Chapter 3

Modeling Work
3.1 Yield Strength Models

3.1.1 Introduction

The conventional method for developing a new weld metal with desired mechanical properties
involves the design of a series of weld metals, varying chemical compositions and welding pa-
diameters. These welds are then manufactured and tested. A choice is then made of a particular
combination of variables which best meets the requirements. Cost and time savings might be

achieved with the help of appropriate models which reduce the number of steps needed.

The physical models discussed in Chapter 2, based on strengthening mechanisms, are not
sufficiently sophisticated to enable a proper treatment of the problem. At the same time linear
regression methods are not capable of representing the real behavior which is far from linear
when all the factors are taken into account. On the other hand, the neural network methods
described in Chapter 2 is ideally suited to complex phenomena with many variables. In the
present work, neural networks are used to model the yield strength of weld metal as a function of

weld metal chemical composition, welding parameters and heat treatment conditions.

3.1.1.1 Experimental Data base

All of the data collected are from multi run weld deposits in which the joint is designed to
minimize dilution from the base metal, to enable specifically the measurement of all weld metal
properties. Furthermore, they all represent electric arc welds made using one of the following
processes: manual metal arc (MMAW), submerged arc welding (SAW) and tungsten inert gas
(TIG). The welding process itself was represented only by the level of heat input. This is because
a large number of published papers did not specify welding parameters in sufficient detail to
enable the creation of a dataset without missing values. Missing values cannot be tolerated in the

method used here. If the effect of a welding process is not properly represented by the heat input
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and chemical composition, then neglect of any important parameters will make the predictions
more ‘noisy'. As discussed below, the noise in the output was found to be acceptable; a greater
uncertainty arises from the lack of a uniform coverage of the input space. The data were
collected from a large number of sources [33] to [76].

The aim of the neural network analysis was to predict the yield strength as a function of a large
number of variables, including the chemical composition, the welding heat input and any heat
treatment. The yield strength database consists of 2121 separate experiments. Neural network
methods used in this work cannot cope with missing values of any of the variables.

3.1.1.2 Yield Strength Database

Table 3.1 shows the range, mean and standard deviation of each variable including the
output(yield strength). The purpose here is simply to list the variables and provide an
idea of the range covered. It is emphasized however, that unlike linear regression
analysis, the information in Table3.1 cannot be used to define the range of applicability
of the neural network model. This is because the inputs are in general expected to
interact. We shall see later that it is the Bayesian framework of our neural network
analysis which allows the calculation of error bars which define the range of useful
applicability of the trained network. A visual impression of the spread of data is shown
in Fig. 3.1. It can be concluded from Figure. 4.1(a to q) and Figure. 4.2(a to q) that the
effect of Carbon, Silicon, Manganese, Sulphur, Phosphorus, Nickel, Chromium,
Molybdenum, Vanadium, Copper, Titanium, Boron, Niobium, Heat input,
Interpass_temperature, Post- weld heat treatment temperature and Post-weld heat
treatment time on the Yield Strength of Ferritic Steel Welds have been systematically
studied by both the methods BNN and GRNN.[27]

It can be concluded from Figure. 4.3.1 to 4.3.18 that the effect in combination of any
two input variables (Independent variables) from Carbon, Silicon, Manganese, Sulphur,
Phosphorus, Nickel, Chromium, Molybdenum, Vanadium, Copper, Titanium, Boron,

Niobium, Heat_input, Interpass_temperature, Post- weld heat treatment temperature and
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Post-weld heat treatment time on the Yield Strength of Ferritic Steel Welds have been

systematically studied by GRNN method.

The prediction of the all Input variables for Targeted Yield Strength by Genetic
Algorithms are given in Table 3.4. These can be useful for design of the Ferritic Steel
Welds. Genetic Algorithms can be design the Ferritic Steel Welds by extrapolation

beyond the existing data.
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Table 3.1 The Input Variables for Yield Strength Model. “p.p.m .’

million by weight.

