
CHAPTER 5                                                                       REGRESSION MODELLING AND EXPERIMENTS 

119 

 

 

 

 

REGRESSION MODELLING AND EXPERIMENTS 

5.1    Introduction 

 In many problems two or more variables are related, and it is of interest to model 

and explore this relationship. For example, in a manufacturing process the yield of 

product is related to the quality of job. The mechanical engineer may want to build a 

model related to surface roughness and then use the model of prediction, process 

optimization, or process control.  

 In general, suppose that there is a single dependent variable or response y that 

depends on k independent or regressor variables, for example, ��, ��, … ��  .The 

relationship between these variables is characterized by a mathematical model called a 

regression model. The regression model is fit to a set of sample data. In some instances, 

the experimenter knows the exact form of the true functional relationship between y 

and	��, ��, … , ��, say  � = ∅(��, ��, … , ��). However, in most cases, the true functional 

relationship is unknown, and the experimenter chooses an appropriate function to 

approximate Ø. Low order polynomial models are widely used as approximating 

functions. 

 Regression methods are frequently used to analyze data from unplanned 

experiments, such as might arise from observation of uncontrolled phenomena or 

historical records. Regression methods are also very useful in designed experiments 

where something has “gone wrong”. We will demonstrate some of these situations for 

turning operations of different materials in this chapter. 

 

 

5 
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5.2    Linear Regression Models 

 We will focus on fitting linear regression models. To illustrate, suppose that we 

wish to develop an empirical model relating the viscosity of polymer to the temperature 

and the catalyst feed rate. A model that might describe this relationship is  

� = �� +	���� + ���� + �																																																	(5.1) 
where y represents the viscosity, ��  represents the temperature, and ��	represents the 

catalyst feed rate. This is a multiple linear regression model with two independent 

variables. We often call the independent variables predictor variables or regressor. The 

term linear is used because Equation 5.1 is a linear function of the unknown parameters ��, �� and	��. The model describes a plane in the two – dimensional	��,	�� space. The 

parameters 	��	defines the intercept of the plane. We sometimes call ��  and ��	partial 

regression coefficients because �� measures the expected change in y per unit change in �� when �� is held constant and 	�� measures the expected change in y in per unit change 

in	��  and �� is held constant. 

In general, the response variable y may be related to k regressor variables. The model 

	� = �� +	���� + ���� +⋯+ ���� + �																															(5.2) 
is called a multiple linear regression model  with k regressor variables. The 

parameters	��, j = 0,1,…..,  k, are called regression coefficients. This model describes a 

hyper plane in the k – dimensional space of the regressor variables { ��}. The parameter  ��  represents the expected change in response y per unit change in ��  when all the 

remaining independent variables	�� 	(� ≠ �)are held constant. 

 Models those are more complex in appearance than Equation 5.2 may often still 

be analyzed by multiple linear regression techniques. For example, consider adding an 

interaction term to the first – order model in two variables, say   

� = �� +	���� + ���� + ������� + �																																						(5.3) 
If we let 	�� =	���� and	�� =	���, then Equation 6.3 can be written as 
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� = �� +	���� + ���� + ��	�� + �																																							(5.4) 
which is a standard multiple linear regression model with three regressor. As another 

example, consider the second – order response surface model in two variables: 

� = �� +	���� + ���� + ���	��� + ������ + ������� + �																			(5.5) 
If we let   x�	 = 	x��, 	x�	 =	x��, x 	 =	x�x�, β�	 =	β��, β�	 = 	β�� and β 	 = 	β�� then this 

becomes 

� = �� +	���� + ���� + ���� + ���� + � � + �																						(5.6) 
which is a linear regression model. We have also been this model in examples earlier in 

the text. In general, any regression model that is linear in the parameters (the β’s) is a 

linear regression model, regardless of the shape of the response surface that it generates. 

5.3    Estimation of the Parameters in Linear Regression Models 

 The method of least squares is typically used to estimate the regression 

coefficients in a multiple linear regression model. Suppose that n>k observations on the 

response variable are available, say  y�, y�, … , y$. Along with each observed response	y%, 
we will have an observation on each regressor variable and let x%&  denote the ith 

observation or level of variablex&. The data will appear as in Table 5.1.We assume that 

the error term ϵ  in the model has E(ϵ) = 	0   and V(ϵ) = 	0�  and that the {ϵ%}  are 

uncorrelated random variables. 

We may write the model equation (Equation 6.2) in terms of the observations in Table 

5.1 as 

�� = 	�� +	����� + ����� +⋯+ ����� + �� 
					= 	�� +	-���

�.� ��� + �� 								� = 1,2…… , /																													(5.7) 
 The method of least squares chooses the β’s in Equation 5.7 so that the sum of 

the squares of the errors, ϵ%, is minimized. The least squares function is  
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1 = 	-���	 =		-2�� −	�� −	-��		����
�.� 4�5

�.�
5
�.� 																											(5.8) 

The function 1  is to be minimized with respect to ��, ��, …… , �� . The least squares 

estimators, say �7�, �7�, …… , �7�,must satisfy  

8 919��:;<=,;<>,……,;<? =	−2	-2�� −	�7� −	-�7�		����
�.� 45

�.� = 0																	(5.9A) 
and 

8 919��B;<=,;<>,……,;<? = 	−2	-2�� −	�7� −	-�7�		����
�.� 45

�.� ��� = 0								� = 1,2, …… . . , C		(5.9D) 
Table 5.1 Data for Multiple Linear Regressions 

Y X1 X2 … Xk 

y1 X11 X12 … X1k 

y2 X21 X22 … X2k 

. 
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yn Xn1 Xn2 … Xnk 

 

Simplifying Equation 5.9, we obtain 

/�7� +	�7�-���5
�.� +	�7�-���5

�.� +	…	+	�7�-���5
�.� = 	-��5

�.�  

�7�-��� +5
�.� �7�-����5

�.� +	�7�-������5
�.� +	…	+	�7�-������5

�.� = 	-�����5
�.�  
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�7�-��� +5
�.� �7�-������5

�.� +	�7�-������5
�.� +	…	+	�7�-����5

�.� 		= -�����5
�.� 					(5.10) 

These equations are called the least squares normal equations. Note that there are E = C + 1 normal equations, one for each of the unknown regression coefficients. The 

solution to the normal equations will be the least squares estimators of the regression 

coefficients	�<�, �7�, …… , �7�. 

� = Xβ + 	� 
� = 	 G����⋮�5I , J = 	 G1 ��� ��� … ���1 ��� ��� … ���⋮ ⋮ ⋮ ⋮1 �5� �5� … �5�I , � = 	 G����⋮��I , and		� = 	 G����⋮�5I 

In general, y is an (n x 1 ) vector of the observations, X is an (n x p) matrix of the levels 

of the independent variables, N is a ( p x 1) vector of the regression coefficients, and O is 

an (n x 1) vector of random errors. 

