Cl engine. Looking at the 

analysis of the performance and engine emissions, it is observed that the analysis is much more 

complex, critical and involves a number of correlations. Based on this observation, the ANN 

modeling for the diesel engine operated by hydrogen diesel mixture is planned in two phases:

i) Development of ANN model for thermal performance, and

ii) Development of ANN model for gaseous emission constituents.

A multi layer feed forward ANN model also termed as a multi layer perceptron (MLP) is 

selected for two reasons. Firstly, a two layered network is not expected to handle the complex 

relationship between the inputs and outputs of a Cl engine operated with hydrogen induction 

following the explanations of Minsky and Papert [93] regarding the limitations of two layered 

networks. Secondly, the recurrent network is preferred when the feedback system is to be 

simulated for dynamic regulation of inputs and outputs. This not being the case, a unidirectional 

feed forward network is preferred.

The most popular learning algorithm of error back propagation is selected for training 

purpose as seen in all the literature cited in Chapter 2.

4.1.2 Selection of Modeling Tool

There are many ways to implement artificial neural networks. It is difficult to find 

optimal network architecture, considering the uniqueness of each system or problem. Usually, a 

priori choice, such as selection of network topology, training algorithm and network size should 

be made based on experience in order to keep the task to a manageable proportion. Further, for 

modeling of systems an appropriate modeling platform is essential. Artificial neural network 

models for any system can be developed using one of the following three tools given in Fig. 4.2. 

There are numerous neural network simulation software available which allow fast development

of neural networks. These software provide menus and graphics to define the network in terms of

_____________________________________________ _____________ ____________ ______ _
Chapter- 4: Modeling & Optimization 227



An Investigation On Thermal Performance And Pollutants Emissions of Diesel Engine Operated With Hydrogen Blended Fuel

layers and cells in each layers, the propagation rule, activation rule, output function and learning 

algorithm.

TOOLS FOR ANN 
MODELING

Using Standard ANN 
Simulation Softwares 

(freewares and 
licensed softwares) 

like EasyNN. SANN. 
JNN. Emergent. 
NeuralWorks

Dedicated Toolboxes of

Programming Using Platforms like

Programming Matlab.Scilab,

Languages Like Mathematica. etc.

ForTranX. C++. Java

Fig. 4.2 Tools for ANN Modeling

They allow feeding of input/output matched pairs termed as patterns for learning and 

validation. The permissible error for the validation set can also be specified. The weights and 

bias are updated and the network is tuned. The learning terminates either on the basis of number 

of cycles permitted for learning and validation or on achievement of error values less than the 

target values specified.

Such simulation softwares can be further divided into executables and open source 

softwares. The executables like EasyNN, NeuralWorks etc. come with binary code and provide 

predefined functionality. This predefined functionality cannot be altered or extended by 

programming. The behaviour of the software in terms of definition of various network elements 

is predefined and cannot be modified if this behaviour is not satisfactory for a particular system. 

Further, the set of functions defined is also fixed. If neither of the functions in this set is suitable 

for the modeling of a particular system, the software is rendered /inappropriate for modeling of 

that system. On the other hand, the open source softwares, in addition to providing some 

predefined functionalities, come with the source code and permit the modification and extension
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of the software definition. SANN, Genesis etc. are examples of such neural network simulation 

software with open source.

If these software do not satisfy the problem requirement, the next choice is to use the 

neural network modeling toolboxes available with programming platforms like MATLAB and 

Scilab. These toolboxes provide fast development platform since ready to use ANN specific 

functions are made available as library functions. Graphical functions of these platforms permit 

faster development. If these ready libraries do not satisfy certain peculiar system, the most 

flexible yet most time consuming option is to develop a dedicated program using any of the 

programming language syntax. All the graphics and other functionalities have to be defined in 

this case.

For the purpose of development of ANN model for thermal performance and exhaust gas 

constituents, the first choice is to use standard executable software. Comparative features of 

several simulation softwares are provided in Appendix V. The software selected for neural 

network modeling is EasyNN purely becauseof its simplicity in developing and training models 

involving feed forward multilayered neural networks with back-propagation training algorithm. 

EasyNN grows multi-layer neural networks from the data in a Grid. The neural network input 

and output layers are created to match the grid input and output columns. Hidden layers 

connecting to the input and output layers can then be grown to hold the optimum number of 

nodes. Each node contains a neuron and its connection addresses. The data grid containing 

input/output matched pairs for training and validation of the neural network is produced by 

importing data from spreadsheet files, tab separated plain text files, comma separated files, 

bitmap files or binary files. The grid can also be produced manually using the EasyNN grid 

editing facilities. Numeric, text, image or combinations of the data types in the grid can be used 

to grow the neural networks. The neural networks learn the training data in the grid and they can 

use the validating data in the grid to self validate at the same time. When training finishes the 

neural networks can be tested using the querying data in the grid, using the interactive query 

facilities or using querying data in separate files. The steps that are required to produce neural 

networks are automated in EasyNN. The learning can be terminated by specifying maximum 

number of cycles or the targeted maximum error.
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4.1.3 Modeling Strategy

ANN requires matched pairs of inputs and outputs for the development of suitable 

network architecture and its training to simulate the system being modeled. The data is divided 

using the 80-20 rule, with 80% of the available data being used for training of the network and 

20% being used for validation or pruning. The data required for the training of the neural 

networks is generated through series of experimental tests conducted on four stroke four cylinder 

compression ignition engine using hydrogen - diesel blends as fuel. This yields the data required 

for training and validation of the ANN model for the diesel engine. The data is generated from 

the experiments by varying speed and load of engine at various hydrogen induction rates. The 

sample of input and output experimental results for modeling puipose is listed in Table 4.1. (This 

experimental data set is the same as given in Appendix II).

