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Chapter 5

Computational Study

The computational study conducted consists of optimization of thermal 

performance and emissions constituents and ANN modeling of the variable compression 

ratio diesel engine. The optimization conducted using genetic algorithm technique is 

explained in Section 5.1 and ANN in Section 5.2.

Data obtained from experiments needs to be treated in a number of different ways 

to get meaningful insight into the system being studied. Numerous modeling techniques 

and multiple models may be developed for engines system. It is important to select a 

suitable modeling technique to capture the relationship between input and output of the 

system accurately and efficiently. For systems involving mutually conflicting out comes 

effected by a number of input variables, it is essential to determine the optimum state of 

the system to achieve desired output by setting appropriate levels of inputs. For this 

purpose, use of suitable optimization technique is essential.

Figure 5,1 Complexity of System & Precision Level of Different Models

With increase in knowledge about a system or process, its complexity decreases 

and understanding increases. Decrease in complexity leads to increase in precision 

afforded by computational methods useful in modeling of the system or process. As seen 

in Figure 5.1, for systems that are little complex and hence little uncertain, closed form
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of mathematical models provide precise description of system. For systems little more 

complex but for which significant data is available, model free methods like ANNs 

provide powerful and robust means to reduce uncertainty using pattern based learning. 

For most complex systems where little numerical data exists and where only ambiguous 

or imprecise information may be available, fuzzy models provide a method to understand 

and represent system behaviour by interpolation between observed inputs and outputs.

In the recent years, many models and simulations have been tried to give a clear 

view about the diesel engine performance, fuel characteristics, emission etc. under varied 

conditions of speed, load and other operating parameters. One of these techniques is the 

ANN modeling which encompasses very sophisticated techniques capable of modeling 

complex functions and processes. The true power and advantage of neural networks lies 

in their ability to represent both linear and nonlinear relationships as well as having the 

capability of learning by example. For processes that have non-linear characteristics such 

as those found in diesel engine performance modeling, traditional linear models are 

simply inadequate. In comparison to traditional computing methods, neural networks 

offer a different way to analyze data and to recognize patterns within that data by being 

generic non-linear approximators. Artificial Intelligence (AI) techniques seem to be best 

solution for predicting engine emissions since they do not demand any additional sensor 

installation.

When mathematical models fail to capture the input/output relationship within 

the limits of permissible error and sufficient data regarding the system available, ANN is 

a pertinent tool to model successfully the system behaviour. ANNs are called model free 

models since they don’t rely upon a pre-defined mathematical equation to relate system 

input/output. A proper ANN structure is developed for each system to capture the system 

behavior of a complex system. With high complexity of combustion relations and 

emission phenomena it is suitable to model by ANN. ANNs have been used for two main 

tasks: 1) function approximation and 2) classification problems. Neural networks offer a 

general framework for representing non-linear mappings. The application of neural 

networks to predict thermal performance and exhaust gas constituents belongs to the 

class of function approximation applications.

In order to use optimization algorithms in engineering design activities, the first 

task is to formulate the optimization problem. The formulation process begins with 

identifying the important design variables that can be changed in a design. The other 

design parameters are usually kept fixed. Thereafter, constraints associated with the

Chapter 5: Computational Study 231



An Investigation on the Performance of a Direct Injection Diesei Engine using Esterified Oils (Biodiesels) as Fuel

design are formulated. The constraints may arise due to resource limitations such as 

deflection limitations, strength limitations, frequency limitations, and others. Constraints 

may also arise due to codal restrictions that govern the design. The next task is to 

formulate the objective function which the designer is interested in minimizing or 

maximizing. The final task of the formulation phase is to identify some bounding limits 

for the design variables.

The formulation of an optimization problem can be more difficult than solving 

the optimization problem. Every optimization problem requires different considerations 

for formulating objectives, constraints and variable bounds.

5,1 Multi-objective Optimization
Optimization is the task of finding one or more solutions which correspond to 

minimizing (or maximizing) one or more specified objectives and which satisfy all 

constraints (if any). A single-objective optimization problem involves a single objective 

function and usually results in a single solution, called an optimal solution. On the other 

hand, a multi-objective optimization task considers several conflicting objectives 

simultaneously. In such a case, there is usually no single optimal solution, but a set of 

alternatives with different trade-offs. Despite the existence of multiple optimal solutions, 

in practice, usually only one of these solutions is to be chosen. Thus, compared to single 

objective optimization problems, in multi-objective optimization, there are at least two 

equally important tasks: an optimization task for finding an optimal solution (involving a 

computer based procedure) and a decision making task for choosing a single most 

preferred solution. The latter typically necessitates preference information from a 

decision maker.

IC engines are the lightest power generating units known and therefore are of 

greatest applications in transportation. An engine is expected to give highest possible 

efficiency with least possible emissions in order to meet the environmental standards. 

Generally, it is observed that engine gives maximum efficiency and also maximum 

emissions at high loads. This creates a scenario wherein, to get maximum efficiency we 

must compromise on emissions or to get minimum emissions we must compromise on 

efficiency. This is a case of Optimization to strike an optimal combination of input 

parameters to achieve maximization of thermal performance and minimization of 

emission constituents.
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The results obtained in the experimental study conducted at different preset 

compression ratios, different loads and different injection pressures show that as thermal 

efficiency of the engine increases, the harmful emissions constituents also increase. 

Hence, it is difficult to get the accurate minimum possible values of harmful emissions 

and maximum possible value of thermal efficiency. Hence an optimization is performed 

to obtain optimum values of load, compression ratio, injection pressure and blend which 

give minimum possible emissions and maximum possible thermal efficiency i.e. 

optimise thermal performance and emission constituents.

There are several algorithms which can be used to solve an optimization problem. 

The usage of these algorithms depends on the type of the problem, environment and the 

results required in real life situation. For engine applications, use of genetic algorithm 

(Refer Appendix VIH) is considered one of the best ways to solve the problem because 

of its inherent uniqueness. The optimization using genetic algorithm toolbox in 

MATLAB software is carried out to optimize the chosen engine input parameters to 

achieve specified priorities.

The genetic algorithm toolbox makes use of the correlations obtained by 

performing nonlinear regression analysis on the experimental data for all Karanja 

biodiesel and diesel blends at all loads, compression ratios and injection pressures. 

DATAFIT software which is developed by Oakdale engineering, USA is used to obtain 

the correlations.

The correlations evaluated are,

Square: Y= A(xO + B(x2) + C(x3) + D(x,)2 + E(x2)2 + F(x3) 2+ G(Xl) (x2) + H(x2) (x3) + 

I(x3)(xO

Cubic: Y= A(xj) + B(x2) + C(x3) + D(x4) + E(xi)2 + F(x2)2 + G(x3)2 + H(x4)2 + I(xi)(x2) 

+ J(x2)(x3) + K(x3)(x4) + L(x3)(x4) + M(x,)3 + N(x2)3+ 0(x3)3 + P(x4)3

Exponential: Y= b«) +coy. d.i

Linear with Constant: Y= A(xj) + B(x2) + C(x3) + D

The optimization process is carried out after fixing the upper and lower bounds 

for constraints, defining the fitness function and number of variables. The constraints are 

load, blend, compression ratio and injection pressure. The optimization is carried out
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considering full load condition and hence, both upper and lower bounds for loads are 

12kg. The upper and lower bounds for the constraints tire given in Table 5.1. The 

correlations obtained by nonlinear regression analysis of the experimental data are used 

as fitness functions and the number of variables are given as ‘4’ viz. load, compression 

ratio, injection pressure, blend proportionand are varied during experimentation.

