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CHAPTER 2 
 
 

Theory and Literature review 
 
 
 
 
 

 

2.1 Introduction 
 

 

Steels are used in the construction and fabrication of engineering structures, with service 

temperatures ranging from subzero to about 600°C over long periods of time. The vast 

majority of iron alloys are ferritic because they are cheap and it is easy to modify their 

microstructures to obtain an impressive range of desirable properties. 

 

The fabrication of steels unavoidably involves welding, a complex process incorporating 

numerous   metallurgical   phenomena.   It   is   not   surprising   therefore,   that   the   final 

microstructure both inside the weld metal and in all adjacent regions affected by welding 

heat, is remarkably varied. Many of the important features of weld microstructure can now 

be calculated using a combination of thermodynamics and kinetic theory [4]. Such 

calculations are now being performed routinely in industry during the course of alloy design 

or when investigating customer quaries. 

 

Naturally, it is the mechanical properties of the weld which enter the final design 

procedures. There has been some progress in estimating the yield strength from the 

microstructure using combinations of solution strengthening, grain size effects, precipitation 

hardening and dislocation strengthening [4]. The ultimate tensile strength can in a limited 

number of cases be calculated empirically from the yield strength [1]. However, there has 

been no progress at all in creating models for vital properties such as ductility, toughness, 

creep and fatigue strength [3]. 

 

2.2 Ferritic Steels 
 

 

2.2.1 Heat Resistant Steels 
 

 

Steels are used widely in the construction of power plant. They have to resist creep 

deformation, oxidation and corrosion. The superheater pipes carrying steam from boilers to 

high pressure(HP) turbines typically experience steam at 565°C under 15.8 MPa pressure 
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and are made of  low-alloy steels. In HP turbines the rotor is fabricated as a single forging of 
 

1Cr-MoV steel. Tempering at 700°C leads to the formation of stable carbides which are 

distributed uniformly in the ferrite matrix. These carbides improve the creep resistance at the 

service temperature [2]. Turbine blades experience both erosion and high tensile forces. 

High strength and corrosion resistant 12CrMoV steel is used in  fabrication of turbine blades 

[5]. The 3½Ni-Cr-Mo-V alloy has good hardenability combined with high strength of about 

1100 MPa and good toughness. These steels are air cooled   from 870°C and tempered at 
 

650°C. Due to their strength   and toughness these materials are used to fabricate the low 

pressure turbine rotor, which is nearer to the generator. The generator rotor is also fabricated 

with this material [6]. 

 
 

 

Table 2.1 .Chemical composition of some steels have been used Power Plant [7], all units 

are in wt%. 
 

 

Steel C Si Mn Mo Cr V 

2¼Cr-1Mo 0.15 0.50 0.45 1.0 2.25 --- 

12Cr-1Mo 0.15 0.40 0.6 1.0 12 --- 

3½Ni-Cr-Mo-V 0.15 0.30 0.70 0.10 1.5 0.11 

 

 
 

Cr-Mo Steels 
 

 

These materials are resistant to corrosion by sulphur products and hence were used first in 

the petroleum industry. Once their oxidation resistance and high temperature strength were 

appreciated, they began to be applied in the steam power generating industry. More recently, 

these steels have been used in fabricating thick pressure vessels. The oxidation resistance 

and  high  temperature  strength  depends  on  the  amount  of  chromium  and  molybdenum 

present in that alloy. Excellent high-temperature (565°C) strength is obtained in 2¼Cr-1Mo 

steels (Table.2.1), which are generally used in the bainitic condition. A tempering heat- 

treatment gives the required alloy carbides; the most important are M2C, M7C3 and M23C6, 

where M represents a metallic element, where M represents a metallic element. 
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2.2.2 Structural steels 
 

 

Steels for structural applications are used at ambient temperatures and the main property 

requirements are strength, ductility and toughness. The vast majority of these steels have a 

yield strength in the range 300-550 MPa with a mixed microstructure of ferrite and pearlite. 

These are used in critical applications, such as bridges, buildings or ship construction and 

may undergo sophisticated themomechanical processing to refine the microstructure and 

greatly improve the toughness. Such alloys may contain quantities of fine bainite or even 

martensite when the overall concentration is small. 

 

All structural steels have to be welded. For this reason and to minimize the cost, the 

total alloy concentration is generally less than 5wt%. The weld metals used for joining 

structural steels also range in yield strength between 350 and 550 MPa, but can be much 

stronger (900MPa) for special steels used in the construction of submarines. The preferred 

weld microstructures contain large quantities of acicular ferrite which, because of its scale 

and  chaotic arrangement,  gives  good  toughness.  However, quantities  of allotriomorphic 

ferrite, Widmanstetten ferrite, martensite and retained austenite may also be present. 

 

2.3 Mechanical properties of weld deposits 
 

 

Many engineering components are fabricated using welding. The integrity of the fabrication 

is usually asserted on the basis of mechanical properties. Strength, ductility and toughness 

are considered as the essential mechanical properties. Previous work on the modelling of 

weld metal mechanical properties is reviewed in this chapter. 

 
 
 

2.3.1 Strength 
 

 

The capacity of a material to withstand static load can be determined using a tensile test, in 

which a standard specimen is subjected to a continually increasing uniaxial load until it 

fractures, Fig 2.1. The load-elongation curve is plotted and the results are usually restated in 

terms of stress and strain, which within reasonable limits are independent of the geometry of 

specimen, Fig.2.2: 
 

 
 
 
 

Engineering stress, σE = 
𝑃

 
𝐴�

 

 

(2.1) 
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Engineering strain, ϵE= 
𝐿𝑓 −𝐿�

 
𝐿�  

 

(2.2) 
 

 
 
 
 

Where P is load, Ao is initial cross-sectional area and Lo and Lf are initial and final lengths 

of the sample. 

 

The material at first extends elastically; if the load is released the sample returns to its 

original length. After exceeding the elastic limit the deformation is said to be plastic, so the 

sample does not regain its original length if the load is released. With continued loading the 

engineering stress reaches a maximum beyond which the sample develops a neck. This local 

decrease in cross-sectional area focuses deformation until the sample fractures. 

 

 
 
 

Figure 2.1: schematic diagram of tensile test specimen, a) before testing b) after testing. ∆L 
 

is the total extension of the specimen during the tensile test. 
 

 
 
 
 

The yield stress is defined as the stress at which plastic deformation just starts as the stress- 

strain curve deviates from linearity. Because of the difficulty in precisely measuring this 

deviation,  a‟0.2%  proof  stress‟  is  used  which  is  the  stress  at  0.002  plastic  strain, 

Fig.2.2b.The  proof  stress  is  sometimes  referred  as  the  „yield  stress‟.  The  maximum 
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engineering stress is called the „ultimate tensile stress‟, whereas the stress at which the 

sample fractures is called the „fracture stress‟. 

 

Engineering stresses and strains do not account for the change in the load bearing cross- 

sectional area of the sample during deformation. The true stress and strain do so and are 

defined as follow: 

 
 
 
 

σ = σE (ϵE+1) (2.3) 
 

 

ϵ = ln (ϵE+1) (2.4) 
 

 

This leads to a change in the form of the stress-strain plot as illustrated in Fig.2.3. 
 

 

The engineering strain and true stress are comparable at small strains. The flow curve of 
 

many metals as expressed in terms of the true stress σ and true strain ϵ can be represented as: 

σ= K𝜖 �  (2.5)

 

where „K‟ is value of the flow stress at ϵ=1.0 and „n‟ is the strain hardening 
 

exponent. Both these 
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Figure 2.2: engineering stress=strain curve showing a) different stresses, b) 0.2% proof 

stress. 