We wish to find the vector of least squares estimators,	N<, that minimizes  

1 = 	-���5
�.� =	� ′� = (	� − X�)′	(� − X�) 

Note that 1	may be expressed as  

1 = 	�′� −	�′	X′y − y ′X� + �′X′X�																																	(5.11) 
																																																									= 	 � ′� −	2� ′	X′y + �′X′X� 

because N′	P′Q is a (1 x 1) matrix, or a scalar, and its transpose (N′	P′Q)′	 = R′PN  is the 

same scalar. The least squares estimators must satisfy 

8919�:;< =	−2X′y + 2X′X�7 = 0 

which simplifies to  
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	X ′X�7 = X′y																																																										(5.12) 
Equation 5.12 is the matrix form of the least squares normal equations. It is identical to 

Equation 5.10. To solve the normal equations, multiply both sides of Equation 6.12 by 

the inverse of 	P′P. Thus, the least squares estimator of N is  

	�	< = SX ′XTU�X′y																																																					(5.13) 
It is easy to see that the matrix form of the normal equations is identical to the scalar 

form. Writing out Equation 6.12 in detail, we obtain 

VW
WWW
WWW
WX / -���5

�.� -���5
�.� ⋯ -���5

�.�
-���5
�.� -����5

�.� -���5
�.� ��� ⋯ -���5

�.� ���
⋮ ⋮ ⋮ ⋮

-���5
�.� -���5

�.� ��� -���5
�.� ��� ⋯ -����5

�.� YZ
ZZZ
ZZZ
Z[
		VW
WX�7��7�⋮�7�YZ

Z[ 		= 	
VWW
WWW
WWW
X -��5

�.�
-�����5
�.� ⋮
-�����5
�.� YZZ

ZZZ
ZZZ
[
 

 If the indicated matrix multiplication is performed, the scalar form of the normal 

equations (i.e., Equation 5.10) will result. In this form it is easy to see that P′P is a (p x p) 

symmetric matrix and P′Q is a (p x 1) column vector. Note the special structure of the P′P matrix. The diagonal elements of P′P	are the sums of squares of the elements in the 

columns of	P, and the off – diagonal elements are the sums of cross products of the 

elements in the columns of P. Furthermore, note that the elements of P′Q are the sums of 

cross products of the columns of P and the observations {y%}. 
The fitted regression model is  

	y\ = X�7																																																														(5.14) 
In scalar notation, the fitted model is 

	y\ % = �7� +	-�7�]
&.� ���									� = 1,2, … . . , / 
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The difference between the actual observations 	y%	and the corresponding fitted value 	y\ % 
is the residual, say	e%	 =	 	y% − 	y\ %. The (n x 1) vector of residuals is denoted by 

e = 		y − 	y\																																																								(5.15) 
Estimating _`. It is also usually necessary to estimate	a�. To develop an estimator of 

this parameter, consider the sum of squares of the residuals, say  

bbc = 	-(�� −	�d�)�5
�.� =	-e��5

�.� =	efe 

Substituting	g = 		Q − 	Q\ = Q − PN<, we have 

bbc = S	y − X�7TfS	y − X�7T 
																												= yfy −	�7 fXfy − yfX�7 +	�7 fXfX�7 

															= yfy − 	2�7 fXfy +	�7 fXfX�7  
Because	P′PN< = 	P′Q, this last equation becomes 

bbc = 8	�	fy − �7 fX8fy																																																		(5.16) 
Equation 5.16 is called the error or residual sum of squares, and it has n – p degrees of 

freedom associated with it. It can be shown that     

h(bbc) = 	a�	(/ − E) 
So an unbiased estimator of	a�	is given by 

ad� =	 bbc/ − E																																																						(5.17) 
Properties of the Estimators. The methods of least squares produce an unbiased 

estimator of the parameter N  in the linear regression model. This may be easily 

demonstrated by taking the expected value of N< as follows: 

hS�7T = 	hi(XfX)U�	Xfyj = hi(XfX)U�Xf(X� + 	�)j 



CHAPTER 5                                                                       REGRESSION MODELLING AND EXPERIMENTS 

126 

 

	= 	hi(XfX)U�	XfX� +	(XfX)U�Xf�j = � 

because h	(�) = 0	and (X′X)U�X′X = I. Thus, �7  is an unbiased estimator of �.   

The variance property of �7  is expressed in the covariance matrix: 

Cov	S�7T = 	h op�7 − 	h	(�7)qp�7 − 	h	(�7)qfr																													(5.18) 
which is just a symmetric matrix whose ith main diagonal element is the variance of the 

individual regression coefficient �7� and whose (ij)th element is the covariance between �7� 
and �7�. The covariance matrix of N< is  

Cov	S�7T = 	a�	(XfX)U�																																											(5.19) 
If  a� in Equation 5.19 is replaced with the estimate ad� from Equation 5.12, we obtain an 

estimate of the covariance matrix of�7 . The square roots of the main diagonal elements of 

this matrix are the standard errors of the model parameters. 

Using the computer, Regression model fitting is almost always done using a statistical 

software packages, such as Minitab or JMP or Design Expert. 

5.4    Hypothesis Testing in Multiple Regression 

 In multiple linear regression problems, certain tests of hypotheses about the 

model parameters are helpful in measuring the usefulness of the model. In this section, 

we describe several important hypothesis – testing procedures. These procedures require 

that the errors  ��  in the model be normally and independently distributed with mean zero 

and variance 	a� , abbreviated�	~ , NID (0, 	a� ). As a result of this assumption, the 

observations ��are normally and independently distributed with mean �� +	∑ ����.� ��� 
and variance	a�. 

 The test for significance of regression is a test to determine whether a linear 

relationship exists between the response variable y and a subset of the regressor 

variables��, ��, … , ��. The appropriate hypotheses are  

u�	:	�� =	��	 = 	… = 	��	 = 0																																						(5.20) 
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	u�	:	�� ≠ 0	 for at least one j 

 Rejection of u�	  in Equation 5.20 implies that at least one of the regressor 

variables	��, ��, … , �� contributes significantly to the model. The test procedure involves 

an analysis of variance partitioning of the total sum of squares  bbw	into a sum of squares 

due to the model (or to regression) and a sum of squares due to residual (or error), say 

bbw	 = bbx	 +	bbc 																																																	(5.21) 
 Now if the null hypothesis u�	:	�� =	��	 =	… = 	��	 = 0  is true, then bbx	/a�	is distributed as J��,where the number of degrees of freedom for J� is equal to the 

number of regressor variables in the model. Also, we can show that bbc	/a� is distributed 

as	J5U�U��  and that bbc	and bbx	are independent. The test procedure for  u�	:	�� = 	��	 =	… = 	��	 = 0 is to compute 

z� = 	 bbx 	|C8bbc 	|(/ − C − 1)			8 = |bx|bc 																																						(5.22) 
and to reject u�  if z�  exceeds 	z},�,5U�U� . Alternatively, we could use the P – value 

approach to hypothesis testing and, thus, reject u� if the P – value for the statistic z�is 

less than	~. The test is usually summarized in an analysis of variance table such as Table 

5.2. 