The table represents a sample of input and output data that is used in the ANN modeling of 

engine performance and exhaust gas emission constituents. The engine speed is varied from 1000 

to 2000 rpm with a step of 250 rpm, load in terms of Ampere is changed from 0 Amp. to 2 Amp 

with a step of 0.5 Amp., while the hydrogen induction rate is varied from 0 to 18 1/min with a 

step of 1 1/min. The data reduction is carried out for a constant engine speed of 1000 rpm under 

no load operating condition and 0 to 18 1/min hydrogen induction rate. By using the experimental 

data, a neural network model can be developed for gas emission constituents and engine 

performance. The general approach for ANN modeling of a given problem is described in Fig. 

4.3. Once the type network topology and training algorithm is selected, the next task is to decide 

on some network parameters and operational rules. These can be listed as under:

1. Identify Inputs: The input variables to the system need to be identified which decides the 

number of cells in the input layer. For predicting thermal performance and exhaust gas 

constituents, the control variables such as speed, load and induction rate of hydrogen are the 

inputs. This implies that the number of inputs for ANN modeling is three.

2. Identify Outputs: The output variables for prediction of thermal performance considered are 

brake power and diesel fuel consumption. Brake thermal efficiency is the parameter 

conventionally used to represent thermal performance but this is not selected as output since the 

engine is operated with hydrogen - diesel fuel blend and objective is to determine the effect of
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hydrogen induction on the performance. Further, the Cl engine as a system allows control of 

speed and load and experimental setup is designed to control hydrogen induction which implies 

that the diesel fuel consumption is determined based on the power- requirement and is effectively 

a response parameter to be treated as a direct outcome of the values of control variables. Hence, 

for thermal performance the number of outputs is two. For predicting the exhaust gas 

constituents five major constituents namely, CO, CO2, HC, NOx and S02 are selected as the five 

outputs.

3. Select the propagation rule: This decides how the net input to each cell is calculated. The 

commonly implemented weighted sum rule is selected as the propagation rule. The weights are 

initialized randomly and no weights are applied on the input connections of the cells in input 

layer.

4. Select the activation function: The logistic activation function is selected which allows 

scaling of the effect of inputs in a nonlinear fashion.

5. Select the output function: The identity function matches best with the logistic identity 

function in order to relay the output of the activated neuron as the response.

6. Number of layers & cells in them: Set the limits on minimum and maximum number of 

hidden layers and the least and most number of cells in each of these hidden layers. This 

requires some experience and trial & error on part of the modeler to achieve a suitable network. 

Usually a number of networks are tried and the one giving the least error after training and best 

coefficient of determination is selected as best model.

7. Termination Criteria: The training procedure is stopped when the error is within an 

acceptable value. The acceptable value is established on basis of practical needs or relevant 

literature. An error of 10% is generally acceptable for predictive models. However, infinite time 

cannot be allowed to a model to achieve the error and some models may not even be capable to 

capture the relationship and train to acceptable error. For this reason, a limit in number of
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training cycles is also specified.

Table 4.1 Neural Network Input and Output Data Sample for Engine Performance and
Exhaust Gas Emissions Constituents

Input
Output

Thermal Performance Emission Constituents

Speed
(rpm)

Load
(Amp.)

Hydrogen
Induction

rate
(I/min)

Diesel Fuel 
Consumption 

xio*
(kg/s)

Brake
Power

(W)

CO co2 HC NOx so2

1000 0 0 183 0 0.09 2.15 0.16 78 141
1000 0 1 175 0 0.23 2.19 0.18 79 195
1000 0 ■ 2 173 0 0.36 2.22 0.19 80 249
1000 0 3 170 0 0.50 2.23 0.20 81 314
1000 0 4 167 0 0.63 2.23 0.22 79 378
1000 0 .5 162 0 0.76 2.23 0.24 78 445
1000 0 6 156 0 0.89 2.23 0.26 78 512
1000 0 7 154 0 0.99 2.30 0.30 78 579
1000 0 8 152 0 1.10 2.37 0.35 77 645
1000 0 9 150 0 1.19 2.37 0.45 78 728
1000 0 10 150 ' 0 1.29 2.37 0.56 77 811
1000 0 11 148 0 1.38 2.41 0.69 77 876
1000 0 12 147 0 1.47 2.45 0.83 75 941
1000 0 13 144 0 1.57 2.45 0.84 76 1032
1000 0 14 139 0 1.67 2.45 0.86 76 1123
1000 0 15 134 0 1.78 2.49 0.86- 75 1219
1000 0 16 129 0 1.89 2.52 0.87 75 1315
1000 0 17 123 0 1.98 2.52 1.39 75 1407
.1000 0 18 119 0 2.07 2.52 1.92 74 1499
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Fig. 4.3 Flow Chart for Neural Network Modeling Approach

The application of this general modeling approach to each of the cases of predicting 

thermal performance and exhaust gas constituents is discussed in subsequent sections.

4.1.4 ANN Model for Thermal Performance

The complete specification of engine performance comes in terms of diesel fuel 

consumption (DFC) and brake power (BP). Both are merely dependent upon engine speed, 

engine load, and hydrogen induction rate. Thus, in order to develop a model in neural network 

technique which predicts the performance of Cl engine working with hydrogen - diesel blends, 

the operation condition such as engine rate speed, engine load, and hydrogen induction
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rates are accepted as the input while the diesel consumption rate and brake power are to be 

determined as the output variables. Fig. 4.4 shows the layout of the neural network model for 

engine performance.

Fig. 4.4 Layout of Artificial Neural Network Model for Engine Performance

The neural network training data listed in Appendix II and Table 4.1 are used for 

developing individual neural network model. The central block representing Cl engine in Fig. 4.4 

is replaced by different architectures of neural networks and an appropriate architecture is 

determined which limits all the errors within 2%. The steps listed in the flow chart for 

development of neural network models shown in Fig. 4.3 are applied to this case as given in 

Table 4.2.