Table 5.1 Upper and Lower Bounds for Constraints

Constraints Upper bound Lower bound

Load (kg) 12 12

Compression Ratio 14 18

Injection Pressure (bar) 150 250

Blend 20 100

The Optimization is conducted considering three cases, namely

1. Thermal performance

2. Emission constituents

3. Both thermal performance and emission constituents together with equal

weightages to each

The optimization of thermal performance, emission constituents and both thermal 

performance & emission constituents together giving equal weightages to each are, 

respectively, explained in sections 5.1.1, 5.1.2 and 5.1.3

5.1.1 Thermal Performance

The optimization of thermal performance is conducted by considering three 

important parameters viz. BTHE, BSFC and EGT. BTHE is always preferred to be 

maximum, BSFC and EGT to be minimum. Hence, this creates a multimodal scenario of 

optimization.

The solution procedure for optimization of thermal performance is as follows:
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1. Three types of mathematical equations viz. Polynomials, exponentials and power 

functions are developed from the captured experimental data (Refer Appendix V) 

to form a relation between the input (Load, CR, IP, Blend) and output (BTHE, 

BSFC and EGT) parameters using the DATAFIT software which is developed 

by Oakdale engineering, USA.

2. The mathematical equation with best fit is selected based on best value of 
coefficient of determination (R2) for all parameters. Cubic polynomial is found 

to be the best fit on both criterion and for all output parameters. Table 5.2 shows 

the cubic polynomials for thermal performance parameters, with their respective 
R2 values.

Table 5.2 Polynomials for Thermal Performance Parameters with their Respective R2
Values

Parameter Polynomial R3 4

BTHE BTHE = -541317.7 -3.34E-02 (x,) - 0.413 (x2)+ 8480.6 (x3) - 5.03E-05 (x4) + 
2.616E-03 (Xl)2+ 2.45E-02 (x2)2 - 43.3 (x3) 2+ 2.27E-06 (x4)2+ 3.39E-04 (Xi) 

(x2) + 4.14E-06 (x2) (x3) - 2.26E-02 (x3) (x4)+ 2.26E-02 (x4) (xt) -8.46E-05 
(x,)3 - 4.89E-04 (x2)3+ 7.21E-02 (x3)3 -1.026E-08 (x4)3

0.9408

BSFC BSFC = -541296.66 -0.29(x,)-3.99(x2) + 8480.68(x3) -S.84E-04(x4) +
0.02(X[)2 + 0.23(x2)2 -43.3(x3)2 + 2.77E-05(x4)2 + 3.02E-03(x!)(x2) -3.4E- 

08(x2)(x3)+ 0.03(x3)(x4) -3.13E-02(x3)(x4) -7.51E-04(x,)3 -4.71E-03(x2)3+ 

7.21E-02(x3)3 -1.44E-07(x4)3

0.9245

EGT EGT= -531591.25+ 13.7(xi) -1831.77(x2) + 8487.49(x3) + 0.241x4) -6.27E- 
03(X])Z + 111.28(x2)2 -43.33(x3)2 -7.98E-03(x4)2 -0.16(x,)(x2) -2.43E-06(x2)(x3) 

-5.34E-03(x3)(x4)+ 5.34E-03(x4)(xi) + 3.29E-02(xi)3 -2.25(x2)3 + 7.22E- 

02(x3)3+ 6.45E-05(x4)3

0.9723

X|= Load, x2= CR, x3= IP, x4= Blend

3. The equations thus obtained are defined as a function in MATLAB and saved as 

a dot m (.m) file. This function is called as the fitness function for optimization in 

MATLAB. The GENETIC ALGORITHM tool box of MATLAB is used for 

defining and solving the problem. Figure 5.2 shows optimization problem 

definition screen.

4. Record the value of the optimum and the result after a few repeated trials to 

eliminate the effects of specific initialisation.
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The problem definition screen is shown in Figure 5.2, while Figure 5.3 shows 

display screen of MATLAB program after optimization of thermal performance is 

carried out. The problem definition screen is where the solver, fitness function and 

bounds are defined. The optimization is carried out considering full load condition and 

hence, both upper and lower bounds for loads are 12kg. The set bounds for the 

constraints are given in Table 5.1. The same are entered in the order of ‘Load, CR, IP, 

Blend’ in the software. The options column on the left hand side is used to select pareto 

front display. The optimization is carried out by clicking the START button. After the 

optimization is done, number of iterations is displayed in the current iteration box.The 

the function values are also displayed suitably.

Figure 5.4 shows pareto front for optimization of thermal performance parameters to find 

maximum BTHE with minimum BSFC and EGT for the diesel engine operating on 

different Karanja biodiesel and diesel blends at different CRs, IPs and full load. Pareto 

front shows the trade-off between the two objectives. The objectives are the functions 

which the software forms inherently based on the maximising and minimising 

parameters given. Objective 1 is minimisation of BSFC and EGT and objective 2 is the 

maximisation of BTHE. The pareto front is plotted in objective function space. It gives a 

set of points corresponding to different values of objective 1 and objective 2. The 

software uses pareto front to strike a balance between objective 1 and objective 2 and 

picks up a point to suggest the optimum values of input parameters such as CR, IP and 

blend. The points appear to lie in the range -3472.3 to -3472.25 and -3800 to -3850 for 

objective 1 and objective 2 respectively. The values of objective 1 and objective 2 are 

used to determine the optimum input parameters by the software by following a set of 

complex calculations. The optimum values of CR, IP and blend suggested by the 

software after carrying the optimization run are 17,228 bar, B70 respectively.
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Figure 5.2 Problem Definition Screen
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Figure 5.3 Display Screen of MATLAB Program for Optimization of Thermal
Performance
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Figure 5.4 Pareto Front for Optimisation of Thermal Performance Parameters

5.1.2 Emission Constituents

The optimization of emission constituents is conducted by considering all the 

constituents of the exhaust gas measured in the experimental study. Among the 

emissions considered, oxygen is preferred to be maximum as it is not harmful to the 

environment and remaining emission constituents such as HC, CO, NOx, SOx and CO2 to 

be minimum. This creates a multimodal scenario as oxygen is to be maximised at the 

expense of other constituents. The same steps adopted in solution procedure in section 

5.1.1 of thermal performance are followed here also.