 

 
 

 

Figure  2.3: True stress  - true strain  curve  (flow curve). 
 

 
 
 

Parameters can be estimated from a logarithmic plot of true stress and true strain. In practice, 

the strain hardening exponent may vary with strain but equation 2.5 is nevertheless a useful 

representation of plastic deformation. 
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2.3.2.Ductility 
 

 

Ductility  is  important  because  an  engineering  component  should  show  considerable 

plasticity before fracture. Ductility, as measured in a tensile test, is usually expressed as 

elongation or reduction in area: 
 

 

Elongation = 
𝐿𝑓 −𝐿

 
𝐿

 

Reduction in area= 
𝐴𝑓 −𝐴�

 
𝐴�  

 

(2.6) 
 

 
 

(2.7) 

 
Where, Lf is the length of sample at fracture, L is initial length, Ao is the initial area of 

cross-section and Af is the area of cross-section at fracture. Both elongation and reduction in 

area are frequently expressed as percentages. 

 
 
 
 

 
 

 

Figure2.4: The stress-elongation curve. The elastic elongation is exaggerated for clarity. 
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Plastic strain can be subdivided into two components, an initial uniform strain where the 

cross-section of the sample is identical along the entire gauge length, and a non-uniform 

component  beginning with  the onset  of  necking.  Assuming that  equation  2.5  is  a true 

representation of deformation, the stress at the point where necking begins is given by 

σ=K� �  [8].

 

 

 
2.3.3 Charpy impact toughness 

 

 

Toughness is the ability of the material to absorb energy during the process of fracture. The 

ability to withstand occasional stresses above yield stress without fracturing is particularly 

desirable in engineering components. The welded joints should resist brittle fracture; 

therefore, the weld metal should be tough, with a great deal of energy being absorbed during 

the process of fracture. One of the popular test methods to characterize toughness is the 

Charpy impact toughness test is which a square sectioned, notched sample(Fig.2.5) is 

fractured under specified conditions[9].The absorbed energy during fracture is taken as a 

measure of toughness. However, Charpy impact test values are empirical since these results 

cannot be used directly engineering design and can be used only to rank samples in research 

and development experiments. The test is usually conducted on a material over a range of 

temperatures to reveal any ductile-brittle transition, (Fig.2.5). 
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Figure2.5: the Charpy impact test sample and impact toughness versus test temperature 

curve. 
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2.4 Arc Welding Processes 
 

 

Welding is one of the most  popular joining  methods for steels.  The joining  of two 

alloys  can  be  done  by  melting  the  two  surfaces  to  be  joined   by  heat,   with  or 

without the help of a filler  wire.  The method   by  which  heat  is generated in order 

to  fuse  the  base  metal  and  filler  wire  defines  the  nature  of  the  welding  process: 

electric  arc  welding,  electron  beam  welding,  friction  welding.  The  work  presented 

in this  thesis focuses on arc welds which are now described in some more detail. 

 
 

 

2.4-1Arc Welding 
 

 

An electric arc is the source of heat to melt and join metals. As shown in Fig 2.6, an electric 

arc is struck between the work piece and the electrode which is manually or mechanically 

moved along the joint or electrode remains stationary while the work piece can be moved. 

The electrode may or may not be consumed during the process. The molten weld pool is 

protected by an inert or active gas shroud generated using flux or via an external supply of 

gases. 

 
 
 
 

2.4.2 Manual Metal Arc  Welding 
 

 
 
 

This is also called the shielded metal arc welding (SMAW) process. Its simplicity and 

versatility makes it popular. A consumable electrode coated with flux (silicates, minerals and 

metals) is used as shown in Fig 2.7. The coating provides elements which act as arc 

stabilizers, generate gases and a slag cover to protect the weld pool from the environment 

and add alloying elements to the weld deposit. The electrode and workpiece are connected to 

a power source; usually the electrode is connected to the positive terminal of the power 

source. The arc is initiated by touching the electrode tip to the base metal and then forming 

an air gap. The heat generated as a consequence melts the base metal, the electrode core and 

its covering. 
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2.4.3 Gas Tungsten Arc (TIG) Welding 
 
 

A non-consumable tungsten electrode is used together with an inert shroud. The key 

advantage of this process over manual metal arc welding is that higher quality welds can be 

produced. The equipment used in this process is portable and usable with all metals, for a 

wide range of thicknesses and in all welding positions. 

 
 

2.4.4 Gas  Metal Arc  Welding 
 
 

Gas metal arc welding (GMAW) uses a continuous wire which is consumed to form the 

weld  metal  together  with  an  inert  gas  shield.  The  mode  of  liquid  metal  transfer  from 

electrode to the base metal can be varied by choosing different types of gases. All metals can 

be welded by using argon or carbon dioxide. This process gives high weld metal deposition 

rates and can be automated. 

 
 

2.4.5 Submerged Arc   Welding 
 

 
 

As the name indicates, the electric arc and molten weld metal are submerged under a layer of 

molten flux and unfused granular flux. The tip of a continuously fed consumable wire is the 

electrode.  Because  the  arc  is  submerged  under  molten  flux  the  radiation  losses  are 

minimized giving maximum energy efficiency. This is an automated process which can be 

used with the base metal in the horizontal position. 

 
 
 
 
 
 

 
2.5 Variables Associated with Welding 

 

 
The most important variables are the process, chemical composition of the weld deposit, 

heat input, the initial temperature of the base metal at the region to be welded (pre- heating), 

temperature of the weld deposit during multirun welding (intepass temperature) and heat 

treatment given to the weld metal after welding (post-weld heat treatment). The type of joint 

(Fig 2.8) and the material thickness have to be considered in selecting a weld process. The 

primary  function  of  the  heat  source  is  to  generate  heat  to  melt  the  base  metal  and 

consumable electrode. The rate of melting is controlled by amount of heat input, denned as: 
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where I is the electric current in amperes, V is the voltage applied between power source 

terminal and electrode expressed in volts, S is the travel speed of the heat source in mm s- 1 

and f is the arc transfer efficiency. In most of the arc welding processes the efficiency is 

between 0.8 and 0.99. The weld metal composition plays a vital role in determining the 

mechanical properties of the weld joint and the microstructure of weld metal. A post-weld 

heat treatment is often given to the as- deposited weld to lower the hardness and restore the 

toughness. 

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

Figure 2.6 Schematic  view of arc welding  process. 
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Figure 2.7 Schematic view of manual metal arc welding (MMAW). 
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Figure  2.8 Different types  of  joint  preparations. 
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2.6 Weld Microstructure 
 

 
When a molten metal solidifies in the gap between components to be joined, this welds the 

components together. The basic metallurgy of the welded joint can be divided into two 

major regions: the fusion zone and heat affected zone (HAZ). The fusion zone experiences 

temperatures above the melting point of the material and represents both the deposited metal 

and the parts of the base metal melted during welding. The heat affected zone, (Fig. 2.9) on 

the other hand, represents the close proximity to the weld, where the temperatures 

experienced are below the melting point and there is a change in the microstructure of the 

base metal. 

 
 

2.6.1    Weld  Metal  Solidification 
 

 
 
 

In steels weld metal solidification starts at edge of the fusion zone into the weld metal with 

d-ferrite as the initial phase (Fe-Cementite Phase diagram). As it cools, d-ferrite transforms 

into austenite and with further lowering of the weld metal temperature austenite decomposes 

to ferrite. Most steels contain small quantities of alloying elements and hence show similar 

crystal structure changes as pure iron. Therefore in weld metal solidification, weld deposits 

begin solidification with the epitaxial growth of columnar d- ferrite from the hot grains of 

the base metal at fusion surface. The grains grow rapidly in the direction of highest 

temperature gradient and hence show an anisotropic morphology. Those grains with <100> 

directions parallel to the heat How direction dominate the final microstructure. On further 

cooling, austenite nucleates and grows along prior d-ferrite grain boundaries, thus adopting 

the columnar shape of the d-ferrite grains. Fine austenite grains providemore grain boundary 

nucleating sites; on the other hand coarse grains increase the harden abilityof the weld metal. 

