An Investigation on the Performance of a Direct Injection Diesel Engine using Esterified Oils (Biodiesels) as Fuel

Chapter 5
Computational Study

The computational study conducted consists of optimization of thermal
performance and emissions constituents and ANN modeling of the variable compression
ratio diesel engine. The optimization conducted using genetic algorithm technique is
explained in Sectioﬁ 5.1 and ANN in Section 5.2.

| Data obtained from experiments needs to be treated in a number of different ways
to get meaningful insight into the system being studied. Numerous modeling techniques
and mﬁltiple models rﬁay be developed for engines system. It is important to select a
suitable modeling technique to capture the relationship between input and output of the
system accurately and efficiently. For systems involving mutually conflicting out comes
effected by a number of input variables, it is essential to determine the optimum state of
the system to achieve desired output by setting appropriate levels of inputs. For this

purpose, use of suitable optimization technique is essential.
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Figure 5.1 Complexity of System & Precision Level of Different Models

With increase in knowledge about a system or process, its complexity decreases
and understanding increases. Decrease in complexity leads to increase in precision
afforded by computational methods useful in modeling of the system or process. As seen

in Figure 5.1, for systems that are little complex and hence little uncertain, closed form
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of mathematical models provide precise description of system. For systems little more
complex but for which significant data is available, model free methods like ANNs
provide powerful and robust means to reduce uncertainty using pattern based learning.
For most complex systems where little numerical ﬂata exists and where only ambiguous
or imprecise information may be available, fuzzy models provide a method to understand
and represent system behaviour by interpolation between observed inputs and outputs.

In the recent years, many models and simulations have been tried to give a clear
view about the diesel engine performance, fuel characteristics, emission etc. under varied
conditions of speed, load and other operating parameters. One of these techniques is the
ANN modeling which encompasses very sophisticated techniques capable of modeling
complex functions and processes. The true power and advantage of neural networks lies
in their ability to represent both linear and nonlinear relationships as well as having the
capability of learning by example. For processes that have non-linear characteristics such
as those found in diesel engine performance modeling, traditional linear models are
simply inadequate. In comparison to traditional computing methods, neural networks
offer a different way to analyze data and to recognize patterns within that data by being
generic non-linear approximators. Artificial Intelligence (AI) techniques seem to be best
solution for predicting engine emissions since they do not demand any additional sensor

installation.

When mathematical models fail to capture the input/output relationship within
the limits of permissible error and sufficient data regarding the system available, ANN is
a pertinent tool to model successfully the system behaviour. ANNs are called model free
models since they don’t rely upon a pre-defined mathematical equation to relate system
input/output. A proper ANN structure is developed for each system to capture the system
behavior of a complex system. With high complexity of combustion relations and
emission phenomena it is suitable to model by ANN. ANNs have been used for two main
tasks: 1) function approximation and 2) classification problems. Neural networks offer a
general framework for representing non-linear mappings. The application of neural
networks to predict thermal performance and exhaust gas constituents belongs to the

class of function approximation applications.

In order to use optiinization algorithms in engineering design activities, the first
task is to formulate the optimization problem. The formulation process begins with
identifying the important design variables that can be changed in a design. The other
design parameters are usually kept fixed. Thereafter, constraints associated with the

R —"
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design are formulated. The constraints may arise due to resource limitations such as
deflection limitations, strength limitations, frequency limitations, and others. Constraints
may also arise due to codal restrictions that govern the design. The next task is to
formulate the objective function which the designer is interested in minimizing or
maximizing. The final task of the formulation phase is to identify some bounding limits
for the design variables. ' -

The formulation of an optimization problem can be more difficult than solving
the optimization problem. Every optimization problem requires different considerations

" for formulating objectives, constraints and variable bounds.

5.1 Multi-objective Optimization

Optimization is the task of finding one or more solutions which correspond to -
minimizing (or maximizing) one or more specified objectives and which satisfy all
constraints (if any). A single-objective optimization problem involves a single objective
function and usually results in a single solution, called an optimal solution. On the other
bhand, a multi-objective optimization task considers several conflicting objectives
simultaneously. In such a case, there is usually no single optimal solution, but a set of
alternatives with different trade-offs. Despite the existence of multiple optimal solutions,
in practice, usually only one of these solutions is to be chosen. Thus, compared to single
objective optimization problems, in multi-objective optimization, there are at least two
equally important tasks: an optimization task for finding an optimal solution (involving a
computer based procedure) and a decision making task for choosing a single most
preferred solution. The latter typically necessitates preference information from a

decision maker.

IC engines are the lightest power generatirig units known and therefore are of
greatest applications in transportation. An engine is expected to give highest possible
efficiency with least possible emissions in order to meet the environmental standards.
Generally, it is observed that engine gives maximum efficiency and also maximum
emissions at high loads. This creates a scenario wherein, to get maximum efficiency we
must compromise on emissions or to get minimum emissions we must compromise on
efficiency. This is a case of Optimization to strike an optimal combination of input
parameters to achieve maximization of thermal performance and minimization of

emission constituents.

L __]
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The results obtained in the experimental study conducted at different preset
compression ratios, different loads and different injection pressures show that as thermal
efficiency of the engine increases, the harmful emissions constituents also increase.
Hence, it is difficult to get the accurate minimum possible values of harmful emissions
and maximum possible value of thermal efficiency. Hence an optimization is performed
to obtain optimum values of load, compression ratio, injection pressure and blend which
give minimum possible emissions and maximum possible thermal efficiency ie.

optimise thermal performance and emission constituents.

There are several algorithms which can be used to solve an optimization problem.
The usage of these algorithms depends on the type of the problem, environment and the
results required in real life situation. For engine applications, use of genetic algorithm
(Refer Appendix VII) is considered one of the best ways to solve the problem because
of its inherent uniqueness. The optimization using genetic algorithm toolbox in
MATLAB software is carried out to optimize the chosen engine input parameters to

achieve specified priorities.

