LIST OF FIGURES

Fig. No.	Title of the figure	Page No.
	CHAPTER 2 THEORY AND REVIEW OF LITERATURE	
2.1	Different phases of fatigue life of a component & factors governing them	8
2.2	Schematic of cyclic slip process during crack nucleation	9
2.3	SEM image showing slip lines	9
2.4	Stage I and stage II crack growth in a polycrystalline material	10
2.5	Fracture surface of a failed shaft showing stages of failure	11
2.6	Fracture surface showing (a) macroscopic features and (b) microscopic features	12
2.7	SEM fractographs for grade 42CrMo4 steel showing : (a) fracture surface of specimen tested at low cycle fatigue and (b) fracture surface of the same steel tested at high cycle fatigue	13
2.8	Schematics showing types of stress cycling / loading	14
2.9	Schematic fracture surfaces for laboratory test specimens subjected to a range of different loading conditions	15
2.10	Modern servo-hydraulic axial fatigue testing machine: (a) Basic load train and (b) Hydraulic actuator, servo valve, and displacement sensor (LVDT)	17
2.11	Schematics of rotating bending fatigue testing machine	18
2.12	A pictorial view of a rotating bending type fatigue testing machine	18
2.13	Schematics of various types of fatigue test samples	19
2.14	Typical S-N curves for ferrous (Curve A) and nonferrous (Curve B) samples	21
2.15	A typical S-N curve on log-log scale	22
2.16	Micro-cracks in electroplated chromium coating	26
2.17	Fracture surface of a hard chrome plated steel showing:(a) multiple fatigue cracks initiated at the specimen periphery and(b) cracks originating from the coating and extending into the substrate	26
2.18	Effect of shot peening pre-treatment on the fatigue behavior of hard chromium coated AISI 4340 steel	28
2.19	Schematic of thermal spray process	29

2.20	Classification of thermal spray processes on the basis of heat source	31
2.21	Source Schematic view of flame powder spray process	32
2.22	Schematic view of HVOF process	33
2.23	Detonation gun spray process	34
2.24	Fracture surface of a coated sample showing (a) nucleation and growth of multiple fatigue cracks, (b) Crack initiation site showing the presence of alumina particles (PA) from which fatigue cracks grow and (c) Cross-sectional view illustrating the presence of alumina particles (PA1) and cracks (GR) within the coating	36
2.25	Part of the Iron-nitrogen equilibrium diagram	44
2.26	Crystal structure of (a) γ' -Fe ₄ N _{1-y} , (b) ϵ -Fe ₃ N _{1+x}	42
2.27	Variation in hardness with respect to thickness of the nitrided layer for compound and diffusion layer	43
2.28	Schematics of the nitirded case structure on iron/iron base alloys	44
2.29	Typical optical micrographs showing the layers formed in a nitrided sample	45
2.30	Fatigue strength of AISI 4340 steel surface hardened via conventional gas nitriding and Ion nitriding	46
2.31	Schematic diagram of typical plasma nitriding system	47
2.32	Effect of alloy content and the nitriding time & temperature on the hardness and depth of diffusion layer for a nitrided steel	48
2.33	X-Ray diffraction patterns for ion nitrided AISI 4340 low alloy steel at different temperature and time	49
2.34	The relationships between case depth & treatment time at 500 and 540 °C	50
2.35	Effect of plasma nitriding temperature and time on surface hardness of AISI 4340 steel	50
2.36	Relationship between fatigue strength of steel and case depth for AISI 4340 steel	51
2.37	Fatigue curves of heat treated, liquid and ion nitrided AISI 4140 steel for various process times.	52
2.38	Variation in compressive residual stress on the surfaces of specimens with nitriding time and case depth, respectively	53
2.39	Effect of relative case depth $t:D$ and the parameter $D:(D-2t)$ on the fatigue strength of ion nitrided AISI 4140 steel.	54
2.40	Fatigue curves of QT AISI 4340 steel ion-nitrided at 500 °C and 540 °C for 2,4,8 and 16 h	54
2.41	Relationship between case depth and fatigue strength of ion- nitrided QT AISI 4340steel	55
2.42	Schematic representation of the development of residual macrostresses in nitrided iron-based alloys	56
2.43	Schematic representation of the precipitation of a coherent nitride particle and the corresponding occurrence of strain fields in the surrounding ferrite matrix leading to hardening effect	57