As per Table 4.2, beginning with a three layered neural network model having ten cells in 

the hidden layer, the number of cells in hidden layer is increased up to 50 while monitoring the 

error risulting at the end of training. The criteria for the termination of training selected are a) 

permissible error and b) maximum number of cycles in training and validation.

Error for each case is defined as

j A •••' A
Error% =-

Ae
where, Ac

An
= The output value as obtained from theoretical analysis 
= The output value predicted by the neural network model

(4-1)
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The average error for entire epoch (complete set of input-output pairs) is defined as

Errorav %

(4.2)

1 y» 1 Aei - Api 1

Ntr Aci

The maximum error is defined as

Error,., max(]jr- -AZLit
A,

and the minimum error is defined as

(4.3)

n | a._a . I
Error j % = min(V—------—}

71 A..

(4.4)

For each architecture of neural network model the root mean square value of error is

Errou =
1 Ae
N-

-Ap
(4.5)

For determination of the rms error, the maximum error out of the five output nodes for 

CO, C02, HC, NOx and S02 is used.

The confidence R and scatter o test can be used to decide upon the best architecture. The 

R and o values can be determined as

R =
1 N 1 N A'—y r, =-t— 
Ntf N1&Ap (4.6)

0 =
1 N

—y (r ■
N tt R, )• (4.7)
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Table 4.2 Neural Network Modeling for Engine Performance

Network Type Feed Forward
Input for the neural network model engine speed, engine load, and 

hydrogen induction rate
Number of cells in input layer =
Number of inputs to the neural network 
model

Three

Output from the neural network model Diesel fuel consumption and brake 
power

Number of cells in output layer =
Number of outputs from the neural 
network model

Two

Initial Number of Hidden Layers 1
Maximum Number of Hidden Layers 3
Initial Number of Cells in a Hidden Layer 10
Maximum Number of Cells in a Hidden 50
Layer
Propagation Rule Weighted Sum Rule
Activation Function Logistic Function
Output Function Identity Function
Learning Rule Back Propagation

For this model, the limiting value for all the errors over the entire data is selected as 0.02 

(2%) while the permissible error for validation sets is specified as 3% of the target value. The 

maximum number of training cycles is limited to 1000000 for each learning set. The training 

stops when any one of the above criteria, namely, all errors being less than 0.005, all validation 

points within 0.3% of target values or 100000 training cycles being completed. The learning rate 

is kept as 0.6 and momentum as 0.8 for the stable learning and convergence of weights. The 

number of learning cycles before any validation cycle is executed is set to 1000. The number of 

validation cycles in one instance of validation is set to 100. These values are set in the controls 

window of the software as shown in Fig. 4.5, The 80-20 rule for neural networks are used for 

training and for validation similar to that employed in the case of ANN modeling on exhaust gas 

emission constituents.
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Fig. 4.5 Setting Learning Controls for Training of ANN Model

As given in Table 4.2, beginning with three cells in input layer, ten cells in the hidden 

layer, and two cells in output layer, the neural network model appears as indicated in Fig. 

4.6. Such architecture is denoted as 3,10,9,2 architecture, the numbers denoting the number 

of cells in input layer, hidden layer and output layer respectively.
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Fig. 4.6 ANN Model of Engine Performance with Architecture 3,10,9,2

Error
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Learning rate: 0.60 Momentum: 0.80 Minimum Error: 0.0000 Average Error: 0.0068 Maximum Error: 0.0200 

Target Error: 0.0200 Network not learning. Nodes: l=3 H1=9 H2=8 H3=0 0=2

Fig. 4.7 ANN Model Training & Error Propagation With Increasing Number of Training
Cycles for the 3,10,^, 2.
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On training of the network, the error propagation graph for each training cycle is 

obtained as given in Fig. 4.7. The maximum, average and minimum error are all seen to 

reduce at a fast pace in the early training period. But, towards the last training cycles, there is 

very small change in these error values. Further, the training ends with average error value 

less than 2% permitted as the target error value. The training does not achieve the limiting 

error value of 3% of target value selected for the validation set. The training stops after 

numbers of training cycles without the error limit set for validation points being achieved 

because no further reduction in error is seen for a number of consecutive cycles.

Table 4.3 shows the results for different architectures tried for the same data as in 

Table 4.1. Table 4.3 lists the training and test errors which can be used for selection of the 

most appropriate network architecture.

Table 4.3 Neural Network Architectures & Corresponding Training Results

NO. Model
Structure

Avg.
Error

%

Min.
Error

%

Max.
Error

%

Validation Set 
within Limiting 

Error*#
Remarks

1 3,25,2 5.09 0.0601 0.059 3

Training Stopped 
with all errors being 

within 2%

2 3,26,2 5.17 0.0190 0.057 3
3 3,27,2 5.28 0.0188 0.060 3
4 3,28,2 5.02 0.0277 0.058 3
5 3,29,2 5.13 0.0748 0.058 3
6 3,9,8,2 5.06 0.0223 0.057 3
7 3,10,10,2 5.02 0.0194 0.057 3
8 3,9,9,2 5.14 0,0104 0.059 3
9 3,10,8,2 5.10 0.0470 0.058 3
10 3,10,9,2 5.09 0.0608 0.057 3

As seen from Table 4.3, the error values and the percentage of validation sets within 

limiting error are almost identical. In such situation, deciding which architecture is best 

representative model of the system becomes difficult. The R and 0 test is the most popular 

approach to handle this situation. The values of rms error, R and 0 are evaluated using Eqs. (4.5) 

to (4.7), The training and test errors for the networks are listed in Table 4.4.
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Table 4.4 Training and Test Errors for Neural Network Architectures for Engine Thermal
Performance

Model
Structure

Training Error Test Error
Max.