A computational formula for bbx	may be found easily. We have derived a computational 

formula for bbc	 in Equation 5.16- that is, 

bbc = yfy −	�7 fXfy 
Now, because	bbw		 =	∑ ���5�.� −	(∑ ��5�.� )�//	 = 	Q′Q −	(∑ ��5�.� )�	//	, we may rewrite 

the foregoing equation as  

bbc = yfy −	 (∑ ��5�.� )�/ −	 ��7 fXfy	–	(∑ ��5�.� )�/ 	� 
or 

bbc	 = bbw −	bbx 
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Therefore, the regression sum of square is 

bbx = �7 fXfy	–	(∑ ��5�.� )�/ 																																										(5.23) 
and the error sum of squares is  

	bbc = yfy −	�7 fXfy																																																(5.24) 
and the total sum of squares is 

bbw = yfy	–	(∑ ��5�.� )�/ 																																												(5.25) 
Table 5.2 Analysis of variance for Significance of Regression in Multiple Regression 

Source of 

variation 
Sum of Squares 

Degrees of 

Freedom 
Mean Square z� 

Regression  bbx C |bx |bx/|bc 

Error or 

residual 

bbc / − C − 1 |bc  

Total bbw  / − 1   

 

These computations are almost always performed with regression software. The test of 

significance of regression in this example involves the hypotheses  

u�	:	�� =	��	 = 0 

	u�	:	�� ≠ 0	 for at least one j 

The P – value for the F statistic (Equation 5.22) is very small, so we would conclude that 

at least one of the two variables – temperature (x�) and feed rate (x�) - has a nonzero 

regression coefficient. 

The coefficient of multiple determination	��, where 

�� 	= 	 bbxbbw = 1 −		bbcbbw 																																															(5.26) 
 Just as in designed experiments, ��is a measure of the amount of reduction in 

the variability of � obtained by using the regressor variables��, ��, … , �� in the model. 
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However, as we have noted previously, a large value of �� does not necessarily imply 

that the regression model is a good one. Adding a variable to the model will always 

increase��, regardless of whether the additional variable is statistically significant or not. 

Thus, it is possible for models that have large values of �� to yield poor predictions of 

new observations or estimates of the mean response. 

Because ��  always increase as we add terms to the model, some regression model 

builders prefer to use an adjusted �� statistic defined as 

	�	���� = 	1 −	bbc/(/ − E)bbw/(/ − 1) = 1 −	�/ − 1/ − E� (1 −	��)																			(5.27) 
In general, the adjusted �� statistic will not always increase as variables are added to the 

model. In fact, if unnecessary terms are added, the value of		�	���� 	will often decrease. 

	�	���� = 1 −	�/ − 1/ − E� (1 −	��) 
which is very close to the ordinary ��. When �� and 	�	����  differ dramatically, there is a 

good chance that nonsignificant terms have been included in the model.  

5.5    Introduction to Surface Roughness 

 Surface roughness has received serious attention for many years. It has 

formulated an important design feature in many situations such as parts subject to fatigue 

loads, precision fits, fastener holes and aesthetic requirements. In addition to tolerances, 

surface roughness imposes one of the most critical constraints for the selection of 

machines and cutting parameters in process planning. A considerable number of studies 

have investigated the general effects of the speed, feed, depth of cut, nose radius and 

others on the surface roughness.  

A popular model [38] to estimate the surface roughness with a tool having none zero 

radius is  

Ra = 0.032	��� 																																																				(5.28) 
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Ra  is the surface roughness (��), f is the feed rate (mm/rev), r is the tool nose radius 

(mm). Although a qualitative analysis of the machining variables of speed, feed, and 

depth of cut on the surface roughness has been widely available in the literature, very few 

comprehensive predictive models have been developed. In this work, an empirical model 

will be developed based on metal cutting results from fractional factorial experiments, 

and it will include the workpiece hardness, feed, tool nose radius , depth of cut, Cutting 

velocity  and cutting time  

5.5.1 Ideal Surface Roughness 

 The ideal surface roughness represents the best possible finish that may be 

obtained for a given tool shape and feed and can be approached only if built up edge, 

chatter, inaccuracies in machine tool movement, and so on, are eliminated. The ideal 

surface finish for a turning operation in which a sharp-cornered tool is used is shown in 

Fig. 5.1 (a). 

 

 

 

 

          Fig. 5.1(a) Idealized model of surface roughness with sharp corner cutting tool [38] 

  

 

 

 

Fig. 5.1(b) Cross section through surface irregularities [38] 

 For the purpose of quantitative comparisons and analysis, it is useful to be able 

to express the roughness of machined surface in terms of a single factor or index. The 
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index most commonly used is known as the arithmetical mean value	��  and may be 

found as follows. In the Fig. 5.1(b), which shows a cross section through the surface 

under consideration, a mean line is first found that is parallel to the general surface 

direction and divides the surface in such a way that the sum of the areas formed above the 

line is equal to the sum of the areas formed below the line. The surface roughness	�� is 

now given by the sum of the absolute values of all the areas above and below the mean 

line divided by the sampling length. 

Thus, the surface roughness value is given by  

��	 = |A�eA − AD�| + |A�eA − ��e|�  

where � is the feed. 

Since the area abc and cde are equal, 

�� = 2� (A�eA − AD�) = 	����4  

Where 
x����  is the height of the triangle abc. 

It is interesting to note at this stage that the arithmetical mean value of surface roughness 

for a surface having uniform irregularities is equal to one quarter the maximum height of 

the irregularities. Now by the geometry, 

���� = �4S������ + ����f��T 
where ���and �f��are the working major and minor cutting edge respectively. 

Putting the value of ����in the above equation of ��, gives  

�� = �4S������ + ����f��T																																												(5.29) 
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Equation 5.29 shows that that arithmetical mean value for such a surface is

proportional to the feed

value is affected by the working minor 

 

 

 

  

 

Fig. 5.2 Effect of minor cutting edge angle on surface roughness (

 

   Fig. 5.3 Idealized model of surface roughness for round corner tool 

 Cutting tools are usually provided with a rounded corner, and Figure 5.3 shows 

the surface produced by such a tool under ideal conditions. Deriving a theoretical 

equation giving the arithmetical mean value for such a surface is rather more difficult 

than in the preceding example, but it can be shown that this roughness value is closely 

related to the feed and corner radius by the following expression.
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shows that that arithmetical mean value for such a surface is

proportional to the feed and the curve in Figure 5.2 shows how the arithmetical mean 

value is affected by the working minor –cutting edge angle. 

