An Investigation On Thermal Performance And Pollutants Emissions of Diesel Engine Operated With Hydrogen Blended Fuel

Appendix– IV

Sample Calculations

The following sample calculations are done for test run no. II -15.1.

IV.1 Data

Engine speed, N= 1500 rpm

Brake force, W= 24 kg at 2.0 Amp.

Diesel fuel consumption rate, $\dot{m}_f = 779.53 \times 10^{-6} \text{ kg/sec} = 4.065 \times 10^{-3} \text{ mole /sec}$

Net caloric value of diesel fuel, $CV_{diesel} = 42.5 \times 10^6 \text{ kJ/kg}$

Hydrogen Density, $\rho_{H_2} {=}~0.0838 \text{ kg/m}^3$

Hydrogen induction mass flow rate, $m_{H_2} = 0$ kg/sec = 0 mole/ sec

Net caloric value of hydrogen fuel, $CV_{H_2} = 119.93 \times 10^6 \text{ kJ/kg}$

Appendix IV

306

Atmospheric pressure $P_a = 99.60 \text{ kN/m}^2$ Gas constant =287 J/kg.K Atmospheric temperature = 25.19 + 273.15 = 298.34 K Pressure head in term of water, $h_w = 177 \times 10^{-3}$ m Water Density ρ_w , assume =1000 kg/m³ Coefficient of orifice, $C_d = 0.6$ (constant) Cross sectional area of orifice which has diameter 25 mm, A= 490.63×10⁻⁴ m² Acceleration due to gravity, g = 9.81 m/s² Engine cylinder diameter, d= 89 × 10⁻³ m Engine cylinder stroke, L= 73×10⁻³ m Hydrogen / air stoichiometric ratio =0.42 (based on molecular weight) Diesel / air stoichiometric ratio = 0.012 (based on molecular weight) Exhaust temperature, $T_{exh} = 252.89$ °C

IV.2 Brake Thermal Efficiency

The eddy current dynamometer gives formula to calculate the brake power in terms of speed and break force.

$$BP = \frac{N \times W}{4234}$$
AIV.1

BP= 8502.60 J/sec = 8.50 kW

The brake thermal efficiency is calculated by using the following formula [91]:

$$\eta_{B.Th} = \frac{BP}{IP} \times 100$$
 AIV.2

IP is the input power which is equal to:

$$IP = \dot{m_f} \times CV_{diesel} + m_{H_2} \times CV_{H_2}$$
AIV.3

 $IP = 779.53 \times 10^{-6} \times 42.5 \times 10^{6} + 0 \times 119.93 \times 10^{6}$

Appendix IV

IP = 33129.86111 = 33.13 kW Then;

$$\eta_{B.Th} = \frac{3.5}{33.13} \times 100$$

 $\eta_{B.Th^{=\,25.66\,\%}}$

IV.3 Volumetric Efficiency ($\eta_{Vol.}$)

The volumetric efficiency is calculated by using the following formula [91]:

$$\eta_{\text{Vol.}} = \frac{V_{\text{actual}}}{V_{\text{swept}}}$$
AIV.4

The head pressure in term of air is calculated from ideal gas equation:

$$P_{a} V_{a} = m_{a} R T_{a} \implies \rho_{a} = \frac{P_{a}}{R T_{a}}$$

$$\rho_{a} = (99.60)/(273 \times 298.34) = 1.16 \text{ kg/m}^{3}$$

$$h_{a} \rho_{a} = h_{w} \rho_{w} \Rightarrow h_{a} = \frac{h_{w} \rho_{w}}{\frac{P_{a}}{R T_{a}}}$$
AIV.5

h_a= 177×10-3×1000/1.16= 152.16 m

Actual volume is calculated from,

$$V_{actual} = Q_a = C_d A \sqrt{2gh_a}$$

$$V_a = 0.6 \times 490.63 \times 10^{-4} \times (2 \times 9.81 \times 152.16)^{1/2} = 16096.58 \times 10^{-6} \text{ m}^3$$

$$V_s = \text{swept volume} = 4 \times \frac{\left(\frac{\pi d^2}{4} \times L \times N\right)}{120}$$

$$V_s = 4 \times ((22/7)/4) \times ((0.073)^2) \times (0.0889) \times 1500/120 = 18611.53 \times 10^{-6} \text{ m}^3$$

$$\eta_{Vol.} = 16096.58 \times 10^{-6}/18611.53 \times 10^{-6} \times 100 = 86.49 \%$$

$$\dot{m}_a = Q_a \rho_a = 16096.58 \times 10^{-6} \times 1.16 = 18.73 \times 10^{-3} \text{ kg/sec}$$

Appendix IV

An Investigation On Thermal Performance And Pollutants Emissions of Diesel Engine Operated With Hydrogen Blended Fuel

IV.4 Equivalence Ratio (ϕ)

The equivalence ratio equation for hydrogen – diesel duel fuel is presented in eq. IV.6, [92]:

$$\phi = \frac{\begin{bmatrix} \frac{m_f}{m_a - \frac{m_{H_2}}{(\frac{H_2}{m_a})_{stoch.}}} \\ \frac{\begin{pmatrix} \frac{m_f}{m_a} \end{pmatrix}_{stoch.}} \end{bmatrix}$$

AIV.6

$$\emptyset = \left[\frac{\frac{4.065 \times 10 - 3}{0.52 - \frac{0}{(0.42)_{stoch.}}}}{(0.012)_{stoch.}}\right] = 0.65$$

IV.5 Brake Specific Energy Consumption (BSEC)

BSEC= (diesel energy + hydrogen energy)/BP
=
$$(779.53 \times 10^{-6} \times 42.5 \times 10^{6} + 0 \times 119.93 \times 10^{6})/8502.60 = 3.896 \text{ J/Wh}$$

= 3.896*3600/1000=14.03 MJ/kWh

Appendix IV

.

309