Error%
RMS

Error% R O

3,25,2 9.998 0.0590 1.0381 0.0331
3,26,2 9,971 0.0578 1.0420 0.0323
3,27,2 9.993 0.0601 1.0397 0.0321
3,28,2 9.975 0.0580 1.0405 0.0322
3,29,2 9.993 0.0581 1.0412 0.0317
3,9,8,2 9.997 0.0579 1.0399 0.0329

3,10,10,2 9.992 0.0577 1.0399 0.0318
3,9,9,2 9.976 0.0590 1.0393 0.0322

3,10,8,2 9.981 0.0581 1.0359 0.0309
3,10,9,2 9.995 0.0578 1.0413 0.0312

It is seen that the values of error are well within specified limits for all the neural network 

model architectures evaluated. On the basis of R and o values, the 3,10,8,2 is the good model for 

which value of R is closest to unity and value of o is least is selected as the best representative 

model for the engine gas emission constituents. Though few other models have lesser maximum 

and runs error values but the spread and accuracy of determination being better for this model, it 

is selected as the representative model.

4.1.5 ANN Model for Exhaust Gas Emission Constituents

For gas emission constituents completely specified in terms of CO, COa, HC, NOx, and 

SO2 are merely dependent upon engine speed, engine load, and hydrogen induction rate. Thus, in 

order to develop a neural network which rates the engine gas emission constituents for diesel 

engine working with hydrogen - diesel blends, the operation condition such as engine rate speed, 

engine load, and hydrogen induction rates are accepted as the input, while the variables of the 

gas emission constituents are to be determined as the output variables. However, the neural 

network model for Cl engine gas emission constituents will schematically appear as indicated in 

Fig. 4.8.

Chapter- 4: Modeling & Optimization 241



An Investigation On Thermal Performance And Pollutants Emissions of Diesel Engine Operated With Hydrogen Blended Fuel

Fig: 4:8 Schematic of Artificial Neural Network Model for Cl Engine Gas Emission

Constituents

The neural network training data listed in Appendix II and Table 4.1 are used for 

developing individual neural network model. The Cl engine operated during experimentation 

shown in central block in Fig. 4.8 is replaced by different architectures of neural networks and an 

appropriate architecture is determined which limits all the errors within 2%. The steps listed in 

the flow chart for development of neural network models shown in Fig. 4.3 are applied to this 

case as given in Table 4.5.

Table 4-5 Neural Network Modeling for Emission Constituents

Network Type Feed Forward
Input for .the" neural network model Engine Speed, Engine Load, and 

Hydrogen Induction Rate
Number of cells in input layer =
Number of inputs to the neural network 
model

Three

Output from' the neural network model CO, CO2, HC, NOx and SO2 ratios
Number of cells in output layer =
Number of outputs from the neural 
network model

Five

Initial Number of Hidden Layers 1
Maximum Number of Hidden Layers 3
Initial Number of Cells in a Hidden Layer 10
Maximum Number of Cells in a Hidden 
Layer

50

Propagation Rule Weighted Sum Rule
Activation Function Logistic Function
Output Function Identity Function
Learning Rule Back Propagation
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As per Table 4.5, beginning with a three layered neural network model having ten cells in 

the hidden layer, the number of cells in hidden layer is increased up to 50 while monitoring the 

error resulting at the end of training. The criteria for the termination of training selected are a) 

permissible error and b) maximum number of cycles in training and validation are discussed 

above and given by Eqs. (4.1) to (4.7).

The limiting value for all the errors over the entire data is selected as 0.02 (2%) while the 

permissible error for validation sets is specified as 3% of the target value. The maximum number 

of training cycles is limited to 1000000 for each learning set. The training stops when any one of 

the above criteria, namely, all errors being less than 0.6.1 , all validation points within 3% of 

target values or 100000 training cycles being completed. The learning rate is kept as 0.6 and 

momentum as 0.8 for the stable learning and convergence of weights. The number of learning 

cycles before any validation cycle is executed is set to 1000. The number of validation cycles in 

one instance of validation is set to 100. These values are set in the controls window of the 

software as shown in Fig. 4.9. The 80-20 rule for neural networks training and validation is used.

Fig. 4.9 Setting Learning Controls for Training of ANN Model
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With three cells in input layer, starting by ten cells in the hidden layer and five cells 

in output layer, the neural network model appears as given in Fig. 4.10. Such architecture is 

denoted as 3.10,5 architecture. The numbers denote the number of cells in input layer, 

hidden layer and output layer respectively.

M* trv*jt 
Activation 
Gik 
Error

f**gativ« W#ight 
Positive W^ghl 
Mow Prur* W*grt

Fig. 4-10 ANN Model of Engine Gas Emission Constituents with Architecture 3,10,5
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Table 4.6 Neural Network Architectures & Corresponding Training Results for Gas
Emission

NO. Model
Structure

Avg. 
Error %

Min. 
Error %

Max. 
Error %

Validation Set 
within 

Limiting 
Error%

Remarks

1 3,28,28,5 5.048 0.0239 9.99 3

Training 
Stopped 
with all
errors
being
within

2%

2 3,30,30,5 5.215 0.0484 9.98 3
3 3,32,32,5 5.114 0.0432 9.99 3
4 3,33,33,5 5.150 0.0613 9.99 3
5 3.34,34,5 5.081 0.0504 9.99 3
6 3,35,35,5 5.097 0.0063 9.99 3
7 3,36,36,5 5.165 0.0180 9.99 3
8 3.40,40,5 5.103 0.0629 9.99 3
9 3,20,20,20,5 5.092 0.0345 9.99 3
10 3,23,23,23,5 4.891 0.0090 9.99 3
11 3,24,24,24,5 5.088 0.0302 9.99 3
12 3,25,25,25,5 5.160 0.0375 9.99 3
13 3,26,26,26,5 5.124 0.0601 9.99 3
14 3,27,27,27,5 5.073 0.0382 9.99 3

As seen from Table 4,6, the error values and the percentage of validation sets within limiting 

error are almost identical. In such situation, deciding which architecture is best representative 

model of the system becomes difficult. The R and 0 test is the most popular approach to handle 

this situation. The values of rms error, R and 0 are evaluated using Eqs. (4.5) to (4.7). The 

training and test errors for the networks are listed in Table 4.7.

