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Appendix-I 

 

EDS Data for Nitrogen Profiling 

 

As nitriding progresses, more and more nitrogen diffuses in to the surface region and 

nitrogen concentration gradient is developed from the surface to core region. The 

concentration of nitrogen being maximum at the surface and minimum at the end of 

diffusion zone. The peak value of nitrogen as well as its variation over depth have been 

determined using Energy Dispersive Spectrometer (EDS). The EDS results are shown 

here in the enclosed data sheets in Appendix-I for various categories of nitride 

specimens.        

 

The EDS profiles enclosed are as under: 

EDS profiles for  plasma nitrided specimens with no white layer: 

 Nitrogen profile of plasma nitrided specimens with no white layer: 

            Location -1 (At surface) 

 

 Nitrogen profile of plasma nitrided specimens with no white layer: 

            Location -2 (In diffusion zone) 

 

 Nitrogen profile of plasma nitrided specimens with no white layer: 

            Location -3 (In diffusion zone) 

 

 Nitrogen profile of plasma nitrided specimens with no white layer: 

            Location -4 (At diffusion zone – core interface) 

 

 

EDS profiles for  plasma nitrided specimens with less than 10m  white layer: 

 Nitrogen profile of plasma nitrided specimens with white layer thickness less 

than 10 microns: Location -1 (At surface) 

 

 Nitrogen profile of plasma nitrided specimens with white layer thickness less 

than 10 microns: Location -2 (In diffusion zone) 

 

 Nitrogen profile of plasma nitrided specimens with white layer thickness less 

than 10 microns: Location -3 (In diffusion zone) 

 

 Nitrogen profile of plasma nitrided specimens with white layer thickness less 

than 10 microns: Location -4 (In diffusion zone) 
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EDS profiles for  plasma nitrided specimens with more than 10m  white layer: 

 Nitrogen profile of plasma nitrided specimens with white layer thickness more 

than 10 microns: Location -1 (At surface) 

 

 Nitrogen profile of plasma nitrided specimens with white layer thickness more 

than 10 microns: Location -2 (In diffusion zone) 

 

 Nitrogen profile of plasma nitrided specimens with white layer thickness more 

than 10 microns: Location -3 (In diffusion zone) 

 

 Nitrogen profile of plasma nitrided specimens with white layer thickness more 

than 10 microns: Location -4 (In diffusion zone) 

 

 Nitrogen profile of plasma nitrided specimens with white layer thickness more 

than 10 microns: Location -5 (At diffusion zone – core interface) 
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Spectrum processing :  

No peaks omitted 

 

Processing option : All elements analyzed 

(Normalised) 

Number of iterations = 3 

 

Standard : 

N    Not defined   1-Jun-1999 12:00 AM 

Si    SiO2   1-Jun-1999 12:00 AM 

Cr    Cr   1-Jun-1999 12:00 AM 

Mn    Mn   1-Jun-1999 12:00 AM 

Fe    Fe   1-Jun-1999 12:00 AM 

Ni    Ni   1-Jun-1999 12:00 AM 

Mo    Mo   1-Jun-1999 12:00 AM 

 

 

 

 

 

 

 

 

 

 

 

 
Element Weight% Atomic% 

N K 5.89 19.89 

Si K 0.61 1.03 

Cr K 1.34 1.22 

Mn K 0.84 0.72 

Fe K 89.22 75.60 

Ni K 1.58 1.27 

Mo L 0.52 0.26 

Totals 100.00  

 

 

 

 

 

 

 

 

 

 

 

Nitrogen profile of plasma nitrided specimens with no white layer: 

Location -1 (At surface) 

 

Location -1 (At surface) 
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Spectrum processing :  

No peaks omitted 

 

Processing option : All elements analyzed 

(Normalised) 

Number of iterations = 3 

 

Standard : 

N    Not defined   1-Jun-1999 12:00 AM 

Si    SiO2   1-Jun-1999 12:00 AM 

Cr    Cr   1-Jun-1999 12:00 AM 

Mn    Mn   1-Jun-1999 12:00 AM 

Fe    Fe   1-Jun-1999 12:00 AM 

Ni    Ni   1-Jun-1999 12:00 AM 

Mo    Mo   1-Jun-1999 12:00 AM 

 

 

 

Nitrogen profile of plasma nitrided specimens with no white layer: 

Location -2 (In diffusion zone) 

 

 

 

 

 

 

 

 

 

 
 

  

 

 

 

 

 
Element Weight% Atomic% 

N K 3.48 12.52 

Si K 0.51 0.92 

Cr K 1.23 1.19 

Mn K 1.14 1.04 

Fe K 92.21 83.13 

Ni K 1.34 1.15 

Mo L 0.10 0.05 

Totals 100.00  

 

 

 

 

 

Location -2 (In diffusion zone) 
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Spectrum processing :  

No peaks omitted 

 

Processing option : All elements analyzed 

(Normalised) 

Number of iterations = 2 

 

Standard : 

N    Not defined   1-Jun-1999 12:00 AM 

Si    SiO2   1-Jun-1999 12:00 AM 

Cr    Cr   1-Jun-1999 12:00 AM 

Mn    Mn   1-Jun-1999 12:00 AM 

Fe    Fe   1-Jun-1999 12:00 AM 

Ni    Ni   1-Jun-1999 12:00 AM 

Mo    Mo   1-Jun-1999 12:00 AM 

 

 

 

Nitrogen profile of plasma nitrided specimens with no white layer: 

Location -3 (In diffusion zone) 

 