The genetic algorithm toolbox makes use of the correlations obtained by
performing nonlinear regression analysis on the experimental data for all Karanja
biodiesel and diesel blends at all loads, compression ratios and injection pressures.
DATAFIT software which is developed by Oakdale engineering, USA is used to obtain

the correlations.
The correlations evaluated are,

Square: Y= A(X1) + B(x2) + C(x3) + D(x1)* + E(x2)* + F(x3) >+ G(x1) (x2) + H(x2) (x3) +
I(x3)(x1)

Cubic: Y= A(x1) + B(xa) + C(x3) + D(x4) + E(x1)? + F(x2)” + G(x3)* + H(x4)? + I(x1)(x2)
+ J(x2)(X3) + K(%3)(Xe) + L(x3)(x4) + M(x1)’ + N(x2)’+ O(x3)” + P(x4)

Exponential: Y= gl4%)+BX ) +CX )+ D]

Linear with Constant; Y= A(x;) + B(x2) + C(x3) + D

The optimization process is carried out after fixing the upper and lower bounds
for constraints, defining the fitness function and number of variables. The constraints are

load, blend, compression ratio and injection pressure. The optimization is carried out

R —
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considering full load condition and hence, both upper and lower bounds for loads are
12kg. The upper and lower bounds for the constraints are given in Table 5.1. The
correlations obtained by nonlinear regression analysis of the experimental data are used
as fitness functions and the number of variables are given as ‘4’ viz. load, compression

ratio, injection pressure, blend proportionand are varied during experimentation.

Table 5.1 Upper and Lower Bounds for Constraints

Constraints Upper boﬁnd Lower bound
Load (kg) 12 12
Compression Ratio 14 18

Injection Pressure (bar) 150 250

Blend 20 100

The Optimization is conducted considering three cases, namely

1. Thermal performance
2. Emission constituents
3. Both thermal performance and emission constituents together with equal

weightages to each

The optimization of thermal performance, emission constituents and both thermal
performance & emission constituents together giving equal weightages to each are,

respectively, explained in sections 5.1.1, 5.1.2 and 5.1.3
5.1.1 Thermal Performance

The optimization of thermal performance is conducted by considering three
important parameters viz. BTHE, BSFC and EGT. BTHE is always preferred to be
maximum, BSFC and EGT to be minimum. Hence, this creates a multimodal scenario of

optimization.

The solution procedure for optimization of thermal performance is as follows:
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1. Three types of mathematical equations viz. Polynomials, exponentials and power
functions are developed from the captured experimental data (Refer Appendix V)
to form a relation between the input (Load, CR, IP, Blend) and output (BTHE,
BSFC and EGT) parameters using the DATAFIT software which is developed
by Oakdale engineering, USA. _

2. The mathematical equation with best fit is selected based on best value of
coefficient of determination (R?) for all parameters. Cubic polynomial is found
to be the best fit on both criterion and for all output parameters. Table 5.2 shows
the cubic polynomials for thermal performance parameters, with their respective

R? values.

Table 5.2 Polynomials for Thermal Performance Parameters with their Respective R?

Values
Parameter Polynomial R*
BTHE BTHE = -541317.7 -3.34E-02 (x;) ~ 0.413 (x)+ 8480.6 (x3) - 5.03E-05 (x¢) + 0.9408

2.616B-03 (x;)* + 2.45E-02 (x,)” - 43.3 (x3) 2+ 2.27E-06 (x5)* + 3.39E-04 (x)
(%) + 4.14B-06 (x2) (X3) - 2.26E-02 (%3) (x4)+ 2.26E-02 (x4) (x;) -8.46E-05
;) - 4.89E-04 (x,)°+ 7.21E-02 (x3)° -1.026E-08 (x,)°

BSFC BSFC = -541296.66 -0.29(x;) -3.99(x,) + 8480.68(x) -8.84E-04(xy) + 0.9245
0.02(x1)% + 0.23(xp)? -43.3(x3)* + 2.77TE-05(x,)* + 3.02E-03(x,)(x2) -3.4E-
08(x2)(x3)+ 0.03(x3)(x4) -3.13E-02(x3)(xs) -7.51E-04(x,)° -4.71E-03(x,)*+
7.21B-02(x3)* -1.44E-07(x,)*

EGT EGT= -531591.25+ 13.7(x;) -1831.77(x,) + 8487.49(x;) + 0.24(x4) -6.27E- 0.9723
03(x,) + 111.28(x,)* -43.33(x3)” -7.98E-03(x4)* -0.16(x;)(X2) -2.43E-06(x2)(x3)
-5.34B-03(x3)(Xs)+ 5.34B-03(x)(x;) + 3.29E-02(x,)* -2.25(x,)* + 7.22E-
02(x3)*+ 6.45E-05(x,)°

x;= Load, xy= CR, x3= IP, x4= Blend

3. The equations thus obtained are defined as a function in MATLAB and saved as
a dot m (.m) file. This function is called as the fitness function for optimization in
MATLAB. The GENETIC ALGORITHM tool box of MATLAB is used for
defining and solving the problem. Figure 5.2 shows optimization problem
definition screen.

4. Record the value of the optimum and the result after a few repeated trials to

eliminate the effects of specific initialisation.
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The problem definition screen is shown in Figure 5.2, while Figure 5.3 shows
display screen of MATLAB program after optimization of thermal performance is
carried out. The problem definition screen is where the solver, fitness function and
bounds are defined. The optimization is carried out considering full load condition and
hence, both upper and lower bounds for loads are 12kg. The set bounds for the
constraints are given in Table 5.1. The same are entered in the order of ‘Load, CR, IP,
Blend’ in the software. The options column on the left hand side is used to select pareto
front display. The optimization is carried out by clicking the START button. After the
optimization is done, number of iterations is displayed in the current iteration box.The

the function values are also displayed suitably.