2.44	A typical residual stress depth profile for smooth plasma nitrided specimen	57
	CHAPTER 3 EXPERIMENTAL WORK	
3.1	(a) Schematic of the fatigue test specimen(b) Engineering drawing of the fatigue test specimen	61
3.2	Pictorial views of a typical hard chrome plated specimen	63
3.3	Close-up views of alumina coated specimens produced by thermal spraying	64
3.4	Pictorial view of the thermal spray set-up used for coating alumina	65
3.5	Pictorial view of a plasma nitrided specimens	67
3.6	(a)Schematic of plasma nitriding process(b) Pictorial view of the plasma nitriding set-up	67 - 68
3.7	Pictorial view of the rotating bending fatigue machine	70
3.8	Close-up view of fatigue testing machine showing loading system, controller and digital counter	71
3.9	Close- up view showing specimen mounted on machine	71
3.10	3- D drawing of the full size fatigue test specimen.	78
3.11	FEM modeling for analysis of untreated specimen (a) 3-D CAD model (b) Meshed model and (c) Model with boundary conditions	79
3.12	FEM modeling for analysis of Fe ₄ N layer (a) 3-D CAD model (b) Meshed model and (c) Model with boundary conditions	80
3.13	FEM modeling for analysis of composite white layer (a) 3-D CAD model (b) Meshed model and (c) Model with boundary conditions	81
	CHAPTER 4 RESULTS AND DISCUSSION	
4.1	Micrograph for hard chrome plated specimen subjected to thickness measurement	83
4.2	Micrograph for thermally- sprayed with alumina specimen subjected to thickness measurement	83
4.3	Micrograph for plasma nitrided specimen subjected to thickness measurement having white layer of $< 10 \ \mu m$	84
4.4	Micrograph for plasma nitrided specimen subjected to thickness measurement having white layer of $> 10 \ \mu m$	84
4.5	Microhardness profile for nitrided specimens	86
4.6	Variation in nitrogen concentration with respect to distance from nitrided layer for plasma- nitrided specimens	87-88
4.7	EDS analysis of hard chrome plated specimen	89
4.8	EDS analysis of bond-coat powder for thermal spray coating of alumina	90

4.9	EDS analysis of thermally sprayed with alumina specimen	91
4.10	EDS analysis of plasma nitrided specimen without white layer	92
4.11	 (a) EDS analysis of plasma nitrided specimen with white layer less than 10 microns (b) EDS analysis of plasma nitrided specimen with white layer more than 10 microns 	93-94
4.12	S-N curve for base material / untreated specimens	97
4.13	S-N curve for hard chrome plated specimens	98
4.14	S-N curve for thermally sprayed (with alumina) specimens	98
4.15	S-N curve for plasma nitrided specimens with >10 μm white layer thickness	98
4.16	S-N curve for plasma nitrided specimens with <10 µm white layer thickness	99
4.17	S-N curve for plasma nitrided specimens without any white layer	99
4.18	Stress modification factor for hard chrome plated specimens	99
4.19	Stress modification factor for thermally sprayed (with alumina) specimens	100
4.20	Stress modification factor for plasma nitrided specimens with >10 µm white layer thickness	100
4.21	Stress modification factor for plasma nitrided specimens with <10 µm white layer thickness	101
4.22	Stress modification factor for plasma nitriding (without white layer)	101
4.23	Cycle Modification Factor for hard chrome plated specimens	102
4.24	Cycle Modification Factor for thermally sprayed (with alumina) specimens	102
4.25	Cycle Modification Factor for plasma nitrided specimens with >10 µm white layer thickness	103
4.26	Cycle Modification Factor for plasma nitrided specimens with <10 µm white layer of thickness	103
4.27	Cycle Modification Factor for plasma nitrided specimens without any white layer	104
4.28	 Comparative S-N curves for untreated specimens and specimens subjected to (i) hard chrome plating, (ii) thermal spraying with alumina and (iii) plasma nitriding with <10 μm white layer thickness 	105
4.29	 (ii) plasma intribuing with '10 µm white layer threates Comparative S-N curves for untreated specimens and specimens subjected to (i) hard chrome plating, (ii) thermal spraying with alumina and (iii) plasma nitriding with >10 µm white layer thickness 	106
4.30	Comparative S-N curves for untreated specimens and specimens subjected to plasma nitriding with (i) more than 10 µm,	106