Element Weight% Atomic% 

N K 1.11 4.27 

Si K 0.70 1.35 

Cr K 1.55 1.61 

Mn K 1.01 0.99 

Fe K 94.21 90.77 

Ni K 0.64 0.59 

Mo L 0.77 0.43 

Totals 100.00  

Location - 3 (In diffusion 

zone) 
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Nitrogen profile of plasma nitrided specimens with no white layer: 

Location -4 (At diffusion zone – core interface) 

 

Element Weight% Atomic% 

N K 0.10 0.40 

Si K 0.58 1.15 

Cr K 1.56 1.67 

Mn K 0.73 0.74 

Fe K 93.54 93.25 

Ni K 2.08 1.97 

Mo L 1.42 0.82 

Totals 100.00  

Spectrum processing :  

No peaks omitted 

 

Processing option : All elements analyzed 

(Normalised) 

Number of iterations = 2 

 

Standard : 

N    Not defined   1-Jun-1999 12:00 AM 

Si    SiO2   1-Jun-1999 12:00 AM 

Cr    Cr   1-Jun-1999 12:00 AM 

Mn    Mn   1-Jun-1999 12:00 AM 

Fe    Fe   1-Jun-1999 12:00 AM 

Ni    Ni   1-Jun-1999 12:00 AM 

Mo    Mo   1-Jun-1999 12:00 AM 

 

 

 

Location -4 

(At diffusion zone – core interface) 
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Nitrogen profile of plasma nitrided specimens with white layer thickness  

less than 10 microns: Location -1 (At surface) 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

  
Element Weight% Atomic% 

N K 8.22 26.24 

Si K 0.46 0.73 

Cr K 0.52 0.45 

Mn K 0.63 0.51 

Fe K 88.64 70.97 

Ni K 1.32 1.01 

Mo L 0.21 0.10 

Totals 100.00  

Spectrum processing :  

No peaks omitted 

 

Processing option : All elements analyzed 

(Normalised) 

Number of iterations = 3 

 

Standard : 

N    Not defined   1-Jun-1999 12:00 AM 

Si    SiO2   1-Jun-1999 12:00 AM 

Cr    Cr   1-Jun-1999 12:00 AM 

Mn    Mn   1-Jun-1999 12:00 AM 

Fe    Fe   1-Jun-1999 12:00 AM 

Ni    Ni   1-Jun-1999 12:00 AM 

Mo    Mo   1-Jun-1999 12:00 AM 

 

 

 

Location -1 (At surface) 
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Nitrogen profile of plasma nitrided specimens with white layer thickness 

 less than 10 microns: Location -2 (In diffusion zone) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Element Weight% Atomic% 

N K 2.35 8.71 

Si K 0.48 0.90 

Cr K 1.19 1.19 

Mn K 1.15 1.08 

Fe K 92.33 85.90 

Ni K 2.51 2.22 

Totals 100.00  

Spectrum processing :  

No peaks omitted 

 

Processing option : All elements analyzed 

(Normalised) 

Number of iterations = 3 

 

Standard : 

N    Not defined   1-Jun-1999 12:00 AM 

Si    SiO2   1-Jun-1999 12:00 AM 

Cr    Cr   1-Jun-1999 12:00 AM 

Mn    Mn   1-Jun-1999 12:00 AM 

Fe    Fe   1-Jun-1999 12:00 AM 

Ni    Ni   1-Jun-1999 12:00 AM 

 

 

 

Location -2 (In diffusion zone) 
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Spectrum processing :  

No peaks omitted 

 

Processing option : All elements analyzed 

(Normalised) 

Number of iterations = 2 

 

Standard : 

N    Not defined   1-Jun-1999 12:00 AM 

Si    SiO2   1-Jun-1999 12:00 AM 

Cr    Cr   1-Jun-1999 12:00 AM 

Mn    Mn   1-Jun-1999 12:00 AM 

Fe    Fe   1-Jun-1999 12:00 AM 

Ni    Ni   1-Jun-1999 12:00 AM 

 

 

 

Nitrogen profile of plasma nitrided specimens with white layer thickness 

 less than 10 microns: Location -3 (In diffusion zone) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Element Weight% Atomic% 

N K 0.75 2.89 

Si K 0.62 1.19 

Cr K 1.46 1.53 

Mn K 0.69 0.68 

Fe K 95.54 92.84 

Ni K 0.95 0.87 

Totals 100.00  

Location -3 (In diffusion zone) 
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Spectrum processing :  

No peaks omitted 

 

Processing option : All elements analyzed 

(Normalised) 

Number of iterations = 2 

 

Standard : 

N    Not defined   1-Jun-1999 12:00 AM 

Si    SiO2   1-Jun-1999 12:00 AM 

Cr    Cr   1-Jun-1999 12:00 AM 

Mn    Mn   1-Jun-1999 12:00 AM 

Fe    Fe   1-Jun-1999 12:00 AM 

Ni    Ni   1-Jun-1999 12:00 AM 

Mo    Mo   1-Jun-1999 12:00 AM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Element Weight% Atomic% 

N K 0.29 1.15 

Si K 0.79 1.55 

Cr K 1.24 1.31 

Mn K 0.69 0.70 

Fe K 95.85 94.48 

Ni K 0.46 0.43 

Mo L 0.67 0.38 

Totals 100.00  

Nitrogen profile of plasma nitrided specimens with white layer thickness 

less than 10 microns: Location - 4 (At diffusion zone – core interface) 