It is seen that the values of error are well within specified limits for all the neural network 

model architectures evaluated. On the basis of R , 0, and rms test, the 3,28,28,5 is the good 

model for which value of R is closest to unity and value of 0 is least is selected as the best 

representative model for the engine gas emission constituents.
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Table 4.7 Training and Test Errors for Neural Network Architectures for Exhaust Gas
Emission Constituents Model

Model
Structure

Training Error Test Error
Max.

Error%
RMS

Error% R a
3,28,28,5 9.99 0,0582 1,0541 0.0322
3,30,30,5 9,98 0.0584 1.0548 0.0323
3,32,32,5 9.99 0.0589 1.0548 0.0326
3,33,33,5 9.99 0.0589 1.0551 0.0326
3,34,34,5 9.99 0.0583 1.0544 0.0326
3,35,35,5 9.99 0.0593 1.0547 0.0339
3,36,36,5 9.99 0.0591 1.0554 0.0325
3,40,40,5 9.99 0.0585 1.0547 0.0332
3,20,20,20,5 9.99 0.0582 1.0545 0.0324
3,23,23,23,5 9.99 0.0598 1.0564 0.0331
3,24,24,24,5 9.99 0.0587 1.0545 0.0332
3,25,25,25,5 9.99 0.0591 1.0553 0.0321
3,26,26,26,5 9.99 0.0587 1.0549 0.0324
3,27,27,27,5 9.99 0.0586 1.0543 0.0340

4.1.6 Results and Discussion

It is seen from the modeling for prediction of thermal performance and exhaust gas 

emission constituents that ANN models can successfully capture the complex input-output 

relationships and still provide small prediction errors. In order to determine the best ANN model, 

a number of architectures are tried and tested for error, spread and coefficient of determination. 

The representative model selected for exhaust gas constituents has an architecture of 3,28,28,5. It 

has an average error of nearly 5%, minimum error of 0.02%, maximum error of 10% and rms 

error value of 0.05%. The coefficient of determination is very close to unity being 1.054 and the 

spread is 0.032. This ensures that in the test range under consideration, if this model is subjected 

to any condition for which experiment is not conducted, the error will not exceed 5% on an 

average and 10% maximum. This is shown by applying the model to two cases: i) speed of 1300 

rpm, no load condition equivalent to 0 Amp and the range of hydrogen induction rate 

experimentally investigated from l l/min to 18 l/min and ii) speed of 1800 rpm, a full load 

equivalent to 2 Amp and the range of hydrogen induction rate experimentally investigated from I 

l/min to 18 l/min. The results predicted by 3,28,28,5 ANN model are compared with values 

found by interpolating on graphical plot of experimental results and the error is evaluated and 

listed in Table 4.8 and Table 4.9.
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On similar lines, the representative model selected for thermal performance has an 

architecture of 3,10,8,2. It has an average error of nearly 5.1%, minimum error of 0.01%, 

maximum error of 10% and rms error value of 0.06%. The coefficient of determination is 

very close to unity being 1.035 and the spread is 0.031. This ensures that in the test range, if 

this model is subjected to any condition for which experiment is not conducted, the error will 

not exceed 5% on an average and 10% maximum.

For the ANN models selected for both thermal performance and exhaust gas 

constituents, the average prediction error is hence close to 5% which is in line with the 

model errors reported in most literature reviewed. Further, the ANN model for thermal 

performance modeling required one hidden layer while that for exhaust gas constituents 

required two. The number of cells in these hidden layers is larger for exhaust gas 

constituents. This indicates a much more complex relationship between the exhaust gas 

constituents and the input parameters as compared to the thermal performance parameters.

4.2 Genetic Algorithm for Optimization

The problem of finding the optimum value of hydrogen induction from the point of 

view of maximizing brake power and minimizing fuel consumption and proportion of exhaust 

gas emission constituents poses a multi-objective and multimodal scenario. For all the 

reasons discussed, GA is selected as the optimization tool for the determination of optimum 

hydrogen induction rate. The procedure for implementing algorithms like GA can be 

represented in general as given in Fig. 4.12. Few aspects of GA are. given in Appendix-V.

As mentioned earlier, the implementation of such algorithms requires computer 

implementation. Appropriate software is to be selected for implementing GA. Similar to the 

discussion for ANN modeling, possibility extends from ready freeware and open source 

softwares to toolboxes of celebrated platforms like MATLAB and requirement of hand 

coding where inbuilt facilities of these software do not satisfy peculiarity of the specific 

problem. The MATLAB Genetic Optimization toolbox is selected as the implementation tool. 

This toolbox
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Fig. 4.12 Procedure to Implement GA

provides for solving the minimization problem. Hence, the optimization is carried out in three 

ways to determine the optimum hydrogen induction rate and corresponding load and speed 

values.

A correlation relating the output variables namely the brake power, diesel 

consumption and each of the exhaust gas constituents to the control variables namely speed, 

load and hydrogen induction rate is required. Feasible region is bounded by practical limit of 

control variables. These represent maximum and minimum values set in the design of 

experiment for each of the control variables. The optimization is carried out as single 

objective optimization treating minimization of exhaust gas constituents and diesel 

consumption, maximizing the brake power (actually minimizing the inverse of brake power) 

and a single fitness function to minimize emissions and inverse of brake power.

4.2.1 Single Objective Optimization

The following are the preliminary steps to be taken for the optimization of the 

performance of a compression ignition engine by taking in to consideration of thermal 

performance and exhaust gas emission constituents.
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1. Select Single objective optimization function for minimizing individil 

NOx, SO2, HC and diesel fuel consumption.

