LIST OF FIGURES

	Plate 2.1 First Diesel Engine	10
	Plate 2.2 Rudolph Diesel	11
	Figure 2.1 Pressure vs. Crank Angle at 3.88mg per cycle [63]	65
	Figure 2.2 Pressure vs. Crank Angle at 5 mg per cycle [63]	66
	Figure 2.3 Pressure vs Crank Angle for 6.11 mg per cycle [63]	66
	Figure 2.4 Pressure vs Crank Angle at 7.22 mg per cycle [63]	67
	Figure 2.5 Variation of Combustion Efficiency and Exhaust Temperature with Air-Fuel Ratio [82].	68
	Figure 2.6 Variation of Oxygen Concentration and CO with Air-Fuel Ratio [82]	69
	Figure 2.7 Comparison of Heat Release Rates for Different Fuels [84]	70
	Figure 2.8 Structure of ANN for Dual Fuel (CNG-Diesel) Operated Diesel Engine [93]	79
	Figure 2.9 Flow chart for the proposed study	83
	Plate 3.1 Experimental Test Rig	87
	Figure. 3.1 Schematic Diagram of Experimental Test Rig	88
	Plate 3.2 Variable Compression Ratio Diesel Engine	91
	Plate 3.3 Rear View of the Engine	92
	Figure 3.2 Principle of Tilting Cylinder Block Assembly	93
	Plate 3.4 Tilting Cylinder Block Arrangement	93
	Plate 3.5 Compression Ratio Setting	94
	Plate 3.6 Fuel Injection Pump	95
	Plate 3.7 Eddy Current Dynamometer	96
,	Plate 3.8 Assembly of Eddy Current Dynamometer and Engine	97
	Plate 3.9 Components Connected to the Eddy Current Dynamometer	98
	Plate 3.10 Load Cell	99
	Plate 3.11 Dynamometer Loading Unit	100
	Plate 3.12 Engine Panel Box	101
	Figure 3.3 Schematic Diagram of the Loading Dimmerstat1	102
	Figure 3.4 Circuit Diagram of the Loading Dimmerstat	102
	Plate 3.13 Piezosensor	103
	Plate 3.14 The Nut Adjustment for Setting Injection Pressure	104

	Plate 3.15 Location of Pressure Sensors	
	Plate 3.16 Sensors Interface Circuit	
	Plate 3.17 Assembly of Emission Measurement Systems	109
•	Plate 3.18 Exhaust Gas Analyzer	110
	Figure. 3.5 Principle of Non-Dispersive Infra Red Technique	110
	Plate 3.19 Measurement of Exhaust Gas Constituents	
	Plate 3.20 Smoke Meter	
	Figure 3.6 Principle of Folded Geometry	
	Plate 3.21 Measurement of Exhaust Smoke	
	Plate 3.22 Interface of EnginesoftLV	115
	Figure 4.1 Input and Output Variables of the Engine System	
	Figure 4.2 Comparison of Variation of BTHE with Load at CR of 17.5 and IP of 200bar	123
	Figure 4.3 Comparison of Variation of BSFC with Load at CR of 17.5 and IP of 200bar	124
	Figure 4.4 Comparison of BTHE at Rated Load, CR of 17.5 and IP of 200bar	124
	Figure 4.5 Comparison of BSFC at Rated Load, CR of 17.5 and IP of 200bar	125
	Figure 4.6 Variation of HC with Load at CR of 17.5 and IP of 200bar	
	Figure 4.7 Variation of O_2 with Load at CR of 17.5 and IP of 200bar	
	Figure 4.8 Variation of NO _x with Load at CR of 17.5 and IP of 200bar	
	Figure 4.9 Variation of HC with CR at Load of 12kg and IP of 200bar	
	Figure 4.10 Variation of O_2 with CR at Load of 12kg and IP of 200bar	
	Figure 4.11 Variation of NO _x with CR at Load of 12kg and IP of 200bar	
	Figure 4.12 Variation of HC with IP at Load of 12kg and CR of 17.5	
	Figure 4.13 Variation of O_2 with IP at Load of 12kg and CR of 17.5	
	Figure 4.14 Variation of NO _x with IP at Load of 12kg and CR of 17.5	
	Figure 4.15 Comparison of Variation of BTHE with CR at a Load of 12kg and IP of 200bar	
	Figure 4.16 Comparison of Variation of BSFC with CR at a Load of 12kg and IP of 200bar	132
	Figure 4.17 Comparison of Variation of BTHE and BSFC with CR at a Load of 12kg and IP of 2 with Earlier Studies	200bar 133
	Figure 4.18 Comparison of Variation of BMEP with CR at a Load of 12kg and IP of 200bar	134