Location -4  

(At diffusion zone -core interface) 
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Nitrogen profile of plasma nitrided specimens with white layer thickness 

more than 10 microns: Location -1 (At surface) 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Element Weight% Atomic% 

N K 9.18 28.51 

Si K 0.96 1.48 

Cr K 0.81 0.68 

Mn K 0.33 0.26 

Fe K 87.53 68.19 

Ni K 1.20 0.89 

Totals 100.00  

Element Weight% Atomic% 

N K 8.22 26.24 

Si K 0.46 0.73 

Cr K 0.52 0.45 

Mn K 0.63 0.51 

Fe K 88.64 70.97 

Ni K 1.32 1.01 

Mo L 0.21 0.10 

Totals 100  

Location -1 (At surface) 

Spectrum processing :  

No peaks omitted 

 

Processing option : All elements analyzed 

(Normalised) 

Number of iterations = 3 

 

Standard : 

N    Not defined   1-Jun-1999 12:00 AM 

Si    SiO2   1-Jun-1999 12:00 AM 

Cr    Cr   1-Jun-1999 12:00 AM 

Mn    Mn   1-Jun-1999 12:00 AM 

Fe    Fe   1-Jun-1999 12:00 AM 

Ni    Ni   1-Jun-1999 12:00 AM 
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Nitrogen profile of plasma nitrided specimens with white layer thickness 

more than 10 microns: Location -2 (In diffusion zone) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Element Weight% Atomic% 

N K 5.12 17.61 

Si K 0.62 1.07 

Cr K 1.85 1.72 

Mn K 0.42 0.37 

Fe K 90.57 78.19 

Ni K 1.06 0.87 

Mo L 0.36 0.18 

Totals 100.00  

Spectrum processing :  

No peaks omitted 

 

Processing option : All elements analyzed 

(Normalised) 

Number of iterations = 3 

 

Standard : 

N    Not defined   1-Jun-1999 12:00 AM 

Si    SiO2   1-Jun-1999 12:00 AM 

Cr    Cr   1-Jun-1999 12:00 AM 

Mn    Mn   1-Jun-1999 12:00 AM 

Fe    Fe   1-Jun-1999 12:00 AM 

Ni    Ni   1-Jun-1999 12:00 AM 

Mo    Mo   1-Jun-1999 12:00 AM 

 

 

 

Location -2 (In diffusion zone) 
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Nitrogen profile of plasma nitrided specimens with white layer thickness 

more than 10 microns: Location -3 (In diffusion zone) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Element Weight% Atomic% 

N K 2.21 8.28 

Si K 0.64 1.20 

Cr K 1.38 1.39 

Mn K 0.94 0.89 

Fe K 92.37 86.62 

Ni K 0.82 0.73 

Mo L 1.64 0.89 

Totals 100.00  

Spectrum processing :  

No peaks omitted 

 

Processing option : All elements analyzed 

(Normalised) 

Number of iterations = 3 

 

Standard : 

N    Not defined   1-Jun-1999 12:00 AM 

Si    SiO2   1-Jun-1999 12:00 AM 

Cr    Cr   1-Jun-1999 12:00 AM 

Mn    Mn   1-Jun-1999 12:00 AM 

Fe    Fe   1-Jun-1999 12:00 AM 

Ni    Ni   1-Jun-1999 12:00 AM 

Mo    Mo   1-Jun-1999 12:00 AM 

 

 

 

Location -3 (In diffusion zone) 
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Nitrogen profile of plasma nitrided specimens with white layer thickness 

more than 10 microns: Location -4 (In diffusion zone) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Element Weight% Atomic% 

N K 1.03 3.96 

Si K 0.67 1.28 

Cr K 1.96 2.03 

Mn K 0.50 0.49 

Fe K 94.12 90.77 

Ni K 1.41 1.30 

Mo L 0.31 0.17 

Totals 100.00  

Spectrum processing :  

No peaks omitted 

 

Processing option : All elements analyzed 

(Normalised) 

Number of iterations = 2 

 

Standard : 

N    Not defined   1-Jun-1999 12:00 AM 

Si    SiO2   1-Jun-1999 12:00 AM 

Cr    Cr   1-Jun-1999 12:00 AM 

Mn    Mn   1-Jun-1999 12:00 AM 

Fe    Fe   1-Jun-1999 12:00 AM 

Ni    Ni   1-Jun-1999 12:00 AM 

Mo    Mo   1-Jun-1999 12:00 AM 

 

 

 

Location -4 (In diffusion zone) 
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Spectrum processing :  

No peaks omitted 

 

Processing option : All elements analyzed 

(Normalised) 

Number of iterations = 2 

 

Standard : 

N    Not defined   1-Jun-1999 12:00 AM 

Si    SiO2   1-Jun-1999 12:00 AM 

Cr    Cr   1-Jun-1999 12:00 AM 

Mn    Mn   1-Jun-1999 12:00 AM 

Fe    Fe   1-Jun-1999 12:00 AM 

Ni    Ni   1-Jun-1999 12:00 AM 

 

 

 

Nitrogen profile of plasma nitrided specimens with white layer thickness 

more than 10 microns: Location -5 (At diffusion zone – core interface) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Element Weight% Atomic% 

N K 0.10 0.41 

Si K 0.48 0.94 

Cr K 0.73 0.78 

Mn K 0.98 0.99 

Fe K 95.12 94.44 

Ni K 2.58 2.44 

Totals 100.00  

Location -5  

(At diffusion zone – core interface) 
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Appendix-II 

 

Sample calculations and Data on Fatigue Analysis 

 