 

Fig. 5.2 Effect of minor cutting edge angle on surface roughness (

 

 

 

        

Fig. 5.3 Idealized model of surface roughness for round corner tool 

Cutting tools are usually provided with a rounded corner, and Figure 5.3 shows 

the surface produced by such a tool under ideal conditions. Deriving a theoretical 

giving the arithmetical mean value for such a surface is rather more difficult 

than in the preceding example, but it can be shown that this roughness value is closely 

related to the feed and corner radius by the following expression. 

�� = 0.0321	���� 																									
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shows that that arithmetical mean value for such a surface is directly 

and the curve in Figure 5.2 shows how the arithmetical mean 

Fig. 5.2 Effect of minor cutting edge angle on surface roughness (	���=450, f=0.1mm) 

Fig. 5.3 Idealized model of surface roughness for round corner tool [38] 

Cutting tools are usually provided with a rounded corner, and Figure 5.3 shows 

the surface produced by such a tool under ideal conditions. Deriving a theoretical 

giving the arithmetical mean value for such a surface is rather more difficult 

than in the preceding example, but it can be shown that this roughness value is closely 

																													(5. 30) 
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where ��	is the corner radius.

 

 

 

 

 

Fig. 5.4 Comp. of experimental results with an idealized model of surface roughness

 In Figure 5.4 the theoretical relationship between the surface 

and the feed given by Equation 5.30

experiments, work material (copper) and cutting conditions were carefully chosen such 

that the natural surface roughness was extremely low and no imperfecti

cutting action (chatter, built

was one of turning, and before each test the tools were carefully ground with the correct 

corner radius. Figure 5.4 shows that in these experimental res

the specimens was close to the “ideal” for each feed used.

5.5.2 Natural Surface Roughness

 In practice it is not usually possible to achieve conditions such as those 

described above, and normally the natural surface roughnes

the actual surface roughness. One of the main factors contributing to natural surface is 

occurrence of a built-

breaking down, the fractured particles being carried 

and on the new work piece surface. Thus, it would be expected that the larger built

edge, the rougher would be the surface produced, and factors tending to reduce the built 

up edge would give improved surface finish

in cutting speed, a change form say, high speed steel tool material to cemented carbide, 
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Fig. 5.4 Comp. of experimental results with an idealized model of surface roughness

In Figure 5.4 the theoretical relationship between the surface 

d the feed given by Equation 5.30 is compared with experimental results. In these 

experiments, work material (copper) and cutting conditions were carefully chosen such 

that the natural surface roughness was extremely low and no imperfecti

cutting action (chatter, built-up edge, etc.) were visible on the specimens. The operation 

was one of turning, and before each test the tools were carefully ground with the correct 

corner radius. Figure 5.4 shows that in these experimental results, the actual roughness of 

the specimens was close to the “ideal” for each feed used. 

Natural Surface Roughness 

In practice it is not usually possible to achieve conditions such as those 

described above, and normally the natural surface roughness forms a large proportion of 

the actual surface roughness. One of the main factors contributing to natural surface is 

-up edge. The built up edge may be continually building up and 

breaking down, the fractured particles being carried away on the under surface of the chip 

and on the new work piece surface. Thus, it would be expected that the larger built

edge, the rougher would be the surface produced, and factors tending to reduce the built 

up edge would give improved surface finish. Such factors would therefore be an increase 

in cutting speed, a change form say, high speed steel tool material to cemented carbide, 
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Fig. 5.4 Comp. of experimental results with an idealized model of surface roughness 

In Figure 5.4 the theoretical relationship between the surface roughness value 

is compared with experimental results. In these 

experiments, work material (copper) and cutting conditions were carefully chosen such 

that the natural surface roughness was extremely low and no imperfections from the 

up edge, etc.) were visible on the specimens. The operation 

was one of turning, and before each test the tools were carefully ground with the correct 

ults, the actual roughness of 

In practice it is not usually possible to achieve conditions such as those 

s forms a large proportion of 

the actual surface roughness. One of the main factors contributing to natural surface is 

up edge. The built up edge may be continually building up and 

away on the under surface of the chip 

and on the new work piece surface. Thus, it would be expected that the larger built-up 

edge, the rougher would be the surface produced, and factors tending to reduce the built 

. Such factors would therefore be an increase 

in cutting speed, a change form say, high speed steel tool material to cemented carbide, 
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the introduction of free machining materials such as leaded or resulfurezed steel, the 

application of the correct cutting

of the effect of cutting speed is shown in Fig. 5.5, where the actual surface roughness for 

a turned component is large at low cutting speeds and becomes reduced as the cutting 

speed is increased, unt

 

 

 

 

 

 

   Fig. 5.5 Effect of cutting speed on the surface roughness for turning M.S.

5.6 Factors affecting on surface roughness

1. Vibration and chatter: 

type or self induced type. Vibrations and chatter badly affect tool life, surface finish and 

accuracy of machined surface. Forced vibrations occur under the action of rhythmically 

varying force due to mechanical causes on the cutting tool. The tool or workpiece is 

pushed bodily by varying force at a frequency of mechanical sources. Forced vibrations 

may cause by continuous chips with built up edge and by fractures occurring ahead of the 

tool in case of segmental chips. These also occur if the finish of work pieces is very poor 

due to previous chatter cut. Self induced vibrations (chatter), more serve type, occur 

because of unstable equilibrium of the potential vibrating member and once initiated are 

of self perpetuating type and occur at a frequency close to natural frequency of the 

vibrating member. These may occur due to variation in cutting force with cutting speed. 
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the introduction of free machining materials such as leaded or resulfurezed steel, the 

application of the correct cutting lubricant at low cutting speeds, and so on. An example 

of the effect of cutting speed is shown in Fig. 5.5, where the actual surface roughness for 

a turned component is large at low cutting speeds and becomes reduced as the cutting 

speed is increased, until it approaches the ideal surface roughness at high cutting speeds.

                    

 

Fig. 5.5 Effect of cutting speed on the surface roughness for turning M.S.