The polynomials for emission constituents are given in Table 5.3 with their respective R2 

values. Figure 5.5 shows the screen indicating process of optimization of emission 

constituents.
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Table 5.3 Polynomials for Emission Constituents with their Respective R2 values

Parameter Polynomial R2

02 02 = -541388.21 -0.37 (x,) + 15.41 (x2) + 8480.75*(x3) + 8.92E-03 (X4) + 
2.52E-02 (Xl)2 -0.95 (x2)2 -43.30 (x3)2 -1.18E-04 (x4)2+ 5.63E-03 (xj) (x2)- 

1.36E-06 (x2) (x3) -5.56E-02 (x3) (x4)+ 5.56E-02 (x3) (x4) -1.62E-03(x1)3+ 

1.95E-02 (x2)3+ 7.21E-02 (x3)3+ 4.16E-07 (x4)3

0.9209

HC HC = exp[-9.6E-02 (xx) - 0.53 (x2) - 1.38E-02 (x3) - 1.29E-02 (x4) + 14.016] 0.6638

CO CO= -542389.53 - 121.82 (xs) + 925.92 (x2) + 8479.54 (x3) - 5.63 (X4) -10.67 
(Xl)2 - 84.99 (x2)2 - 43.3 (x3)2 + 0.104 (x^2 + 8.58 (x,) (x2) - 9.21 IE-06 (x2) (x3)

- 0.27 (x3) (X4) + 0.27 (x3) (X4) + 0.66 (x,)3 + 2.1 (x2)3 + 0.072 (x3)3 - 5.57E-04 

(x4)3

0.8668

NOx NOx = -593.41 + 14.28 (x,) + 70.25 (x2) - 0.605 (x3)- 0.311 (x.,.) + 0.72 (x,)2 - 

2.15 (x2)2 + 1.87E-03 (x3)2 + 4.13E-03 (X4)2 - 0.603 (xd (x2) + 2.66E-02 (x2)

(x3) + 1.53E-04 (x3) (X4) - 2.423E-02 (X4) (x,)

0.9495

8

C02 = -541263.79 + 0.34 (x,) -12.4 (x2) + 8480.83 (x3) -6.51E-03 (x4) -2.12E- 
02 (x,)2+ 0.77 (x2)2-43.3 (x3)2 + 9.16E-05 (x4)2 - 6.87E-03 (x,) (x2) -1.44E-05 

(x2) (x3) + 6.82E-03 (x3) (x4) -6.82E-03 (x3) (x4)+ 1.26E-03 (x,)3 -1.6E-02 (x2)3 

+ 7.21E-02 (x3)3 -3.25E-07 (x4)3

0.9258

Xi= Load, x2= CR, x3= IP, X4= Blend

Figure 5.6 shows pareto front for optimization of emission constituents after the 

application of multi-objective optimization of emission constituents for maximisation of 

O2 emissions with minimisation of other emission constituents (HC, CO, NOx, SOx and 

CO2) for the diesel engine operating on different Karanja biodiesel and diesel blends at 

varying compression ratios, injection pressures and full load. Objective 1 is 

maximisation of O2 and objective 2 is the minimisation of other emissions viz. HC, CO, 

NOx, SOx and CO2. The pareto front gives set of points corresponding to different values 

of objective 1 and objective 2. It can be observed that most of the points are close to 

objective 2 axis. The reason is that, objective 1 is only maximisation of O2 whereas 

objective 2 is minimisation of HC, CO, NOx, SOx and CO2. Hence, more preference is 

given to objective 2 due to more number of parameters involved. The software uses 

pareto front to strike a balance between objective 1 and objective 2 and picks up a point 

to suggest the optimum values of input parameters such as CR, IP and blend for optimum 

emissions. The point picked up by the software may lie between a value of 0 to 5 and -
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4000 to -3000 for objective 1 and objective 2 respectively. The values of objective 1 and 

objective 2 are used to determine the optimum input parameters by the software by 

following a complex set of calculations. The optimum values of CR, IP and blend 

suggested by the software after carrying the optimization run are 18, 220 bar, B70 

respectively.

Figure 5.5 Display Screen of MATLAB Program for Optimization of Emission Constituents
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File Edit View Insert Tools Desktop Window Help

4000

3000

Pareto front

Figure 5.6 Pareto Front for Optimisation of Emission Constituents

5.1.3 Both Thermal Performance and Emission Constituents

The optimization of both thermal performance and emission constituents is conducted by 

considering all the performance parameters and emission constituents considered in 

sections 5.1.1 and 5.1.2. The solution procedure is also the same as followed for thermal 

performance optimization and emission constituents optimization.

Figure 5.7 shows the screen showing optimization of thermal performance and 

emission constituents.
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Figure 5.7 Display Screen of MATLAB Program for Optimization of Thermal 
Performance and Emission Constituents

Figure 5.8 shows pareto front for optimization of both thermal performance 

parameters and emission constituents giving equal weightages. Here, objective 1 is 

maximisation of thermal performance and objective 2 is the minimisation of exhaust 

emissions. The software uses a pareto front to strike a balance between objective 1 and 

objective 2 and picks up a point to suggest the optimum values of input parameters such 

as CR, IP and blend. The point picked up by the software found to lie in a range of 0 to 5 

and -4000 to -3000 for objective 1 and objective 2 respectively. The values of objective 1 

and objective 2 are used to determine the optimum input parameters by the software by
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5.1.4 Weighted Multi-objective Optimization
The multi-objective optimization carried out in the preceding section is 

conventional method. In such optimization equal preference is given to each individual 

parameter of both thermal performance and exhaust emissions. But, usually, the purpose 

of an IC engine is to operate with maximum thermal efficiency and at considerably lesser 

emissions. Rarely there may be cases where emissions are of more importance than 

efficiency. Under all such cases, weighted optimization is to be carried out wherein 

suitable weights (preferences) are given to the thermal performance parameters and 

emission constituents.

following a complex set of calculations. The optimum values of CR, IP and blend 

suggested by the software after carrying the optimization run are 18, 228 bar, B60 

respectively.

S3 Genetic Algorithm CU
S I—re—I

File Edit View Insert Tools Desktop Window Help
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Figure 5.8 Pareto Front for Optimisation of Both Thermal Performance 
Parameters and Emission Constituents Giving Equal Weightages
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The weighted optimization is carried out using genetic algorithm solver and the 

procedure is similar to that for conventional optimization. The only difference is that 

weights are defined for all the equations of output parameters which are obtained by 

nonlinear regression analysis (refer Table 5.2 and 5.3). Figure 5.9 shows the MATLAB 

editor which is used to define weights w (1) to w (8) for the equations f (1) to f (8).

Table 5.4 gives a few combinations of the results of weighted optimization of 

thermal performance and exhaust emissions. It is seen that the weightage given to 

thermal performance and exhaust emissions does not affect the values of CRs chosen. In 

all the cases, the optimum CR and IP are found to be 18 and 228bar respectively. 

Therefore, it can be inferred that the results obtained using optimization are in close 

agreement with those found in the experimental study. However the blend to be used 

appears to vary between B67 to B74 in most of the cases as observed from the table, 

based on the allotted weightages.

Further, it is also observed that the optimum values of CR and IP for equal 

weightages of 0.5 (50%) each to thermal performance and exhaust emissions match but 
blend do not match with those obtained from conventional multi-objective optimization*. 

The reason is that, in conventional optimization equal weightages are alloted to all 

parameters irrespective of whether they are related to thermal performance or exhaust 

emissions. But, in weighted optimization, 0.5 (50%) weightage given to thermal 

performance evaluation gets divided equally among BTHE, BSFC and EGT and the 

weightage given to exhaust emissions say gets divided equally among exhaust emissions 

constituents of HC, CO, NOx, HSU, O2, CO2 and SOx.