II-1. Derivation of Formulae Used for Fatigue Data Analysis: 

Formulae used for analysis of fatigue data have been derived in the following 

sections:  

II-1-A.  Derived parameters for S-N curves (i.e. 𝑵𝒇 Derived):  

The purpose here is to convert ( 𝑁𝑓 experimental)  to (𝑁𝑓 Derived) to enable to plot S-

N curves. As the fatigue data follows a power law relationship it can be expressed  

as –  

𝜎𝛼 = 𝛼(𝑁𝑓)
𝛽

         (1) 

 

Where: 

𝜎𝛼 = Alternating stress (stress amplitude) 

𝑁𝑓 = Number of cycles to failure 

𝛼, 𝛽 = Basquin pre-exponent and fatigue life exponent, respectively 

 

The estimation for α and β is carried out by first linearizing equation (1) as: 

ln 𝜎𝛼 = 𝑙𝑛 (𝛼[𝑁𝑓
𝛽

])        (2) 

          

        = 𝑙𝑛 𝛼 + 𝛽  𝑙𝑛 𝑁𝑓       (3) 

Taking 𝑙𝑛  𝜎𝑎 as variable y and 𝑙𝑛 𝑁𝑓 as variable x, the above equation takes the 

familiar form of a straight line  

𝑦 = 𝑎 + 𝑏𝑥         (4) 

 

Where, 

𝑦 = 𝑙𝑛 𝜎𝑎 

𝑎 (𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) = 𝑙𝑛 𝛼 

𝑏 (𝑠𝑙𝑜𝑝𝑒) = 𝛽  

𝑥 = 𝑙𝑛  𝑁𝑓 
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From Eqs. (3) and (4), the values of a and b are estimated using minimal variance 

“regression” estimators as 

 

𝑎̂ = 𝑙𝑛 𝛼̂ =
[∑ 𝑌𝑖

𝑁
𝑖=1 ]−[𝑓̂(∑ 𝑋𝑖

𝑁
𝑖=1 )]

𝑁
      (5) 

 

𝑏̂ =
∑ 𝑋𝑖𝑌𝑖−

(∑ 𝑋𝑖
𝑁
𝑖=1 )(∑ 𝑌𝑖

𝑁
𝑖=1 )

𝑁
𝑁
𝑖=1

(∑ 𝑋𝑖
2𝑁

𝑖=1 )−
(∑ 𝑋𝑖

𝑁
𝑖=1 )

𝑁

𝑁

       (6) 

 

The coefficient of determination 𝑅2 is computed to quantify the accuracy of the 

estimate.  This is given as: 

 

𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
= 1 −

𝑆𝑆𝑅𝑒𝑞

𝑆𝑆𝑇
        (7) 

 

With 𝑂 ≤ 𝑅2 ≤ 1 

 

Where 

 

𝑆𝑆𝑇 = 𝑆𝑆𝑅𝑒𝑠 + 𝑆𝑆𝑅        (8) 

 

and 

𝑆𝑆𝑇 = ∑(𝑌𝑖 − 𝑌̅)2

𝑁

𝑖=1

 

𝑆𝑆𝑅𝑒𝑞 = ∑(𝑌1 − 𝑌̂1)
2

𝑁

𝑖=1

 

𝑆𝑆𝑅 = ∑(𝑌̂𝑖 − 𝑌̂)
2

𝑁

𝑖=1

 

𝑌̅ =
∑ 𝑌𝑖

𝑁
𝑖=1

𝑁
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From the estimators, the Basquin coefficients are estimated as:  

𝛼̂ = 𝑒𝑥𝑝[𝑎̂] 

𝛽̂ = 𝑏̂          (9) 

 

This enables deriving the estimated Basquin model as: 

𝜎̂𝑎 = 𝛼̂(𝑁𝑓)
𝛽̂

         (10a) 

    = 𝑒𝑥𝑝[𝑎̂](𝑁𝑓)
𝑏̂
        (10b) 
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II-1-B.   Fatigue stress modification factor, (θcoat)I : 

 

The aim is to develop a factor which expresses ratio between the bending stress that can 

be applied for the specimen of a particular surface treatment to the stress for an base 

material/untreated specimen for a given number of fatigue life cycles.  Hence, a ratio 

of stresses for these two treatments is determined by taking a simple ratio of the 

estimated Basquin relationship for the ith treatment to the estimated Basquin 

relationship to the base material as follow:   

 

(𝜃𝑐𝑜𝑎𝑡)𝑖 =
(𝜎𝛼)𝑖

(𝜎𝑎𝛼)𝑏
=

𝛼(𝑁𝑓)
𝛽1

𝛼(𝑁𝑓)
𝛽2

= [
𝛼𝑖

𝛼𝑏
] [𝑁𝑓

(𝛽𝑖𝛽𝑜)
] = 𝜃𝑃𝐸𝑡𝑁𝑓

𝜃𝐸𝑖   (11) 

 

Where: 

i    = ith treatment category 

b    = Base material 

𝛼𝑖𝛼𝑏    = Basquin pre-exponent for ith treatment and base material categories,  

        respectively 

𝛽𝑖𝛽𝑏    = Basquin exponent for ith treatment and base material categories,     

                   respectively 

𝜃𝑃𝐸𝑖 , 𝜃𝐸𝑖   = Life reduction pre-exponent and exponent, respectively for treatment i 
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II-1-C.  Cycle modification factor, Ψ1 : 

 

