Appendix-I

EDS Data for Nitrogen Profiling

As nitriding progresses, more and more nitrogen diffuses in to the surface region and
nitrogen concentration gradient is developed from the surface to core region. The
concentration of nitrogen being maximum at the surface and minimum at the end of
diffusion zone. The peak value of nitrogen as well as its variation over depth have been
determined using Energy Dispersive Spectrometer (EDS). The EDS results are shown
here in the enclosed data sheets in Appendix-1 for various categories of nitride

specimens.

The EDS profiles enclosed are as under:
EDS profiles for plasma nitrided specimens with no white layer:

= Nitrogen profile of plasma nitrided specimens with no white layer:
Location -1 (At surface)

= Nitrogen profile of plasma nitrided specimens with no white layer:
Location -2 (In diffusion zone)

= Nitrogen profile of plasma nitrided specimens with no white layer:
Location -3 (In diffusion zone)

= Nitrogen profile of plasma nitrided specimens with no white layer:

Location -4 (At diffusion zone — core interface)

EDS profiles for plasma nitrided specimens with less than 10m white layer:

= Nitrogen profile of plasma nitrided specimens with white layer thickness less
than 10 microns: Location -1 (At surface)

= Nitrogen profile of plasma nitrided specimens with white layer thickness less
than 10 microns: Location -2 (In diffusion zone)

= Nitrogen profile of plasma nitrided specimens with white layer thickness less
than 10 microns: Location -3 (In diffusion zone)

= Nitrogen profile of plasma nitrided specimens with white layer thickness less
than 10 microns: Location -4 (In diffusion zone)
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EDS profiles for plasma nitrided specimens with more than 10um white layer:

= Nitrogen profile of plasma nitrided specimens with white layer thickness more
than 10 microns: Location -1 (At surface)

= Nitrogen profile of plasma nitrided specimens with white layer thickness more
than 10 microns: Location -2 (In diffusion zone)

= Nitrogen profile of plasma nitrided specimens with white layer thickness more
than 10 microns: Location -3 (In diffusion zone)

= Nitrogen profile of plasma nitrided specimens with white layer thickness more
than 10 microns: Location -4 (In diffusion zone)

= Nitrogen profile of plasma nitrided specimens with white layer thickness more
than 10 microns: Location -5 (At diffusion zone — core interface)
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Nitrogen profile of plasma nitrided specimens with no white layer:

Location -1 (At surface)

Spectrum processing :
No peaks omitted

Processing option : All elements analyzed
(Normalised)
Number of iterations = 3

Standard :

N  Not defined 1-Jun-1999 12:00 AM
Si SiO2 1-Jun-1999 12:00 AM

Cr Cr 1-Jun-1999 12:00 AM

Mn Mn 1-Jun-1999 12:00 AM

Fe Fe 1-Jun-1999 12:00 AM

Ni  Ni 1-Jun-1999 12:00 AM

Mo Mo 1-Jun-1999 12:00 AM

i 5 PHIGESE

Element Weight% Atomic%
N K 5.89 19.89
SiK 0.61 1.03
CrK 1.34 122

Mn K 0.84 0.72

Fe K 89.22 75.60

Ni K 1.58 1.27

Mo L 0.52 0.26
Totals 100.00

P TN T . W .
1 2 3 4 o 5] 7 g 9 10 1
ull Scale 622 cts Cursor: 0,000 ket
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Nitrogen profile of plasma nitrided specimens with no white layer:

Location -2 (In diffusion zone)

Spectrum processing :
No peaks omitted

Processing option : All elements analyzed
(Normalised)
Number of iterations = 3

Standard :

N Not defined 1-Jun-1999 12:00 AM
Si SiO02 1-Jun-1999 12:00 AM

Cr Cr 1-Jun-1999 12:00 AM

Mn Mn 1-Jun-1999 12:00 AM

Fe Fe 1-Jun-1999 12:00 AM

Ni  Ni 1-Jun-1999 12:00 AM

Mo Mo 1-Jun-1999 12:00 AM

J 2
T0m Elmcttos mans

Element Weight% Atomic%
N K 3.48 12.52
Si K 0.51 0.92
CrK 1.23 1.19
Mn K 1.14 1.04
Fe K 92.21 83.13
Ni K 1.34 1.15
Mo L 0.10 0.05

Totals 100.00

Spectrum 2

ull =cale 622 cts Cursor: 0.000 ket
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Nitrogen profile of plasma nitrided specimens with no white layer:

Location -3 (In diffusion zone)

Spectrum processing :
No peaks omitted

Processing option : All elements analyzed
(Normalised)
Number of iterations = 2

Standard :

N Not defined 1-Jun-1999 12:00 AM
Si Si02 1-Jun-1999 12:00 AM

Cr Cr 1-Jun-1999 12:00 AM

Mn Mn 1-Jun-1999 12:00 AM

Fe Fe 1-Jun-1999 12:00 AM

Ni  Ni 1-Jun-1999 12:00 AM

Mo Mo 1-Jun-1999 12:00 AM

TRw

Location - 3 (In diffusion [RE.