The columnar shape of the austenite results in few grain boundary junctions when compared 

with an equi-axed structure. This also contributes to an increase in harden ability. 

The cooling rates in the weld metal depend on the distance from the heat source, heat input, 

inter passtemperature and the geometry of the joint. Because the cooling rates are in practice 

quite high, weld solidification is a non-equilibrium phenomenon and thus solidification- 

induced segregation promotes an inhomogeneous microstructure in the weld metal. The 

amplitude of these concentration and microstructure variations become larger as the alloy 

concentration increases. 
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Another important feature, in  Flux  based welding processes, is non-metallic inclusions. 

During welding, the flux reacts with atmospheric oxygen and cleans and protects the weld 

metal by forming oxides and rejecting them into slag. However, the process is not ideal due 

to convection and rapid solidification, so oxide particles are entrapped in the fusion zone 

during solidification. These are called slag inclusions, which can serve as nucleation sites 

within the weld pool. A small volume fraction of inclusions is desirable in welding, as they 

serve as heterogeneous nucleation sites for councilorferrite. Large fractions are detrimental 

to the mechanical properties of weld metal. 

 
 
 

2.6.2 As-deposited Weld Microstructure 
 
 

The as-deposited microstructure is that which forms when the liquid weld pool cools to 

room temperature. This structure contains allotrimorphic ferrite, Widmanst5tten ferrite and 

councilor ferrite, Fig. 2.10. In a few cases, microstructures containing marten site, banite and 

traces of pearlite can be found. High- carbon martensite is a hard microstruct ure with low 

toughness and ductility. 

 
 

Allotriomorphic Ferrite 
 

 
 

Allotriomorphic ferrite (a) usually forms between 1000 and 650"C during cooling of steel 

weld   deposits.   Nucleation   occurs   heterogeneously   at   the   columnar   austenite   grain 

boundaries. As the austenite grain boundaries are easy diffusion paths, austenite grain 

boundaries are decorated with thin layers of anthropomorphic ferrite and the thickness of 

which is controlled by the diffusion rate of carbon in austenite. In weld deposits, 

anthropomorphic ferrite appears to grow without the redistribution of substitutional alloying 

elements during transformation [8]. This mechanism of growth is termed para equilibrium, 

and occurs as a consequence of the fast cooling rates experienced by welds. In welds, 

anthropomorphic ferrite is detrimental to the toughness because the continuous network 

along grain boundaries offers less resistance to crack propagation than 

councilorferrite [11]. 
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Widmanstàtten Ferrite 
 

 
 

This microstructure results from further cooling below the temperature at which 

anthropomorphic ferrite forms. Primary Widmanst5tten ferrite nucleates directly from the 

regions of austenite grain boundaries not covered by anthropomorphic ferrite. Secondary 

Widmanst5tten ferrite nucleates at austenite/ferrite boundaries and grows as sets of parallel 

plates separated by thin regions of austenite. The austenite remains as retained austenite, or 

transforms to marten site or pearlite. These latter transformation products are collectively 

known as micro phases in weld metal terminology, because they are generally present in 

small fractions. Widmanstatten ferrite is not desirable in weld metals. 

 
 

Acicular Ferrite 
 

 
 

Oxides and non-metallic inclusions serve as nucleation sites for acicular ferrite. Acicular 

ferrite forms within the columnar austenite grains in competition with Widmanst5tten ferrite. 

It appears as a fine grained interlocking array of non- parallel laths. The microstructure is 

highly desirable in welds. The large number of non- parallel grains improves the weld metal 

toughness by increasing the resistance to crack propagation [12]. 

 
 

Microphases 
 

 
 

These are last constituents to form in weld metal. Microphases correspond to the small 

carbon-rich regions in the weld metal where the last remaining volumes of austenite 

transform, and consist of mixtures of marten site, carbides, degenerated pearlite, bainite and 

retained austenite. 

 
 
 

2.6.3   Secondary Microstructure 
 

In many circumstances it is difficult to fill the gap at the joint by a single weld pass. 

Therefore thick sections are welded using many layers of deposited metal, Fig. 2.11. The 

deposition of each successive layer heat treats the underlying microstructure formed during 

cooling of the previous run. Some regions of the underlying layers are reheated above the 

austenitisation temperature, whereas others become tempered. All of the reheated regions 

contribute to the secondary microstructure. 
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The  Heat Affected Zone 
 

The heat affected zone is the portion of the metal which has not experienced melting, but 

whose microstructure is altered due to welding heat. There are well-defined microstructures 

in the heat affected zone as illustrated in Fig. 2.12 . The region immediately adjacent to the 

fusion boundary is heated to very high temperatures (just below melting temperature) and 

forms coarse austenite. The austenite grain size decreases sharply with distance from the 

fusion line and the Rue grained zone will have superior mechanical properties than the 

coarse grained zone. Moving further away, the peak temperature decreases and will result in 

partial austenite formation and tempered ferrite in that region; this is called the “partially 

austerities zone”. The region adjacent to this zone, which is not transformed to austenite, 

will be tempered. 

 
 

2.6.4 The microstructure and CCT diagram of weld metals 
 

 

Those features of weld solidification that are most likely to influence the final microstructure 

of the weld metal after cooling to ambient temperatures have been presented above. The 

overall picture is complicated by a number of interacting factors which include: 

 
 

1.   The welding process itself which determines the weld pool size and geometry. 
 

2.   The final composition of the melt as influenced by the filler wire, the base metal, 

fluxes, gases, moisture in the air, etc., and its effect on constitutional supercooling 

and segregation. 

3.   The speed of welding and its effect on solidification speeds, crystal morphology and 

segregation. 

4.   The weld thermal cycle and its influence on microstructural coarseness and type of 

transformation product produced during cooling. 

5.   The effect of weld metal composition, particularly from dilution in high energy 

welding of microalloyed  steels,  on  precipitation  reactions,  and  especially during 

reheating or in multi-run welds. 

 
 

It appears to be unrealistic to attempt to develop CCT diagrams specific to weld metal 

composition and thermal history. On the other hand, it is useful and informative to express 

the influence of the various features of welding, as listed above, in a schematic CCT diagram 
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which shows, e.g., the tendency for the C-curves to move to longer or shorter times or the 

introduction of shape or size changes of the transformation fields, and this is illustrated in 

Figure 2.13. 

 
 

Arrows that point left in the diagram denote movement of C-curves to shorter transformation 

times, and arrows to the right indicate the opposite effect. Thus, austenite stabilizers (e.g. C, 

N, Mn, Ni, Cu), tend to inhibit transformation, pulling the C-curves towards longer times to 

transformation. Strong carbide or nitride forming elements (e.g. Mo, Cr, Nb, V, Ti, Al), 

however, tend to suppress blocky and proeutectoid ferrite, but not acicular ferrite or bainite. 

Indeed, Nb in particular tends to enhance bainite formation. Slag inclusions, particularly if 

present in sufficient number and size, also tend to promote the nucleation of acicular ferrite. 