Cycle modification factor, Ψ1 is a factor which expresses ratio between number of 

fatigue cycles that a particular surface treatment can withstand to the number of cycles 

withstood by a base material/untreated specimen for a applied stress level. The cycle 

modification factor for ith surface treatment is derived by first inverting the Basquin 

relationships as shown below: 

 

𝜎̂𝑎𝑖 = 𝑒𝑥𝑝[𝑎̂𝑖](𝑁𝑓)
𝑏̂𝑖

        (12) 

as (𝑁𝑓)
𝑖

= (𝜎̂𝑎𝑖)𝑛𝑖

1

𝑏̂𝑖  𝑒𝑥𝑝 [−
𝑎̂𝑖

𝑏̂𝑖
]       (13) 

    = 𝜀𝑖[𝜎̂𝑎]𝑛𝑖        (14) 

and (𝑁𝑓)
𝑏

= (𝜎𝑎𝑏)
1

𝑏̂𝑏  𝑒𝑥𝑝 [−
𝑎̂𝑏

𝑏̂𝑏
]      (15) 

     = 𝜀𝑏(𝜎𝑎)𝑛𝑏        (16) 

 

Subsequently, ratio of Eqs. (13) and (16) give:                 

 

(𝑁𝑓)
𝑖

(𝑁𝑓)
𝑏

= Ψi =
ξi(σα)ni

ξb(σα)nb
= [

ξi

ξb
] [σα

(ninb)
] = ΨPEiσα

ΨPEi                                  (17) 

 

Where, 

i    = ith treatment category 

b    = base material category 

𝜉𝑏 , 𝜉𝑖    = Inverse Basquin pre-exponent for base material and ith categories,  

       respectively 

𝜂𝑏 , 𝜂𝑖    = Inverse Basquin exponents for base material and ith categories,  

        respectively  

ΨPEiΨEi = Cycle modification pre-exponent and exponent, respectively for ith  

       treatment 
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II-2-A.  Sample Calculation using Formulae Derived for Fatigue Data 

Analysis: 

 

A sample calculation for plasma nitriding treatment (with compound/white layer 

thickness of less than 10 microns) has been shown here.  

 

The treatment has been identified as “PN” for the purpose of this calculation. Other 

nomenclatures used are:  

𝜎𝛼              =     Alternating stress (stress amplitude) 

𝑁𝑓              =    Number of cycles to failure for “PN” treatment 

𝛼𝑃𝑁 & 𝛼𝑏   =    Basquin pre-exponent for “PN” treatment and base material  

                           categories, respectively 

𝛽𝑃𝑁 & 𝛽𝑏   =    Basquin exponent for “PN” and base material categories,  

                          respectively 

 

Sample Calculation for Derived parameters for S-N curves: 

Table 1 below shows fatigue test results of fatigue life cycles obtained for the various 

bending stresses applied for PN treatment. These values have been taken for solving 

the deriving Basquin parameters.  

 

Table II.1:  Fatigue life cycles data of Plasma nitrided category (with less than  

                    10  microns) 

 

Bending stress applied,  𝝈𝜶 Fatigue life cycles, 𝑵𝒇 

697.7 3.98E+07 

767.5 7.11E+06 

837.2 4.36E+06 

907.0 4.08E+05 

976.8 3.52E+04 

1255.9 6.50E+03 

 

For the purpose of converting data in Equation No. 3 of Annexure-I, the above values 

were converted in ln (i.e. Log to the base e) as shown in Table II.2. 
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Table II.2: Fatigue results converted into Basquin relationship 

𝒚 = 𝒍𝒏 𝝈𝒂 𝒙 = 𝒍𝒏  𝑵𝒇 

6.548 17.50 

6.643 15.78 

6.730 15.29 

6.810 12.92 

6.884 10.47 

7.136 8.78 

 

From the above data, values of  intercept ‘a’and slope ‘b’ were determined using 

equations for regression analysis in Microsoft Excel. The results obtained are: 

                                          Intercept, ‘a’ (i.e. ln 𝛼𝑃𝑁) = 7.58 

                                          Slope, ‘b’ (i.e. 𝛽𝑃𝑁) = - 0.059 

 

This gives values of Basquin co-efficient 𝛼𝑃𝑁 & 𝛽𝑃𝑁 as follow: 

                                          𝛼𝑃𝑁 = 1.958 × 103 

                                          𝛽𝑃𝑁 = -0.059 

 

Now, the relation between 𝜎𝑎 and  𝑁𝑓 (Derived) is: 

                                          𝜎𝑎 = 1.958 × 103 × (𝑁𝑓 (Derived))-0.059 

 

On rewriting the above equation in terms of Nf  (Derived) we get, 

                                          𝑁𝑓(Derived) = (σa /1.958 × 103)-1/0.059 

 

Solving above equation for a value of bending stress 𝜎𝑎 = 697.7 MPa, we get, 

                                       𝑁𝑓  (Derived) = (697.7/1958)-16.95 

                                                               = 3.95E+07 cycles 

 

Similarly for all other values of 𝜎𝛼, corresponding values of 𝑁𝑓 (Derived) can be 

obtained and the same has been given in Table II.3.  
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Table II.3: Derived fatigue life cycles using Basquin parameters  