Factors affecting on surface roughness  

1. Vibration and chatter: During the machining vibrations may occur either as forced 

type or self induced type. Vibrations and chatter badly affect tool life, surface finish and 

accuracy of machined surface. Forced vibrations occur under the action of rhythmically 

to mechanical causes on the cutting tool. The tool or workpiece is 

pushed bodily by varying force at a frequency of mechanical sources. Forced vibrations 

may cause by continuous chips with built up edge and by fractures occurring ahead of the 

of segmental chips. These also occur if the finish of work pieces is very poor 

due to previous chatter cut. Self induced vibrations (chatter), more serve type, occur 

because of unstable equilibrium of the potential vibrating member and once initiated are 

of self perpetuating type and occur at a frequency close to natural frequency of the 

vibrating member. These may occur due to variation in cutting force with cutting speed. 
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the introduction of free machining materials such as leaded or resulfurezed steel, the 

lubricant at low cutting speeds, and so on. An example 

of the effect of cutting speed is shown in Fig. 5.5, where the actual surface roughness for 

a turned component is large at low cutting speeds and becomes reduced as the cutting 

il it approaches the ideal surface roughness at high cutting speeds. 
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During the machining vibrations may occur either as forced 

type or self induced type. Vibrations and chatter badly affect tool life, surface finish and 

accuracy of machined surface. Forced vibrations occur under the action of rhythmically 

to mechanical causes on the cutting tool. The tool or workpiece is 

pushed bodily by varying force at a frequency of mechanical sources. Forced vibrations 

may cause by continuous chips with built up edge and by fractures occurring ahead of the 

of segmental chips. These also occur if the finish of work pieces is very poor 

due to previous chatter cut. Self induced vibrations (chatter), more serve type, occur 

because of unstable equilibrium of the potential vibrating member and once initiated are 

of self perpetuating type and occur at a frequency close to natural frequency of the 

vibrating member. These may occur due to variation in cutting force with cutting speed. 
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These are least likely to occur at low cutting speeds, high tool frequencies or with a 

freshly sharpened tool. 

2. Accuracy of Machined Surface: There are several factors which affect accuracy of 

machined surface. In general accuracy is affected by static alignment and steady state 

effects due to the elastic forces set up in the machine structure and workpiece during 

cutting and dynamic machining considerations (forced vibrations). Proper leveling of 

machine tool and alignment of various parts needs to be tested properly. The rigidity of 

machine tool and work piece combination should be increased by proper selection and 

setting of tool to minimize deflection due to overhang and by proper clamping and 

support of the work piece. Forced vibrations are caused by unbalanced rotating masses or 

by periodic vibrations caused by the teeth of milling cutter while engaging workpiece. 

Rigidity of the machine tool structure also improves the chatter. 

3. Effect of lubrication and coolant: At present coolants and lubricants are increasingly 

recognized as harmful factors for environment and machine operators health. Industry 

and research institutions are looking for new means of reducing or eliminating the use of 

cutting fluids, both for economical and ecological reasons. This can be done if quality 

properties of machined surfaces and process parameters in dry and wet machining are 

comparable. Here investigation into the influence of cutting zone cooling and lubrication 

on surface roughness is done for turning of C45 steel. Dry cutting and minimum quantity 

lubrication (MQL) results are compared with conventional emulsion cooling. Cutting 

forces and their components were put under examination as well. The experimental 

outcomes indicate that the cooling and lubrication conditions affect significantly the 

investigated process and surface properties. However, the impact of the cooling and 

lubricating technique depends to a large extent on the applied cutting parameters, namely 

the cutting speed and feed rate. Turning dry or with MQL with properly selected cutting 

parameters makes it possible to produce better surface topography characteristics than 

turning with conventional emulsion cooling. Apart from improving the surface properties 

the MQL mode of cooling and lubrication also provides environmental friendliness 

(Fig.5.6)[66] 
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Fig. 5.6 Surface roughness and waviness depending on cooling and lubrication 

conditions and cutting parameters [66] 

4. Effect of the work piece material: High hardness, strength and low ductility result 

in good surface roughness. Also defect in the structure of the work piece material affects 

the surface roughness. Addition of sulpher, lead to steel or lead to brass results in 

improves the surface roughness. 

5. Effect of tool material: A material which permits high cutting speed will produce 

better surface finish. Thus the order would be carbon steel. HSS, cast alloy, sintered 

carbide tools. Diamond produces best finish due to smaller built up edge as a result of 

low friction of the metal on the face of the diamond. 

6. Geometry of chip formation: The discontinuous chips are found to occur while 

machining brittle materials. In this case the roughness of machined surface is believed to 

depend on the size of chips. 

5.7 Measurement of Surface Roughness  

 Measurement of surface roughness is important to realize that other kinds of 

deviation from perfectly smooth surface can occur. These deviations are called surface 

flows and waviness. Surface flows are widely separated irregularities that occur at 

random over the surface. They may be scratches, cracks, or similar flows. 

 The standard instruments for the determination of surface roughness operate by 

amplifying the vertical motion of a stylus as it is drawn slowly across the surface; they 
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can produce, in addition, a continuous recording of the profile. In modern instruments the 

surface profile is digitally sampled and the arithmetical mean surface roughness value is 

calculated continuously over a selected cutoff distance. The cutoff length is selected to 

eliminate waviness from the measurements. Roughness tester SJ 400 used for this work is 

given in Fig. 5.7 and Table 5.3 with detailed specification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.7 Surface roughness tester SJ-400 
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Table 5.3 Specification of surface roughness tester 

 

Order No.* 

SJ-401 

SJ-402 

178-947-3A (inch/mm) 

178-945-3A (inch/mm) 

178-957-3A (inch/mm) 

178-959-3A (inch/mm) 

Measuring method  Skidless/Skidded measurement 

Measuring range 

Z-axis 

 

32000µin, 3200µin, 320µin (800µm, 80µm, 8µm) 

 (Up to 2,400µm with an option stylus) 

 

X-axis SJ-401: 1” (25mm)     SJ-402: 2” (50mm) 

Drive method 

Straightness 

 
SJ-401: 12µin/1” (0.3µm/25mm)     SJ-402: 20µin/2” (0.5µm/50mm) 

Measuring speed .002”, .004”, .02”, .04”/s (0.05, 0.1, 0.5, 1.0mm/s) 

Return speed .02”, .04”, .08”/s (0.5, 1.0, 2.0 mm/s) 

Height-Tilt adjustment 

unit 
Tilt adjustment range ±1.5° 

Assessed profile  
Primary profile (P), Roughness profile (R), Filtered waviness profile (W),  

DIN4776, MOTIF (R, W) 

Evaluation parameters  
Ra, Ry, Rz, Rq, Pc, R3z, mr, Rt, Rp, Rv, Sm, S, δc, Rk, Rpk, Rvk,  

Ppi, R, AR, Rx, ∆a, ∆q, Ku, HSC, mrd, Sk, W, AW, Wte, Wx, Vo 

Number of sampling 

length 
 X1, X3, X5, XL* (*=arbitrary length) 

Arbitrary length  
SJ-401: .01” to 2” (.01” increments) [0.1 to 25mm (0.1mm increments)] 

SJ-402: .04” to 2” (.01” increments) [0.1 to 50mm (0.1mm increments)] 

Sampling length (L)  .003”, .01”, .03”, .1”, .3” (0.08, 0.25, 0.8, 2.5, 8mm) 

Printing width  1.89” (48mm)/paper width: 2.28” (58mm) 

Recording  

magnification 

Vertical 

magnification 
10 to 100K magnification, Auto 

Horizontal 

magnification 
1 to 1K magnification, Auto 

Detector 

Detection method Differential inductance method 

Minimum resolution .005µin (320µin range)/0.000125µm (8µm range) 

Stylus tip Corn 90°, Radius 5µm, Diamond 
Corn 60°, Radius 2µm, 

Diamond 

Measuring force 4mN 0.75mN 

Radius of skid 1.57”(40mm) 

Skid force Less than 400mN 

Function 

Customize Display/Roughness parameter selectable 

Data compensation R-surface, Tilt compensation 

Ruler function Displays the coordinate difference of any two points 

Displacement 

detection mode 
Enables the stylus displacement to be input while the drive unit is stopped 

Statistical processing Maximum value, Minimum value, Mean value, Standard deviation (s) 

Cut-off length   .003”, .01”, .03”, .1”, .3” (0.08, 0.25, 0.8, 2.5, 8mm) 

Calibration  Ra, Step (Automatic calibration entering the value of roughness specimen) 

Battery 

Charging time 15 hours 

Number of 

measurements 
600 maximum without printing 

Power consumption  43W (max.) 

