LIST OF TABLES

Table	Title	Page
1.1	Five Major Steel Producing Countries in World (Mt)	2
1.2	Iron ores Reserves of India (Mt)	3
1.3	Coal Resources of India (Mt)	4
1.4	Types of Solid/Liquid Waste Generated from Steel Plants	5
2.1	Steel Plant Solid Waste Particle Size, Shape and Average Analysis	14
2.2	Total Domestic Iron Ore Treated by Beneficiation methods	24
3.1	Sources of Raw Materials	60
3.2	BSS 410 Standard	61
3.3	Size analysis of JSW Dust	69
3.4	Size analysis of JSW Sludge	70
3.5	Size analysis of VIZAG Sludge	70
3.6	Size analysis of Coal	70
3.7	Chemical analysis of waste samples (as received)	71
3.8	Proximate analysis of coal samples (as received)	71
3.9	XRD analysis of JSW Dust	74
3.10	XRD analysis of JSW Sludge	75
3.11	Size analysis of JSW Dust (After grinding)	76
3.12	Size analysis of JSW Sludge (After grinding)	76
3.13	Size analysis of VIZAG Sludge (After grinding)	76
3.14	Size analysis of Coal (After grinding)	77
3.15	Result of Centrifugal Classifier	78

3.16	Result of Air Classifier	78
3.17	Result of Tabling for JSW Dust	79
3.18	Result of Tabling for JSW Sludge	79
3.19	Result of Tabling for Vizag Sludge	79
3.20	Results of JSW Dust with various beneficiation processes	80
3.21	Results of JSW Sludge with various beneficiation processes	80
3.22	Results of VIZAG Sludge with various beneficiate on processes	80
3.23	Result of two stage beneficiations for JSW DUST	85
3.24	Result of two stage beneficiations JSW SLUDGE	85
3.25	Result of two stage beneficiation VIZAG SLUDGE	86
3.26	Final Fe ₂ O ₃ , pct considered for pellet production	86
4.1	Final pct of Fe ₂ O ₃ considering for pellet production	90
4.2	Raw materials used for composite briquettes	91
4.3	Results of drop test for composite briquette of JSW dust	93
4.4	Results of compression and shatter tests for composite briquette of JSW dust	94
4.5	Different amount of binders used for briquettes	94
4.6	Results of briquettes using starch or molasses	94
4.7	Selected parameters and their levels for 2X3 for JSW dust	98
4.8	L9 orthogonal array for 2X3 for JSW dust	98
4.9	Experimental results for 2X3 JSW dust	99
4.10	Ranking order considering strength as priority	99
4.11	Ranking order considering shatter index as priority	100

4.12	Ranking order considering effect of both outputs	101
4.13	Selected parameters and their levels for 3X3	109
4.14	L9 orthogonal array for 3X3	110
4.15	L9 orthogonal array results for 3x3	110
4.16	Ranking order considering effect of both outputs	113
4.17	Selection of binder for pellets	116
4.18	Composition of composite pellets	117
4.19	Variables for isothermal reduction of composite pellets	121
4.20	Reduction data for JSW Dust composite at 950°C	122
4.21	Reduction data for JSW Dust composite at 1000 ⁰ C	123
4.22	Reduction data for JSW Dust composite at 1050°C	124
4.23	Rate of reduction for JSW Dust composite at various temperatures	125
4.24	Reduction data for JSW Sludge composite pellet at 950 ⁰ C	127
4.25	Reduction data for JSW Sludge composite pellet at 1000 ⁰ C	128
4.26	Reduction data for JSW Sludge composite pellet at 1050°C	129
4.27	Rate of reduction for JSW Sludge composite pellet at various temperature	130
4.28	Reduction data for VIZAG Sludge composite pellet at 950°C	131
4.29	Reduction data for VIZAG Sludge composite pellet at 1000 ⁰ C	132
4.30	Reduction data for VIZAG Sludge composite pellet at 1050 ⁰ C	133
4.31	Rate of reduction for VIZAG Sludge composite pellet at various temperature	135
4.32	Values of Activation Energies for All the Composite Pellets	135

4.33	XRD analysis of reduced JSW Dust composite at 1050 ⁰ C for 1200 s	137
5.1	Variables for Smelting Reduction of Composite Pellets	147
5.2	Chemical Analysis of All Initial Samples	148
5.3	Chemical Analysis of All Final Products	148
5.4	Chemical Composition of TMT Steel Rod	149
5.5	Chemical Analysis of Initial Melts for JSW Dust Composite	149
5.6	Chemical Analysis of Products for JSW Dust Composite	149
5.7	Details of weight taken at every stage in smelting reduction of JSW dust composite	150
5.8	Carbon (in Product) and Iron yield variation with composite pellet charged for JSW dust	150
5.9	Chemical Analysis of Initial Melts for JSW Sludge Composite	152
5.10	Chemical Analysis of Products for JSW Sludge Composite	152
5.11	Details of weight taken at every stage in smelting reduction of JSW Sludge	152
5.12	Carbon (in Product) and Iron yield variation with composite pellet charged for JSW Sludge	153
5.13	Chemical Analysis of Initial Melts for VIZAG Sludge Composite	154
5.14	Chemical Analysis of Products for VIZAG Sludge Composite	154
5.15	Details of weight taken at every stage in smelting reduction of VIZAG sludge	154
5.16	Carbon (in Product) and Iron yield variation with composite pellet charged forVizag Sludge	155