’Conventional multi-objective optimization: GA toolbox of MATLAB by default allots equal weightages 

to each individual parameter.
“Weighted optimization: Any selected value of weightage can be allotted collectively to a group of 

parameters or each individual parameter specifically
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Figure 5.9 MATLAB Editor
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It can also be noted that the optimum blend for 100% weightage to thermal 

performance is B72 which is in line with that obtained using conventional optimization 

(B70). But, when 100% weightage is given to exhaust emissions, the optimum blend 

through weighted optimization method is found to be B41. The value does not agree with 

that obtained by using conventional optimization. Here, in weighted optimization, 

highest weightage given to emissions indicate that B41 gives least emissions as 

compared to other higher blends.

Table 5.4 Weightages For Thermal Performance and Emissions In Multi objective
Optimization

Weightage to Thermal Performance Weightage to Emissions CR IP Blend

1 0 18 228 72

0.8 0.2 18 228 74

0.7 0.3 18 228 72

0.6 0.4 18 228 75

0.5 0.5 18 228 71

0.4 0.6 18 228 72

0.3 0.7 18 228 70

0.2 0.8 18 228 67

0 1 18 228 41

Different optimization runs carried out considering thermal performance, 

emission constituents, both thermal performance and emission constituents giving equal 

and different weightages, show that the values of CR, IP and blend for optimum 

performance and emissions of the engine fuelled with Karanja biodiesel and diesel 

blends are found to be 18,228bar and B70 respectively.

The experimental results presented in chapter 4 do not give the output parameters 

for the specified optimum values of CR, IP and blend as engine tests are not conducted 

for this configuration. Hence, there is a need to obtain the output parameters 

corresponding to the optimum values of inputs. An ANN can be used in order to obtain 

the corresponding output parameters, which is discussed in the following section.

Chapter 5: Computational Study 247



An Investigation on the Performance of a Direct Injection Diesel Engine using Esterified Oils (Biodiesels) as Fuel

5.2 ANN Modeling
An ANN is a system based on the operation of biological neural networks, in 

other words, is an emulation of biological neural system. ANNs are among the newest 

signal processing technologies nowadays. For further details Appendix IX can be 

referred.

In the present study, an ANN model is built to simulate the actual engine 

behaviour in order to obtain the output parameters of thermal performance and emission 

constituents corresponding to the optimum input parameters obtained. The model is built 

by using the data obtained by conducting a series of experiments on the four stroke, 

single cylinder, variable compression ratio, direct injection, diesel engine using blends of 

Karanja biodiesel and diesel as fuel. As discussed in chapter 4, the experiments are 

conducted by varying load, compression ratio, blend proportion and injection pressure. 

The experimental data is divided according to 80-20 rule, with 80% of the available data 

being used for training of the network and remaining 20% for validation.

Tables 5.5 and 5.6 represent a sample of input and output data that is used in the 

ANN modeling of engine performance and exhaust gas emission constituents 

respectively. The engine load is varied from 0kg to 12kg in steps of 3kg, compression 

ratios considered for conducting the experiments are 14, 15, 16, 17, 17.5 and 18, while 

the injection pressure is varied from 150bar to 25Gbar in steps of 50bar. The experiments 

are carried out for the blends of B20, B40, B60, B80, pure Karanja biodiesel and pure 

diesel. The data obtained by conducting these experiments is used to model the neural 

network for predicting thermal performance and exhaust gas emissions of the engine.

The software selected for neural network modeling in the present study is Easy 

NN. It is selected purely because of its simplicity in developing and training models 

involving feed forward multilayer neural networks with back-propagation training 

algorithm. Easy NN grows multilayer neural networks from the data in a Grid. The 

neural network input and output layers are created to match the grid input and output 

columns.Hidden layers connecting the input and output layers can then be grown to hold 

the optimum number of nodes. Each node contains a neuron and its connection address. 

The whole process is automatic. The data grid containing input/output matched pairs for 

training and validation of the neural network is produced by importing data from 

spreadsheet files, tab separated plain text files, and comma separated files, bitmap files 

or binary files. The grid can also be produced manually using the Easy NN grid editing
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facilities. Numeric, text, image or combinations of the data types in the grid can be used 

to grow the neural networks. The neural networks learn the training data in the grid and 

they can use the validation data available in the grid for self validation at the same time. 

When training finishes the neural networks can be tested using the querying data in the 

grid, the interactive query facilities or querying data in separate files. The steps that are 

required to produce neural networks are automated in Easy NN. The learning can be 

terminated by specifying maximum number of cycles or the targeted maximum error.

Table 5.5 Neural Network Input Output Sample Data for Engine Thermal Performance

Input Parameters Output Parameters
Load (kg) Fuel Compression Ratio Injection Pressure BSFC (kg/kWh) BTHE (%) EGT (°C)

0 BO 18 200 27.80 0.45 175.67

3 BO 18 200 0.6 15.72 196.27
6 BO 18 200 0.42 23.15 237.55

9 BO 18 200 0.35 26.17 288

12 BO 18 200 0.3 31.25 350.75
0 B20 18 200 21.25 0.43 185.56

3 B20 18 200 0.61 15.26 210.96

6 B20 18 200 0.45 22.35 254.67

9 B20 18 200 0.3 25.86 289.53

12 B20 18 200 0.31 30.5 348.56

0 B40 18 200 20.13 0.4 180.65

3 B40 18 200 0.63 15.04 201.85

6 B40 18 200 0.4 22.7 239.68

9 B40 18 200 0.3 25.42 286.53

12 B40 18 200 0.32 30.05 347.96

0 B60 18 200 34.36 0.38 182.89

3 B60 18 200 0.65 14.82 208.23

6 B60 18 200 0.44 20.38 247.9

9 B60 18 200 0.35 25.08 299.65

12 B60 18 200 0.32 29.32 356.04

0 B80 18 200 25.40 0.36 187.53

3 B80 18 200 0.67 13.63 209

6 B80 18 200 0.39 20.35 242.69

9 B80 18 200 0.36 25.46 290.62

12 B80 18 200 0.33 28.75 346.99

0 B100 18 200 22.05 0.32 179.35
3 B100 18 200 0.7 12.58 198.69
6 B100 18 200 0.45 20.03 240.38
9 B100 18 200 0.37 24.39 281.85
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12 B100 18 200 0.34 28.65 343.77

Table 5.6 Input Output Sample Data of Emission Constituents For Neural Network

Input Parameters Output Parameters
Load Fuel Compression Injection C02 CO NO„ HC o2
1kg) Ratio Pressure (%) (%) (ppm) (ppm) (%)

0 BO 18 200 0.83 0.012 9 6 19.81
3 BO 18 200 1.34 0.013 37 5 18.99
6 BO 18 200 1.65 0.014 75 5 18.67
9 BO 18 200 2.01 0.020 118 6 18.18
12 BO 18 200 2.57 0.022 160 8 17.51
0 B20 18 200 0.88 0.011 15 5 19.58
3 B20 18 200 1.4 0.012 42 4 18.97
6 B20 18 200 1.7 0.017 81 5 18.42
9 B20 18 200 2.11 0.018 118 6 18.22
12 B20 18 200 2.6 0.02 161 7 17.56
0 B40 18 200 0.87 0.01 15 4 19.87
3 B40 18 200 1.47 0.011 38 4 19.04
6 B40 18 200 1.75 0.013 82 3 18.69