. -

Figure 4.19 Comparison of Variation of Volumetric Efficiency with CR at a Load of 12kg and IP of 200bar
Figure 4.20 Comparison of Variation of HBP with CR at a Load of 12kg and IP of 200bar136
Figure 4.21 Comparison of Variation of HGas with CR at a Load of 12kg and IP of 200bar137
Figure 4.22 Comparison of Variation of EGT with CR at a Load of 12kg and IP of 200bar
Figure 4.23 Comparison of Variation of EGT with CR at a Load of 12kg and IP of 200bar with Earlier Studies
Figure 4.24 Comparison of Variation of BTHE with Load at a CR of 18 and IP of 200bar
Figure 4.25 Comparison of Variation of BSFC with Load at a CR of 18 and IP of 200bar141
Figure 4.26 Comparison of Variation of BTHE and BSFC with Load at a CR of 18 and IP of 200bar with Earlier Studies
Figure 4.27 Comparison of Variation of BMEP with Load at a CR of 18 and IP of 200bar143
Figure 4.28 Comparison of Variation of Volumetric Efficiency with Load at a CR of 18 and IP of 200bar
Figure 4.29 Comparison of Variation of HBP with Load at a CR of 18 and IP of 200bar
Figure 4.30 Comparison of Variation of HGas with Load at a CR of 18 and IP of 200bar145
Figure 4.31 Comparison of Variation of EGT with Load at a CR of 18 and IP of 200ba
Figure 4.32 Comparison of Variation of EGT with Load at a CR of 18 and IP of 200bar with Earlier Studies
Figure 4.33 Comparison of Variation of BTHE with IP at CR of 18 and Load of 12kg148
Figure 4.34 Comparison of Variation of BSFC with IP at CR of 18 and Load of 12kg148
Figure 4.35 Comparison of Variation of BTHE and BSFC with IP at a CR of 18 and IP of 200bar with Earlier Studies
Figure 4.36 Comparison of Variation of BMEP with IP at CR of 18 and Load of 12kg150
Figure 4.37 Comparison of Variation of Volumetric Efficiency with IP at CR of 18 and Load of 12kg
Figure 4.38 Comparison of Variation of HBP with IP at CR of 18 and Load of 12kg
Figure 4.39 Comparison of Variation of HGas with IP at CR of 18 and Load of 12kg152
Figure 4.40 Comparison of Variation of EGT with IP at CR of 18 and Load of 12kg153
Figure 4.41 Comparison of Variation of EGT with IP at a CR of 18 and Load of 12kg of Present Study with Jindal et al. [66]
Figure 4.42 Comparison of Variation of CO with CR at Load of 12kg and IP of 200bar
Figure 4.43 Comparison of Variation of HC with CR at Load of 12kg and IP of 200bar