2. Select single objective optimization function for maximizing brake power.

3. Formulate a single objective function (fitness function) to minimize emissions and 

fuel consumption and inverse of brake power.

4. Give different weights to different parameters in the objective functions. For example, since 

the primary reason for operating and Cl engine is to generate power, the brake power is to 

be maximized if one considers it as the most important parameters and therefore, the 

contribution of this parameter is given maximum weightage.

5. Give next significant weightage to duel consumption rate as lowering the same will 

not only reduce the operating cost and conserve fuel but also reduce the emission 

constituents.

6. Give equal weightage to all emission constituents, keeping in mind that the sum of all 

weights is unity.

The procedure for the solution of the single objective optimization problem for the 

minimization of the exhaust gas content CO as a case study is as under: The same steps can 

be followed for all the other cases of exhaust gas constituents

1. Develop mathematical equation to relate the input and output parameters. The Datafit 

software developed by Oakdale engineering, USA is used to develop or obtain the 

mathematical function relating output parameters with the input control variables. 

Numerous functions are evaluated the best of which are 

Square: Y = aXf + bX2 + cXf + dX3 +eX2 + fX3 + gXj X2 + X3 + iX3 X3 + j

Cubic: Y = a0 + Xf + b0 Xf + c0 X| + a Xf+bXl + cX| + dXx + eX2 + fX3 +

gXi + X2 + hX2 X3 + iXx X3 + jXa X2 X3 + k

Exponential: Y= e‘aXI+bX2+cX3+d!

Linear with constant: Y= aXi+bXi+cX.vt-d

Chapter 4: Modeling and Optimization 251



Lm Investigation On Thermal Performance And Pollutants Emissions For Diesel Engine Operated With Hydrogen Blended Fuel

Linear without constant: Y= aXi+bX2+cX3

The selection of best mathematical model fitting the data is made based on minimum error 
and best value of coefficient of determination (R2) value for all parameters.

Cubic polynomial is found the best for both criterion and for all output parameters. Table 

4.10 gives the cubic polynomial performance in comparison with other models fitted.

Table 4.10 Cubic Polynomial Error Test Coefficient in Comparison with Other Function

Coefficient

Model
Standard

Error Residual Sum
Residual
Average RSS R2 Ra2

Cubic 49.91 5.08773E-06 1.0711E-08 1148335 0.9652 0.9642
Square 57.27 1.06184E-10 2.23544E-13 1525251 0.9537 0.9528

Exponential 75.94 -3582.495 -7.542095612 2715892 0.9177 0.9171
Linear

{no constant) 124.95 -4.43379E-12 -9.33429E-15 7353478 0.7771 0.7757

Linear 177.18 12229.050 25.74536975 14815220 0.5510 0.5491

The equation thus obtained is defined as a function in MATLAB and saved as a .m file. 
This function is called as the fitness function for optimization in MATLAB.

2. Use the single objective optimization function ga from the GENETIC 

OPTIMIZATION and DIRECT SEARCH tool box of MATLAB for defining and 

solving the problem. Fig. 4.13 shows the single objective optimization problem 

definition screen.
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Fig. 4.13 Single Objective Genetic Optimization Editor from MATLAB

3. Record the value of the optimum and the result after a few repeated trials to eliminate 

the effects of specific initialization.

4.2.1.1 Results and Discussion

Fig. 4-14 shows the variation of fitness value with the generation for single objective 

optimization of compression ignition engine brake power when it is fuelled by hydrogen 

diesel blend. It can be noted that the fitness value varies linearly till the generation is about 

63 and shows fluctuating trend thereafter till the generation of 100. The minimum optima 

shown at the generation of 100 indicates the maximum brake power. The program display 

result which indicates that the maximum brake power is at 2000 rpm and 2 Amp load with 

the hydrogen induction rate of 18 1/min is shown in Fig. 4.15.
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Fig. 4-14 Variation of Fitness Value with Generation Growth for Single Objective
Optimization of Brake Power
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Optimization Tool
File Help

Problem Setup and Results

Solver:

Problem

Fitness function:

ga - Genetic Algorithm

@BP_obj

Number of variables: 3

Constraints:

Linear inequalities: A:

Linear equalities: Aeq:

Bounds: Lower: [f

Nonlinear constraint function:

K.

beq:

Upper: [2000,2,18]

Run solver and view results

I | Use random states from previous run 

[ Start |

Current iteration: 51 ; | Clear Results |

Fig. 4.15 MATLAB Screen to Show Single Objective Optimization of Brake Power

Fig. 4,l€ presents the variation of fitness value with the generation for single 

objective optimization of compression ignition engine in the case of diesel fuel consumption 

when hydrogen diesel blend is used. The fitness value is found to continuously decrease 

from a high value of 0.27 at the smallest generation and then damped to reach the optimum 

value of diesel fuel consumption at about 54 generation with fitness value of about 0.12. Fig. 

4.17 gives the corresponding program display result which indicates that the minimum 

diesel fuel consumption occurs at a speed of1000 rpm, with the load at 0 or 0.5 Amp when 

the hydrogen induction rate is 18 1/min.
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0 1-----------1III!IIII10 10 20 30 40 50 60 70 00 90 100
Generation
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Fig. 4.16 Variation of Fitness Value with Generation Growth for Single Objective 
Optimization of Diesel Fuel Consumption
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} Optimization Tool
File Help

Problem Setup and Results

m

beq:

Upper: [2000,2,18]

Solver:

Problem

Fitness function: @mf_obj

Number of variables: 3

Constraints:

Linear inequalities: A:

Linear equalities: Aeq:

Bounds: Lower: [1000,0,0]

Nonlinear constraint function:

Run solver and view results

I I Use random states from previous run

[ Start

Fig. 4.17 MATLAB Screen to Show Single Objective Optimization of Diesel Fuel
Consumption