. 9 B40 18 200 2.17 0.015 124 4 18.25
12 B40 18 200 2.65 0.016 163 6 17.43
0 B60 18 200 0.89 0.008 15 3 19.91
3 B60 18 200 1.52 0.009 44 3 19.15
6 B60 18 200 1.79 0.012 81 2 18.67
9 B60 18 200 2.19 0.015 129 4 18.21

12 B60 18 200 2.63 0.015 167 5 17.69
0 B80 18 200 0.92 0.005 17 2 19.94
3 B80 18 200 1.58 0.007 46 3 19.08
6 B80 18 200 1.82 0.013 84 2 18.56
9 B80 18 200 2.18 0.011 132 3 17.96
12 B80 18 200 2.68 0.013 175 4 17.59
0 B100 18 200 0.96 0.004 19 2 20.03
3 B100 18 200 1.6 0.006 58 3 19.33
6 B100 18 200 1.84 0.012 87 2 18.95
9 B100 18 200 2.24 0.009 135 2 18.44
12 B100 18 200 2.7 0.011 179 4 17.62
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5.2.1 Thermal Performance

The neural network for predicting thermal performance is d^d|o|)ed by 
considering the operating parameters like load, compression ratio, injection pretswSJijd 

blend as input parameters. The output parameters considered are brake thermal 

efficiency, brake specific fuel consumption and exhaust gas temperature. Figure 5.10 

shows the layout of simulation of actual engine using ANN model for engine 

performance. The ANN uses the same input parameters as received by the engine and 

gives corresponding outputs as that fron the engine. Therefore, the ANN model 

effectively replaces the engine.

An Investigation on the Performance of a Direct Injection Diesel Engine using Esterified Oils (Biodiesels)
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Figure 5.10 Layout of Simulation of Actual Engine using ANN Model for Engine
Performance

The sample of results obtained experimentally by carrying out series of 

experiments on the variable compression ratio engine are listed in Table 5.5, which are 

used for developing the neural network model. Various architectures of neural networks
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are tried and an appropriate architecture is chosen such that the average error of the

network for all outputs is within 5%. Table 5.7 gives the details used for modeling this
/

neural network. According to the table, beginning from 2 hidden layered neural network 

model, having initially 8 cells in the hidden layer. The number of cells in the hidden 

layer is increased up to 30 while monitoring the error resulting at the end of training.

Table 5.7 Details Used to Model the Neural Network

Network Type Feed Forward

Inputs for the neural network model Load, Compression ratio, Blend, Injection pressure

Number of cells in input layer 4

Outputs from the neural network Brake thermal efficiency, Brake Specific Fuel Consumption,
model Exhaust Gas Temperature

Number of cells in output layer 3

Number of Hidden Layers 2

Initial Number'of Cells in a Hidden 
Layer

8

Maximum Number of Cells in a 30
Hidden Layer

Propagation Rule Weighted Sum Rule

Activation Function Logistic Function

Output Function Identity Function

Learning Rule Back Propagation

The criteria for the termination of training selected are a) permissible error and b) 

maximum number of cycles in training and validation. The limiting value for all the 

errors over the entire data is selected as 0.05 (5%) while the permissible error for 

validation sets is specified as 3% of the target value. The maximum number of training 

cycles is limited to 1000000 for each learning set. The training stops when any one of the 

above criteria, namely, all errors being less than 0.05, all validation points within 3% of 

target values or 1000000 training cycles being completed. The learning rate is kept as 0.6 

and momentum as 0.8 for the stable learning and convergence of weights. The number of 

learning cycles before any validation cycle is executed is set to 3000. The number of
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validation cycles in one instance of validation is set to 100. These values are set in the 

control window of the software as shown in Figure 5.11.

Controls

Learning

Learning rate [ME Decay T Optimize

Momentum [ct80 " P Decay T Optimize

T Remove the worst example at start of learning

Network reconfiguration

r Allow manual Network reconfiguration

P Grow hidden layer 1 

I- Grow hidden layer 2 

P Grow hidden layer 3

Validating

Cycles before first validating cycle f3000 

Cycles per validating cycle 13000 

Select fo examples at random from the

432 training examples and change to validating.

T arget error stops

(* Stop when the Average error is below
_ 10.0500

or i stop when All errors are below

Validating stops

Stop when 1100.00 % 0f the validating examples

are (• Within |3.00 % of the Target Error

or C Correct after rounding 

P Stop if the X of validating examples decreases 

Fixed period stops

P Stop after 120.0000 seconds 

P Stop on cycle |0

OK ~] Cancel

Figure 5.11 Setting Learning Control for Training of ANN Model

The neural network generated has 4 cells in the input layer, 8 cells in the first hidden 

layer, 10 cells in the second hidden layer and 3 cells in the output layer as shown in 

Figure 5.12. The architecture of such a neural network is denoted as 4.8.10.3 where the 

numbers denote the number of cells in the input layer, first hidden layer, second hidden 

layer and output layer respectively.
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Figure 5.12 ANN Model for Predicting Thermal Performance with Architecture
4.8.10.3

On training of the network the error propagation graph for each training cycle is 

obtained as indicated in Figure 5.13. The maximum, average and minimum error are all 

seen to reduce at a fast pace in the early training period. But, towards the last training 

cycles, there is very small change in these error values. Further, the training ends with 

average error value less than the value of 5% permitted as the target error value. The 

training does not achieve the limiting error value of 3% of target value selected for the 

validation set. The training stops after number of training cycles without the error limit 

set for validation points being achieved because no further reduction in error is seen for a 

number of consecutive cycles.

Chapter 5: Computational Study 254



An Investigation on the Performance of a Direct Injection Diesel Engine using Esterified Oils (Biodiesels) as Fuel

Error 

1 00

0.90 

0 80 

0 70 

0 60 

0.50 

0 40 

0.80 

0.20 

0 10

Maximum --------- Average Minimum

00123333333
Cycles

Learning rate: 0.60 Momentum: 0.80 Minimum Error: 0 0039 Average Error: 0 0446 Maximum Error: 0 2072 

Target Error: 0 0500 Learning finished - average error below target

Figure 5.13 ANN Model Training & Error Propogation with Increasing Number of
Training Cycles for the 4.8.10.3

Table 5.8 shows the average, minimum and maximum error for different architectures of 

the neural network. It can be observed that the average errors of all the architectures are 

almost identical and hence it becomes difficult to select the best architecture for the 

model. In such a case, the R test can be used in order to determine the best architecture. 