Figure 5.4 shows pareto front for optimization of thermal performance parameters to find
maximum BTHE with minimum BSFC and EGT for the diesel engine operating on
different Karanja biodiesel and diesel blends at different CRs, IPs and full load. Pareto
front shows the trade-off between the two objectives. The objectives are the functions
which the software forms inherently based on the maximising and minimising
parameters given. Objective 1 is minimisation of BSFC and EGT and objective 2 is the
maximisation of BTHE. The pareto front is plotted in objective function space. It gives a
set of points corresponding to different values of objective 1 and objective 2. The
software uses pareto front to strike a balance between objective 1 and objective 2 and
picks up a point to suggest the optimum values of input parameters such as CR, IP and
blend. The points appear to lie in the range -3472.3 to -3472.25 and -3800 to -3850 for
objective 1 and objective 2 respectively. The values of objective 1 and objective 2 are
used to determine the optimum .input paramctcrs by the software by following a set of
complex calculations. The optimum values of CR, IP and blend suggested by the

software after carrying the optimization run are 17, 228 bar, B70 respectively.
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Figure 5.2 Problem Definition Screen
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Figure 5.3 Display Screen of MATLAB Program for Optimization of Thermal

Performance
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Figure 5.4 Pareto Front for Optimisation of Thermal Performance Parameters

5.1.2 Emission Constituents

The optimization of emission constituents is conducted by considering all the
constituents of the exhaust gas measured in the experimental study. Among the
emissions considered, oxygen is preferred to be maximum as it is not harmful to the
environment and remaining emission constituents such as HC, CO, NOx, SOx and CO:z to
be minimum. This creates a multimodal scenario as oxygen is to be maximised at the
expense of other constituents. The same steps adopted in solution procedure in section

5.1.1 of thermal performance are followed here also.

The polynomials for emission constituents are given in Table 5.3 with their respective R2

values. Figure 5.5 shows the screen indicating process of optimization of emission
constituents.
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Table 5.3 Polynomials for Emission Constituents with their Respective R values

Parameter Polynomial R’

0, 0, =-541388.21 -0.37 (x;) + 15.41 (x;) + 8480.75%(x3) + 8.92E-03 (x4) + 0.9209
2.52E-02 (x,)* -0.95 (x)” -43.30 (x3)" -1.18B-04 (x4)*+ 5.63E-03 (x) (x2)-
1.36B-06 (x5) (X3) -5.56E-02 (x3) (X}+ 5.56B-02 (x3) (X4) -1.62E-03(x;)*+
1.95E-02 (x2)>+ 7.21E-02 (x3)*+ 4.16E-07 (x4)°

HC HC = exp[-9.6E-02 (x) - 0.53 (x) - 1.38B-02 (x3) - 1.29E-02 (x4) + 14.016] 0.6638

CcO CO= -542389.53 - 121.82 (x;) + 925.92 (xp) + 8479.54 (x3) - 5.63 (x4) - 10.67 | 0.8668
(x0)? - 84.99 (x)? - 43.3 (x3)% + 0.104 (x5)” + 8.58 (x,) (X2) - 9.211B-06 (x,) (x3)
-0.27 (X3) (Xa) + 0.27 (X3) (X4 + 0.66 (x1)° + 2.1 (x2)° + 0.072 (x3)° - 5.57E-04
(xa)’

NOx NOy =-593.41 + 14.28 (x;) + 70.25 (xy) - 0.605 (x3) - 0.311 (x4) + 0.72 (x,)*- | 0.9495
2.15 (x)* + 1.87E-03 (x3)* + 4.13E-03 (x4)* - 0.603 (xy) (X2) + 2.66E-02 (x)
(x3) + 1.53E-04 (x3) (x4) - 2.423E-02 (x4} (x1)

CO; CO, = -541263.79 + 0.34 (x) -12.4 (x,) + 8480.83 (x3) -6.51E-03 (x4) -2.12E- | 0.9258
02 ()™ 0.77 (%)% -43.3 (x3)° + 9.16E-05 (x,)° - 6.87E-03 (x,) (xp) -1.44E-05
(%2) (x3) + 6.82E-03 (x3) (X4) -6.82B-03 (x3) (x)+ 1.26E-03 (x,)° -1.6B-02 (x,)°
+7.21B-02 (x3)° -3.25B-07 (x4)°

x;= Load, x5= CR, x3= IP, x,= Blend

Figure 5.6 shows pareto front for optimization of emission constituents after the
application of multi-objective optimization of emission constituents for maximisation of
O, emissions with minimisation of other emission constituents (HC, CO, NO,, SO, and
CO,) for the diesel engine operating on different Karanja biodiesel and diesel blends at
varying compression ratios, injection pressures and full load. Objective 1 is
maximisation of O; and objective 2 is the minimisation of other emissions viz. HC, CO,
NOy, SOy and CO,. The pareto front gives set of points corresponding to different values
of objective 1 and objective 2. It can be observed that most of the points are close to
objective 2 axis. The reason is that, objective 1 is only maximisation of O, whereas
objective 2 is minimisation of HC, CO, NO,, SO, and CO;. Hence, more preference is
given to objective 2 due to more number of parameters involved. The software uses
pareto front to strike a balance between objective 1 and objective 2 and picks up a point
to suggest the optimum values of input parameters such as CR, IP and blend for optimum

emissions. The point picked up by the software may lie between a value of O to 5 and -
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4000 to -3000 for objective | and objective 2 respectively. The values of objective | and

objective 2 are used to determine the optimum input parameters by the software by

following a complex set of calculations. The optimum values of CR, IP and blend

suggested by the software after carrying the optimization run are 18, 220 bar, B70

respectively.
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Figure 5.5 Display Screen of MATLAB Program for Optimization of Emission Constituents
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Figure 5.6 Pareto Front for Optimisation of Emission Constituents

5.1.3 Both Thermal Performance and Emission Constituents

The optimization of both thermal performance and emission constituents is conducted by
considering all the performance parameters and emission constituents considered in
sections 5.1.1 and 5.1.2. The solution procedure is also the same as followed for thermal

performance optimization and emission constituents optimization.

