APPENDIX 1

Chapter 4

Calculations of Coal Requirement (For Section 4.1.1):

I) Since 87.33 pct Fe₂O₃ contain in JSW dust after beneficiation, that means 87.33 g Fe₂O₃ (W_{io}) present in 100 g JSW dust.

So, carbon requirement (W_C) [as per eq. (4.2)]: $(\frac{36}{160} \times 87.33) = 19.65$ g and coal requirement (W_{coal}) [as per eq. (4.3)]: $(\frac{100}{62} \times 19.65) = 31.69$ g Therefore, stoichiometric ratio as per eq. (4.4): $\frac{W_{io} \times 0.7}{W_C} = \frac{87.33 \times 0.7}{19.65} = 3.11$

Similarly,

II) Since 90.69 pct Fe_2O_3 contain in JSW sludge after beneficiation, that means 90.69 g Fe_2O_3

 (W_{io}) present in 100 g JSW sludge.

So, carbon requirement (W_c) [as per eq. (4.2)]: 20.41g

and coal requirement (W_{coal}) [as per eq. (4.3)]: 32.91 g

Therefore, stoichiometric ratio as per eq. (4.4): $\frac{90.69 \times 0.7}{20.41} = 3.11$

III) Since 85.77pct Fe₂O₃ contain in VIZAG sludge after beneficiation, that means 85.77 g Fe₂O₃ (W_{io}) present in 100 g VIZAG sludge.

So, carbon requirement (W_C) [as per eq. (4.2)]: $0.225W_{io} = W_C g$ of carbon =19.3g

and coal requirement (W_{coal}) [as per eq. (4.3)]: $(\frac{100}{F_C} \times W_C) = 31.13$ g

Therefore, stoichiometric ratio as per eq. (4.4): $\frac{85.77 \times 0.7}{19.3} = 3.11$

Calculations of Fraction of Reduction (For Section 4.4):

 \rightarrow Sample calculation for JSW Dust:

 Fe_2O_3 contain in JSW Dust = 87.33 pct

fore = 0.6935, ρ_{ore} = 0.8733, f_{coal} = 0.2198, f_{VM} = 0.17, f_O = 0.3

eq. (4.14):
$$f = \left[\frac{4 x \{f_{wl} - (f_{coal} x f_{vm})\}}{7 x (f_{ore} x \rho_{ore} x f_{o})}\right] = f = \left[\frac{4 x \{f_{wl} - (0.2198 x 0.17)\}}{7 x (0.6935 x 0.8733 x 0.3)}\right] = \left[\frac{4 x \{f_{wl} - (0.037366)\}}{7 x (0.18169)}\right]$$

Chapter 5

Calculations of Iron Yield for JSW Dust (Section 5.6.1):

 F_2 = Fraction of iron oxide present in JSW dust composite= 0.6935

 F_3 = Fraction of Fe present in iron oxide (JSW dust) = 0.8733

Heat No.	F ₁ (Initial		F ₆ Final Sample)
	Sample)	Table	Table 5.3
	5.2		
1		98.7	97.8
2		98.6	98
3		98.5	98.5
4		98.9	94.1

 $F_5 = Fraction of Fe present in TMT rod = 0.983$

Sample Calculation:

Iron yield (%) =
$$\frac{(W_5 x F_6) x 100}{\{[(W_1 - W_2) x F_1] + (W_3 x F_2 x F_3 x F_4) + (W_4 x F_5)\}}$$
For Heat No. 1:

 $Iron \ yield \ (\%) = \frac{(2.036x0.978)x100}{\{[(1.986 - 0.028)x0.987] + \left(\frac{0.1045x0.6935x0.8733x112}{160}\right) + (0.223x0.983)\}}$

$$=\frac{(1.991)x100}{\{1.933+0.044+0.219\}} = 199.1/2.196 = 90.66$$

For Heat No. 2:

Iron yield (%) =
$$\frac{(1.984x0.98)x100}{\{[(1.94-0.056)x0.986] + \left(\frac{0.2154x0.6935x0.8733x112}{160}\right) + (0.03x0.983)\}}$$
$$= \frac{(1.944)x100}{\{1.858 + 0.0913 + 0.0295\}} = 194.4/1.979 = 98.23$$

For Heat No. 3:

Iron yield (%) =
$$\frac{(1.965x0.985)x100}{\{[(1.696-0.087)x0.985] + (\frac{0.2993x0.6935x0.8733x112}{160}) + (0.344x0.983)\}}$$
$$= \frac{(1.936)x100}{\{1.585 + 0.1269 + 0.338\}} = 193.6/2.05 = 94.44$$

For Heat No. 4:

Iron yield (%) =
$$\frac{(2.0x0.941)x100}{\{[(1.38-0.062)x0.989] + \left(\frac{0.344x0.6935x0.8733x112}{160}\right) + (0.711x0.983)\}}$$
$$= \frac{(1.882)x100}{\{1.304 + 0.1458 + 0.699\}} = 188.2/2.149 = 87.58$$

Calculation of Iron yield for JSW Sludge (Section 5.6.2):

 F_2 = Fraction of iron oxide present in JSW sludge composite= 0.7122

 F_3 = Fraction of iron oxide (JSW sludge) = 0.9069

Heat No).	F ₁ (Initial Sample)	F ₆ Final Sample)
		Table 5.2	Table 5.3
5		98.3	0.971
6		99	0.978
7		98.5	0.978
8		98.7	0.965

Sample Calculation:

Iron yield (%) =
$$\frac{(W_5 x F_6) x 100}{\{[(W_1 - W_2) x F_1] + (W_3 x F_2 x F_3 x F_4) + (W_4 x F_5)\}}$$

For Heat No. 5

Iron yield (%) =
$$\frac{(2.046x0.971)x100}{\{[(1.99-0.016)x0.983]+(0.105x0.7122x0.9069x112/160)+(0.130x0.983)\}}$$

$$=\frac{(1.987)x100}{\{1.94+0.047+0.128\}}$$
$$=\frac{(1.987)x100}{2.115}=93.95\%$$

For Heat No. 6

Iron yield (%) =
$$\frac{(2.0x0.978)x100}{\{[(1.906 - 0.034)x0.99] + (0.216x0.7122x0.9069x112/160) + (0.125x0.983)\}}$$

$$=\frac{(1.956)x100}{\{1.853+0.098+0.123\}}$$
$$=\frac{(1.956)x100}{2.074}=94.31\%$$

For Heat No. 7

$$Iron \ yield \ (\%) = \frac{(2.333x0.978)x100}{\{[(1.89 - 0.052)x0.985] + (0.333x0.7122x0.9069x112/160) + (0.420x0.983)\}}$$

$$=\frac{(2.282)x100}{\{1.810+0.151+0.413\}}$$
$$=\frac{(2.282)x100}{2.374}=96.12\%$$

For Heat No. 8

Iron yield (%) =
$$\frac{(1.643x0.965)x100}{\{[(1.38 - 0.039)x0.987] + (0.344x0.7122x0.9069x112/160) + (0.256x0.983)\}}$$

$$=\frac{(1.585)x100}{\{1.324+0.156+0.252\}}$$
$$=\frac{(1.585)x100}{1.732}=91.51\%$$

Calculations of Iron Yield for VIZAG Sludge (Section 5.6.3):

 F_2 = Fraction of iron oxide present in VIZAG sludge composite = 0.7086

Heat No.	F1(Initial Sample) Table 5.2	F ₆ Final Sample) Table 5.3
9	0.987	0.977
10	0.99	0.98
11	0.972	0.971
12	0.989	0.969

 F_3 = Fraction of Fe present in iron oxide (VIZAG sludge) = 0.8577

Sample Calculation:

Iron yield (%) =
$$\frac{(W_5 \times F_6) \times 100}{\{[(W_1 - W_2) \times F_1] + (W_3 \times F_2 \times F_3 \times F_4) + (W_4 \times F_5)\}}$$

For Heat No. 29

Iron yield (%) = $\frac{(2.88x.977)x100}{\{[(2.452)x0.987] + (0.131x0.7086x0.8577 x112/160) + (0.510x 0.983)\}}$

$$=\frac{(2.814)x100}{\{2.42+0.056+0.501\}}=\frac{(2.814)x100}{2.977}=94.52\%$$

For Heat No. 10

Iron yield (%) =
$$\frac{(2.231x.98)x100}{\{[(2.358)x0.99] + (0.3225x0.7086x0.8577x112/160) + (0.20x0.983)\}}$$

$$=\frac{(2.186)x100}{\{2.334+0.137+0.197\}}=\frac{(2.186)x100}{2.668}=81.93\%$$

For Heat No. 11

Iron yield (%) =
$$\frac{(2.608x0.971)x100}{\{[(1.832)x0.972] + (0.332x0.7086x0.8577 x112/160) + (0.664x 0.983)\}}$$

$$=\frac{(2.532)x100}{\{1.781+0.141+0.653\}}=\frac{(2.532)x100}{2.575}=98.33\%$$

For Heat No. 12

Iron yield (%) =
$$\frac{(1.743x0.969)x100}{\{[(1.307)x0.989] + (0.342x0.7086x0.8577x112/160) + (0.383x0.983)\}}$$

$$=\frac{(1.689)x100}{\{1.293+0.145+0.376\}}=\frac{(1.689)x100}{1.814}=93.11\%$$