The values of rms error and R are evaluated by using Equations 5.1 to 5.6

Table 5.8 Errors for Different Architectures of Neural Network

Sr. No Architecture
of the Model

Average
Error (%)

Minimum
Error (%)

Maximum
Error (%)

Validation 
stops within 
limiting
Error (%)

Remarks

1 4.8.10.3 4.983 0.4482 22.6534 3 Training 
stopped with 
all errors
within 5%

2 4.8.9.3 4.5806 0.3713 21.9288 3

3 4.7.9.3 4.7719 0.2836 21.4245 3

4 4.7.8.3 4.7719 0.2836 21.4245 3

5 4.5.6.3 4.8108 0.3058 21.6008 3
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6 4,7.7.3 4.7889 0.3729 22.257 3

1 4.22.3 4.7053 0.513 21.8532 3

8 4.21.3 4.7962 0.6696 23.4381 3

9 4.20.3 4.9679 0.2332 24.2883 3

10 4.19.3 4.7524 0.4905 22.6710 3

For error calculation, Equations 5.1 to 5.6 are used.

Error for each case is defined as

%Error = —---------- —

4
where, Ae=The output value as obtained from theoretical analysis 

Ap=The output value predicted by the neural network model 

The average error for entire epoch (complete set of input-output pairs) is defined as

%Errorav
K 4» 1

N tf 4,-
(5.2)

The maximum error is defined as

%Error tmx = max
( n \ a _a n

\ ei pi I

V i= 1 4ii /

and the minimum error is defined as

%Error = min
( N IA _ A

\ ei pi 1
mmJ A

V /=! Ael J (5.4)

(5.3)
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For each architecture of neural network model the root mean square value of error is

Error ^ =
\ A,, J

(5.5)

The confidence R (coefficient of determination) can be used to decide upon the best 

architecture. The R values can be determined as

i jv 1 J, 4
r=— y r. = —Y-t 

Ntt N&A,
(5.6)

The training and test errors for the networks are listed in Table 5.9. It can be 

observed that the values of errors are well within specified limits for all the neural 

network model architectures evaluated. On the basis of R test, it is found that the model 

having architecture 4.22.3 is a good model for which value of R is closest to unity among 

other models. Hence this model is selected as the best representative model for the 

prediction of thermal performance constituents.

Table 5.9 Training and Test Errors for Neural Network Architectures

Architecture 
of the
Model

Average Error 
(%)

R

4.8.10.3 4.983 0.91517

4.8.9.3 4.5806 0.91637

4.7.9.3 4.7719 0.92456

4.7.8.3 4.7719 0.92092

4.5.6.3 4.8108 0.92916

4.1.1.3 4.7889 0.92428

4.22.3 4.7053 0.94355

4.21.3 4.7962 0.928815

4.20.3 4.9679 0.94024

4.19.3 4.7524 0.93864

4.23.3 4.5668 0.95002
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5.2.2 Emission Constituents

The constituents of exhaust gas measured during the experiments are CO, CO2, 

HC, O2, NOx, and SO2. The exhaust gas emissions are directly dependent on input 

parameters like engine load, compression ratio, injection pressure, blend proportion. 

Thus, in order to develop a neural network which predicts the exhaust gas emission 

constituents for diesel engine working with Karanja biodiesel and its blends with diesel, 

the operating conditions such as engine load, CR, IP and blend proportion are given to 

the model as the input. The output parameters from the model are the exhaust gas 

constituents. Figure 5.14 shows the layout of simulation of actual engine using ANN 

model for exhaust emissions. The ANN uses the same input parameters as received by 

the engine and gives similar outputs as that of the engine. Therefore, the ANN model 

effectively replaces the actual engine.

Figure 5.14 Simulation of Actual Engine Using ANN Model for Exhaust Emissions
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The sample of results obtained experimentally by carrying out series of 

experiments on the variable compression ratio engine are listed in Table 5.6, which are 

used for developing the neural network model. Various architectures of neural networks 

are tried and an appropriate architecture is determined such that the average error of the 

network for all outputs is within 5%. Table 5.10 gives the details used for modeling this 

neural network. As per the table, beginning from 2 hidden layered neural network model, 

having initially 8 cells in the hidden layer, the number of cells in the hidden layer is 

increased up to 30 while monitoring the error, resulting at the end of training.

Table 5.10 Neural Network Modeling for Emission Constituents

Network Type Feed Forward

Inputs for the neural network model Load, Compression ratio, Blend, Injection pressure

Number of cells in input layer 4

Outputs from the neural network Brake thermal efficiency, Brake Specific Fuel Consumption,
model Exhaust Gas Temperature

Number of cells in output layer 3

Number of Hidden Layers 2

Initial Number of Cells in a Hidden 8
Layer

Maximum Number of Cells in a 
Hidden Layer

30

Propagation Rule Weighted Sum Rule

Activation Function Logistic Function

Output Function Identity Function

Learning Rule Back Propagation

The limiting value for all the errors over the entire data is selected as 0.05 (5%) 

while the permissible error for validation sets is specified as 3% of the target value. The 

maximum number of training cycles is limited to 1000000 for each learning set. The 

training stops when any one of the above criteria, namely, all errors being less than 0.05, 

all validation points within 3% of target values or 1000000 training cycles being 

completed. The learning rate is kept as 0.6 and momentum as 0.8 for the stable learning

Chapter 5: Computational Study 259



An Investigation on the Performance of a Direct Injection Diesel Engine using Esterified Oils (Biodiesels) as Fuel

and convergence of weights. The number of learning cycles before any validation cycle 

is executed is set to 3000. The number of validation cycles in one instance of validation 

is set to 100. These values are set in the controls window of the software as shown in 

Figure 5.15.

Controls

Learning

Learning rate [EBS 
Momentum |0.80

P Decay P Optimize 

r Decay P Optimize

P Remove the worst example at start ol learning

Network reconfiguration

P Allow manual Network reconfiguration

r Grow hidden layer 1 

r Grow hidden layer 2 

P Grow hidden layer 3

Validating

Cycles before first validating cycle 13000 

Cycles per validating cycle [3000 

Select fo examples at random from the

432 training examples and change to validating.

T arget error stops

(* Stop when the Average error is below 

or C stop when All errors are below

Validating stops

10.0500

Stop when 1100.00 % 0f the validating examples

are '• Within [3 00 % 0f the Target Error

or C Correct after rounding 

P Stop if the % of validating examples decreases 

Fixed period stops

P Stop after 120.0000 seconds

P Stop on cycle [0

Ok Cancel

Figure 5.15 Setting Learning Controls for Training of ANN Model

The neural network generated has 4 cells in the input layer, 8 cells in the first 

hidden layer, 10 cells in the second hidden layer and 6 cells in the output layer as shown 

in Figure 5.16. The architecture of such a neural network is denoted as 4.8.9.5 where the 

numbers denote the number of cells in the input layer, first hidden layer, second hidden 

layer and output layer respectively.
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Figure 5.16 ANN Model of Exhaust Gas Constituents with Architecture 4.8.9.5

On training of the network the error propagation graph for each training cycle is 

obtained as indicated in Figure 5.17. The maximum, average and minimum error are all 

seen to reduce at a fast pace in the early training period. But, towards the last training 

cycles, there is very small change in these error values. Further, the training ends with 

average error value less than the value of 5% permitted as the target error value. The 

training does not achieve the limiting error value of 3% of target value selected for the 

validation set. The training stops after number of training cycles without the error limit 

set for validation points being achieved because no further reduction in error is seen for a 

number of consecutive cycles.