Figure 5.7 shows the screen showing optimization of thermal performance and

emission constituents.
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Figure 5.7 Display Screen of MATLAB Program for Optimization of Thermal
Performance and Emission Constituents

Figure 5.8 shows pareto front for optimization of both thermal performance
parameters and emission constituents giving equal weightages. Here, objective | is
maximisation of thermal performance and objective 2 is the minimisation of exhaust
emissions. The software uses a pareto front to strike a balance between objective! and
objective 2 and picks up a point to suggest the optimum values of input parameters such
as CR, IP and blend. The point picked up by the software found to lie in a range of 0 to 5
and -4000 to -3000 for objective | and objective 2 respectively. The values of objective |

and objective 2 are used to determine the optimum input parameters by the software by
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following a complex set of calculations. The optimum values of CR, IP and blend
suggested by the software after carrying the optimization run are 18, 228 bar, B60

respectively.

cu S |I—re—
S3 Genetic Algorithm

File Edit View Insert Tools Desktop Window Help

Pareto front
4000

3000
2000

1000

Objective 2
o

-1000
-2000

-3000

4000
0 5 10 15 20 25
| Objective 1

Figure 5.8 Pareto Front for Optimisation of Both Thermal Performance
Parameters and Emission Constituents Giving Equal Weightages

5.1.4 Weighted Multi-objective Optimization

The multi-objective optimization carried out in the preceding section is
conventional method. In such optimization equal preference is given to each individual
parameter of both thermal performance and exhaust emissions. But, usually, the purpose
of an IC engine is to operate with maximum thermal efficiency and at considerably lesser
emissions. Rarely there may be cases where emissions are of more importance than
efficiency. Under all such cases, weighted optimization is to be carried out wherein
suitable weights (preferences) are given to the thermal performance parameters and

emission constituents.
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The weighted optimization is carried out using genetic algorithm solver and the
procedure is similar to that for conventional optimization. The only difference is that
weights are defined for all the equations of output parameters which are obtained by
nonlinear regression analysis (refer Table 5.2 and 5.3). Figure 5.9 shows the MATLAB
editor which is used to define weights w (1) to w (8) for the equations f (1) to f (8).

Table 5.4 gives a few combinations of the results of weighted optimization of
thermal performance and exhaust emissions. It is seen that the weightage given to
thermal performance and exhaust emissions does not affect the values of CRs chosen. In
all the cases, the optimum CR and IP are found to be 18 and 228bar respectively.
Therefore, it can be inferred that the results obtained using optimization are in close
agreement with those found in the experimental study. However the blend to be used
appears to vary between B67 to B74 in most of the cases as observed from the table,
based on the allotted weightages.

Further, it is also observed that the optimum values of CR and IP for equal
weightages of 0.5 (50%) each to thermal performance and exhaust emissions match but
blend do not match with those obtained from conventional multi-objective optimization .
The reason is that, in conventional optimization equal weightages are alloted to all
parameters irrespective of whether they are related to thermal performance or exhaust
emissions. But, in weighted optimization, 0.5 (50%) weightage given to thermal
performance evaluation gets divided equally among BTHE, BSFC and EGT and the
weightage given to exhaust emissions say gets divided equally among exhaust emissions
constituents of HC, CO, NOy, HSU, O,, CO, and SO,.

*Conventional multi-objective optimization: GA toolbox of MATLAB by default allots equal weightages
to each individual parameter. ’
“Weighted optimization: Any selected value of weightage can be allotted collectively to a group of

parameters or each individual parameter specifically
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Figure 5.9 MATLAB Editor
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It can also be noted that the optimum blend for 100% weightage to thermal
performance is B72 which is in line with that obtained using conventional optimization
(B70). But, when 100% weightage is given to exhaust emissions, the optimum blend
through weighted optimization method is found to be B41. The value does not agree with
that obtained by using conventional optimization. Here, in weighted optimization,
highest weightage given to emissions indicate that B41 gives least emissions as

compared to other higher blends.

Table 5.4 Weightages For Thermal Performance and Emissions In Multi objective

Optimization
Weightage to Thermal Performance | Weightage to Emissions | CR | IP | Blend

1 0 18 {228 72
0.8 0.2 18 (228 | 74
0.7 0.3 18 {228 72
0.6 04 18 | 228 75
0.5 0.5 18 1228 71
04 0.6 18 {228 72
0.3 0.7 18 228 | 70
0.2 08 18 {228 | 67

0 I 18 [ 228 41

Different optimization runs carried out considering thermal performance,
emission constituents, both thermal performance and emission constituents giving equal
and different weightages, show that the values of CR, IP and blend for optimum
performance and emissions of the engine fuelled with Karanja biodiesel and diesel
blends are found to be 18, 228bar and B70 respectively.

The experimental results presented in chapter 4 do not give the output parameters
for the specified optimum values of CR, IP and blend as engine tests are not conducted

-for this configuration. Hence, there is a need to obtain the output parameters
corresponding to the optimum values of inputs. An ANN can be used in order to obtain

the corresponding output parameters, which is discussed in the following section.
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5.2 ANN Modeling

An ANN is a system based on the operation of biological neural networks, in
otherxwords, is an emulation of biological neural system. ANNs are among the newest
signal processing technologies nowadays. For further details Appendix IX can be
referred.

In the present study, an ANN model is built to simulate the actual engine
behaviour in order to obtain the output parameters of thermal performance and emission
constituents corresponding to the optimum input parameters obtained. The model is built
by using the data obtained by conducting a series of experiments on the four stroke,
single cylinder, variable compression ratio, direct injection, diesel engine using blends of
Karanja biodiesel and diesel as fuel. As discussed in chapter 4, the experiments are
conducted by varying load, compression ratio, blend proportion and injection pressure.
The experimental data is divided according to 80-20 rule, with 80% of the available data
being used for training of the network and remaining 20% for validation.

Tables 5.5 and 5.6 represent a sample of input and output data that is used in the
ANN modeling of engine performance and exhaust gas emission constituents
respectively. The engine load is varied from Okg to 12kg in steps of 3kg, compression
ratios considered for conducting the experiments are 14, 15, 16, 17, 17.5 and 18, while
the injection pressure is varied from 150bar to 250bar in steps of 50bar. The experiments
are carried out for the blends of B20, B40, B60, B80, pure Karanja biodiesel and pure
diesel. The data obtained by conducting these experiments is used to model the neural
network for predicting thermal performance and exhaust gas emissions of the engine.