[10] 

 
 
 
 
 

 
 
 

Figure  2.9 Schematic  view of the various  zones  in a single pass weld  metal. 
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Figure  2 . 1 0  a)  Schematic diagram showing different constituents of  the  primary 

microstructure in   the  columnar  austenite  grains  of  a  steel  weld   [13],   b)  scanning 

electron    micrograph   of    the  primary    microstructure  of   a  steel   weld   [14].   a- 

allotrimorphic ferrite,  aw- Widmanstatten ferrite and aa- acicular  ferrite. 
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Figure  2.11  Various  regions  in a multilayer  welding. 
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Figure  2 . 1 2  Microstructural  variations  in  heat   jected   zone  [14] The banded structure 

is a characteristic   feature  of segregated steels  which  have  been  rolled. 
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Figure 2.13.  Schematic CCT diagram for steel weld metal, summanzmg the possible effect 

of microstructure and alloying on the transformation products for a given weld cooling time 

[10]. 
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2.7 Strengthening Mechanism 
 

 

Iron in its pure form is weak and can have a yield strength as low as 50 MPa [15]. The 

strength of pure body- centered cubic iron in a fully annealed condition decreases rapidly as 

the temperature is increased, Fig. 2.14. The strength is particularly sensitive to temperatures 

below -25 0C. In fact, it is this sensitivity to temperature which gives rise to the ductile- 

brittle transition. The cleavage strength of iron, is insensitive to temperature; at sufficiently 

low temperature it becomes less than the How stress, making iron brittle. 

 
 
 

 
Figure  2.14  Temperature dependence of  the yield  strength of iron (gettered with 

titanium) at a plastic strain of 0.002  [16].  The strain  rate is 2.5x I0- 4 s- I. 
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2.7.1 Grain Refinement 
 

 

The refinement of grain size leads not only to an increase in the strength but also toughness 

[17].  Grain  boundaries  are  formidable  obstacles  to  the  movement  of  dislocations.  The 

dependence of the yield strength on grain size is given by the Hall-Petch relationship [18]: 

                                                                                          (2.8) 

 

where  „d' grain  diameter,  sy  is  the  yield  stress,  si  is  the  friction  stress  opposing  the 

movement of dislocation in the grains and Ky is a constant. The derivation of the Hall-Petch 

equation relies on the formation of a dislocation pile- up at a grain boundary, one which is 

large enough to trigger dislocation activity in an adjacent grain. Yield in a polycrystalline 

material is in this context defined as the transfer of slip across grains. 

A larger grain is able to accommodate more dislocations in a pile- up, enabling a larger 

stress concentration at the boundary, thereby making it easier to promote slip in the nearby 

grain [19]. 

It is harder to propose a general mechanism by which grain refinement improves toughness. 

The argument for steels is that grain boundary cementite  particles are finer when the grain 

size is small [19]. Fine particles are more difficult to crack and any resulting small cracks are 

difficult to propagate, thus leading to an improvement in toughness. 

 
 
 

2.7.2 Solid Solution Strengthening 
 

 

The most common method of increasing the hardness and strength of steels is by solid 

solution strengthening. The degree of hardening or softening due to dissolved elements 

depends crudely on the relative difference in atomic size relative to an iron atom [16]. Large 

atoms induce compressive stress fields whereas smaller atoms are associated with tensile 

fields in the matrix. These distortions interact with dislocation motion. Solid solution 

strengthening also depends on disturbances to the electronic structure, expressed in terms of 

the difference of the solute and host atom [17]. 

 
 

In steels the smaller atoms carbon and nitrogen occupy interstitial sites whereas elements 

like   silicon,   manganese   are   substitutional.   The   interstitial   solute   atoms   cause   an 

asymmetrical  distortion  of  the  ferrite  lattice  whereas  the  substitutional  solute  produce 
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symmetrical distortions. Therefore the increase in strength of a-iron by interstitial carbon or 

nitrogen is much greater than that of any substitutional alloying element Fig. 2.15.  Isotropic 

distortion can only interact with the hydrostatic stress fields of dislocations. Much greater 

interactions are possible with the tetragonal strains associated with the interstitial atoms in 

ferrite. 

 
 

Fig. 2.16 shows that the strengthening due to substitutional solutes often goes through max- 

imam as a function of temperature. In a few cases there is some softening in body centered 

cubic a- iron at low temperatures because the presence of foreign solute atom locally assists 

dislocations to overcome the large Peierls barrier to dislocation motion [4]. 

 
 

2.7.3 Precipitation Hardening 
 

 

Small and uniformly distributed precipitates can be effective barriers to dislocation 

movement. Precipitation hardened steels strengthening are usually first heat treated in the 

austenite phase Held in order to dissolve solutes and then cooled rapidly to ambient 

temperatures to produce a supersaturated ferrite or martensitic transformation. Tempering 

then allows the excess solute to precipitate as carbides or nitrides, thereby strengthening the 

microstructure. In steels the strong carbide- forming elements titanium, vanadium, niobium, 

molybdenum, etc. are commonly used as the main precipitation strengthening elements. This 

mechanism is applied widely to increase the creep strength of power plant steels. 

 

 
 
 
 

2.7.4 Post Weld Heat Treatment 
 

 

During welding, there are regions created which are austerities and then cooled rapidly, 

producing brittle microstructures such as martensite. Tempering is frequently used to restore 

the toughness, by heat treating in a temperature regime where austenite cannot form. Thus, 

any excess carbon in solution is rejected to form carbides. In some cases the purpose of 

tempering is to induce the precipitation of alloy carbides. Power plant steels containing 

carbide forming elements such Cr, Mo, V, Nb, Ti, and W form stable carbides such as MX , 

M3 X, M2 X, M7 X3 , M23X6 and M6X (where M represents metal atoms, X represents 

interstitial atoms) on tempering at temperatures where there is sufficient mobility for the 

diffusion of substitutional atoms. This generally means temperatures above 500 
o
C. The 

 

precipitation  of  alloy  carbides  and  the  associated  strengthening  is  often  referred  to  as 
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secondary hardening' [20]. Fig. 2.17. Shows the variety of carbides formed during tempering 

of water quenched 2 Cr-lMo steel from its austenitisation temperature. 

 
 
 
 

 
 
 

Figure  2.15 Contributions to the solid solution strengthening of ferrite  [17]. 
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Figure  2.16 The effect  of some substitutional solutes  (3 at. %) on the yield strength 

of iron  [16]. The strain rate is 2.5 x 10-
4  

s-
1
. 
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Figure  2.17 Carbide sequence in water  quenched 2¼Cr-1Mo steel [21], where  'M' 

represents metallic elements. 
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2.8 Previous Weld Mechanical Property Models: 
 

 

Weld metal models can in general be categorized into two classes, those which are empirical 

and others founded on physical metallurgy. The latter are more meaningful, but as will be 

seen later, they are generally over-simplified and deal only with simple properties rather than 

the range of properties important in engineering design. 

 
 
 
 

1.   Regression Models 
 

There have been numerous attempts to model weld metal mechanical properties by 

using linear regression analysis. 

 
 

 

Table.2.2 Yield and Ultimate tensile strength (MPa) regression models of weld metals [1]. 

The alloying element concentrations are expressed in wt%. 
 

 

Carbon-Manganese YS = 335 + 439C + 60Mn +361 ( C.Mn ) 
 

UTS = 379 + 754C + 63Mn +337 ( C.Mn ) 

Silicon-Manganese YS = 293 + 91Mn +228Si – 122Si² 
 

UTS = 365 + 89Mn + 169Si – 44Si² 

Chromium-Manganese YS = 320 + 113Mn + 64Cr + 42 ( Mn.Cr ) 
 

UTS = 395 + 107Mn + 63Cr +36 ( Mn.Cr ) 

Nickel-Manganese YS = 332 + 99Mn + 9Ni +21 (Mn.Ni ) 
 

UTS = 401 + 102Mn + 16Cr 15 ( Mn.Ni ) 

 

 
 
 
 
 

The strength of weld metal is frequently modeled as a function of chemical composition of 

weld metal, for cases where all the remaining variables associated with welding 

approximately constant. Equations like these are useful within the context of the experiments 

they represent. Naturally, the firm of the relationships used may not necessarily be justified 

in detail. 