Table 5.11 gives the average, minimum and maximum errors for different architectures 

tested. It can be observed that the average errors of all the architectures are almost 

identical and hence it becomes difficult to select the best architecture for the model. In 

such a case, the R test can be used in order to determine the best architecture.
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Figure 5.17 ANN Model Training & Error Propogation Graph With Increasing Number
of Training Cycles for 4.8.9.5

Table 5.11 Neural Network Architecture 8t Corresponding Training Results for Gas
Emissions

Sr.
No

Architecture of
the Model

Average 
Error (%)

Minimum 
Error (%)

Maximum 
Error (%)

Validation stops 
within limiting 
Error {%)

Remarks

1 4.8.10.5 4.6410 0.5076 22.3102 3 Training stopped 
with all errors

2 4.8.8.8.5 4.9514 0.7642 22.8478 3 within 5%

3 4.6.6.4.5 4.9928 0.648 26.9356 3

4 4.6.6.5 4.9968 0.4639 22.9947 3

5 4.6.7.5 4.9726 0.5657 23.3737 3

6 4.20.20.5 4.8227 0.6691 22.9378 3

7 4.6.7.5 4.7852 0.564 22.675 3

8 4.6.6.6.5 4.6724 0.763 23.7865 3

9 4.8.7.5 4.7895 0.7236 24.9720 3

10 4.8.8.5 4.5463 0.7342 23.8765 3
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The training and test errors for the networks are listed in Table 5.12. It can be 

observed that the values of error are well within specified limits for all the neural 

network model architectures evaluated. On the basis of R test, it is found that the model 

having architecture 4.8.10.5 is a good model for which value of R is closest to unity 

among other models. Hence this model is selected as the best representative model for 

the prediction of thermal performance constituents.

Table 5.12 Training and Test errors for Different Architectures

Architecture
of the
Model

Average Error 
(%)

R

4.8.10.5 4.641 1.00288

4.8.8.8.5 4.9514 0.87712

4.6.6.4.S 4.9928 0.95073

4.6.6.5 4.9968 0.78219

4.6,15 4.9726 0.8043

4.20.20.5 4.8227 0.97175

4.6.6.6.S 4.7852 0.92968

4.8.9.5 4.6724 1.0028

4.8.7.5 4.7895 0.82335

4.8.8.S 4.5463 0.8976

It is seen from ANN modeling for prediction of exhaust gas constituents and 

thermal performance that ANN models can successfully capture the complex input- 

output relationships and still provide small prediction errors.

In order to determine the best ANN model a number of architectures are tried and 

tested for error, spread and coefficient of determination. The representative model 

selected for thermal performance has architecture of 4.22.3. It has an average error of 

nearly 4.79%, minimum error of 0.66% and maximum error of 23%. The coefficient of 

determination is very close to unity being 0.92 and the spread is 0.1576. This ensures 

that in the test range if this model is subject to any condition for which experiment is not 

conducted, the error will not exceed 5% on an average and 23% maximum. This is 

shown by applying the model to a selected set of data. The results predicted by 4.22.3
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ANN model are compared with experimental results and the error is evaluated (Refer 

Table 5,13)

On similar lines, the representative model selected for emission constituents has 

an architecture of 4,8,10,5. It has an average error of nearly 5%, minimum error of 0.5% 

and maximum error of 22%. The coefficient of determination is very close to unity being 

1.0028 and the spread is 0.2876. This ensures that in the test range if this model is 

subject to any condition for which experiment is not conducted, the error will not exceed 

5% on an average and 22% maximum. This is shown by applying the model to a selected 

set of data. The results predicted by 4,8.10.5 ANN model are compared with 

experimental results and the error is evaluated (Refer Table 5.14)

For the ANN models selected for both thermal performance and emission 

constituents, the average prediction error is hence close to 5% which is in line with the 

model errors reported in most literature reviewed. Further, the ANN model for thermal 

performance modeling required one hidden layer while that for exhaust gas constituents 

required two. The number of cells in these hidden layers is larger for exhaust gas 

constituents. This indicates a much more complex relationship between the exhaust gas 

constituents and the input parameters as compared to the thermal performance 

parameters.

Tables 5.13 and Table 5.14 show that the ANN models developed for prediction 

of thermal performance and exhaust emission constituents have an acceptable error and 

hence can be used for obtaining the output parameters corresponding to optimized input 

parameters. The optimum values of CR, IP and blend obtained through optimization 

using genetic algorithm tool are 18, 228bar and B70 respectively. The output parameters 

corresponding to CR, IP and blend of 18,228bar and B70 are given in Table 5.15.

Chapter 5: Computational Study 264



C
ha

pt
er

 5
; C

om
pu

ta
tio

na
l S

tu
dy

 
26

5

uo
1—IP
LU

Er
ro

r (
%

)

2.
76

7.
01

7.
14

-7
.1

9

7.
34

-4
.2

0

-3
.8

8

-3
.4

4

69TT- -2
.4

9

-3
.1

0

4.
87

A
N

N

S806T 22
0.

89

26
7.

43

37
6

19
5.

46

26
5.

37

30
0.

78

36
0.

56

22
5.

46

24
5.

67

29
5.

43

33
0.

98

Ex
p

19
6.

27

23
7.

55

28
8

35
0.

75

21
0.

96

25
4.

67

28
9.

53

34
8.

56

20
1.

85

23
9.

68

28
6.

53

34
7.

96

B
TH

E (%
)

Er
ro

r (
%

)

6.
10

-6
.4

7

-3
.6

3

4.
41

1 -10.68 -3
.1

7

7.
69

7.
50

-1
2.

16 00
tH

!

1.
18 CM

00
CO

A
N

N

14
.7

6

1 
24

.6
5 ZVLZ 29

.8
7

16
.8

9
L . . _.

...
...

_ ..
23

.0
6

23
.8

7

; 28.21 i

16
.8

7

23
.6

5

25
.1

2

28
.9

Ex
p

15
.7

2

23
.1

5

26
.1

7

31
.2

5

15
.2

6

22
.3

5

25
.8

6

30
.5

15
.0

4 LZZ

25
.4

2

30
.0

5
i__

__
__

__
__

__
__

__
__

__
__

B
SF

C
 (k

g/
kW

h)

Er
ro

r (
%

)

10
.0

0

7.
14

-2
.8

5

3.
33

4.
91

-6
.6

6

-1
0.

00

-1
2.

90

12
.6

9

-5
.0

0

6.
66

1 
-1

2.
5

i

A
N

N

0.
54

0.
39

0.
36

0.
29

8S0 00<3-
o 0.