Elwtior manes”

Element Weight% Atomic%
N K 111 4.27
SiK 0.70 1.35
CrK 155 1.61

Mn K 1.01 0.99

Fe K 94.21 90.77

Ni K 0.64 0.59

Mo L 0.77 0.43
Totals 100.00
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Nitrogen profile of plasma nitrided specimens with no white layer:

Location -4 (At diffusion zone — core interface)

Spectrum processing :
No peaks omitted

Processing option : All elements analyzed
(Normalised)
Number of iterations = 2

Standard :
N Not defined 1-Jun-1999 12:00 AM
Si SiO2 1-Jun-1999 12:00 AM

SN Sy

Cr Cr 1-Jun-1999 12:00 AM s — —
Mn Mn 1-Jun-1999 12:00 AM S e Location -4
Fe Fe 1-Jun-1999 12:00 AM “ | (Atdiffusion zone — core interface) |

Ni  Ni 1-Jun-1999 12:00 AM
Mo Mo 1-Jun-1999 12:00 AM

Tlm . ARETE T R

Element Weight% Atomic%
N K 0.10 0.40
SiK 0.58 1.15
CrK 1.56 1.67

Mn K 0.73 0.74

Fe K 93.54 93.25

Ni K 2.08 197

Mo L 1.42 0.82
Totals 100.00

Spectrum 4

ull =cale 453 cts Cursor: 0.000 ke
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Nitrogen profile of plasma nitrided specimens with white layer thickness

less than 10 microns: Location -1 (At surface)

Spectrum processing :
No peaks omitted f
. . : 1~5rrﬁ im 1)
Processing option : All elements analyzed
(Normalised)

Number of iterations = 3

Standard :

N Not defined 1-Jun-1999 12:00 AM
Si  SiO2 1-Jun-1999 12:00 AM

Cr Cr 1-Jun-1999 12:00 AM

Mn Mn 1-Jun-1999 12:00 AM

Fe Fe 1-Jun-1999 12:00 AM

Ni  Ni 1-Jun-1999 12:00 AM

Mo Mo 1-Jun-1999 12:00 AM

Element Weight% Atomic%
N K 8.22 26.24
SiK 0.46 0.73
CrK 0.52 0.45

Mn K 0.63 0.51

Fe K 88.64 70.97

Ni K 1.32 1.01

Mo L 0.21 0.10
Totals 100.00

Full Scale 534 otz Curzor: 0,000 ket
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Nitrogen profile of plasma nitrided specimens with white layer thickness

less than 10 microns: Location -2 (In diffusion zone)

Spectrum processing :
No peaks omitted

Processing option : All elements analyzed
(Normalised)
Number of iterations = 3

Standard :

N  Not defined 1-Jun-1999 12:00 AM
Si SiO2 1-Jun-1999 12:00 AM

Cr Cr 1-Jun-1999 12:00 AM

Mn Mn 1-Jun-1999 12:00 AM

Fe Fe 1-Jun-1999 12:00 AM

Ni  Ni 1-Jun-1999 12:00 AM

[T Elzdl znimap:

Element Weight% Atomic%
N K 2.35 8.71
Si K 0.48 0.90
CrK 1.19 1.19
Mn K 1.15 1.08
Fe K 92.33 85.90
Ni K 251 2.22

Totals 100.00

ull Scale 575 cts Cursor; 0.000 ket
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Nitrogen profile of plasma nitrided specimens with white layer thickness

less than 10 microns: Location -3 (In diffusion zone)

Spectrum processing :
No peaks omitted

Processing option : All elements analyzed
(Normalised)
Number of iterations = 2

Standard :

N Not defined 1-Jun-1999 12:00 AM
Si SiO2 1-Jun-1999 12:00 AM

Cr Cr 1-Jun-1999 12:00 AM

Mn Mn 1-Jun-1999 12:00 AM

Fe Fe 1-Jun-1999 12:00 AM

Ni  Ni 1-Jun-1999 12:00 AM

5 /*':EL:'.LLI"| ’
8l Location -3 (In diffusion zone) i

0 m ! Wl men !

Element Weight% Atomic%
N K 0.75 2.89
SiK 0.62 1.19
CrK 1.46 153
Mn K 0.69 0.68
Fe K 95.54 92.84
Ni K 0.95 0.87
Totals 100.00

1 2 3 4
ull =cale 507 cts Cursor: 0.000

ket
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Nitrogen profile of plasma nitrided specimens with white layer thickness

less than 10 microns: Location - 4 (At diffusion zone — core interface)

Spectrum processing :
No peaks omitted

Processing option : All elements analyzed
(Normalised)
Number of iterations = 2

Standard :

N Not defined 1-Jun-1999 12:00 AM
Si Si02 1-Jun-1999 12:00 AM

Cr Cr 1-Jun-1999 12:00 AM

Mn Mn 1-Jun-1999 12:00 AM

Fe Fe 1-Jun-1999 12:00 AM

Ni  Ni 1-Jun-1999 12:00 AM

Mo Mo 1-Jun-1999 12:00 AM

Fletfine mnucn !

Element Weight% Atomic%
N K 0.29 1.15
SiK 0.79 1.55
CrK 1.24 1.31
Mn K 0.69 0.70
Fe K 95.85 94.48
Ni K 0.46 0.43
Mo L 0.67 0.38

Totals 100.00

ull =cale 622 cts Cursor: 0.000
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Nitrogen profile of plasma nitrided specimens with white layer thickness

more than 10 microns: Location -1 (At surface)

Spectrum processing :
No peaks omitted

Processing option : All elements analyzed
(Normalised)
Number of iterations = 3

Standard :

N Not defined 1-Jun-1999 12:00 AM
Si Si02 1-Jun-1999 12:00 AM

Cr Cr 1-Jun-1999 12:00 AM

Mn Mn 1-Jun-1999 12:00 AM

Fe Fe 1-Jun-1999 12:00 AM

Ni  Ni 1-Jun-1999 12:00 AM

T . DRSO

Element Weight% Atomic%
N K 8.22 26.24
SiK 0.46 0.73
CrK 0.52 0.45
Mn K 0.63 0.51
Fe K 88.64 70.97
Ni K 1.32 1.01
Mo L 0.21 0.10