Dimension Control unit 12.09”x6.50”x3.7” (307x165x94mm) 

 
Height-Tilt 

adjustment unit 
5.16”x2.48”x3.90” (131x63x99mm) 

 Drive unit  SJ-401:  (128x36x47mm)     SJ-402:  (155x36x47mm) 

Roughness standard  JIS (JIS B0601-1994-1982), DIN, ISO, ANSI 

LCD size  Touch panel 

Data output  RS-232C input/output, SPC output 

External control  Connection to data processing system (option) 

Mass 

Control unit 2.64lbs. (1.2kg) 

Height-Tilt 

adjustment unit 
1.88lbs. (0.4kg) 
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There are many different roughness parameters in use, but

common. Other common parameters include 

used only in certain industries or within certain countries. Each of the roughness 

parameters is calculated using a formula for describing the surface. The average 

roughness 	Ra is expressed in units of height. In the Imp

expressed in "millionths" of an inch. This is also referred to as "micro inches" or 

sometimes just as "micro".  

5.8  Tool Geometries for Improved Surface Finish

 As has been shown the geometric surface roughness developed in 

dependent on the tool geometry, machine kinematics and feed rate. This has led to the 

development of specific type of edge preparation for cutting tool inserts aimed at 

improved surface finish or more often to allow increased feed rates for a 

roughness, with associated reduction in cycle time. These inserts are known as wiper 

inserts, and they have become widely used for both turning and milling tools.

 Similar to conventional turning inserts, wiper inserts remove the chip with the 

leading cutting edge and this leaves the expected geometric surface roughness through 

the mechanism described in the previous section. However, wiper inserts have an 

additional radius or flat behind the tool that is kept in contact with the work piece after

the initial cut (Fig. 5.8

 

Fig. 5.8 Wiper inserts edge geome
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There are many different roughness parameters in use, but  Ra

common. Other common parameters include  	R�  , R�  and 	R�  . Some parameters are 

used only in certain industries or within certain countries. Each of the roughness 

parameters is calculated using a formula for describing the surface. The average 

is expressed in units of height. In the Imperial system, Ra is typically 

expressed in "millionths" of an inch. This is also referred to as "micro inches" or 

sometimes just as "micro".   

Tool Geometries for Improved Surface Finish 

As has been shown the geometric surface roughness developed in 

dependent on the tool geometry, machine kinematics and feed rate. This has led to the 

development of specific type of edge preparation for cutting tool inserts aimed at 

improved surface finish or more often to allow increased feed rates for a 

roughness, with associated reduction in cycle time. These inserts are known as wiper 

inserts, and they have become widely used for both turning and milling tools.

Similar to conventional turning inserts, wiper inserts remove the chip with the 

eading cutting edge and this leaves the expected geometric surface roughness through 

the mechanism described in the previous section. However, wiper inserts have an 

additional radius or flat behind the tool that is kept in contact with the work piece after

(Fig. 5.8). This burnishes the peaks, leaving a smoother surface finish.

 

 

 

 

 

 

Wiper inserts edge geometries and improvement in Roughness
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Ra  is by far the most 

. Some parameters are 

used only in certain industries or within certain countries. Each of the roughness 

parameters is calculated using a formula for describing the surface. The average 

erial system, Ra is typically 

expressed in "millionths" of an inch. This is also referred to as "micro inches" or 

 

As has been shown the geometric surface roughness developed in machining is 

dependent on the tool geometry, machine kinematics and feed rate. This has led to the 

development of specific type of edge preparation for cutting tool inserts aimed at 

improved surface finish or more often to allow increased feed rates for a specified 

roughness, with associated reduction in cycle time. These inserts are known as wiper 

inserts, and they have become widely used for both turning and milling tools. 

Similar to conventional turning inserts, wiper inserts remove the chip with the 

eading cutting edge and this leaves the expected geometric surface roughness through 

the mechanism described in the previous section. However, wiper inserts have an 

additional radius or flat behind the tool that is kept in contact with the work piece after 

This burnishes the peaks, leaving a smoother surface finish. 

oughness [38, 45] 
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Fig. 5.9 Effect of feed on the effectiveness of a wiper 

 These wiper geometries are not effective for all applications. For example they 

are not suitable for light finishing cuts because they require slightly higher uncut chip 

thickness value to work well. Also higher feed rates are necessary to take full advant

of wiper geometry. Figure 5.

different feed rates. In turning, these inserts are mainly effective on surface parallel and 

perpendicular to axis of rotation of the workpiece.

5.9    Experimental 

 To develop a second

the impact of the following parameters on the surface roughness in finish turning:

1. Workpiece hardness.

2. Feed. 

3. Tool nose radius

4. Depth of cut. 

5. Cutting speed 

6. Cutting time. 

  In this study, ceramic inserts (supplied by Ceratizit) were used. ISO code 

TNMG160404 EN-TMF, and TNMG 160408 EN

triangular shaped inserts) are used. The inserts were mounted on a commerci

factors and levels in the expe

experiments were carried out on Jobber X

machine with variable spindle speed 50 to 3500 rpm and 7.5 Kw motor drive
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Effect of feed on the effectiveness of a wiper inserts

These wiper geometries are not effective for all applications. For example they 

are not suitable for light finishing cuts because they require slightly higher uncut chip 

thickness value to work well. Also higher feed rates are necessary to take full advant

Figure 5.9 shows the effect of the wiper edge on surface finish for 

different feed rates. In turning, these inserts are mainly effective on surface parallel and 

perpendicular to axis of rotation of the workpiece. 