 

2.   The Sugden-Bhadeshia Model 
 

Sugden and Bhadeshia tried to predict the strength of the as-deposited weld as a 

function of the chemical composition and microstructure [8]. The model is based on 

the assumption that the strength can be factorised into components; strength of pure 
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iron, solid solution strengthening and strength due to microstructure, equation 1. The 

chosen microstructural constituents are allotriomorphic ferrite (α), Widmanstatten 

ferrite (αw), and acicular ferrite (αa) with the following assumptions: 

 

2.1 The total strength (σy) of as-welded deposit is assumed to be a linear combination 

of individual components: 

 

                                      (2.9) 
 

 
 
 
 

where   σFe     is the strength of fully annealed pure iron as a  function of temperature and 

strain rate, σss1i   is the solid   solution strengthening due to alloying element i and σMicr is 

strengthening due to weld microstructure. 

 
 
 

 

The weld microstructure consists of allotriomorphic Ferrite (α ), Wimanstetten ferrite 

(αw) and acciular ferrite (αa ). The variation in grain sizes of α, αw,  and αa are not taken  in to 

account: 

 
 
 
 
 
 
 

(2.10) 
 
 

where  σα, σa and σw denote the contributions from  100% allotriomorphic ferrite, 

Widmanstetten ferrite an   accicular ferrite respectively, and   Vα, Va and Vw   are their 

corresponding volume fraction. 
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Figure.2.18  The   weld   microstructure   consists   of   allotriomorphic   ferrite   (α), 

Wimanstetten ferrite (αw) and acciular ferrite (αa ). 

 

Nitrogen is assumed to be in solid solution and any Strain ageing effects in the as-welded 

microstructure are assumed to be negligible.The solid solution strengthening (σss) is 

expressed as  the sum of the contributions from each solute: 

 
 
 

                                                     (2.11) 
 

 

where the coefficients a, b, .. are functions of temperature, defining the role of the 

respective alloying elements. The values for these coefficients are taken from the published 

experimental data which are based on studies in which solid solution strengthening is studied 

in isolation. 

 

An alloying element naturally influences more than just solid solution effect. However, the 

other consequences are included in the analysis via incorporation of microstructure. The 

authors were able to estimate the strength of individual microstructures  (σα, σa and σw ) by 

studying three welds which are made with identical welding conditions [8]. The chemical 

compositions were adjusted to give different fractions of microstructure in order to deduce 

the strengthening due to each microstructure (α, αa   and αw ). The final form of developed 

equation is: 
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(2.12) 

 

 

where σFe  and σss can be obtained from referred published literature [22]. 
 

 
 
 
 

Although   the   Sugden-Bhadeshia   model   has   more   physical   meaning   when 

compared with the empirical equation   presented in Table.2.2., the model still has linear 

approximations which are not justified in detail. It is resticted to structural   steel   welds 

which have simple, untempered microstructures bainite and martensite are excluded from the 

analysis,as is precipitation hardening. Young and Bhadeshia have developed  the work for 

microstructures which are mixtures of bainite and martensite but this model has yet to be 

applied to weld metal microsructures. The model is nevertheless discussed below because it 

is interesting. 

 

3.   The Young-Bhadeshia Model 
 

The  Young-Bhadeshia  strength  model  for  high-strength  steels  [4]  considered 

microstructures which are mixtures of martensite and bainite; 

 

                (2.13) 
 

 

where KL,  KD  and Kp  are constants, σc  is the solid solution   strengthening due to 

carbon, L is a measure of the ferrite plate width, ρD is the dislocation density and ∆ is the 

distance between any carbide particles. The other terms have their usual meanings. 

 

The Young and Bhadeshia model can be applied to estimate the strength of bainite 

and martensite welds by using  rule of mixtures. Even though the model had considered the 

microstructural influence the model still built on the some of the assumptions made in 

Sugden and Bhadeshia model like  linear summation effect of solid solution strengthening. 

 
 
 
 

It appears from the literature reviewed that the failure of the previous work [1,2,3] to create 

models with wide applicability comes largely from constraints due to the linear or pseudo- 
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linear regression methods used, with poor error assessments and most importantly from 

very limited variables and data considered in the analysis. 
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2.9 NEURAL NETWORKS OVERVIEW 
 

 

Neural networks are powerful and demonstrably useful tools for solving practical problems. 

Noteworthy applications include medical and machine diagnosis, machine control, credit 

risk and financial prediction, weather prediction, and even prediction of outcomes in such 

exotic Endeavors as horse racing. Neural networks have seen an explosion of interest over 

the past few years. 

 

Even problems that are considered intractable by conventional methods have yielded to 

neural networks analysis. Because conventional linear statistical models have well known 

optimization strategies, linear modeling has been most commonly used modeling technique 

in many problem domains for a very long time; but where the linear approximation was not 

valid(often the case), the models suffered accordingly. 

 

Advantages of neural network techniques over conventional techniques include the ability to 

address   highly   nonlinear   relationships,   independence   from   assumptions   about   the 

distribution of input or output variables, and the ability to address either continuous or 

categorical data as either inputs or outputs. 

 

Neural networks are also intuitively appealing, based as they are on crude low-level models 

of biological systems. As in biological systems, neural networks simply learn by example, 

but in the case of neural networks, the neural network user provides representative data and 

trains the neural networks to learn the structure of the data. 

 

2.10    Bayesian neural networks 
 

 

An artificial neural network (ANN) is basically a method for fitting a curve to a number 

of points in data space[6]. More technically, it is a parameterized non- linear model which 

can be used to perform regression, in which a flexible, non-linear function is fitted to 

experimental data.  The term “artificial” is used to indicate that these networks are computer 

programs, rather than “real” neural networks such as the human brain.  The details of the 

operation and construction of neural networks have been reviewed elsewhere [6], but it is 

useful to summarise the main features here. 



(2.15) 
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Figure 2.19 A schematic diagram of a three-layer feed-forward network. The model‟s 

complexity is controlled by the number of neurons in the second layer, known as hid- 

den units. 

It has been shown that a sufficiently complex three-layer network of the form described 

below can imitate any complex function [6]. The network is thus able to respond flexibly to 

the demands made by the data, capturing any non-linear interactions between the parameters. 

Such a three-layer feed-forward network, of the type commonly used for material 

property applications, is shown in Figure 2.19. The first layer consists of the inputs to 

the network. The second layer consists of a number of neurons – non-linear operators whose 

arguments are provided by the first layer in the network. The activation function for these 

neurons, hi , can be any non-linear, continuous and differentiable function – tanh  has been 

used  in  this  work  (Equation 2.14).   The  overall  output  function,  y, can again  be  any 

function, and is commonly linear. The neuron activation function for a neuron i is given by 

                                                                      (2.14) 
 

 

and the output weighting function is 



(2.18) 
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The xj are the inputs,  and w the weights which define the network.   (1)    and (2) 

denote weights and biases in the hidden layer and in the output layer, respectively. The aim of 

training a network is to find the optimum set of values for w. The parameters θ are known as 

biases, and are treated internally as weights associated with a constant input set to unity. 

In order to simplify the weightings, inputs are normalised within a range of ±0.5. 