	(ii) less than 10 μ m white layer thickness and	
	(iii) without any white layer	
4.31	S-N curves (Basquin plots) for specimens of untreated and all	107
4.22	surface treatments on a comparative basis	107
4.32	Stress modification factor for specimens of	107
	(i) hard chrome plating,	
	(ii) thermal spraying with alumina and	
	(iii) plasma nitriding (with >10 μ m white layer	
	thickness) treatments on a comparative basis	
4.33	Stress modification factor for specimens subjected to plasma	108
	nitriding with	
	(i) more than 10 μ m,	
	(ii) less than 10 μ m white layer thickness and	
	(iii) without any white layer	
4.34	Stress modification factor for specimens of all surface	108
	treatments on a comparative basis	
4.35	Cycle modification factor for specimens of	109
	(i) hard chrome plating,	
	(ii) thermal spraying with alumina and	
	(iii) plasma nitriding (with $>10 \mu m$ white layer thickness)	
	treatments on a comparative basis	
4.36	Cycle modification factor for specimens subjected to plasma	109
	nitriding with	
	(i) more than 10 μ m,	
	(ii) less than 10 μ m white layer thickness and	
	(iii) without any white layer	
4.37	Cycle modification factor for specimens of all surface	110
	treatments on a comparative basis	
4.38	Macrofractograph of fatigue tested untreated /base material	113
4.00	specimen	110
4.39	SEM fractographs of fatigue tested untreated /base material	113
4.40	specimen at (a) 100x and (b) 1000x magnification	
4.40	Macrofractograph of fatigue tested hard chrome plated	114
4 4 1	specimen	114
4.41	SEM fractographs of fatigue tested hard chrome plated $(a) = 200\pi$ and $(b) = 2000\pi$ are griffication	114
4 42	specimen at (a) 200x and (b) 2000x magnification	115
4.42	Macrofractograph of fatigue tested thermally sprayed specimen	115
4.43	SEM fractographs of fatigue tested thermally sprayed	115
7.75	specimen at (a) 25x, (b) 100x, (c) 300x and (d) 500x	115
	magnification	
4.44	Macrofractograph of fatigue tested plasma nitrided specimen	116
	with $> 10 \ \mu m$ white layer thickness	110
4.45	SEM fractographs of fatigue tested plasma nitrided specimen	116
	with white layer thickness of > 10 μ m at (a) 200x, (b) 700x	
	and (c) 1000x magn.	
4.46	Macrofractograph of fatigue tested plasma nitrided specimen	117
	with $< 10 \ \mu m$ white layer thickness	
4.47	SEM fractographs of fatigue tested plasma nitrided specimen	117
	with a white layer thickness of $< 10 \mu\text{m}$ at (a) 200x, (b) 700x	
	and (c) 1000x magn.	

4.48	Macrofractograph of fatigue tested plasma nitrided specimen	118
	without any white layer	
4.49	SEM fractographs of fatigue tested plasma nitrided specimen without any white layer at (a) 25x, (b) 100x and (c) 950x magnification	118
4.50	Microstructures at surface region after various treatments (a) Untreated / base material, (b) Hard chrome plated, (c) Thermally sprayed - alumina coating, (d) Plasma nitrided - without compound layer, (e) Plasma nitrided - with $<10 \mu m$ white layer thickness and (f) Plasma nitrided - with $>10 \mu m$ white layer thickness	120
4.51	X-ray diffraction (XRD) profile for untreated sample.	122
4.52	X-ray diffraction (XRD) profile for plasma nitrided sample without compound layer.	123
4.53	X-ray diffraction (XRD) profile for plasma nitrided sample with compound layer thickness less than 10 microns.	124
4.54	X-ray diffraction (XRD) profile for plasma nitrided sample with compound layer thickness more than 10 microns.	125
4.55	Composite beam considered for validation purpose	126
4.56	Normal Fiber Stress in the untreated specimen	131
4.57	Normal Fiber Stress in the Fe4N white layer of thicknesses, T= $10 \ \mu m$	131
4.58	Normal Fiber Stress in the Fe ₂₋₃ N layer of composite white layer of thicknesses of T (Fe ₄ N) = 10 μ m + T (Fe ₂₋₃ N) = 5 μ m	131
4.59	Normal Fiber Stress in the Fe ₂₋₃ N layer in composite layer of thicknesses of T (Fe ₄ N) = $10 \mu m + T$ (Fe ₂₋₃ N) = $10 \mu m$	132
4.60	Maximum Normal Fiber Stress in the untreated specimen and single layers of Fe4N & Fe ₂₋₃ N	133
4.61	Maximum Normal Fiber Stress in the untreated specimen, Fe4N layer & Fe ₂₋₃ N layer of composite layer	134