r V	igure 4.44 Comparison of Variation of HC with CR at a Load of 12kg and IP of 200bar Present Study vith Earlier Studies
F	igure 4.45 Comparison of Variation of NO _x with CR at Load of 12kg and IP of 200bar
F	igure 4.46 Comparison of Variation of CO_2 with CR at Load of 12kg and IP of 200bar159
F	igure 4.47 Comparison of Variation of O_2 with CR at Load of 12kg and IP of 200bar160
F	igure 4.48 Comparison of Variation of SO _x with CR at Load of 12kg and IP of 200bar
F	igure 4.49 Comparison of Variation of HSU with CR for at Load of 12kg and IP of 200bar162
F E	igure 4.50 Comparison of Variation of NO _x and HSU with CR at a Load of 12kg and IP of 200bar with arlier Studies
F	igure 4.51 Comparison of Variation of CO with Load at CR of 18 and IP of 200bar
F	igure 4.52 Comparison of Variation of HC with Load at CR of 18 and IP of 200bar
F	igure 4.53 Comparison of Variation of NOx with Load at CR of 18 and IP of 200bar
F	igure 4.54 Comparison of Variation of CO_2 with Load at CR of 18 and IP of 200bar
F	igure 4.55 Comparison of Variation of O_2 with Load at CR of 18 and IP of 200bar168
F	igure 4.56 Comparison of Variation of SO_x with Load at CR of 18 and IP of 200bar
F	igure 4.57 Comparison of Variation of HSU with Load at CR of 18 and IP of 200bar
F E	igure 4.58 Comparison of Variation of NO _x and HSU with Load at a CR of 18 and IP of 200bar with arlier Studies
F	igure 4.59 Comparison of Variation of CO with IP at CR of 18 and Load of 12kg
F [(igure 4.60 Comparison of Variation of CO with IP at a CR of 18 and Load of 12kg with Jindal et al. 56]173
F	gure 4.61 Comparison of Variation of HC with IP at CR of 18 and Load of 12kg
F W	gure 4.62 Comparison of Variation of HC with IP at CR of 18 and Load of 12kg of Present Study ith Jindal et al. [66]
F	gure 4.63 Comparison of Variation of NO _x with IP at CR of 18 and Load of 12kg
F	gure 4.64 Comparison of Variation of CO2 with IP at CR of 18 and Load of 12kg
F	gure 4.65 Comparison of Variation of CO_2 with IP at a CR of 18 and Load of 12kg of Present Study ith Jindal et al. [66]
F	gure 4.66 Comparison of Variation of O_2 with IP for Tested Fuels at CR of 18 and Load of 12kg177
F	gure 4.67 Comparison of Variation of SO_x with IP at CR of 18 and Load of 12kg178
F	gure 4.68 Comparison of Variation of HSU with IP at CR of 18 and Load of 12kg

Figur Jinda	re 4.69 Comparison of Variation of NO _x and HSU with IP at a CR of 18 and Load of 12kg with I et al. [66]	79
Figur	e 4.70 Variation of CP With CA at CR of 14 for Karanja Biodiesel18	81
Figur	re 4.71 Variation of CP With CA at CR of 14 for Diesel Oil18	82
Figur	e 4.72 Variation of CP With CA at CR of 16 for Karanja Biodiesel	83
Figur	re 4.73 Variation of CP With CA at CR of 16 For Diesel Oil18	83
Figur	e 4.74 Variation of CP With CA at CR of 18 for Karanja Biodiesel	84
Figur	e 4.75 Variation of CP With CA at CR of 18 for Diesel Oil	35
Figur Prese	re 4.76 Comparison of Variation of Peak CP with CR at a Load of 12kg and an IP of 200bar of the ent Study with that of Earlier Investigations	e 36
Figur	e 4.77 Variation of Net Heat Release Rate With CA at CR of 14 for Karanja Biodiesel	38
Figur	e 4.78 Variation of Net Heat Release Rate With CA at CR of 14 for Diesel Oil	38
Figur	e 4.79 Variation of Net Heat Release Rate With CA at CR of 16 for Karanja Biodiesel	39
Figur	e 4.80 Variation of Net Heat Release Rate With CA at CR of 16 for Diesel Oil)0
Figur	e 4.81 Variation of Net Heat Release Rate with CA at CR of 18 for Karanja Biodiesel	€1
Figur	e 4.82 Variation of Net Heat Release Rate with CA at CR of 18 for Diesel Oil	€1
Figur IP of 1	e 4.83 Comparison of Variation of Peak Net Heat Release Rate with CR at a Load of 12kg and an 200bar of the Present Study with that of Earlier Investigations	n 93
Figur	e 4.84 Variation of Rate of Pressure Rise with CA at CR of 14 for Karanja Biodiesel	€
Figur	e 4.85 Variation of Rate of Pressure Rise With CA at CR of 14 for Diesel Oil) 5
Figur	e 4.86 Variation of Rate of Pressure Rise With CA at CR of 16 for Karanja Biodiesel	€
Figur	e 4.87 Variation of Rate of Pressure Rise with CA at CR of 16 for Diesel Oil) 7
Figur	e 4.88 Variation of Rate of Pressure Rise With CA at CR of 18 for Karanja Biodiesel	98
Figur	e 4.89 Variation of Rate of Pressure Rise with CA at CR of 18 for Diesel Oil	98
Figur IP of 2	e 4.90 Comparison of Variation of Peak Rate of Pressure Rise with CR at a Load of 12kg and an 200bar of the Present Study with that of Earlier Investigations)0
Figur	e 4.91 Variation of Mass Fraction Burnt With CA at CR of 14 for Karanja Biodiesel	11
Figur	e 4.92 Variation of Mass Fraction Burnt With CA at CR of 14 for Diesel Oil	12
Figur	e 4.93 Variation of Mass Fraction Burnt With CA at CR of 16 for Karanja Biodiesel	13
Figur	e 4.94 Variation of Mass Fraction burnt with CA at CR of 16 for Diesel Oil	4