Totals 100

1 2 3 4
Full Scale 452 otz Curzor: 0,000
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Nitrogen profile of plasma nitrided specimens with white layer thickness

more than 10 microns: Location -2 (In diffusion zone)

Spectrum processing :
No peaks omitted

Processing option : All elements analyzed
(Normalised)
Number of iterations = 3

Standard :
N Not defined 1-Jun-1999 12:00 AM Location -2 (In diffusion zone)
Si Si02 1-Jun-1992 12:00 AM
Cr Cr 1-Jun-1999 12:00 AM
Mn Mn 1-Jun-1999 12:00 AM
Fe Fe 1-Jun-1999 12:00 AM
Ni  Ni 1-Jun-1999 12:00 AM
Mo Mo 1-Jun-1999 12:00 AM

Element Weight% Atomic%
N K 5.12 17.61
SiK 0.62 1.07
CrK 1.85 1.72
Mn K 0.42 0.37
Fe K 90.57 78.19
Ni K 1.06 0.87
Mo L 0.36 0.18
Totals 100.00

Full Scale 479 otz Curzor: 0,000 ket
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Nitrogen profile of plasma nitrided specimens with white layer thickness

more than 10 microns: Location -3 (In diffusion zone)

Spectrum processing :
No peaks omitted

Processing option : All elements analyzed
(Normalised)
Number of iterations = 3

Standard : Location -3 (In diffusion zone)
N Not defined 1-Jun-1999 12:00 AM

Si Si02 1-Jun-1999 12:00 AM
Cr Cr 1-Jun-1999 12:06 AM
Mn  Mn 1-Jun-1999 12:00 AM
Fe Fe 1-Jun-1999 12:00 AM
Ni  Ni 1-Jun-1999 12:00 AM
Mo Mo 1-Jun-1999 12:00 AM

1-0.m

Element Weight% Atomic%
N K 2.21 8.28
Si K 0.64 1.20
CrK 1.38 1.39
Mn K 0.94 0.89
Fe K 92.37 86.62
Ni K 0.82 0.73
Mo L 1.64 0.89

Totals 100.00

Spectrum 2

Full Scale 479 otz Curzor: 0,000 ket
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Nitrogen profile of plasma nitrided specimens with white layer thickness

more than 10 microns: Location -4 (In diffusion zone)

Spectrum processing :
No peaks omitted

Processing option : All elements analyzed
(Normalised)
Number of iterations = 2

Standard :

N Notdefined 1-Jun-i999 12:00 AM
Si Si02 1-Jun-1999 12:00 AM

Cr Cr 1-Jun-1999 12:00 AM

Mn Mn 1-Jun-1999 12:00 AM

Fe Fe 1-Jun-1999 12:00 AM

Ni  Ni 1-Jun-1999 12:00 AM

Mo Mo 1-Jun-1999 12:00 AM

Location -4 (In diffusion zone)

iy . ENCTO et

Element Weight% Atomic%
N K 1.03 3.96
Si K 0.67 1.28
CrK 1.96 2.03
Mn K 0.50 0.49
Fe K 94.12 90.77
Ni K 141 1.30
Mo L 0.31 0.17

Totals 100.00

1 2 3 4 5
Full Scale 473 otz Curzor, 0000

Spectrum 4
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Nitrogen profile of plasma nitrided specimens with white layer thickness

more than 10 microns: Location -5 (At diffusion zone — core interface)

Spectrum processing :
No peaks omitted
pectrum S
Processing option : All elements analyzed
(Normalised)
Number of iterations = 2 Location -5
Standard - (At diffusion zone — core interface)
N Not defined 1-Jun-1999 12:00 AM

Si SiO2 1-Jun-1999 12:00 AM
Cr Cr 1-Jun-1999 12:00 AM
Mn Mn 1-Jun-1999 12:00 AM
Fe Fe 1-Jun-1999 12:00 AM
Ni  Ni 1-Jun-1999 12:00 AM

0Zum Elzclznimag:

Element Weight% Atomic%
N K 0.10 0.41
SiK 0.48 0.94
CrK 0.73 0.78
Mn K 0.98 0.99
Fe K 95.12 94.44
Ni K 2.58 2.44
Totals 100.00

Spectrum S

1 2 3 4 5 G T g 9 10 1
Full Scale 473 otz Curzor, 0000
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Appendix-I1

Sample calculations and Data on Fatigue Analysis

I1-1. Derivation of Formulae Used for Fatigue Data Analysis:
Formulae used for analysis of fatigue data have been derived in the following
sections:

I1-1-A. Derived parameters for S-N curves (i.e. Ny Derived):

The purpose here is to convert ( Ny experimental) to (N Derived) to enable to plot S-

N curves. As the fatigue data follows a power law relationship it can be expressed

as —
o0 = a(N;)’ )
Where:

O = Alternating stress (stress amplitude)

N¢ = Number of cycles to failure

a,f = Basquin pre-exponent and fatigue life exponent, respectively

The estimation for a and f is carried out by first linearizing equation (1) as:

Ino, =1In (a[Nf]) (2)

=Ilna+p InNg 3
Taking In o, as variable y and In N as variable X, the above equation takes the

familiar form of a straight line

y=a+ bx 4)

Where,
y=lna,
a (intercept) = ln«a
b (slope) =
x =In N
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From Egs. (3) and (4), the values of a and b are estimated using minimal variance

“regression” estimators as

N v.-[f(>N . x;
a=Ina = [Zi. vil E\I;(Zmlxt)] )
~ Zﬁlxiyi_%
b= = Xi)N (6)
(Zliv=1xi2 _%

The coefficient of determination R? is computed to quantify the accuracy of the

estimate. This is given as:

SS SSr
RZ = 22R _ 1— Zoreq (7)
SST SSt

Witho <R? <1
Where
SST = SSRBS + SSR (8)

and

S5y = ) (%=1’

i=1

SSReq == Z(yl - ?1)2

i=1

N
SSy = Z(?i —7)°
i=1
1Yi

2

=

=
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From the estimators, the Basquin coefficients are estimated as:
a = explal

B=b (©)

This enables deriving the estimated Basquin model as:
6, = a(n,)’ (10a)

= explal(N,)’ (10b)
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I1-1-B. Fatigue stress modification factor, (0coat): :

The aim is to develop a factor which expresses ratio between the bending stress that can
be applied for the specimen of a particular surface treatment to the stress for an base
material/untreated specimen for a given number of fatigue life cycles. Hence, a ratio
of stresses for these two treatments is determined by taking a simple ratio of the
estimated Basquin relationship for the i" treatment to the estimated Basquin
relationship to the base material as follow:

_ @i _ et [y BB O
(Qcoat)i - (Cac)b - a(Nf)ﬁz = [ab] Nf ] = HPEth (11)

Where:

i = i treatment category

b = Base material

a;a = Basquin pre-exponent for i treatment and base material categories,
respectively

BiBp = Basquin exponent for it treatment and base material categories,

respectively

Opgi, 0; = Life reduction pre-exponent and exponent, respectively for treatment i
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I1-1-C. Cycle modification factor, ¥ :

Cycle modification factor, W1 is a factor which expresses ratio between number of
fatigue cycles that a particular surface treatment can withstand to the number of cycles
withstood by a base material/untreated specimen for a applied stress level. The cycle
modification factor for i" surface treatment is derived by first inverting the Basquin

relationships as shown below:

, = expla (Nf) (12)
as (Ny), = (aal-)ni exp [— Z—j (13)
= &[6,]™ (14)

and (Ny), = (045) exp |- —] (15)
=& (O-a)nb (16)

Subsequently, ratio of Egs. (13) and (16) give:

(Np); B0 _ S@inb) Wi

(vp), Y= o™ sz ] Prp (17)
Where,

i = i treatment category

b = base material category

&, & = Inverse Basquin pre-exponent for base material and i*" categories,

respectively

n,,M; = Inverse Basquin exponents for base material and i™" categories,
respectively

Yo Wgi = Cycle modification pre-exponent and exponent, respectively for it

treatment
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I1-2-A. Sample Calculation using Formulae Derived for Fatigue Data

Analysis:

A sample calculation for plasma nitriding treatment (with compound/white layer

thickness of less than 10 microns) has been shown here.

The treatment has been identified as “PN” for the purpose of this calculation. Other

nomenclatures used are:

Oy =  Alternating stress (stress amplitude)

Ny = Number of cycles to failure for “PN” treatment

apy & ap, = Basquin pre-exponent for “PN” treatment and base material
categories, respectively

Beny & B, = Basquin exponent for “PN” and base material categories,

respectively

Sample Calculation for Derived parameters for S-N curves:

Table 1 below shows fatigue test results of fatigue life cycles obtained for the various
bending stresses applied for PN treatment. These values have been taken for solving
the deriving Basquin parameters.

Table 11.1: Fatigue life cycles data of Plasma nitrided category (with less than

10 microns)
Bending stress applied, o, Fatigue life cycles, N
697.7 3.98E+07
767.5 7.11E+06
837.2 4.36E+06
907.0 4.08E+05
976.8 3.52E+04
1255.9 6.50E+03

For the purpose of converting data in Equation No. 3 of Annexure-I, the above values

were converted in In (i.e. Log to the base €) as shown in Table I1.2.
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Table 11.2: Fatigue results converted into Basquin relationship

y = In g, x=1In Nf
6.548 17.50
6.643 15.78
6.730 15.29
6.810 12.92
6.884 10.47
7.136 8.78

From the above data, values of intercept ‘a’and slope ‘b’ were determined using

equations for regression analysis in Microsoft Excel. The results obtained are:

Intercept, ‘@’ (i.e. In apy) = 7.58
Slope, ‘b’ (i.e. Bpy) =-0.059

This gives values of Basquin co-efficient apy & Bpy as follow:

apy = 1.958 x 103
Bpy = -0.059

Now, the relation between g, and N (Derived) is:

0, = 1.958 x 103 x (N (Derived))0%

On rewriting the above equation in terms of Nf (Derived) we get,
N (Derived) = (0, /1.958 x 103)-1/0.09

Solving above equation for a value of bending stress o, = 697.7 MPa, we get,

Ny (Derived) = (697.7/1958) 109
= 3.95E+07 cycles

Similarly for all other values of o,, corresponding values of Ny (Derived) can be

obtained and the same has been given in Table 11.3.
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Table 11.3: Derived fatigue life cycles using Basquin parameters

Stress,o, | Fatigue Life(Experimental), N | Fatigue Life(Derived), Nf
697.7 3.98E+07 3.95E+07
767.5 7.11E+06 7.84E+06
837.2 4.36E+06 1.80E+06
907.0 4,08E+05 4.62E+05
976.8 3.52E+04 1.32E+05
1255.9 6.50E+03 1.86E+03

11-2-B. Sample Calculation for Fatigue Stress Modification factor,
((')coat) PN -

By taking the ratio of the estimated Basquin relationship for PN treatment to the
estimated Basquin relationship of the base material, (coat) Pn Can be written as:

(Bcoat)Pn = [a;;:] [Nf(ﬁPNﬁb)]
Where:
apy & a;, = Basquin pre-exponent for PN treatment and base material
categories, respectively
Ben & B, = Basquin exponent for PN treatment and base material

categories, respectively

On substituting the values of Basquin pre-exponent and exponents as given below in
above equation,
apy = 1.958 x 103
a, = 3.31 x 103
Bpy = —0.059
B, = —0.11

the Equation for Fatigue Stress Modification factor, (6.,4:)py Can be written as:

_ 1.958x103Nf~ %%’

Beoar)en = 3.31x103Nf~0-11

172



Substituting the value of Nf= 3.95E+07 in above equation, one gets Fatigue Stress

Modification factor as follows.