33

0.
35

0.
55

0.
42 00CM

o 0.
36

Ex
p

0.
60

0.
42

0.
35

0.
30

0.
61

0.
45

0.
30

0.
31

0.
63 o

o 0.
30

0.
32

IP
 (b

ar
)

20
0

20
0

20
0

20
0

20
0

20
0

20
0

20
0

20
0

20
0

20
0

20
0

C
R 00 oo oo OO OO OO OO OO OO OO OO OO

Fu
el

D
ie

se
l

D
ie

se
l

D
ie

se
l

D
ie

se
l

B
20

B
20 B
20

B
20 B
40 B
40

B
40

B
40

Lo
ad

(k
g) CO NO ON 04 ro NO 0\ CM CO CO cn 12

T
ab

le
 5

.1
3 

C
om

pa
ri

so
n 

of
 R

es
ul

ts
 o

f A
N

N
 M

od
el

 a
nd

 E
xp

er
im

en
ta

l D
at

a 
fo

r T
he

rm
al

 P
er

fo
rm

an
ce

■j
p_

__
__

__
__

__
__

__
__

__
_ An Inves

tig
at

io
n 

on
 th

e 
Pe

rf
or

m
an

ce
 o

f a
 D

ire
ct

 In
je

ct
io

n 
D

ie
se

l E
ng

in
e u

si
ng

 E
st

er
ifi

ed
 O

ils
 (B

io
di

es
el

s)
 a

s F
ue

l



C
ha

pt
er

 5:
 C

om
pu

ta
tio

na
l S

tu
dy

 
26

6

£
Q.
3

X
oz

Er
ro

r
(%

)

5.
40 oo

00 7.
62 00

up -7
.1

4

3.
70

4.
23

-4
.9

6

-2
.6

3

8.
53

4.
83

-3
.6

8

A
N

N

35

69

10
9 XLl 45 78 11
3

16
9

39 75 11
8

16
9

Ex
p

37 75 11
8

16
0

42 81 11
8

16
1 00

ro 82 12
4

16
3

1=

Q.
3

o

Er
ro

r
(%

)

-4
.1

6

2.
08

4.
40

6.
79

2.
74

-1
.3

5

-1
.1

5

-5
.0

6

1.
94

-6
.4

2

5.
20

-2
.6

9

A
N

N

19
.7

8

18
.2

8

17
.3

8

16
.3

2

18
.4

5

18
.6

7

18
.4

3

18
.4

5

18
.6

7 os
00
d
ft 17

.3

17
.9

Ex
p

18
.9

9

18
.6

7

18
.1

8

17
.5

1

18
.9

7

18
.4

2

18
.2

2

17
.5

6

19
.0

4

18
.6

9

18
.2

5
i...

...
...

...
...

...
...

...
...

...
..

17
.4

3

Sjf ’

ou

Er
ro

r
(%

)

5.
97

-4
.8

4

-6
.4

6

-4
.2

8

-1
0.

00

9.
41

6.
16

-1
1.

15

8.
84

14
.2

8

-7
.8

3

4.
15

A
N

N

1.
26

1.
73

2.
14

2.
68

1.
54

1.
54

1.
98

2.
89

1.
34 1.
5

2.
34

2.
54

Ex
p

1.
34

1.
65

2.
01

2.
57 1.
4

! 1J 2.
11 2.
6

1.
47

1.
75

2.
17

2.
65

"e
Q.

a.
u
X

Er
ro

r
(%

) oo
Kt

oo
CO 8.

33

6.
25

00'S-

oo

-8
.3

3

-5
.7

1 O
O

S 6.
66

-7
.5

0

-3
.3

3

A
N

N 00

4.
7

. .. .
..

5.
5

7.
5

4.
2

5.
2

6.
5

7.
4

3.
8

2.
8

4.
3

6.
2

Ex
p

m m CO 00 w CD ro CO

so"

ou

Er
ro

r
(%

)

-3
.0

7

-1
.4

2

-6
.5

0

-1
.8

1

-8
.3

3 88'S

-2
.7

7 O
S’S- -2

.7
2

1.
53

2.
66

0.
62

A
N

N

0.
01

34

0.
01

42

0.
02

13 (N
CS
O
O 0.

01
3

0.
01

6

0.
01

85

0.
02

11 roT“l
tH

o
o 0.

01
28

0.
01

46

0.
01

59

a
X

LU 0.
01

3

0.
01

4

0.
02

0

0.
02

2

0.
01

2

0.
01

7

0.
01

8

0.
02

f
t—t

o
o 0.

01
3

0.
01

5

0.
01

6

ip (b
ar

)

20
0

20
0

20
0 oo<N 20
0

20
0

20
0

20
0

20
0

20
0

20
0

20
0

C
R GO 0© OO 00 OO OO OO OO

r”«t
OO OO OO OO

Fu
el

D
ie

se
l

S Die
se

l

D
ie

se
l

D
ie

se
l

B
20

B
20 B
20

B
20 B
40

B
40

B
40

B
40

Lo
ad

(k
g) CO Os \c> Os ro to a% 12

T
ab

le
 5

.1
4 

C
om

pa
ri

so
n 

of
 R

es
ul

ts
 o

f A
N

N
 a

nd
 E

xp
er

im
en

ta
l D

at
a 

fo
r E

m
iss

io
n 

C
on

st
itu

en
ts

__
__

__
__

__
__

__
__

__
__

__
__

A
n 

In
ve

st
ig

at
io

n 
on

 th
e 

Pe
rf

or
m

an
ce

 o
f a

 D
ire

ct
 In

je
ct

io
n 

D
ie

se
l E

ng
in

e u
si

ng
 E

st
er

ifi
ed

 O
ils

 (B
io

di
es

el
s)

 a
s F

ue
l



An Investigation on the Performance of a Direct Injection Diesel Engine using Esterified Oils (Biodiesels) as Fuel

Table 5.15 Output Parameters Corresponding to CR, IP and Blend of 18,228bar and
B70

THERMAL PERFORMANCE Output Parameters Value

BTHE(%) 27.49

BSFC (kg/kWh) 0.33

EGT (°C) 345.56

EMISSION CONSTITUENTS CO (%) 0.006

HC (ppm) 3

C02 (%) 3.08

02(%) 17.80

NOx (ppm) 160

Table 5.16 presents a comparison between the values of output parameters

obtained through the ANN corresponding to the optimised input parameter for and those

obtained through experimentation for Karanja biodiesel and Diesel oil. The experimental

results given in the table correspond to a full load of 12kg, CR of 18 and IP of 200bar.

Table 5.16 Comparison of Thermal Performance and Emission Constituents for Diesel
Oil, B70 and Karanja Biodiesel

THERMAL PERFORMANCE Output Parameters Diesel B70 Karanja
biodiesel

BTHE (%) 29.20 27.49 26.64

BSFC (kg/kWh) 0.31 0.33 0.34

EGT (°C) 350.75 345.56 343.77

EMISSION CONSTITUENTS CO (%) 0.02 0.006 0.005

HC (ppm) 5.00 3.00 2.00

C02 (%) 2.62 3.08 3.26

02(%) 17.62 17.80 17.91

NOx (ppm) 125 160 166
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It can be observed that thermal performance is best for Diesel oil and emission 

constituents are least for Karanja biodiesel. It can be also noted that the thermal 

performance and emission constituents for B70 are in between those for Diesel oil and 

Karanja biodiesel. The optimum values for blend B70 are obtained by striking a 

compromise or balance between Diesel oil and Karanja biodiesel. If the engine is 

operated with B70 blend, the values of BTHE, BSFC and EGT are found lesser by about 

6%, 6% and 1.4% respectively as compared to Diesel oil and the emission constituents of 

CO, HC, CO2, O2 and NOx are found more by about 20%, 50%, 5%, 0.6% and 4% 

respectively as compared to Karanja biodiesel.

Chapter 5: Computational Study 268