Similar single objective optimization technique is also employed to find individually the 

optimal combination of speed, load and hydrogen induction rate needed to minimize each of 

the exhaust gas emission constituents. Figs. 4.18 to 4.27 show the variation of the fitness 

value with generation growth and program screen result for each of the constituent gas such 

as CO, CO2, HC, SO2 and N0\ respectively. It can be seen there is a convergent between the 

results obtained from single object optimization and that from experiment. Further, It can be 

noted that the fitness value reach to the optimum with generation between 50 and 60 which is 

relatively not high.
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Fig. 4.18 Variation of Fitness Value with Generation Growth for Single Objective Optimization of CO
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Fig. 4.22 Variation of Fitness Value with Generation Growth for Single Objective
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Fig. 4.24 Variation of Fitness Value with Generation Growth for Single Objective
Optimization of SO2
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Fig. 4.27 MATLAB Screen to Show Single Objective Optimization of NO\

Table 4.11 summarizes the results of the single objective optimization applied to minimize 

exhaust gas emission constituents like CO, CO2, SO2, HC, N0X, and diesel fuel consumption 

and maximize brake power (minimizing the inverse of brake power is equivalent to 

maximizing brake power). It is seen that the constituents of exhaust gases such as CO, CO2, 

SO2, and HC are always minimum under no load condition when Cl engine operates without 

hydrogen induction while N0X emission is minimum when hydrogen induction at the rate of 

6.67 1/min along with diesel. However, when the diesel fuel consumption is considered as the 

minimizing parameter, the optimum is found with diesel blended with hydrogen inducted at 

the rate of 16.87 1/min. Similarly, the brake power is maximum when the engine is operated 

at full load of about 2.0 A when the induction rate is 17.3 1/min. From the above observations 

for the engine running at 1000 rpm, it can be concluded that the optimum thermal 

performance of the compression ignition engine is possible with diesel blended with a higher 

rate of hydrogen induction to the tune of 16 to 17 1/min while exhaust gas emission is found 

to be minimum without hydrogen induction for CO, CO2, SO2, and HC. However, 

minimizing N0X emission needs hydrogen induction at the rate of about 7 1/min. Single 

objective optimization, thus helps one to minimise or maximize parameters individually but 

not collectively.
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Table 4.11 Single Objective Optimization for Brake Power, Diesel Fuel Consumption and

Gas Emission Constituents

Minimize Speed Load h2 Remarks

CO tooo 0 0 Least emission at lowest

fuel consumption and other

minima captured around 7

1pm of Hydrogen induction

co2 1000 0 0

so2 1000 0 0

HC 1000 0 0

NOx 1000 0 6.67

Diesel

Consumption
1000 0 16.87

Minimum at lowest speed

and load corresponding to

maximum hydrogen

induction rate

Inverse of Brake

Power
1995 1.957 17.3

At highest speed and load

with maximum H2

induction

4.2.2 Multi Objective Optimization

As mentioned earlier, the problem of finding the optimum value of hydrogen induction from 

the point of view of maximizing brake power and minimizing fuel consumption and 

proportion of exhaust gas emission constituents poses a multi-objective and multimodal 

scenario. Therefore, multi objective optimization technique is selected as the optimization 

tool for the determination of optimum hydrogen induction rate simultaneously taking in to 

consideration of maximizing thermal performance parameters and minimizing exhaust gas 

constituents

The procedure for the solution of multi objective optimization problem is as follows:

1- Develop mathematical equation to relate the input and output parameters. Again, the 

Datafit software developed by Oakdale engineering, USA is used to develop or obtain 

the mathematical function relating output parameters with the input control variables. 

Polynomials, exponentials and power functions are evaluated. The selection of best
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mathematical model fitting the data is made based on minimum error and best value of 

coefficient of determination (R~) value for all parameters. Cubic polynomial is found the 

best on both criterion and for all output parameters. Table 4.12 gives the comparison of 

the cubic polynomial performance with other models fitted.

Table 4.12 Cubic polynomial error test coefficient in comparison with other function

coefficient

Model
Standard

error
Residual

Sum
Residual
Average RSS R2 Ra2

power three 49.90 5.08773E-06 1.0711E-08 1148335 0.9652 0.9642
Square 57.27 1.06184E-10 2.23544E-13 1525251 0.9537 0.9528
exp(a*x1 +b*x2+c*x3+d) 75.93 -3582.495 -7.542095612 2715892 0.9177 0.9171
a*x1+b*x2+c*x3+d 124.94 -4.4337E-12 -9.33429E-15 7353478 0.7771 0.7757
a*x1+b*x2+c*x3 177.16 12229.050 25.74536975 14815220 0.5510 0.5491

The equation thus obtained is defined as a function in MATLAB and saved as a .m file. 

This function is called as the fitness function for optimization in MATLAB.

2. Use the multi objective optimization function GA from the GENETIC 

OPTIMIZATION and DIRECT SEARCH tool box of MATLAB for defining and 

solving the problem. Fig. 4.29 shows the single objective optimization problem 

definition screen.

3. Record the value of the optimum and the result after a few repeated trials to eliminate 

the effects of specific initialization.

Fig. 4.28 Multi Genetic Editor from MATLAB.
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4.2.2.1 Results and Discussion

Fig. 4.29 shows the application of multi objective optimization of thermal performance to 

find the maximum power with minimum diesel fuel consumption for the compression 

ignition engine operated by hydrogen-diesel blend. The multi objective genetic algorithm 

from MATLAB (GAMULTIOBJ) works on a population using a set of operators that are 

applied to the population. A population is a set of points in the design space. The initial 

population is generated randomly by default. The next generation of the population is 

computed using the non-dominated rank and a distance measure of the individuals in the 

current generation. The scatter of the average distance between individuals with respect to 

generation is depicted in Fig. 4.29 Brake power and fuel consumption are considered as 

objective l and objective 2 respectively in the pareto-optimal solution. The development of 

pareto front by mapping objective 2 with objective I is also given in the figure. The mapping 

depicts how objective 2 (fuel consumption rate) grow to a minimum level at 0.9 to match the 

maximum of objective 1 (brake power). It is also seen that the average distance between the 

individuals become closer and the number of generation increases to find the global optima in 

multi objective case.