The normalisation function is 
 

                                                                                                               (2.16) 
 
 
 

where x is the un-normalised input, xmin and xmax are the minimum and maximum 

values in the database for that input, and xj   is the normalised value.  The network is 

therefore not constrained to a particular range of outputs (for example, positive outputs only) 

and so the target must be chosen with care to avoid unphysical model outputs. For example, 

for a property which cannot be less than zero such as the yield stress σy, ln(σy ) could be used 

instead as the network training target. 

The complexity of such network models scales with the number of “hidden” units. 
 

Despite the terminology and the common view of a neural network as a “black box”, the 

weightings can in fact be examined although they are difficult to interpret directly, being 

complex nested tanh functions. The easiest way to identify the interactions in a model is to 

use it to make predictions and see the behaviour which emerges from various combinations 

of inputs. 

Because of the inherent flexibility of an ANN, there is the possibility of overfitting the 

model.  Training a network therefore involves finding a set of weights and biases which 

minimize an objective function, which balances complexity and accuracy, typically 

                                                                                            (2.17) 
 

in which Ew   is a regulariser;  its function is to force the network to use small weights and 

limit the number of hidden units and is given by 
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and ED   is the overall error between target output values and network output values, 

given by 

                                                                                             (2.19)
 

 

 

where t(k)   is the set of targets for the set of inputs x(k),  while y(k)   is the set of corre- 

sponding network outputs.  α  and β  are control parameters which influence the balance 

between a simple but inaccurate model, and an overcomplex, also inaccurate model (Figure 

2.20).   MacKay‟s  algorithm  allows  the  inference  of  these  parameters  from  the  data, 

permitting automatic control of the model complexity [6]. 

To accomplish the training, the data are randomly split into two sets, a training set and a 

test set. The model is trained on the training set, and then its ability to generalise is compared 

against the test set of data.  Figure 2.21 shows how increasing complexity continuously 

lowers the training error (the mismatch between model predictions and the training dataset), 

while the test error (the mismatch between model predictions and the test dataset) has a 

minimum.   At greater complexities, overfitting causes the test error to increase with 

increasing  numbers  of  hidden  units.    The  ultimate  purpose  of  training  a  model  is  to 

minimise this error, both against the input dataset and against unseen data from future 

experiments. 

For  these  models,  the  fitting method  is  based  on  a  Bayesian  approach  and  treats 

training  as  an  inference  problem,  allowing  estimates  to  be  made  of  the  uncertainty 
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y 

 
 
 
 
 
 
 
 
 
 
 
 

 
(a) (b) 

 

Figure 2.20  Under- and over-fitting. A set of noisy data points (hollow boxes) has been fitted by 

(a) linear regression and (b) an overly complex function. In the first case the fit clearly does not 

represent the data, and in the second case the fit overlies the training data perfectly but generalises 

poorly to new points (crosses) of the model fit (Figure 2.22). 

Rather than  trying to  identify one  best  set  of  weights, the algorithm infers a probability 

distribution for  the  weights from  the  data  presented.  In  this  context,  the  performances  of 

different models are best evaluated using the log predictive error  (LPE) rather than the test 

error.  This error penalises wild predictions to a lesser extent when they are accompanied by 

appropriately large error bars and is defined by 

 

                              (2.20)
 

 

where t and y are as defined above, and σ
(k)

 is related to the uncertainty of fitting for the 
 

set  of  inputs  x(k).    It  should  be  pointed  out  that,  for  computational purposes, the training 

software  (BigBack51 )  actually  uses  an  inverse  version  of  this  function  that  increases  with 

increasing accuracy. 

Of course, models with different number of hidden units and different initial guesses for the 

distribution of the weights, the prior will give different predictions. Optimum predictions can 

often be made by using more than one network. This is referred to as a committee. The prediction 

y of  a committeee of  networks  is  the  mean  prediction  of  its  members, and  the  associated 
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uncertainty is used to give the corresponding prediction y(l) . 
 

 

 
 

 
Figure 2.21  Comparison of error on training and testing sets as a function of network 

complexity, illustrating the problem of over complex models as in Figure 2.20. 

                                                           (2.21) 
 

where L is the number of networks in the committee and the exponent (l) refers to the model 

During training, it is usual to compare the performances of increasingly large committees on the 

testing set  of  data.  Usually,  the  error  is  minimised  by  using  more  than  one  model  in  the 

committee. The selected models are then retrained on the entire database. 

A further output from the training software is an indicator of the network-perceived 

significance of each input.  The measure provided by BigBack5 is a function of the values of 

the regularisation constants for the weights associated with an input, σw . This measure is similar 

to a partial correlation coefficient in that it represents the amount of variation in the output that 

can be attributed by any particular input. 

To determine the sensitivity of the model to individual input parameters, o
T
n the other hand, 

predictions must be made varying one parameter only whilst keeping all the others constant. In 

some  cases  where  an  input  is  a  function  of  one  or  more  other inputs (for example, both 

temperature T and an Arrhenius function exp (l)
2  

could be inputs to the network) varying only 

one of these parameters may not be physically meaningful. 



50 

 

 
 

 

Figure  2.22  Schematic  illustration  of  the  uncertainty  in  defining  a  fitting  function  in 

regions where data are sparse (B) or noisy (A). The thinner lines represent error bounds due to 

uncertainties in determining the weights. Note that, outside the range of data, the 

extrapolation is increasingly uncertain (C). Areas of high uncertainty will provide the most 

informative new experiments. 

 

 

The nature of the ANN structure (and these outputs) allows the “testing” of various physical 

models – input parameters based on those models can be included in the training data, and those 

parameters which are not useful in explaining the output will have much lower significances than 

those which are useful
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2.11 Theory of Multilayer perceptron (MLP). Radial Basis function (RBF). 

Generalized Regression neural networks (GRNN) 

 

2.11.1 KEY ELEMENTS OF NEURAL NETWORKS 
 

 

Let‟s assume that we have collected a large number of data cases consisting of three continuous 

and a single categorical variable with three classes, and that we want to build a model that will 

be able to predict the association class using the three continuous variables as inputs. Instead of 

invoking a linear modeling approach such as discriminant analysis in which we have to make 

assumptions about the underlying distribution of the input and output variables or error terms, we 

could employ a simple type of neural network. 

 

The figure below is a schematic representation of a simple neural network appropriate for the 

problem described above. We can use this example of a Multilayer perceptron (MLP) network to 

illustrate many of the elements of neural networks. Most of the elements will be formed in other 

network architectures supported by SNN. [23] 

 

 
 
 

Figure 2.23  A schematic representation of a simple neural network with the 

elements.
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The network can be thought of as consisting of consecutive layers progressing from inputs (left) 

to outputs (right). The individual neurons (nodes/units) within the layers of this common neural 

network type consist of mathematical constructs that, when properly exposed to historical data 

(trained), will internally adjust to a configuration that will allow the network     accept input 

values, process them through the various layers of calculations, and finally, produce a predicted 

value (or classification) as the last layer‟s output. 

 

The raw data that are contained in the three input or independent variables (left side of the 

figure) need to be transformed to a range of values that can be used in the neural network. In 

STATISTICA Neural networks (SNN), a separate conversion or pre-processing layer that is a 

part of the network architecture performs the transformation. In the case of the continuous input 

variables employed in this example network, the raw values simply need to be rescaled. (For 

categorical input variables, the pre-processing/conversion function would map the categorical 

values into a numerical form.) 

 

The transformed values are fed to the input layer of neurons (also referred to as nodes or units). 

The input layer contains one unit for each of the input variables. (In the case of categorical 

inputs, one input unit will be created for each class or category a categorical input variable.) 