(Bcoar)pn =0.592 X (3.95E + 07)0-051
= 1.445

Similarly, for all other values of N, the corresponding values of (8.04:)py are

calculated the results obtained are given in Table 4 below.

Table 11.4: Stress Modification factors obtained through calculations

Stress,o, | Fatigue life cycles, Nf| Stress Modification factors, (0 ,.,4:) px
698 3.95E+07 1.445
768 7.84E+06 1.330
837 1.80E+06 1.234
907 4.62E+05 1.151
977 1.32E+05 1.080
1256 1.86E+03 0.869

I1-2-C. Sample Calculation for Cycle modification factor, Wpy

The cycle modification factor for PN surface treatment (Wpy ) is derived using formula,
_ [een] [ ~(npNnnp)
o =[] [0

Where,

&, & &py = Inverse Basquin pre-exponent for base material and PN
categories, respectively

N, & npy= INverse Basquin exponents for base material and PN

categories, respectively

On substituting the values of Inverse Basquin pre-exponent and Inverse Basquin

exponent as given below in above equation,
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for apy =1.958 x 103, the inverse value is épy=1/ apy =1/1.958 x 103

3.31 x 103, the inverse value is &, =1/ a;, =1/3.31 x 103

a, =
Bpny =—0.059, the inverse value is npy =1/ Bpy =1/ (—0.059) =-16.95
B» = —0.11, the inversevalueis n, =1/, =1/(-0.11) =-9.09

the Equation for Cycle Modification factor, Wpycan be written as:

=)

_ (3.31x103)79:091 607859
(1.958x103)~16.95

1.003x 10732
~ 160 x10-56 ¢

= 6.27 x 10?36a778°
For a given value of 6a =698 MPa

Yoy = 6.27 X 10%3(698) 7859
=27.4

Substituting the value of Nf= 3.95E+07 in above equation, one gets Fatigue Stress

Modification factor as follows.

Similarly, cycle modification factor, Wpyare calculated for all other values of 6a and

are given in Table 5 below:
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Table 11.5: Cycle Modification Factors obtained through calculations

Stress,oa Cycle Modification Factors, Wpy
700 2.74E+01
800 9.59E+00
900 3.80E+00
1000 1.66E+00
1100 7.80E-01
1200 3.90E-01

Following is the summary of data on derived fatigue life cycles, stress modification

factors and cycle modification factors for untreated and various surface treated

specimens.
Derived values of fatigue life from Basquin exponents
Applied Untreated Thermal spray- P.N. P.N. (C. L. P.N. (C. L.
stress, Alumina (NoC.L) <10 micron) >10 micron)
Mpa
700 8.80E+05 3.940E+04 3.95E+07 3.54E+04
770 3.81E+05 2.910E+04 7.84E+06 2.30E+04
840 1.77E+05 2.200E+04 6.84E+08 1.80E+06 1.55E+04
910 8.78E+04 1.707E+04 3.52E+07 4.62E+05 1.07E+04
975 4.58E+04 1.348E+04 2.26E+06 1.32E+05 7.66E+03
1045 1.75E+05
1115 1.61E+04
Stress Modification factor vs Fatigue Life Cycles
Cycles Chrome P.N.(NoC. L) P.N. P.N. (C.L.>10 Untreated
plated (C.L.<10 Micron)
micron)
4.58E+04 0.89 1.0676 1.023 0.647 1.0
8.78E+04 0.7 1.1269 1.058 0.602 1.0
1.77E+05 0.53 1.1944 1.096 0.558 1.0
2.58E+05 0.46 1.232 1.118 0.535 1.0
3.81E+05 04 1.273 1.14 0.512 1.0
8.80E+05 0.29 1.364 1.19 0.467 1.0
2.76E+06 0.189 15 1.261 0.412 1.0
Cycle Modification Factors for Applied Stress
Applied Chrome P.N.(NoC.L) P.N. P. N. Untreated
Stress, plated (C.L.<10 (C.L. >10
MPa micron) Micron)
200 8.40E-06 4.72E+20 5.17E+05 8.67E-05 1.0
300 1.46E-04 5.66E+15 2.13E+04 5.47E-04 1.0
400 1.11E-03 1.82E+12 2.23E+03 2.02E-03 1.0
500 5.37E-03 3.57E+09 3.85E+02 5.56E-03 1.0
600 1.94E-02 2.19E+07 9.20E+01 1.27E-02 1.0
700 5.76E-02 2.95E+05 2.74E+01 2.56E-02 1.0
800 1.47E-01 7.05E+03 9.59E+00 4.70E-02 1.0
900 3.39E-01 2.62E+02 3.80E+00 8.02E-02 1.0
1000 7.12E-01 1.38E+01 1.66E+00 1.30E-01 1.0

175




Appendix-I11

JCPDS Data Cards for XRD Analysis

JCPDS Data Card for alpha Iron:

6 0696 MAJOR CORRECTION

d 2.03 1.17 1.48 | 2.03 | (Fe)2p ‘
m 1noN
100 30 20 200 Iron (@ PHasE) KAMAT 1 7€)
Rad Cuka A 1.8405 Foeer N 4A | UL | ma ydA | WL | bW
Dia % Cut oft Coll. 2.0268 | 100 110
I/1; COUNYER DIFFRACTOMETER  dcorr abs.? 1.4337“3‘ 28 200
Ref. SwansON ET AL., NBS CincuLar 539 Vou p3 i 3 211
: AS-'\SE ~{1.0134| 10 220
Sys. Cusrc 8G. |m3m (229) 0'?9-“ 12 -310
% 2.8664 b Co A c i
i 2 ¢ 2 2 8275 6 222
Ref, lein.
s nog iy Sign
v DZ.874 mp Color
Ref. |21Ds
ToTaL imPURITIES OF sawpLE £0.0013 Yo £aon
METALS AND NON-METALS.
X=RAY PATTERN AT 25°C, W STRUCTURE TYPE.
Occm AS TERREBTRIAL ‘IION” AND IN METEORITES
As "KawaciTe".