The software selected for neural network modeling in the present study is Easy
NN. It is selected purely because of its simplicity in developing and training models
involving feed forward multilayer neural networks with back-propagation training
algorithm. Easy NN grows multilayer neural networks frdm the data in a Grid. The
neural network input and output layers are created to match the grid input and output
columns.Hidden layers connecting the input and output layers can then be grown to hold
the optimum number of nodes. Each node contains a neuron and its connection address.
The whole process is automatic. The data grid containing input/output matched pairs for
training and validation of the neural network is produced by importing data from
spreadsheet files, tab separated plain text files, and comma separated files, bitmap files

or binary files. The grid can also be produced manually using the Easy NN grid editing

S S
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facilities. Numeric, text, image or combinations of the data types in the grid can be used
to grow the neural networks. The neural networks learn the training data in the grid and
they can use the validation data available in the grid for self validation at the same time.
When training finishes the neural networks can be tested using the querying data in the
grid, the interactive query facilities or querying data in separate files. The steps that are
required to produce neural networks are automated in Easy NN. The learning can be

terminated by specifying maximum number of cycles or the targeted maximum error.

Table 5.5 Neural Network Input Output Sample Data for Engine Thermal Performance

Input Parameters Output Parameters
Load (kg) | Fuel | Compression Ratio | Injection Pressure | BSFC (kg/kWh) | BTHE (%) | EGT (°C)
0 BO 18 200 27.80 0.45 175.67
3 BC 18 200 0.6 15.72 196.27
6 BO 18 200 0.42 23.15 237.55
9 BO 18 200 0.35 26.17 288
12 BO 18 200 0.3 31.25 350.75
0 B20 18 200 21.25 0.43 185.56
B20 18 200 0.61 15.26 210.96
B20 18 200 0.45 22.35 254.67
BZO ] 18 200 0.3 25.86 289.53
12 i B20 18 200 0.31 30.5 348.56
0 B40 18 200 20.13 0.4 180.65
B40 18 200 0.63 15.04 201.85
6 B40 - 18 200 0.4 22.7 239.68
9 B40 18 200 03 25.42 286.53
12 B40 18 200 0.32 30.05 347.56
0 B60O © 18 200 34.36 0.38 182.89
B60 18 200 0.65 14.82 208.23
B60 i8 200 0.44 20.38 2479
B60 18 200 0.35 25.08 299.65
12 B60 18 200 0.32 29.32 356.04
B8O 18 200 25.40 0.36 187.53
B80 18 200 0.67 13.63 209
B8O 18 200 0.39 20.35 242.69
9 B8O 18 200 0.36 25.46 290.62
12 B8O 18 200 0.33 28.75 346.99
0 B100 18 200 " 22.05 0.32 179.35
3 B100 18 200 0.7 12.58 198.69°
6 B100 18 200 0.45 20.03 240.38
9 B100 18 200 0.37 2439 | 281.85

0 A
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12 [B100] 18 200 [ o3 | 2865 | 34377]

Table 5.6 Input Output Sample Data of Emission Constituents For Neural Network

input Parameters Output Parameters
Load Fuel Compression Injection | CO, co NO, HC 0,
(kg) Ratio Pressure | (%} | (%) (ppm} 1 (ppm) | (%)
0 BO 18 200 0.83 | 0.012 9 6 19.81
3 | BO 18 200 |[134[0013] 37 5 | 18.99
6 BO 18 200 165 | 0.014 75 5 18.67
9 BO 18 200 2.01 } 0.020 118 6 18.18
12 BO 18 200 257 | 0.022 160 8 17.51
0 B20 18 200 0.88 | 0.011 15 5 19.58
B20 18 200 | 14 |0012]| &2 4 | 1897
B20 18 200 1.7 10.017 81 5 18.42
B20 18 200 2.11 1 0.018 118 6 18.22
12 B20 18 200 2.6 | 0.02 161 7 17.56
0 B40 18 200 087 | 0.01 15 4 19.87
B40 18 200 147 | 0.011 38 4 19.04
B40 18 200 175 | 0.013 82 3 18.69
9 B40 18 200 217 | 0.015 124 4 18.25
12 B40 18 200 2.65 | 0.016 163 6 17.43
0 B60 18 200 0.89 [.0.008 15 3 19.91
B60 18 200 1.52 | 0.009 44 3 19.15
6 B60 18 200 1.79 { 0.012 81 2 18.67
9 B60 18 200 2.19 | 0.015 129 4 18.21
12 B60 18 200 2.63 ; 0.015 167 5 17.69
0 B&0 - 18 200 0.92 1 0.005 17 2 19.94
B8O 18 200 1.58 | 0.007 46 3 19?08
B8O 18 200 1.82 1 0.013 84 2 18.56
9 B8O 18 200 2.18 1 0.011 132 3 17.96
12 B&0 18 200 2.68 | 0.013 175 4 17.59
o B100 18 200 0.96 | 0.004 19 2 20.03
B100 18 200 1.6 | 0.006 58 3 19.33
B100 18 200 1.84 | 0.012 87 2 18.95
8100 18 200, 2.24 | 0.009 135 2 18.44
12 B100 18 200 2.7 | 0.011 179 4 17.62
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5.2.1 Thermal Performance

The neural network for predicting thermal performance is deyml;czped by
considering the operating parameters like load, compression ratio, injection pres”%;e:ﬂw d ;
blend as input parameters. The output parameters considered are brake thermal
efficiency, brake specific fuel consumption and exhaust gas temperature. Figure 5.10
shows the layout of simulation of actual engine using ANN model for engine
performance. The ANN uses the same input parameters as received by the engine and
gives corresponding outputs as that fron the engine. Therefore, the ANN model

effectively replaces the engine.

Load

Brake Thermal
Effictency

Compression L . .
vszéop Variable Compression Ratie
. ] Engine Fuelled with Blends E:::\ Brake Specific Fuel

-1 IConsumption

—1~"] of Raranja Biodiesel and
Blend proportion Diesel
Exhaust Gas
Temperature
Injection
Pressure
Load
Brake Thermal
Efficiency
Compression Artificial Neural
ratio . .
i~} Network for prediction ] [Brake Specific Fuel
.. of Thermal 71 [Consumption
Blend proportion Performance
Exhaust Gas
Temperature
Injecuion
Pressure

Figure 5.10 Layout of Simulation of Actual Engine using ANN Model for Engine
Performance

The sample of results obtained experimentally by carrying out series of
experiments on the variable compression ratio engine are listed in Table 5.5, which are

used for developing the neural network model. Various architectures of neural networks
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are tried and an appropriate architecture is chosen such that the average error of the

network for all outputs is within 5%. Table 5.7 gives the details used for modeling this
/

neural network. According to the table, beginning from 2 hidden layered neural network

model, having initially 8 cells in the hidden layer. The number of cells in the hidden

layer is increased up to 30 while monitoring the error resulting at the end of training.