 

Each unit in the input layer is connected to each unit in the hidden layer. The hidden layer is the 

layer that controls the amount of complexity that can be represented in the relationship between 

input and output variables. The larger the number of units in the hidden layer, the more 

complex/nonlinear is the relationship that can be represented. If no hidden layer were present 

then the neural network would describe a linear relationship between the input and output 

variables. Some network types used to model extremely complex relationships may contain two 

hidden layers. 

In turn, each unit in the hidden layer is connected to each unit in the output layer. The output 

layer  in  this  instance  contains  three  units,  one  for  each  class  of  the  categorical  output  or 

dependent variable. Finally, the outputs from the output layer of units are passed to a post- 

processing/conversion layer for mapping of the numerical information contained in the output 

layer units to classes of the categorical output variable. 
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The schematic in the figure 2.24 below depicts what goes on at each within the neural network. 

We can assume that the unit we see here is the topmost unit in the hidden layer shown in the 

previous figure. This unit like every individual unit in the network receives output values from 

all of the units in the layer preceding it. (In SNN all networks are of this feed-forward type; no 

networks are employed that feed information back to previous layers). The unit might be thought 

of as consisting of two parts, an input half(on the left) that accepts outputs(X) from the previous 

layer and an output half(on the right) that modifies information received from the left half and 

passes it on to units of the succeeding layer. 

 

 
 

 

Figure 2.24  shows the functions in Neural Networks. 
 

 

Each individual input coming into the unit is multiplied by a weight (W) value that the unit 

retains  for  that  specific  input.  The  sum  of  the  products  of  the  input  values  and  their 

corresponding weights is compared with a threshold value (T) that is also retained by the unit. 

 

This threshold value is also known under the term bias. The comparison of the weighted inputs 

with threshold value is (in this case) a linear equation and is commonly referred to as a post- 

synaptic potential (PSP) function. The resulting value (called the activation level) is passed on to 

the second half of the unit. When the network is created, random small weight values are 

assigned to the inputs arriving from the units in the previous layer and random values are also 

assigned to the thresholds. 

 

The second half of the unit is commonly referred to as an activation function. In the hidden 

layers(s) this is usually an S-shaped (or sigmoid) function that accepts the value of the activation 
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level received and rescales it to a value within a defined range that the subsequent units in the 

network can accept. In input and output layer units, the activation function is typically linear. 

 

 
 
 

Figure 2.25  Activation function in Neural Network 
 

 

By exposing the network repeatedly to historical data (i.e., data in which the input data values 

and the outcomes are known), the weights (Ws) and thresholds (Ts) of the PSP function are 

adjusted using special training algorithms until the network. Typically a subset of the data 

(Training data) is presented to the network in several or even hundreds of iterations. Each 

presentation of the training data to the network for adjustment of Ws and Ts is referred to as an 

epoch. The procedure continues until the overall error function has been sufficiently minimized, 

as discussed in the next paragraph. 

 

The overall error is also computed for a second subset of the data: selection data (sometimes 

referred to as verification or validation data). This data takes no part in the adjustment of Ts and 

Ws during training, but the network‟s performance is continually checked against this subset as 

training continues. If the error for the selection data stops decreasing or starts to increase, the 

training is stopped.  Use of a selection subset  of data is important, because with  unlimited 

training, the neural network usually starts “overlearning” the training data. Given no restrictions 

on training, a neural network may describe the training data almost perfectly but may generalize 
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very poorly to new data. The use of selection subset to shut down training at a point when 

generalization potential is best is a critical consideration in training neural networks. 

 

In most cases it is even advisable to create a third subset of Test data to serve as an additional 

independent check on the generalization capabilities of the neural network. 

 
 
 

 

2.12 NETWORK TYPES 
 

 

STATISTICA Neural networks provides a wide selection of network architectures and respective 

training algorithms. Each architecture has advantages and disadvantages and is capable of 

performing certain  tasks. Without  going into  computational  details,  the following overview 

describes the different network architectures, provides insights into different activation and error 

functions used, and lists the type of training algorithms available in STATISTICA Neural 

networks that can be used for training these networks. [23] 

 

2.12.1 Multilayer perceptron(MLP) 
 

 

This is perhaps the most popular network architecture is use today and discussed at length in 

most neural network textbooks. Multilayer perceptrons use a linear PSP function (i.e., they 

perform a weighted sum of their inputs), and a (usually) nonlinear activation function. A three- 

layer MLP (i.e., with one hidden layer) has the capability to model problems of almost any 

degree of complexity. STATISTICA Neural networks provides options for creating MLP 

networks with up to three hidden layers. 

 

The  standard  activation  function  for  MLPs  is  the  logistic  function;  STATISTICA  Neural 

networks selects this for all layers by default. The hyperbolic function (tanh), which is a 

symmetric version of the logistic function, can produce better performance than the logistic 

function in many cases. If an MLP network is being used in regression problems, performance 

can often be improved by giving units in the output layer the linear activation function. This 

allows extrapolation beyond the training data in addition to interpolation. If an MLP network is 

being used in a single-output classification problem, the output layer error function can be 

changed to Entropy (single) for improving performance. If an MLP network is being used in a 
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multiple  –output  classification  problems,  the  output  layer  activation  function  can  be  set  to 
 

softmax, in which case the network‟s error function needs to be set to Entropy(multiple). 
 

 

MLP networks can be trained by any of the following algorithms. Conjugate Gradient Descent, 

Quasi-newton, Levenberg-Marquardt, Back Propagation, Quick Propagation, or Delta-bar- 

Delta.  MLP  networks  are  relatively compact,  and  widely applicable;  however,  the  training 

process can be protracted, and they are prone to meaningless extrapolation if given highly novel 

data. 

 
 
 

 
2.12.2 Radial Basis function(RBF) 

 

 

Radial basis function networks have an input layer, a hidden layer of radial units and an output 

layer of linear units. They are described in most good neutral network textbooks. 

 

Typically, the radial layer has exponential activation functions and the output layer, a linear 

activation functions. Radial basis function networks are trained in three stages: 

 

1.   Center-assignment. The centers stored in the radial hidden layer are optimized first; 

typically using unsupervised training techniques. Centers can be assigned by a number of 

algorithms: by sub-sampling, K-means, Kohonen training, or Learned vector 

quantization.These algorithms place centers to reflect clustering. 

2.   Deviation assignment. The spread of the data is reflected in the radial deviations (stored 

in the threshold). Deviations can be assigned by a number of algorithms(Explicit, 

Isotropic, K-nearest neighbor). 

3.   Linear optimization. Once centers have been assigned, the linear output layer is usually 

optimized  using  the  pseudo-inverse  technique,  as  this  is  quick,  and  guaranteed  to 

minimize the error if the deviation are not too small. However, you may also use 

Conjugate Gradient Descent, Quasi-Newton, Back Propagation or Delta-Bar-Delta 

training, if you wish. Alternatively, an RBF used for classification may use cross-entropy 

error functions and logistic or softmax activation functions. In this case, iterative training 

algorithms must again be used. 
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Radial Basis function networks train relatively quickly and do not extrapolate too far 

from known data; however, they tend to be larger than MLPs and therefore execute more 

slowly. 

 
 

 

2.12.3 Generalized Regression neural networks(GRNN) 
 

 

There are two types of Bayesian networks: probabilistic neural networks(PNN) which are used 

only for classification tasks and Generalized Regression neural networks(GRNN) which are only 

used for regression tasks. 