JCPDS Data Card for FeaN:

6~ 06586 MAIOR CORRECTION N
d 2.11 1.63 2.21 3.45 (Fegh)12Q
m | w0 | 25 20 2 IRON NI TRIDE
Rad. LoKa  , 1.7902 Filter FE dA | 1, | hid } dA | yn | b
Dia. 9519¢m Cut off cm . 3.45 2 101 }1.003 1 | 024,214
I/T,  MIGCROPHOTOMETER 2.804 2 111 J0.%299 358 1333,0434
Ref.. JACK, PROC. ROY. S0C.3 A _5_ 34—40 (1948) 2.404 14 |020,210] -9103 4 250
. 2.207| 20 002 | .9074 4 440
‘sy'_ ORTHORHOMBIC SG. 2.110{ 100 |o021,211) .9026 4 610
.. 54523 b, 44830 o, 49425 A 1,143 ¢ 0.9164 *790 1 121
8 T 74 Dx 7.02 1,697 <« 301
M 181D 1.626| 25 |[022,212

1.600 d 311
1.457 <1 pED

ta nwg ty Sign 1.422
. | 103
?,L D mp Color 1.385( 2 [321,2304

1.365 <1 113
1.255 25 023,213
1.206 2 040

1,197 2 420
1.166 458 {232,402+
1.104 & 004
1.065 <1 133
1.055 16 {042,422

SAMPLE CONTAINS 11.3 wT. % N. HOMOGENEITY
RANGE 11.1-11.3 wt. ¥ N.
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JCPDS Data Card for FesN:

-
=1 236 MAJOR CORRECTION g ﬁ
3478 by
d 2.09 2.19 1.8L 2,38 FegN '»!
1=1241 I‘E
171, 100 25 25 20 1RON N1TRIDE .‘1
[ 1=12061 |
Red, MoKa A 0.708 Filter 280, dA | 1 [ ha g dA | T4 [ bR
Dia. 16 incwes Cut off Coll. 2.38 20 100 )
1/1;, CALIBRATED STAIPS deorr.abs? No 2.19 25 002 1]
Rel. H 2.09 100 101 1
1.51 25 102 v
Sys. HEXAGONAL SG. DS - Pegaz’ 1.37 28 110 3
By 24695 b, te 9382 A G .88 1,84 2% 108
a B ¥ 2z 1(?)
Ret, W 1.16 20 200 )
1.14 10 112
1,10 3 004 i
ta nwp ty Sign 1.04 ) 202 |
v D mp Color |
Rat. 0,92 5 203 |
.88 8 210 !
+36 8 211 i
.02 3 |212,105 i
W18 3 213
| RDEXED
By SW

JCPDS Data Card for FesN- FeaN:

3- 0925 MINOR CORRECTION

s o3
d 2.34 2,19 2.06 2.34 c.FEgN<FEgN 3
3-0934 O
L | 100 100 100 100 ePSILON IRON NITRIDE ;
3-0%23
| Rea. Fexa 2 1,93597 Filter dA | v | wa ) ad | un | M
Dis. Cut oft Coll 2.34 1% % 3
1 VisualL d corr. abs.? 2.19 1
R,:; Haca, Ne Acta Rege Soc. Scie UPSey, I¥ T 2,06 100 | 101
1. pi6 1.59 | 100 | 202
Sys. %Aeoun SG. f.3¢ | 100 | 110
:a 2. ? c: 44371 ; . C 1.619 1.23 12 1% ‘!..l
; X + 500: Sol4 1.17 2
Ref. Hacs, N. AcTA Reg. Soc 1?lntslmz..-_‘ll A 118 100 118

1,13 | 100 | 201 -

True vpPER LIMIT OF N concenTRATION (49.3 N 1.09 60 008

Atous 10 100 FE aroms) 15 LESS THAN FOR FegN.
THE LOWER LIMIT VARIES WITH TEWP. AND AT 700C 1,03 80 202
THE N CONCENTRATION 18 LESS THAN FEgN. At 0.989 0 04
COMPOSITIONS NEAR FEQN 28D FEgN a%0= ¥3no, ' .

I ¢'o=Cp, WHERE Ap AND Cp ARE THE WEXe CLOSE= 3
| PACRED cELL DIMENSIONS. Near FEgN AND BETWEEN oo
FEeN AND FEgN, ADDITIONAL SUPERSTRUCTURE RE- . i

FLEXIONS OGGUR WHICH REQUIRE THE UNIT A'g=213a, 3
¢'=cq. (Uack, Acta Cavsr. 3 392( 1950251:5 ALSO
PARANJPE ET AL., TrAns AINE 188 307 (1950) i
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JCPDS Data Card for FesN:

6 -0 627 MAIOR CORRECTION

d 2,19 | 1.%0 1.3¢ 3,79 (FegN)4.250

171, 100 7 65 10 lnon Nitaipe (Y’ swase)

Rad. Coka A 1.7902 Filter Fe dA | Un | wa ) dA | Un | WM
Dia. 9,19cm  Cutoff Coll. 3.7%9 | 10 100

171y MICROPHOTOMETER deorr.abe.? YES 2.684 | 20 110

Ref. Jack, Proc. Rov. Soc. A 195 34-30 (1948) 2,191 | 100 111
- 1,897 75 200
1.697| 20 210

Sys. Cusic SG.