Experimental Design and Conditions 

To develop a second-order surface roughness model, the experiments examined 

the impact of the following parameters on the surface roughness in finish turning:

1. Workpiece hardness. 

3. Tool nose radius 

In this study, ceramic inserts (supplied by Ceratizit) were used. ISO code 

TMF, and TNMG 160408 EN-TM with different nose radius (60

triangular shaped inserts) are used. The inserts were mounted on a commerci

factors and levels in the experiments are presented in Table 5.4 and Table

experiments were carried out on Jobber XL model made by Ace designer CNC lathe 

machine with variable spindle speed 50 to 3500 rpm and 7.5 Kw motor drive
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inserts [38] 

These wiper geometries are not effective for all applications. For example they 

are not suitable for light finishing cuts because they require slightly higher uncut chip 

thickness value to work well. Also higher feed rates are necessary to take full advantage 

shows the effect of the wiper edge on surface finish for 

different feed rates. In turning, these inserts are mainly effective on surface parallel and 

order surface roughness model, the experiments examined 

the impact of the following parameters on the surface roughness in finish turning: 

In this study, ceramic inserts (supplied by Ceratizit) were used. ISO code 

TM with different nose radius (60
0
 

triangular shaped inserts) are used. The inserts were mounted on a commercial tool.  The 

Table 5.4 and Table 5.5. All the 

model made by Ace designer CNC lathe 

machine with variable spindle speed 50 to 3500 rpm and 7.5 Kw motor drive was used 
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for machining tests. Surface finish of the work piece material was measured by Surf test 

model No. SJ-400 (Mitutoyo make). The surface roughness was measured at three 

equally spaced locations around the circumference of the work pieces to obtain the 

statistically significant data for the test. We assume that the three, four and five-factor 

interactions are negligible, because these higher-order interactions are normally assumed 

to be almost impossible in practice. Therefore, a 2
5-1

 fractional design is selected. This 

resolution V design leads to 16 runs of the experiments. To consider system variations, 

such as tool wear and vibration in particular, the cutting time and a replicate number of 

three are selected, respectively and average is taken and presented in Table 5.6 and Table 

5.7. 

Two set of materials are used for this test with different hardness and chemical 

composition. 

1. AISI 1040 steel and Aluminium 

2. AISI 410 steel and Aluminium 

Table 5.4 Factors and levels for AISI 1040 steel and Aluminium 

Level Hardness (A) Feed (B) 
Tool radius 

(C) 

Cutting 

Velocity      

(D) 

Depth of Cut     

(E) 

-1 
AISI 1040 steel       

(92HRB) 
0.06mm/rev 0.4mm 220m/min 0.3mm 

1 
Aluminium 

(60 HRB) 
0.14mm/rev 0.8mm 280m/min 0.9mm 

 

 

Table 5.5 Factors and levels for AISI 410 steel and Aluminium 

Level Hardness (A) Feed (B) 
Tool radius 

(C) 

Cutting 

Velocity      

(D) 

Depth of Cut     

(E) 

-1 
AISI 410 steel       

(99HRB) 
0.06mm/rev 0.4mm 220m/min 0.3mm 

1 
Aluminium     

(60 HRB) 
0.14mm/rev 0.8mm 280m/min 0.9mm 
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5.10  Regression Analysis  

 To establish the prediction model, regression analysis is conducted with 

MINITAB using the above experimental data. Regression analysis is considered to be 

one of the most important and most popularly used data mining techniques. Feng and 

Wang [25] have shown that for a reasonably large set of data from structurally designed 

experiments, such as those presented in this work, regression analysis generates 

comparable results with its competing data mining method. Table 5.8 and 5.9 presents the 

regression result when considering cutting time. Six variables are involved in the 

prediction model: workpiece hardness; feed; tool nose radius; depth of cut; cutting speed; 

and cutting time. 

 

Table 5.6 Design of experiment and data for AISI 1040 steel and Aluminium 

Sr. 

No. 

Material 

(A) 

Feed  (B) 

(mm/rev) 

Tool 

Radius(C) 

(mm) 

Speed 

(D) 

(m/min) 

Depth of 

Cut(E) 

(mm) 

Time(t) 

(sec) 

Roughness 

(Ra) 

(µm) 

1 -1 -1 -1 -1 1 20.62 1.35 

2 1 -1 -1 -1 -1 27.50 0.52 

3 -1 1 -1 -1 -1 11.00 2.25 

4 1 1 -1 -1 1 08.25 1.85 

5 -1 -1 1 -1 -1 27.50 1.10 

6 1 -1 1 -1 1 20.62 0.35 

7 -1 1 1 -1 1 08.25 1.52 

8 1 1 1 -1 -1 11.00 0.82 

9 -1 -1 -1 1 -1 18.30 0.66 

10 1 -1 -1 1 1 13.72 0.39 

11 -1 1 -1 1 1 05.47 1.65 

12 1 1 -1 1 -1 07.30 1.50 

13 -1 -1 1 1 1 13.72 0.89 

14 1 -1 1 1 -1 18.30 0.29 

15 -1 1 1 1 -1 07.30 0.92 

16 1 1 1 1 1 05.47 0.70 
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Table 5.7 Design of experiment and data for AISI 410 steel and Aluminium 

Sr. No. 
Material 

(A) 

Feed  (B) 

(mm/rev) 

Tool 

Radius(C) 

(mm) 

Speed 

(D) 

(m/min) 

Depth of 

Cut(E) 

(mm) 

Time(t) 

(sec) 

Roughness 

(Ra) 

(µm) 

1 -1 -1 -1 -1 1 22.10 0.78 

2 1 -1 -1 -1 -1 27.10 0.52 

3 -1 1 -1 -1 -1 13.01 2.08 

4 1 1 -1 -1 1 08.52 1.85 

5 -1 -1 1 -1 -1 22.98 0.41 

6 1 -1 1 -1 1 20.31 0.35 

7 -1 1 1 -1 1 08.55 0.91 

8 1 1 1 -1 -1 11.89 0.82 

9 -1 -1 -1 1 -1 20.12 0.79 

10 1 -1 -1 1 1 12.88 0.45 

11 -1 1 -1 1 1 04.25 1.69 

12 1 1 -1 1 -1 05.10 1.50 

13 -1 -1 1 1 1 12.99 0.34 

14 1 -1 1 1 -1 16.55 0.29 

15 -1 1 1 1 -1 06.80 0.73 

16 1 1 1 1 1 04.75 0.70 

 

  

Figs. 5.10 and 5.11 compare the fitted values and observed values. Figs. 5.12 and 5.13 

show the relative percentage error between the fitted value and the observed values using 

Eq. (5.28). Table 5.8 and 5.9 indicates that material, feed, tool nose radius, speed and 

cutting time significantly affect the surface roughness independently. Depth of cut has 

not significant effect of the surface roughness. In addition, some interactions among these 

six variables also significantly affect the surface roughness. Recall that cutting time is 

dependent of feed and speed. Figures 5.14 and 5.16 show that the prediction model has a 

good precision and it appears to be a better model than Eq. (5.28). 
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Table 5.8 The prediction model with six variables (AISI 1040 steel and Aluminium) 