Fig. 4.29 Variation of Pareto Average Distance between Individual Point and Number of 
Individuals for Brake Power and Diesel Fuel Consumption
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Fig. 4.30 shows the display screen of MATLAB program that illustrates a typical result of 

multi objective optimization of engine performance to find the maximum power and 

minimum diesel fuel consumption.

Problem Setup and Results

\rlamultiobj - Multiobjective optimization usSolver: F

Problem

Fitness function: 

Number of variables:

Constraints:

Linear inequalities: A:

Linear equalities: Aeq:

Bounds: Lower:

Run solver and view results

I I Use random states from previous run

[1000,0,0]

b:

beq:

Upper: [2000,2,18]

c Start Pause Stop

Current iteration: 430 Clear Results

Pareto front - function values and decision variables

Index » fl f2 xl x2 x3
1 0.118 0.294 1,012.702 0.539 12.213 A

V

2 0.283 0.067 1,055.64 1.58 11.459
3 0.197 0.098 1,022.546 1.267 12.073
4 0.398 0.048 1,088.729 1.883 9.827
5 0.483 0.043 1,204.008 1.964 9.003
6 0.814 0.037 1,777.568 1.979 2.53'
7 0.654 0.039 1,456.194 1.989 3.999
8 0.905 0.035 1,921.518 2 2.322
9 0.153 0.148 1,037.36 0.957 11.998

10 0.759 0.037 1,744.909 1.977 6.01
11 0.179 0.127 1,061.305 1.064 11.299
12 0.585 0.041 1,291.995 1.999 4.246
13 0.341 0.055 1,087.74 1.752 11.537
14 0.442 0.047 1,089.762 1.912 6.591
15 0.138 0.198 1,051.249 0.764 11.773

Fig. 4.30 Display Screen of MATLAB Program for Multi Objective Optimization of 
Maximum Brake Power and Minimum Diesel Fuel Consumption

Similar scheme can also be employed for determining the speed, power and hydrogen 

induction rate for the minimization of exhaust gas constituents.

Fig. 4.30 gives the variation of pareto average distance between individual points and

number of individuals for maximum power, minimum diesel fuel consumption and minimum

gas emission constituents using multi objective optimization technique. The trends to go for

minimum level indicate that the program helps to find the optima values from different

generation which have closed average distance. Fig. 4.32 shows the screen display of

program for multi objective optimization in which the name of file and the specification of 
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program run are indicated. It should be noted that the program handles a large number of data 

and thus unable to depict on the screen the pareto- front function values and decision 

variables.
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Fig. 4.31 Variation of Pareto Average Distance between Individual Point and Number of 
Individuals for Brake Power, Diesel Fuel Consumption and Gas Emission Constituents
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Fig. 4.32 Display Screen of MAT LAB Program for Multi Objective Optimization of 
Maximum Brake Power and Minimum Diesel Fuel Consumption and Gas Emission

Constituents
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Table 4.13 gives few combinations of the results of the engine performance and exhaust gas 

emission constituents optimization through multi objective optimization method. It is seen 

that the hydrogen induction in to a compression ignition engine along with diesel oil helps 

not only improvement in thermal performance but decreases pollutant emission gases. 

Hydrogen induction rate of 7 1/min in to the engine with diesel oil as primary fuel minimises 

the exhaust gaseous pollutants such as CO, CO2, S02, HC and NOx giving equal weightage to 

each of them.

Table 4.13 Multi Objective Optimization for Thermal Performance and Gas Emission Constituents

. Minimize - Speed Load H| Remarks

Emissions

Y= Sum of CO + C02 + SO2 + HC +

NOx considering equal weightage to
each constituent

1000 0 6.67

Least emission at lowest
fuel consumption and other

minima captured around 7
1/min of Hydrogen
induction

Diesel Consumption .+ Inverse of
Brake Power (thermal ^performance
maximization with equal weightage to

fuel & power)
1500 0.5 6

At rated speed the fuel
consumption is found
minimum at 6 1/min

without too much
compromise on brake

power

Minimize Emissions & Maximize

thermal performance considering 40%

weightage to emissions, 30% to brake

power and 30% to fuel consumption

1000 0.5 8

Minimum speed low load
and 8 I/min hydrogen

induction for low emission.

Minimize Emissions . & Maximize
thermal performance considering 30%
weightage to emissions, 20% to brake

power and 50% to fuel consumption
1990 1.94 8

Highest weightage to
power and less weightage
to fuel consumption leads

to higher speeds being
favorable.
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The thermal performance alone by considering the minimisation of diesel oil consumption 

and maximization of brake power on equal weightage basis shows that the hydrogen 

induction rate of 6 1/min in to the engine operated on diesel oil is the best option.

The combined optimum operation considering 40 % weightage to lower emissions 

and 60 % weightage to thermal performance with equal weightage to both brake power and 

diesel oil consumption is possible at lower speed and load with a hydrogen induction rate of 8 

1/min. Full load operation of the

engine giving less weightage to gas emissions (30%) and more to thermal performance (50% 

to fuel consumption and 20% to brake power) demands higher speeds with 8 1/min hydrogen 

induction. In short, the operation of a compression ignition engine with diesel oil as primary 

fuel when blended with hydrogen by inducting in to the intake manifold at the rate of 6 - 8 

1/min results in the optimum operation considering both thermal performance and exhaust gas 

emission constituents. The results of the optimization through GA agree well with the present 

experimental evidence and that of Saravanan et al. [52]. It should , however, be noted that 

Saravanan primarly used the technique of exhaust gas recirculation along with the hydrogen 

induction in the intake manifold and suggested an optimum hydrogen induction rate of 7 

1/min.
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