798 1.549| 20 211
:'3 :’ e; 42\1.25 i 1.342| 6 | 220
Ref. 181D, 1.265| 20 221,300,

: 1.200{ 10 310

” ey y — 1,144 | 85 3l
a « ¥

1,005 | 40 222

n’z,_ Dx 7.16mp " 1.053| 20 | 320

1.014| 20 321

0.939 | 45 400

SaMPLE GONTAINS 6.1 wT, Yo N, Howooereity
RANGE 5.7-6.1 wr. Yo N
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Annexure -1V

The Finite Element Method in Solid Mechanics

1.0 Introduction

For complete description of state of stress in an object, six independent stress
tensor elements are required at every point. These six stress tensor elements are related
to six strain tensor elements through thirty six elastic constants in the elastic
approximation of the state of deformation in the object. The six strain elements are in
addition, derived from three displacement elements. For an isotropic object, the
relationship between stress and strain can be described in terms of only two elastic
constants (i.e. the modulus of elasticity and the Poisson ratio). On counting the number
of variables at every point in the object, we find six stress tensor elements, six strain
tensor elements, & three displacement vector elements. These fifteen unknown are
linked through three Newtonian equations of equilibrium, six constitutive relationships
between stress and strain, along with six equations connecting strain tensor elements
and the displacement vector field. Thus we have a total of fifteen equations, which can
be solved simultaneously along with boundary conditions to uniquely determine the
stress and strain field in an object. In a generalized object of a complex geometry, these
fifteen equations along with the boundary conditions are solved using either finite
difference methods based on approximation theory or finite element method based on
variational energy or generalized functional optimization. Thus, the FEM method is a
numerical technique whose analytical foundations rest on fundamental conservation of
energy principles and the application of generic variational arguments. Basis of the

FEM approach for stress analysis is presented below:

2.0 The Modern FEM Based Method for Stress Analysis
2.1 Basis

For the purpose of using FEM for stress analysis of solid objects, the generalized
variational principle of interest is based on the concept of virtual work for a system of

volume & surface forces, as defined below:
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Where:

AW, = Variational virtual work

0y = Volume force vector field

qﬁ S = Surface — traction force — vector field

[dV], dS = Differential volume and surface area, respectively

|s> | = Variational displacement vector

Using the above definition of the concept for virtual work, it can be shown that under

Newtonian equilibrium, the following identity for variational quantities holds true:

oW,

virtual —

Where: H U o= [ jv(%aij 8 ]dv H ©)

We can write Eq. (2) as:

ouU strain 2

= MWijirgar = M girain =0 )
[=6(- W, +Uoein) =0] 5)
Now let us define:
~Wiiral = Yvirua (6)
5 Vo =—[]]. 6, v =[] 4.5 s )
= 6(Uyirgar +Ustain) = Uy =0 8)

Finite element method divides the domains into continuous & compatible volumes

(elements) and the above first variation condition is applied to each element or:

{5(; U ‘malj =45()= 0} 9)

Now:
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I.H:H([o_ij]v[gij]’¢?Vs¢?s)J (10)

The stress tensor & the strain tensor are written in terms of a set of basis nodal

displacements as below:

2.2 Transformation of Strain Tensor

{ak}*{un}:{un}:['\']{ak} (11)
Unj— {‘9ij }:{gij }: [LRU.} (12)
tij (= [LINJay =By | (13)

Where:

_N ] = Shape function matrix

Ay ] = Nodal displacement vector
_U n ] = Displacement vector

i | |

L7 = Strain tensor

2.3  Transformation of Stress Tensor
ialj} D] igu} L]N]{ } [D][B]{ak} (14)

Using these transformations, we can write the first variation of the total energy as:

= H([B]{ak } [D][B]{ak }’¢V , ¢s) (15)
The unknown variables, to be optimized (determined), are the basis nodal
displacements {ak §- For this we use the following detailed stationarity condition for

vanishing first variation:
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ot T
8al I ‘//1 |
oIl Oa .
= 2 = : = 0
H@} 5 ‘ [o] (16)
o | L¥m]
_aam |

Simultaneous solutions of the above resulting “m” simultaneous equations leads to the
determination of the unknown nodal displacements from which the stress & strain state

can be calculated by back-substitution in the transform equations.

Discretized finite
element volume

The stationarity condition results in the following equation:

vy [Bllalav +[f ]=|0] a7)
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Now for isotropic solids (which is the general model used for linear elastic based FEM
analysis), the following constitution equation connecting the stress tensor and the strain

tensor holds:

 1/E -v/E —-v/E 0 0 0 |log,
—vIE 1E -vIE 0 0 0 |o,
{ }t -vIE -vI/E 1/E 0 0 0 O,
& ( total =
i J o 0 0 0 U2u 0 0 | o,
0 0 0 0 12z 0 |o,
0 0 0 0 0 1/2u)|oy)
__ —tt
GXX
Cyy
t -1 Jzz (18)
= 1E =D
{ u}total [ ] O'yz
GZX
| Oxy |

2.3  Computation of Invariants

Equations (17) & (18) are solved using an appropriate numerical technique and the
explicit stress and strain state in each element is mapped. Once the stress state is
computed, the following stress invariants can be easily computed. These invariants are

connected to the dynamics of various defect structures in the object.