Table 5.7 Details Used to Model the Neural Network

Network Type

Feed Forward

Inputs for the neural network model

Load, Compression ratio, Blend, Injection pressure

Number of cells in input layer

4

Outputs from the neural network
model

Brake thermal efficiency, Brake Specific Fuel Consumption,
Exhaust Gas Temperature

Number of cells in output layer 3

Number of Hidden Layers 2

Initial Number of Cells in a Hidden | 8

Layer

Maximum Number of Cells in a | 30

Hidden Layer

Propagation Rule Weighted Sum Rule

Activation Function

Logistic Function

Output Function

Identity Function

Learning Rule

Back Propagation

The criteria for the termination of training selected are a) permissible error and b)
maximum number of cycles in training and validation. The limiting value for all the
errors over the entire data is selected as 0.05 (5%) while the permissible error for
validation sets is specified as 3% of the target value. The maximum number of training
cycles is limited to 1000000 for each learning set. The training stops when any one of the
above criteria, namely, all errors being less than 0.05, all validation points within 3% of
target values or 1000000 training cycles being completed. The learning rate is kept as 0.6
and momentum as 0.8 for the stable learning and convergence of weights. The number of

learning cycles before any validation cycle is executed is set to 3000. The number of

e ]
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validation cycles in one instance of validation is set to 100. These values are set in the

control window of the software as shown in Figure 5.11.

Controls

Learning

Learning rate [ME Decay T Optimize

Momentum [ct80 ™ P Decay T Optimize

T Remove the worst example at start of learning
Network reconfiguration
r Allow manual Network reconfiguration

P Grow hidden layer 1
|— Grow hidden layer 2
P Grow hidden layer 3

Validating
Cycles before first validating cycle {3000

Cycles per validating cycle 13000

Select fo examples at random from the

432 training examples and change to validating.

Target error stops

(* Stop when the Average error is below

_ 10.0500
or i stop when All errors are below

Validating stops

Stop when 1100.00 % Of the validating examples

are (+ Within |3.00 % of the Target Error
or C Correct after rounding

P Stop if the X of validating examples decreases

Fixed period stops

P Stop after 120.0000 seconds

P Stop on cycle |0

OK ~] Cancel

Figure 5.11 Setting Learning Control for Training of ANN Model

The neural network generated has 4 cells in the input layer, 8 cells in the first hidden

layer, 10 cells in the second hidden layer and 3 cells in the output layer as shown in

Figure 5.12. The architecture of such a neural network is denoted as 4.8.10.3 where the

numbers denote the number of cells in the input layer, first hidden layer, second hidden

layer and output layer respectively.
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Figure 5.12 ANN Model for Predicting Thermal Performance with Architecture
4.8.10.3

On training of the network the error propagation graph for each training cycle is
obtained as indicated in Figure 5.13. The maximum, average and minimum error are all
seen to reduce at a fast pace in the early training period. But, towards the last training
cycles, there is very small change in these error values. Further, the training ends with
average error value less than the value of 5% permitted as the target error value. The
training does not achieve the limiting error value of 3% of target value selected for the
validation set. The training stops after number of training cycles without the error limit
set for validation points being achieved because no further reduction in error is seen for a

number of consecutive cycles.
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Target Error: 0 0500 Learning finished - average error below target

Figure 5.13 ANN Model Training & Error Propogation with Increasing Number of
Training Cycles for the 4.8.10.3

Table 5.8 shows the average, minimum and maximum error for different architectures of
the neural network. It can be observed that the average errors of all the architectures are
almost identical and hence it becomes difficult to select the best architecture for the
model. In such a case, the R test can be used in order to determine the best architecture.

The values of rms error and R are evaluated by using Equations 5.1 to 5.6

Table 5.8 Errors for Different Architectures of Neural Network

Sr. No Architecture Average Minimum Maximum Validation Remarks
of the Model Error (%) Error (%) Error (%) stops within
limiting

Error (%)

| 4.8.10.3 4.983 0.4482 22.6534 3 Training
stopped with

2 4.8.9.3 4.5806 0.3713 21.9288 3 all errors
within 5%

3 4.7.9.3 4.7719 0.2836 21.4245 3

4 4.7.8.3 4.7719 0.2836 21.4245 3

5 45.6.3 4.8108 0.3058 21.6008 3
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6 4773 4.7889 0.3729 22.257 3
7 4223 4.7053 0.513 21.8532 3
8 4213 4.7962 0.6696 23.4381 3
9 4.20.3 4.9679 0.2332 24,2883 3
10 4.193 4.7524 0.4905 22.6710 3

For error calculation, Equations 5.1 to 5.6 are used.

- Error for each case is defined as

€

A, - 4]
%Error = ~—~—%- 5.1

where, A= The output value as obtained from theoretical analysis

A, = The output value predicted by the neural network model

The average error for entire epoch (complete set of input-output pairs) is defined as

L N lAei .—Api

N2

i=1 ei

%Error,, =
(5.2)

The maximum error is defined as

JeError . = max(ﬁ f—”—'i—é—’-’fj]
i=1

el

(5.3)

-

and the minimum error is defined as

N

4, - A,
%Error ,, = min| Y ——2
£52) 6
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For each architecture of neural network model the root mean square value of error is

i v (A —a 2
Error = \/‘1%,“2( e!A p‘l) (5:5)
. i=} i

e

The confidence R (coefficient of determination) can be used to decide upon the best

architecture. The R values can be determined as

&, 14 (5.6)
R= ZR_NZ

The training and test errors for the networks are listed in Table 5.9. It can be
observed that the values of errors are well within specified limits for all the neural
network model architectures evaluated. On the basis of R test, it is found that the model
having architecture 4223isa good model for which value of R is closest to unity among
other models. Hence this model is selecfed as the best representative model for the

prediction of thermal performance constituents.