Stress,𝝈𝜶 𝐅𝐚𝐭𝐢𝐠𝐮𝐞 𝐋𝐢𝐟𝐞(𝐄𝐱𝐩𝐞𝐫𝐢𝐦𝐞𝐧𝐭𝐚𝐥), 𝑵𝒇  𝐅𝐚𝐭𝐢𝐠𝐮𝐞 𝐋𝐢𝐟𝐞(𝑫𝒆𝒓𝒊𝒗𝒆𝒅), 𝑵𝒇  

697.7 3.98E+07 3.95E+07 

767.5 7.11E+06 7.84E+06 

837.2 4.36E+06 1.80E+06 

907.0 4.08E+05 4.62E+05 

976.8 3.52E+04 1.32E+05 

1255.9 6.50E+03 1.86E+03 

 

 

II-2-B. Sample Calculation for Fatigue Stress Modification factor, 

(θcoat) PN : 

 

By taking the ratio of the estimated Basquin relationship for PN treatment to the 

estimated Basquin relationship of the base material, (θcoat) PN  can be written as: 

 

                                     (𝜃𝑐𝑜𝑎𝑡)𝑃𝑁 = [
𝛼𝑃𝑁

𝛼𝑏
] [𝑁𝑓

(𝛽𝑃𝑁𝛽𝑏)
] 

Where: 

𝛼𝑃𝑁 & 𝛼𝑏 =  Basquin pre-exponent for PN treatment and base material  

                      categories, respectively 

𝛽𝑃𝑁 & 𝛽𝑏  = Basquin exponent for PN treatment and base material  

                    categories, respectively 

 

On substituting the values of Basquin pre-exponent and exponents as given below in 

above equation, 

                              𝛼𝑃𝑁 = 1.958 × 103 

                                𝛼𝑏 =  3.31 × 103 

                              𝛽𝑃𝑁 = −0.059 

                              𝛽𝑏  =  −0.11 

the Equation for Fatigue Stress Modification factor, (𝜃𝑐𝑜𝑎𝑡)𝑃𝑁 can be written as: 

 

                    (𝜃𝑐𝑜𝑎𝑡)𝑃𝑁  = 
1.958×103𝑁𝑓−0.059

3.31×103𝑁𝑓−0.11
 

 

                                      = 0.592 𝑁𝑓0.051 
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Substituting the value of 𝑁𝑓= 3.95E+07 in above equation, one gets Fatigue Stress 

Modification factor as follows. 

 

                    (𝜃𝑐𝑜𝑎𝑡)𝑃𝑁  = 0.592 X (3.95E + 07)0.051 

                                      = 1.445 

 

Similarly, for all other values of  𝑁𝑓, the corresponding values of (𝜃𝑐𝑜𝑎𝑡)𝑃𝑁 are 

calculated the results obtained are given in Table  4 below. 

 

 

Table II.4: Stress Modification factors obtained through calculations  

 

 

II-2-C.  Sample Calculation for Cycle modification factor, ΨPN 

 

The cycle modification factor for PN surface treatment (ΨPN) is derived using formula, 

 

                                            ΨPN = [
ξPN

ξb
] [σα

(nPNnb)
] 

 

Where, 

𝜉𝑏 & 𝜉𝑃𝑁 = Inverse Basquin pre-exponent for base material and PN                            

       categories, respectively 

 𝜂𝑏 & 𝜂𝑃𝑁= Inverse Basquin exponents for base material and PN  

        categories, respectively 

 

On substituting the values of Inverse Basquin pre-exponent and Inverse Basquin 

exponent as given below in above equation, 

𝑺𝒕𝒓𝒆𝒔𝒔, 𝝈𝒂 𝑭𝒂𝒕𝒊𝒈𝒖𝒆 𝒍𝒊𝒇𝒆 𝒄𝒚𝒄𝒍𝒆𝒔, 𝑵𝒇  𝐒𝐭𝐫𝐞𝐬𝐬 𝐌𝐨𝐝𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧 𝐟𝐚𝐜𝐭𝐨𝐫𝐬, (𝜽𝒄𝒐𝒂𝒕)𝑷𝑵 

698 3.95E+07 1.445 

768 7.84E+06 1.330 

837 1.80E+06 1.234 

907 4.62E+05 1.151 

977 1.32E+05 1.080 

1256 1.86E+03 0.869 
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    for   𝛼𝑃𝑁 = 1.958 × 103,  the  inverse value is  𝜉𝑃𝑁= 1/ 𝛼𝑃𝑁 = 1 / 1.958 × 103 

             𝛼𝑏  =  3.31 × 103, the  inverse value is  𝜉𝑏 = 1/ 𝛼𝑏 = 1 / 3.31 × 103 

           𝛽𝑃𝑁  = −0.059, the  inverse value is  𝜂𝑃𝑁 = 1/ 𝛽𝑃𝑁 = 1 / (−0.059) = -16.95 

            𝛽𝑏   =  −0.11, the  inverse value is    𝜂𝑏 = 1/ 𝛽𝑏 = 1 / (−0.11) = -9.09 

 

the Equation for Cycle Modification factor, ΨPNcan be written as: 

 

 

             ΨPN = [
ξPN

ξb
] [σα

(nPNnb)
] 

 

            = 
(3.31×103)−9.091

(1.958×103)−16.95
6𝑎−7.859 

  

           =
1.003 × 10−32

1.60 × 10−56
6𝑎−7.859 

 

          = 6.27 × 10236𝑎−7.859 

 

For a given value of  6𝑎 = 698 MPa 

 

ΨPN = 6.27 × 1023(698)−7.859 

        = 27.4 

 

Substituting the value of 𝑁𝑓= 3.95E+07 in above equation, one gets Fatigue Stress 

Modification factor as follows. 