Predictor Coef SE Coef T P VIF 

Constant 1.34801 0.03713 36.31 0.000 

Material (A) -0.245 0.006577 -37.25 0.000 1.000 

Feed (B)(mm/rev) 0.22482 0.017 13.22 0.000 6.682 

Tool radius(C)(mm) -0.22375 0.006577 -34.02 0.000 1.000 

Speed (D)(m/min) -0.232998 0.009868 -23.61 0.000 2.251 

Time (t)(Sec) -0.021434 0.002606 -8.22 0.001 7.938 

AB 0.06125 0.006577 9.31 0.001 1.000 

AC -0.042447 0.006592 -6.44 0.003 1.005 

AD 0.09 0.006577 13.68 0.000 1.000 

AE -0.02 0.006577 -3.04 0.038 1.000 

BC -0.1875 0.006577 -28.51 0.000 1.000 

CD 0.04875 0.006577 7.41 0.002 1.000 

 Ra = 1.35 − 0.245 ∗ Material(A) + 0.225 ∗ Feed(B) − 0.224 ∗ Tool	radius(C) −0.233 ∗ Speed(D) − 0.0214 ∗ Time(t) + 0.0612 ∗ A ∗ B − 0.0424 ∗ A ∗ C + 0.090 ∗A ∗ D − 0.020 ∗ A ∗ E − 0.188 ∗ B ∗ C + 0.0488 ∗ C ∗ D                                         (31) 

 
 S = 0.0263076   R-Sq = 99.9%   R-Sq (adj) = 99.8% 

PRESS = 0.0370968   R-Sq(pred) = 99.27% 
 

 

Table 5.9 The prediction model with six variables (AISI 410 steel and Aluminium) 

Predictor Coef SE Coef T P VIF 

Constant 0.81698 0.08260 9.89 0.000 

Material (A) -0.07692 0.01207 -6.37 0.001 1.013 

Feed (B) )(mm/rev) 0.42696 0.03659 11.67 0.000 9.311 

Tool radius(C)  (mm) -0.31668 0.01238 -25.57 0.000 1.067 

Speed (D)(m/min) -0.06022 0.02258 -2.67 0.037 3.547 

Time (t)(sec) 0.005224 0.006001 0.87 0.417 12.187 

AC 0.04674 0.01237 3.78 0.009 1.064 

AE 0.03160 0.01199 2.63 0.039 1.001 

BC -0.17905 0.01262 -14.19 0.000 1.107 

BD -0.05602 0.01244 -4.50 0.004 1.077 
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Ra = 0.817 − 0.0769 ∗ Material(A) + 0.427 ∗ Feed(B) − 0.317 ∗ Tool	rdius(C) −0.0602 ∗ Speed(D) + 0.00522 ∗ Time(t) + 0.0467 ∗ A ∗ C + 0.0316 ∗ A ∗ E − 0.179 ∗B ∗ C − 0.0560 ∗ B ∗ D                                                                                                 (32) 

 

S = 0.0479597   R-Sq = 99.7%   R-Sq (adj) = 99.3% 

PRESS = 0.106859   R-Sq (pred) = 97.84% 

 

 

Fig. 5.10 Fitted value Vs observed value (AISI 1040 steel and Al)  

 

Fig. 5.11 Fitted value Vs observed value (AISI 410 steel and Al) 

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
u

rf
a
c

e
 r

o
u

g
h

n
e
s

s
(μ

m
)

No of experiments

Fitted data

Observed data

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
u

rf
a

c
e

 r
o

u
g

h
n

e
s

s
(µ

m
)

No of experiments

Fitted data

Observed data



CHAPTER 5                                                                       REGRESSION MODELLING AND EXPERIMENTS 

146 

 

 

Fig. 5.12 Relative error of the fitted values vs. Computed values  

            (AISI 1040 steel and Aluminium) 

 

 

 

 

 

 

 

 

 

 

 

 
                           Fig. 5.13 Relative error of the fitted values vs. Computed values  

             (AISI 410 steel and Aluminium)            

                             

 

Fig. 5.14 Comparison of the fitted values and the estimated values  

        (AISI 1040 steel and Aluminium) 
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Fig. 5.15 Comparison of the fitted values and the estimated values  

                    (AISI 410 steel and Aluminium) 

 

 Figures 5.14 and 5.15 compares the relative percentage error among the fitted 

values considering the cutting time, the fitted values without considering the cutting time, 

and the computed values from Eq. 5.28. It shows that the fitted values have the highest 

precision, which shows that it represents the surface roughness better than Eq. 5.28. 

5.11    Confirmation test 

 In order to verify the adequacy of the model developed, five confirmation run 

experiments have been performed (Table 5.10, 5.11) at different cutting conditions. The 

test condition for the first three validation run experiments are among the cutting 

conditions that are performed previously while the remaining two validation run 

experiments are the conditions that have not been used previously. The experimental 

results have been validated by asserting that the predicted values are very close to each 

other and hence, the developed models are suitable for predicting the surface roughness 

in machining with 4 % error. 
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Table 5.10 Confirmation test (1040 steel and Aluminium) 

 

 

 

Table 5.11 Confirmation test (AISI 410 steel and Aluminium) 

 

 In next chapter RSM and (34) full factorial design of experiment is used  to 

develop the surface roughness prediction model for  different materials like AISI 1040 

steel, AISI 410 steel, Mild steel and Aluminium with 95% confidence level 

 

Sr. 

No. 

Material 

(A) 

Feed   

(B) 

(mm/rev) 

Tool 

radius 

(C) 

(mm) 

Speed 

(D) 

(m/min) 

Depth 

of 

Cut(E) 

(mm) 

Time 

(t) 

(sec) 

Exp.  

(Ra) 

(µm) 

Predicted 

(Ra) 

(µm) 

Error 

(%) 

1 1 1 1 1 1 5.50 0.72 0.7049 2.09 

2 1 1 1 -1 -1 10.5 0.85 0.8263 2.78 

3 1 -1 -1 -1 -1 25.25 0.55 0.5687 3.28 

4  -1* -1 -1 -1 -1 21.05 1.34 1.3173 1.69 

5  1* 1 -1 -1 -1 8.54 1.85 1.8747 1.31 

Sr. 

No. 

Material 

(A) 

Feed   

(B) 

(mm/rev) 

Tool 

radius 

(C) 

(mm) 

Speed 

(D) 

(m/min) 

Depth 

of 

Cut(E) 

(mm) 

Time 

(t) 

(sec) 

Exp.  

(Ra) 

(µm) 

Predicted 

(Ra) 

(µm) 

Error 

(%) 

1 1 1 1 1 1 5.10 0.68 0.6568 3.41 

2 1 1 1 -1 -1 12.5 0.84 0.8646 2.84 

3 1 -1 -1 -1 -1 26.2 0.53 0.5167 2.50 

4  -1* -1 -1 -1 -1 23.1 0.83 0.8109 2.30 

5  1* 1 -1 -1 -1 9.2 1.81 1.746 3.53 