= Von-Mises equivalent stress:

J\5on—|\/|ises = %[(61 — O, )2 +(62 _63)2 "‘(03 _61)2]

(19)
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=  Qctahedral normal stress:

5 L0110, +0; 20)
nn 3

=  Qctahedral shear stress:

Tht :%[[(0-1_‘72)2 + (o, _(73)2 + (o, _01)2]]

(21)

= Principal Shear stress:

‘O-l _0-3‘

V2=V 5

Where 61,62, &ocsare the principal normal stresses (in the principal coordinate system)
which can be computed by determining the three roots of the following general result

for the stress tensor.

_(Gxx _G) O xy O xz |
detl oy (o —0) Oy =0 @
| Oz O zy (Gzz_g)_

3.0 General Framework for Non-linear Solids, Non-time Invariant Solids
Undergoing Irreversible Deformation (Metals, Polymers, Ceramics, &

Composites)

For solids undergoing irreversible deformation, analytical techniques fall into two

general categories. In category I, we have the deformation techniques wherein the state
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of strain is purely dependant on the state of stress. In other words, the history of loading
(loading path) and time dependant processes are not captured in the approach. While
this technique is intrinsically simple, it can lead to significant errors in the final
prediction of the deformed state. The category Il incremental approach enables
capturing of the effect of the causal time dependant loading history on the solid and
enables precise predictions of the evolving state of stress and strain in the solid. In fact,
the incremental approach is a superset of the deformation theory approach, as under the
condition of proportional incremental loading wherein the principal stresses undergo
increments in proportion to there current absolute value, the incremental approach
predicts a path independent evolving state of the stress and strain in the solid similar to
the deformation theory approach.

The foundations of the incremental theories rest on the pioneering work of Levy
and Mises for purely plastic deformation and Prandtl&Reuss for the elastic-plastic
deformation. The foundational work in the field rests on the formal approaches of Hill
and Drucker who formulated a number of basic postulates, developed approaches based
on plastic potential, and proved a large class of generalized mathematical results which
are now widely used by designers of deformation processing techniques for materials
and researchers pushing the boundaries.

With the availability of powerful parallel processor based supercomputers, ab-
initio approaches based on quantum chemical modeling coupled with lattice dynamics
have begun to yield very precise predictions of deformation dynamics of solids.
However, this fundamental but exact approach has still not been deployed by the
material forming industries who continue to rely on the continuum FEM techniques

based on the mathematical approach.

The basis of the incremental framework for irreversible deformation is briefly presented

below:
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4.0 Incremental Elastic — Plastic Formulations for FEM Analysis

[ The Mathematical Machinery For The Model |
e A Flow Rule

e The Normality Condition
oF
dle, ) =,17—T ————— (25)
P Jij a Gp ’

e The Unconstrained Normality Condition

die,) =4 Q_____ 26
( p)ij ao_—x (26)
Where:
F = Flow Rule
Q = Plastic Potential
x = Hardening Coefficient
(gp)ij = Element of Plastic Strain Tensor

(ap)ij = Element of Stress Tensor

| Note :When Q = F = Associated Plasticity

Based on the above, the generalized incremental formulation for elastic-plastic

problems is as below:

The Incremental Formulation

d(éT) = d(ée)"'d(ép)

—d@) =[D6)+ 22—~ 27)
o(6)

o Now:
dF=Edaﬁrﬁdaz+...+ﬁd1(=0————(28)

oo, oo, oK

T

oF

= | d6)-Ar=0———————— 29
=[] @@ )
Where :

e

Combining above Equations Leads To The Formulation



With :
b -to-of 22 5] o 25 1o 22| -

5.0  Visco-plastic Problems Using the Generalized Plastic Potential Approach

for FEM Analysis
Similarly, approach based on generalized plastic potential enables formulation of time

dependantvisco-plastic formulation as below:

.
én | oo,
2 oQ
. . 0
o= |7 |= 0P 3y = 9P ) o, |-~ (34)
40 Q
| 00 |

[g’vp]z Six Element Strain Rate Tensor

y = A Generalized Time, Temperature, & Total
Strain Dependant Material Cons tan t

¢ = Flow Strength Function

F = Plastic Triggering Flow Rule/ Function

<>=01If F<0

and<>=¢If F>0

Q = Plastic Potential

187



e The Rate Law

& =p(6,6)-———————- (35)
e Linear Strain Sum Rule

Er o té +é, =&, +é (assume £, =0)—————— (36)
e Linear Elastic Solid

& =[D['6-——————- (37)

e Equilibrium Equation (FEM Formula)

a=[ Bl @G)v +(f)=0-——————- (38)

e In State (m+1), We Have:

Ams1) = _[V [B]T (&(m+l) )dV + (f(m+1)): 0—-—(39)
e Combining Egs. =
O (mi1) — O (m) = D[g(m+l) - €(m)]— D[Ec,(m+1) _gc,(m)]

= DB[a(m+1) - a(m) ]_ D[gc,(erl) - ‘90,(m)]
—_(40)

e From Creep Rate Law:
Ee(mir) ~ €c(m) = l/}(m+6)At(m) - _(41)

With :

Cmeg) = 1= 0)0 () + 00y (0<O<D)————— (42)
and :

Vina) =V (@ (m+0)) ———————— (43)

¢ On Combining Equations :

Amt) = O(msz) = Om) ~ DB(a(m+l) - a(m))+ D (n.0)Almy ——(44)

m+1)

e Viscoplastic Evolution Proceeds By Simul tan eous Solution of Egs.
U sin g An Iterative Solution Scheme (Euler, Tangential) to Deter mine:

A(m+1)1 O(m1)
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