 

Similarly, cycle modification factor, 𝚿𝐏𝐍are calculated for all other values of  6𝑎 and 

are given in Table 5 below: 
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Table II.5: Cycle Modification Factors obtained through calculations 

𝑺𝒕𝒓𝒆𝒔𝒔 , 𝝈𝒂 Cycle Modification Factors, 𝚿𝐏𝐍 

700 2.74E+01 

800 9.59E+00 

900 3.80E+00 

1000 1.66E+00 

1100 7.80E-01 

1200 3.90E-01 

 

Following is the summary of data on derived fatigue life cycles, stress modification 

factors and cycle modification factors for untreated and various surface treated 

specimens. 

Derived values of fatigue life from Basquin exponents 

Applied 

stress, 

Mpa 

Untreated Thermal spray- 

Alumina 

P. N.  

(No C. L.)  

P. N. (C. L.  

 <10 micron) 

P. N. (C. L.  

>10 micron) 

700 8.80E+05 3.940E+04   3.95E+07 3.54E+04 

770 3.81E+05 2.910E+04   7.84E+06 2.30E+04 

840 1.77E+05 2.200E+04 6.84E+08 1.80E+06 1.55E+04 

910 8.78E+04 1.707E+04 3.52E+07 4.62E+05 1.07E+04 

975 4.58E+04 1.348E+04 2.26E+06 1.32E+05 7.66E+03 

1045     1.75E+05     

1115     1.61E+04     

 

Stress Modification factor vs Fatigue Life Cycles 

Cycles Chrome 

plated 

P. N. (No C. L.)  P. N.  

(C.L. <10 

micron) 

P. N. (C.L. >10 

Micron) 

Untreated 

4.58E+04 0.89 1.0676 1.023 0.647 1.0 

8.78E+04 0.7 1.1269 1.058 0.602 1.0 

1.77E+05 0.53 1.1944 1.096 0.558 1.0 

2.58E+05 0.46 1.232 1.118 0.535 1.0 

3.81E+05 0.4 1.273 1.14 0.512 1.0 

8.80E+05 0.29 1.364 1.19 0.467 1.0 

2.76E+06 0.189 1.5 1.261 0.412 1.0 

 

Cycle Modification Factors for Applied Stress 

Applied 

Stress, 

MPa 

Chrome 

plated 

P. N. (No C. L.)  P. N.  

(C.L. <10 

micron) 

P. N.  

(C.L.  >10 

Micron) 

Untreated 

200 8.40E-06 4.72E+20 5.17E+05 8.67E-05 1.0 

300 1.46E-04 5.66E+15 2.13E+04 5.47E-04 1.0 

400 1.11E-03 1.82E+12 2.23E+03 2.02E-03 1.0 

500 5.37E-03 3.57E+09 3.85E+02 5.56E-03 1.0 

600 1.94E-02 2.19E+07 9.20E+01 1.27E-02 1.0 

700 5.76E-02 2.95E+05 2.74E+01 2.56E-02 1.0 

800 1.47E-01 7.05E+03 9.59E+00 4.70E-02 1.0 

900 3.39E-01 2.62E+02 3.80E+00 8.02E-02 1.0 

1000 7.12E-01 1.38E+01 1.66E+00 1.30E-01 1.0 
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Appendix-III 

 

 

JCPDS Data Cards for XRD Analysis 

 

JCPDS Data Card for alpha Iron: 

 

JCPDS Data Card for Fe2N: 
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JCPDS Data Card for Fe3N: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

JCPDS Data Card for Fe3N- Fe2N: 
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JCPDS Data Card for Fe4N: 
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Annexure –IV 

 

The Finite Element Method in Solid Mechanics 

 

1.0 Introduction 

For complete description of state of stress in an object, six independent stress 

tensor elements are required at every point.  These six stress tensor elements are related 

to six strain tensor elements through thirty six elastic constants in the elastic 

approximation of the state of deformation in the object.  The six strain elements are in 

addition, derived from three displacement elements.  For an isotropic object, the 

relationship between stress and strain can be described in terms of only two elastic 

constants (i.e. the modulus of elasticity and the Poisson ratio).  On counting the number 

of variables at every point in the object, we find six stress tensor elements, six strain 

tensor elements, & three displacement vector elements.  These fifteen unknown are 

linked through three Newtonian equations of equilibrium, six constitutive relationships 

between stress and strain, along with six equations connecting strain tensor elements 

and the displacement vector field.  Thus we have a total of fifteen equations, which can 

be solved simultaneously along with boundary conditions to uniquely determine the 

stress and strain field in an object.  In a generalized object of a complex geometry, these 

fifteen equations along with the boundary conditions are solved using either finite 

difference methods based on approximation theory or finite element method based on 

variational energy or generalized functional optimization.  Thus, the FEM method is a 

numerical technique whose analytical foundations rest on fundamental conservation of 

energy principles and the application of generic variational arguments.  Basis of the 

FEM approach for stress analysis is presented below: 

 

2.0  The Modern FEM Based Method for Stress Analysis 

2.1 Basis 

For the purpose of using FEM for stress analysis of solid objects, the generalized 

variational principle of interest is based on the concept of virtual work for a system of 

volume & surface forces, as defined below: 
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     
s

sVvirtual dSDdVDW ˆ.ˆˆ.ˆ  -----(1) 

Where: 

virtualW  
=  Variational virtual work 

V̂   
=    Volume force vector field 

s̂           =      Surface – traction force – vector field 

 dV ,  dS    =  Differential volume and surface area, respectively 

 D̂  = Variational displacement vector 

 

Using the above definition of the concept for virtual work, it can be shown that under 