Table 5.9 Training and Test Errors for Neural Network Architectures

Architecture | Average Error | R

of the | (%)

Model

4.8.10.3 4.983 0.91517
4893 4.5806 0.91637
4.7.9.3 4.7719 0.92456
4783 47719 0.92092
4563 4.8108 0.92916
4773 4.7889 0.92428
4223 4.7053 0.94355
4213 4.7962 0.928815
4203 4.9679 0.94024
4.19.3 4.7524 0.93864
4233 4.5668 1 0.95002

e ]
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5.2.2 Emission Constituents

The constituents of exhaust gas measured during the experiments are CO, CO;,
HC, O;, NOx, and SO,. The exhaust gas emissions are directly dependent on input
parameters like engine load, compression ratio, injection pressure, blend proportion.
Thus, in order to develop a neural network which predicts the exhaust gas emission
constituents for diesel engine working with Karanja biodiesel and its blends with diesel,
the operating conditions such as engine load, CR, IP and blend proportion are given to
the model as the input. The output parameters from the model are the exhaust gas
constituents. Figure 5.14 shows the layout of simulation of actual engine using ANN
model for exhaust emissions. The ANN uses the same input parameters as received by
the engine and gives similar outputs as that of the engine. Therefore, the ANN model

effectively replaces the actual engine.

Carbon
Load Monoxide
Carbon
Co : . . dioxide
ménpressmn Variable Compression
° Engine fuelled with Oxides of
:> blends of Karanja E:_IJ> Nitrogen
Blend proportion Biodiesel and Diesel Unburned
Hydrocarbon
P Oxides of
Injection Sulphur
Pressure
Oxygen
Carbon
Load Monoxide
Carbon -
: dioxide
Compression .
rado Artificial Neural Network STIeF
—~.} for Prediction of N‘M @5 0
__—1/ . . . rogen
Emission Constituents
Blend proportion Unburned
Hydrocarbon
— Oxideas of
Injection Sulphur
Pressure
Oxygen

Figure 5.14 Simulation of Actual Engine Using ANN Model! for Exhaust Emissions
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The sample of results obtained experimentally by carrying out series of
experiments on the variable compression ratio engine are listed in Table 5.6, which are
used for developing the neural network model. Various architectures of neural networks
are tried and an appropriate architecture is determined such that the average error of the
network for all outputs is within 5%. Table 5.10 gives the details used for modeling this
neural network. As per the table, beginning from 2 hidden layered neural network model,
having initially 8 cells in the hidden layer, the number of cells in the hidden layer is

increased up to 30 while monitoring the error, resulting at the end of training.

Table 5.10 Neural Network Modeling for Emission Constituents

Network Type

Feed Forward

Inputs for the neural network model

Load, Compression ratio, Blend, Injection pressure

Number of cells in input layer

4

Qutputs from the neural network
model

Brake thermal efficiency, Brake Specific Fuel Consumption,
Exhaust Gas Temperature

Number of cells in output layer 3

Number of Hidden Layers 2

Initial Number of Cells in a Hidden | 8

Layer

Maximum Number of Cells in a | 30

Hidden Layer

Propagation Rule Weighted Sum Rule
Activation Function Logistic Function
Output Function Identity Function
Learning Rule Back Propagation

The limiting value for all the errors over the entire data is selected as 0.05 (5%) '

while the permissible error for validation sets is specified as 3% of the target value. The
maximum number of training cycles is limited to 1000000 for each learning set. The
training stops when any one of the above criteria, namely, all errors being less than 0.05,
all validation points within 3% of target values or 1000000 training cycles being

completed. The learning rate is kept as 0.6 and momentum as 0.8 for the stable learning

e ]
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and convergence of weights. The number of learning cycles before any validation cycle
is executed is set to 3000. The number of validation cycles in one instance of validation

is set to 100. These values are set in the controls window of the software as shown in

Figure 5.15.
Controls
Learning Target error stops
Learning rate [EBS P Decay P Optimize (* Stop when the Average error is below 10,0500
Momentum 10.80 r Decay P Optimize or C stop when All errors are below .
P Remove the worst example at start ol learning Validating stops
Network reconfiguration Stop when 1100.00 % Of the validating examples

P Allow manual Network reconfiguration
i are '« Within [3 00 % Of the Target Error
r Grow hidden layer 1

r Grow hidden layer 2 or C Correct after rounding

P Grow hidden layer 3
P Stop if the % of validating examples decreases

Validating
. o Fixed period stops
Cycles before first validating cycle 13000
P Stop after 120.0000 seconds

Cycles per validating cycle  [3000
P Stop on cycle [0

Select fo examples at random from the

432 training examples and change to validating. c |
Ok ance

Figure 5.15 Setting Learning Controls for Training of ANN Model

The neural network generated has 4 cells in the input layer, 8 cells in the first
hidden layer, 10 cells in the second hidden layer and 6 cells in the output layer as shown
in Figure 5.16. The architecture of such a neural network is denoted as 4.8.9.5 where the
numbers denote the number of cells in the input layer, first hidden layer, second hidden

layer and output layer respectively.
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Figure 5.16 ANN Model of Exhaust Gas Constituents with Architecture 4.8.9.5

On training of the network the error propagation graph for each training cycle is
obtained as indicated in Figure 5.17. The maximum, average and minimum error are all
seen to reduce at a fast pace in the early training period. But, towards the last training
cycles, there is very small change in these error values. Further, the training ends with
average error value less than the value of 5% permitted as the target error value. The
training does not achieve the limiting error value of 3% of target value selected for the
validation set. The training stops after number of training cycles without the error limit
set for validation points being achieved because no further reduction in error is seen for a

number of consecutive cycles.

Table 5.11 gives the average, minimum and maximum errors for different architectures
tested. It can be observed that the average errors of all the architectures are almost
identical and hence it becomes difficult to select the best architecture for the model. In

such a case, the R test can be used in order to determine the best architecture.
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Untitled

Error

100
090
0.80
0.70
0.G0
0.50
0.40
0.10
0.20
0.10

«C rGPFCa G EmH TR /T T T T =
Cycles

Learning rate: 0.60 Momentum: 0 80 Minimum Error: 0.0035 Average Error: 0.0476 Maximum Error: 0 2595

Target Error: 0 0500 Learning finished - average error below target.