]	Figure 4.95 Variation of Mass Fraction Burnt with CA at CR of 18 for Karanja Biodiesel2	04
1	Figure 4.96 Variation of Mass Fraction Burnt With CA at CR of 18 for Diesel Oil2	05
J	ہ Figure 4.97 Variation of Mean Gas Temperature With CA at CR of 14 for Karanja Biodiesel2	07
1	rigure 4.98 Variation of Mean Gas Temperature With CA at CR of 14 for Diesel Oil	07
ł	igure 4.99 Variation of Mean Gas Temperature with CA at CR of 16 for Karanja Biodiesel	90
I	Figure 4.100 Variation of Mean Gas Temperature With CA at CR of 16 for Diesel Oil	09
ł	igure 4.101 Variation of Mean Gas Temperature With CA at CR of 18 for Karanja Biodiesel2	1(
F	Figure 4.102 Variation of Mean Gas Temperature With CA at CR of 18 for Diesel Oil	11
ł	Figure 4.103 Variation of CP With Cylinder Volume at CR of 14 for Karanja Biodiesel2	12
F	rigure 4.104 Variation of CP With Cylinder Volume at CR of 14 for Diesel Oil	13
F	rigure 4.105 Variation of CP With Cylinder Volume at CR of 16 for Karanja Biodiesel2	14
F	rigure 4.106 Variation of CP With Cylinder Volume at CR of 16 for Diesel Oil	14
F	rigure 4.107 Variation of CP With Cylinder Volume at CR of 18 for Karanja Biodiesel22	14
F	rigure 4.108 Variation of CP With Cylinder Volume at CR of 18 for Diesel Oil	15
F	igure 4.109 Variation of Cumulative Heat Release With CA at CR of 14 for Karanja Biodiesel2	16
F	igure 4.110 Variation of Cumulative Heat Release With CA at CR of 14 for Diesel Oil	16
F	igure 4.111 Variation of Cumulative Heat Release With CA at CR of 16 for Karanja Biodiesel21	17
F	rigure 4.112 Variation of Cumulative Heat Release With CA at CR of 16 for Diesel Oil22	18
F	igure 4.113 Variation of Cumulative Heat Release With CA at CR of 18 for Karanja biodiesel23	19
F	rigure 4.114 Variation of Cumulative Heat Release With CA at CR of 18 for Diesel oil	19
F	igure 4.115 Variation of Cylinder and Injection Pressures with CA (150bar)	21
F	igure 4.116 Variation of Cylinder and Injection Pressures with CA (200bar)	21
F	igure 4.117 Variation of Cylinder and Injection Pressures with CA (250 bar)	22
F	igure 5.1 Complexity of System & Precision Level of Different Models	30
F	igure 5.2 Problem Definition Screen23	37
F	igure 5.3 Display Screen of MATLAB Program for Optimization of Thermal Performance	38
F	igure 5.4 Pareto Front for Optimisation of Thermal Performance Parameters	39

24 on 24 24 25 25
on 24 25 25 25
24 25 25: 25
25 25
25: 25
25
es foi 25
25
26
26
ng 262
27
275
276
294
29
296
297
302
302
d Oil 303
317
319
321
-