Newtonian equilibrium, the following identity for variational quantities holds true:

strainvirtual UW             (2) 

Where:







































  




dVU
ji

ijijstrain

,

.      (3) 

We can write Eq. (2) as: 

0 strainvirtual UW          (4) 

  0 strainvirtual UW       (5) 

Now let us define: 

Virtualvirtual UW       (6) 

     
s

sVvirtual dSDdVDU ˆ.ˆˆ.ˆ       (7) 

  0 totalstrainvirtual UUU       (8) 

Finite element method divides the domains into continuous & compatible volumes 

(elements) and the above first variation condition is applied to each element or: 

 

  



















0 total
i

i

U        (9) 

Now: 
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     sVijij  ˆ,ˆ,,        (10) 

 

The stress tensor & the strain tensor are written in terms of a set of basis nodal 

displacements as below: 

 

2.2 Transformation of Strain Tensor 

        knnk aNUUa  :       (11) 

        nijijn ULU   :      (12) 

        
k

aB
k

aNLij         (13) 

Where: 

 N   =  Shape function matrix 

 ka   =  Nodal displacement vector 

 nU   =  Displacement vector 

 ij   =   Strain tensor 

2.3 Transformation of Stress Tensor 

             
k

aBD
k

aNLDijDij        (14) 

Using these transformations, we can write the first variation of the total energy as: 

      sVk
aBD

k
aB  ˆ,ˆ,,

 
 (15) 

The unknown variables, to be optimized (determined), are the basis nodal 

displacements 
k

a . For this we use the following detailed stationarity condition for 

vanishing first variation: 
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   0
2

1

2

1
























































































m

ma

a

a

k
a




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






    (16) 

 

Simultaneous solutions of the above resulting “m” simultaneous equations leads to the 

determination of the unknown nodal displacements from which the stress & strain state 

can be calculated by back-substitution in the transform equations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The stationarity condition results in the following equation: 

      0 fdVV B      (17) 

Discretized finite 

element volume 
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Now for isotropic solids (which is the general model used for linear elastic based FEM 

analysis), the following constitution equation connecting the stress tensor and the strain 

tensor holds: 

 

tt

xy

zx

yz

zz

yy

xx

total
t

ij

EEE

EEE

EEE



















































































2/100000

02/10000

002/1000

000/1//

000//1/

000///1

 

 

   

tt

xy

zx

yz

zz

yy

xx

total
t

ij D









































1

     (18) 

 

2.3 Computation of Invariants 

Equations (17) & (18) are solved using an appropriate numerical technique and the 

explicit stress and strain state in each element is mapped.  Once the stress state is 

computed, the following stress invariants can be easily computed.  These invariants are 

connected to the dynamics of various defect structures in the object. 

 

 Von-Mises equivalent stress: 

 

      2

13

2

32

2

21

2

2
1  MisesVon

 

(19) 
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 Octahedral normal stress: 

3

321 



nn

      (20) 

 

 Octahedral shear  stress: 

 

       2

13

2

32

2

213
1  nt

 

      

(21) 

 

 Principal Shear stress: 

 

2

31.max

2





       (22) 

 

 

 

Where 1,2, &3 are the principal normal stresses (in the principal coordinate system) 

which can be computed by determining the three roots of the following general result 

for the stress tensor. 
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  (23) 

 

3.0 General Framework for Non-linear Solids, Non-time Invariant  Solids 

Undergoing Irreversible Deformation (Metals, Polymers, Ceramics, & 

Composites) 

 

For solids undergoing irreversible deformation, analytical techniques fall into two 

general categories.  In category I, we have the deformation techniques wherein the state 
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of strain is purely dependant on the state of stress.  In other words, the history of loading 

(loading path) and time dependant processes are not captured in the approach.  While 

this technique is intrinsically simple, it can lead to significant errors in the final 

prediction of the deformed state.  The category II incremental approach enables 

capturing of the effect of the causal time dependant loading history on the solid and 

enables precise predictions of the evolving state of stress and strain in the solid.  In fact, 

the incremental approach is a superset of the deformation theory approach, as under the 

condition of proportional incremental loading wherein the principal stresses undergo 

increments in proportion to there current absolute value, the incremental approach 

predicts a path independent evolving state of the stress and strain in the solid similar to 

the deformation theory approach.  

The foundations of the incremental theories rest on the pioneering work of Levy 

and Mises for purely plastic deformation and Prandtl&Reuss for the elastic-plastic 

deformation.  The foundational work in the field rests on the formal approaches of Hill 

and Drucker who formulated a number of basic postulates, developed approaches based 

on plastic potential, and proved a large class of generalized mathematical results which 

are now widely used by designers of deformation processing techniques for materials 

and researchers pushing the boundaries.   

With the availability of powerful parallel processor based supercomputers, ab-

initio approaches based on quantum chemical modeling coupled with lattice dynamics 

have begun to yield very precise predictions of deformation dynamics of solids.  

However, this fundamental but exact approach has still not been deployed by the 

material forming industries who continue to rely on the continuum FEM techniques 

based on the mathematical approach. 

 

The basis of the incremental framework for irreversible deformation is briefly presented 

below: 
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4.0   Incremental Elastic – Plastic Formulations for FEM Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on the above, the generalized incremental formulation for elastic-plastic 

problems is as below: 
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5.0  Visco-plastic Problems Using the Generalized Plastic Potential Approach 

for FEM Analysis 

Similarly, approach based on generalized plastic potential enables formulation of time 

dependantvisco-plastic formulation as below: 
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