 
 

Generalized Regression networks have exactly four layers: input, a layer of radial centers, a layer 

of regression units, and output. The radial layer units represent the centers of clusters of known 

training data. This layer must be trained by a clustering algorithm such as Sub-Sampling, K- 

means, or Kohonen training. The layer is typically large, but not necessarily as large as the 

number of training cases. The regression layer, which contains linear units, must have exactly 

one unit more than the output layer. There are two types of units: type A units calculating the 

conditional regression for each output variable, with the single type B unit  calculating the 

probability density. The output layer performs a specialized functions: each unit simply divides 

the output of the associated type A unit by that of the type B unit, in the previous layer. A special 

PSP function (Division) is provided for this purpose. 

 
 

Bayesian networks (GRNN) train extremely quickly(almost instantly), but are typically very 

large and therefore execute slowly. 

 
 

 

2.13 TYPICAL PROBLEM-SOLVING APPROACH 
 

 

It is important to keep in mind that analyzing data with neural networks presents a “black box” 

approach. One typically not interested in the model parameters (e.g., the individual network 

weights) or their significance in evaluating the goodness-of-fit of the model, but rather using the 

model to solve a practical application (e.g., predict future values). [23] 
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Using neural network analysis to solve a problem generally involves a number of steps: 
 

 
 

1.   Accumulating a set of representative data from the problem domain. A network‟s 

solution  will  only be  as  good  as  the  data  on  which  it  is  trained.  If  those  data  are 

unrepresentative  or  skewed  in  any  way,  the  network‟s solution  will  suffer  and  not 

generalize well to the population. 

2.   Preparing the data for the analysis. Data to be inputted to a network often needs to be 

prepared (e.g., by removing outliers and re-scaling of the original data or converting 

categorical data to a nominal variable). Sometimes this is as simple as transforming the 

data so that its values fall within an acceptable range. 

3.   Trying a variety of network types and sizes. Often the best network type and size for a 

problem is not known. The size of the network, for some network types, is related to the 

complexity of the problem, with more complex problems demanding larger networks for 

an appropriate solution. 

4.   Making sure that the network generalizes well. A successful network solution is one 

that generalizes well to the population. When trying different network types, it is useful 

to reserve a set of data to test the network to make sure that is has not learned the 

peculiarities of the training data at the expense of generalizing well(i.e., over-fitting). 

5.   Running the network on new data. Once an acceptable network solution is settled 

upon, the network can be saved. When new data are encountered, predictions can be 

made by opening the network and executing it on the new data. 
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2.14 Neural Network and Genetic Algorithm Modeling 
 

 

2.14.1 Genetic algorithm 
 

 

The genetic  algorithm  is a model of machine  learning  based on the mechanism of natural 

selection   and  natural   genetics   [24],   [25].  This  is  done   by  a  random   creation   of  a 

population  of  individuals, represented by  chromosomes. This  individuals are  evaluated 

and  undergo  a  process  of  evolution   which  start  with  a  natural  selection,   inspired  by 

Darwin's  theory  of evolution:  the  best  individuals of a population  are  selected.  Then  a 

biological  process  occurs:  some  recombinations, as crossover  and mutation,  are made  in 

order to create  a new generation  of individuals with the hope that this new one is better. 

The genetic algorithm  is stopped when a target value is reached. 

Genetic  algorithms   are  viewed  as  optimization  tools  and  allow  solving  problems   for 

which an extremum  solution is searched. 

 
 

2.14.2 Process 
 

 

We are looking for an input set (x1 ,x2 , . .. ,xj) which will give a desired output y. The genetic 

algorithms are based on biological theory and so, we can assimilate this set as a chromosome. 

Each input xi is the equivalent of a gene. In a first time, a population is randomly generated. This 

population contains 'rt chromosomes (x1 ,x2 ,. . ",xj). These inputs are entered in a model, 

created by a neural network, and we obtain the output y and the associated error for each 

chromosome.  The  chromosomes   are  then  ranked   according  to   their  fitness.   The  best 

chromosomes are selected and subjected to operations, as well in the biological system, as 

crossover or mutation. In this way, we obtain the second generation. This new sets of 

chromosomes   are   then   still   evaluated   and   undergo   selection,   crossover   and   mutation 

mechanisms, as previously. We obtain our third generation and this process takes place for many 

generations until the fitness value is reached (Fig. 2.26). 
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Figure 2.26 The process of the genetic algorithm  [Source Code: Appendix-B] 
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Operators 
 

 

Fitness functions. The evaluation of a chromosome has to take into account the result and the 

error of the committee of models given by the neural network. Each model i created by the 

neural  network  gives  a  result  y(i)  and  the associated  error(s).  The average prediction  of a 

committee of L models is: 

 

                                                                                                                                   (2.22) 

The standard deviation error(s) of p is as follows: 

 

                                                                                 (2.23) 

Where t is the desired output. The score of a chromosome could be s. however, in order to have a 

better score for the better chromosome, we invert the error and the fitness f is defined as follows: 

 

                                                                                                                                                (2.24) 
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Selection 
 

 

After being ranked according to their fitness, the chromosome undergo a process of selection. 

This mechanism allows the allocation of a  greater survival to better individual: this is the 

survival-of-the-fittest mechanism we impose on our solution. There is several ways to select the 

chromosome which will be recombined. In our genetic algorithm, the roulette wheel selection 

will be used. 

 

The principle of this method is that the better the chromosomes are, the more chances they have 

of being selected. Considering n chromosomes, each of them previously evaluated with a fitness 

value fi, we calculate the sum S of all the scores, as follows: 

 

                                                                                                                                       (2.25) 

The probability Pi  that  a chromosome I will be selected is given simply by the chromosome 

fitness value divided by the sum S, as follows: 
 

 

                                                                                                                                              (2.26) 
 

 
 
 
 

Thus, the best chromosomes, e.g. with better fitness values, will be selected more frequently. A 

simple example with 5 chromosome illustrate the roulette wheel selection principle in table I, 

where the fitness value fi and the corresponding probability Pi of being selected are calculated. 
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\Crossover 
 

 

The crossover is a process of taking genes from two parents, mixing them and producing an 

offspring. The simplest way is to choose randomly a crossover point. The child is produced by 

copying the first segment from the parent I and after the crossover point, the genes of the second 

parent are copied. 

 

However, there are many others and complex ways to do crossover. The best is to have a lot of 

crossover points so as to have better chance to take the best from the both parents. 

 

In our genetic algorithm, we decide to use the uniform-crossover, which use (n-I) crossover 

points for a chromosome containing n genes. For that a mask is created. Each bit of the mask is a 

random number between I or 2 and thus, determine from which parent each gene will be copied. 

(Figure 2.27) 

 

Table 2.3 The fitness value fi of each chromosome i and the corresponding probability Pi of 

selection 
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Figure 2.27  Principle of the Uniform crossover 
 

 
 
 
 
 
 
 

Mutation 
 

 

The  mutation  occurs  after  the  crossover  operation.  It  creates  variants  of  few  offsprings 

previously recombined and so introduce new genetic material. The probability of mutation must 

be low to stay in the neighborhood of the current solution. Otherwise, GA will not perform and 

better than a random search. In our study, we choose to mutate one offspring, selected randomly, 

in adding xi to one of its genes. The mutation is slight, between 0 to 0.201c so as to stay close to 

the current solution. 

 
 
 
 

Population size 
 

 

The population size is represent the number of chromosomes in a population. Of course, the 

more chromosomes there are, the more chances exist to have good solutions. However, the time 

for finding a solution has to be considered and if there are too many chromosomes, the genetic 

algorithm slows down. Sizes 20-30 are reported as best. Moreover, it has been shown that the 

best population size of chromosomes [26]. For these reasons, we choose a population size of 20 

in the present study. 