Figure 5.17 ANN Model Training & Error Propogation Graph With Increasing Number
of Training Cycles for 4.8.9.5

Table 5.11 Neural Network Architecture 8t Corresponding Training Results for Gas

Emissions
Sr.  Architecture of  Average Minimum Maximum Validation stops Remarks
No the Model Error (%) Error (%) Error (%) within limiting
Error ¢oo)
! 4.8.10.5 4.6410 0.5076 22.3102 3 Training stopped
with all errors
2 4.8.8.8.5 4.9514 0.7642 22.8478 3 within 5%
3 4.6.6.45 4.9928 0.648 26.9356 3
4 4.6.6.5 4.9968 0.4639 22.9947 3
5 46.75 4.9726 0.5657 23.3737 3
6 4.20.20.5 4.8227 0.6691 22.9378 3
7 4.6.7.5 4.7852 0.564 22.675 3
8 4.6.6.6.5 4.6724 0.763 23.7865 3
9 4.8.75 4.7895 0.7236 24.9720 3
10 4.885 4.5463 0.7342 23.8765 3
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The training and test errors for the networks are listed in Table 5.12. It can be
observed that the values of error are well within specified limits for all the neural
network model architectures evaluated. On the basis of R test, it is found that the model
having architecture 4.8.10.5 is a good model .for which value of R is closest to unity
among other models. Hence this model is selected as the best representative model for

the prediction of thermal performance constituents.

Table 5.12 Training and Test errors for Different Architectures

Architecture | Average Error R
of the (%)
Model
4.8.10.5 4.641 1.06288
48885 4.9514 0.87712
4.6.64.5 4.9928 0.95073
46.65 4.9968 0.78219
46.15 4.9726 0.8043
4.20.20.5 4.8227 0.97175
4.6.6.6.5 4.7852 0.92968
4895 4.6724 1.0028
4875 47895 0.82335
4.8.8.5 4.5463 0.8976

It is seen from ANN modeling for prediction of exhaust gas constituents and
thermal performance that ANN models can successfully capture the complex input-

output relationships and still provide small prediction errors. -

In order to determine the best ANN model a number of architectures are tried and
tested for error, spread and coefficient of determination. The representative model
selected for thermal performance has architecture of 4.22.3. It has an average error of
nearly 4.79%, minimum error of 0.66% and maximum error of 23%. The coefficient of
determination is very close to unity being 0.92 and the spread is 0.1576. This ensures
that in the test range if this model is subject to any condition for which experiment is not
conducted, the error will not exceed 5% on an average and 23% maximum. This is

shown by applying the model to a selected set of data. The results predicted by 4.22.3

S S A —
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ANN model are compared with experimental results and the error is evaluated (Refer

Table 5.13)

On similar lines, the representative model selected for emission constituents has
an architecture of 4.8.10.5. It has an average error of nearly 5%, minimum error of 0.5%
and maximum error of 22%. The coefficient of determination is very close to unity being
1.0028 and the spread is 0.2876. This ensures that in the test range if this model is
subject to any condition for which experiment is not conducted, the error will not exceed
5% on an average and 22% maximum. This is shown by applying the model to a selected
set of data. The results predicted by 4.8.10.5 ANN model are compared with

experimental results and the error is evaluated (Refer Table 5.14)

For the ANN models selected for both thermal performance and emission
constituents, the average prediction error is hence close to 5% which is in line with the
model errors reported in most literature reviewed. Further, the ANN model for thermal
performance modeling required one hidden layer while that for exhaust gas constituents
required two. The number of cells in these hidden layers is larger for exhaust gas
constituents. This indicates a much more complex relationship between the exhaust gas
constituents and the input parameters as compared to the thermal performance

parameters.

Tables 5.13 and Table 5.14 show that the ANN models developed for prediction
of thermal performance and exhaust emission constituents have an acceptable error and
hence can be used for obtaining the output parameters corresponding to optimized input
‘parameters. The optimum values of CR, IP and blend obtained through optimization
using genetic algorithm tool are 18, 228bar and B70 respectively. The output parameters
corresponding to CR, IP and blend of 18, 228bar and B70 are given in Table 5.15.

S S ——
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Table 5.15 Qutput Parameters Corresponding to CR, IP and Blend of 18, 228bar and

B70
THERMAL PERFORMANCE | Output Parameters | Value
BTHE (%) 27.49
BSFC (kg/kWh) 0.33
EGT (0O) 345.56
EMISSION CONSTITUENTS | CO (%) 0.006
HC (ppm) 3
CO, (%) 3.08
0, (%) 17.80
NOx (ppm) 160

Table 5.16 presents a comiparison between the values of output parameters

obtained through the ANN corresponding to the optimised input parameter for and those

obtained through experimentation for Karanja biodiesel and Diesel oil. The experimental
results given in the table correspond to a full load of 12kg, CR of 18 and IP of 200bar.

Table 5.16 Comparison of Thermal Performance and Emission Constituents for Diesel
Oil, B70 and Karanja Biodiesel

THERMAL PERFORMANCE | Output Parameters | Diesel | B70 | Karanja
' biodiesel
BTHE (%) 2920 | 27.49 26.64
BSFC (kg/kWh) 0.31 0.33 0.34
EGT (°C) 350.75 | 345.56 | 343.77
EMISSION CONSTITUENTS CO (%) 002 | 0.006 | 0005
HC (ppm) 5.00 . 3.00 2.00
CO; (%) 2.62 3.08 3.26
0, (%) 17.62 | 17.80 17.91
NO, (ppm) 125 160 166
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It can be observed that thermal performance is best for Diesel oil and emissibn
constituents are least for Karanja biodiesel. It can be also noted that the thermal
performance and emission constituents for B70 are in between those for Diesel oil and
Karanja biodiesel. The optimum values for blend B70 are obtained by striking a
compromise or balance between Diesel oil and Karanja biodiesel. If the engine is
operated with B70 blend, the values of BTHE, BSFC and EGT are found lesser by about
6%, 6% and 1.4% respectively as compared to Diesel oil and the emission constituents of
CO, HC, CO,, O, and NOy are found more by about 20%, 50%, 5%, 0.6% and 4%

respectively as compared to Karanja biodiesel.

L
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