Variables Min Max | Average | StDev
Cwt% 0.01 | 0.22 | 0.0708 0.0216

Si wt% 0 1.63 | 0.3467 0.1262
Mn wt% 0.23 | 2.31 | 1.1959 0.4175

S wt% 0.001 | 0.14 | 0.0081 0.0051

P wt% 0.001 | 0.25 | 0.0108 0.0075
Ni wt% 0 10.66 | 0.5807 1.4971
Cr wt% 0 12.1 | 0.6243 1.5961
Mo wt% 0 2.4 0.2001 0.3591

V wt% 0 0.32 | 0.0191 0.0507
Cu wt% 0 2.18 | 0.0659 0.2062

Ti ppm 0 1000 | 78.6382 | 122.4481
B ppm 0 200 | 9.2504 27.9733
Nb ppm 0 1770 | 53.7704 | 145.3195
HI kJmm-1 | 0.55 | 7.9 1.3573 0.9931
IPTC 20 375 | 205.4668 | 42.7739
PWHTT C 20 780 | 328.1428 | 211.1714
PWHTt h 0 50 9.4335 6.5893
YS MPa 210 | 1026 | 535.7139 | 119.8611

corresponds to parts per
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Scatter Plots of Yield Strength Data — 2121
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Scatter Plots of Yield Strength Data- 2121
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Scatter Plots of Yield Strength Data- 2121
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Figure 3.1 Database distribution used for yield strength model. “p.p.m .’ corresponds to parts per
million by weight.

3.1.2 Neural Network Models for Yield Strength

3.1.2.1 Bayesian Neural Network Modeling and procedure

1 Data of yield strength were collected and plotted in the form of Scatter plots.

2. Data prepared according to the file format required to run in Neural Network Softwares.
(.csv format for Linux base software NeuroMat. And .sta format for Statistica Software)

3. Data were randomly divided into three parts (70% training dataset, 20% validation dataset
and 10 % testing dataset). (Training dataset: this data set is used to adjust the weights on the
neural network. Validation dataset: this data set is used to minimize overfitting. Testing dataset:
this data set is used only for testing the final solution in order to confirm the actual predictive
power of the network.)

4. Data of Ferritic Steel Weld Yield Strength 2121 run in NeuroMat Software, which were set in
its hyperparameter or Neural network architecture (Software converts the Raw Data into
Normalized condition, i.e. it can convert into a specified range like 0 to 1 etc.. for processing) in
Chapter 2.10

Neural network architecture for Bayesian Neural Network was set in NeuroMat Software :

Three layers : Input Layer(Input VVariables), Hidden Layer (Algorithms) and Output
Layer (Yield Strength)
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Algorithms : Bigback 5

5. The data of Ferritic Steel Weld Yield Strength 2121 run in NeuroMat Software with above
Neural network architecture for best Neural Network Committee model. The best committee
model was decided on the basis of smallest test error of the committee model.

6. For best committee model, the data of Ferritic Steel Weld Yield Strength 2121 run in
NeuroMat Software repeatedly hundred of times and finalise the best committee model with
smallest test error. (NeuroMat gives in single run set of 100 models which required time in
hours. Out of these 100 models, the models in the committee are selected on the basis of smallest
test error. The number of models in committee varies everytime with repeatedly running the data
in NeuroMat. Thus the selection of committee model with a smallest test error is time
consuming.)

Some more than hundred yield strength neural network models were trained on a training
dataset which consisted of a random selection of 70%of the data 1485 from the yield
strength dataset. And 20% of the data 424 from vyield strength data set was usedfor cross
validation.The remaining 212 data formed the test dataset which was used to see how the
model generalizes on unseen data. Each model contained the 17 inputs listed in Table 1 but
with different numbers of hidden units or the random seeds used to initiate the values of
the weights. Fig. 3.2 shows the results. As expected, the perceived level of noise (oy) in
the normalised yield strength decreases as the number of hidden units increases, Fig. 3.2a.
This is not the case for the test error, which goes through a minimum at five hidden
units, Fig. 3.2b, and for the log predictive error which reaches a maximum at seventeen

hidden units, Fig. 3.2c.

The error bars presented throughout this work represent a combination of the perceived level of
noise oy in the output and the fitting uncertainty estimated from the Bayesian framework. It is
evident that there are a few outliers in the plot of the predicted versus measured yield strength for
the test dataset, Fig. 3.2f. Each of these outliers has been investigated and found to represent
unique data which are not represented in the training dataset, Fig. 3.2e.

It is possible that a committee of models can make a more reliable prediction than an individual
model (Chapter 2). The best models are ranked using the values of the log predictive errors Fig.
3.2c. Committees are then formed by combining the predictions of the best L models, where L -
1, 2, .. .; the size of the committee is therefore given by the value of L. A plot of the test error of
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the committee versus its size gives a minimum which defines the optimum size of the committee,
as shown in Fig. 3.2d. The test error associated with the best single model is clearly greater than
that of any of the committees Fig. 3.2d. The committee with seven models was found to have an
optimum membership with the smallest test error. The committee was therefore retrained on the

entire data set without changing the complexity of any of its member models.
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Fig. 3.3indicates the significance ow of each of the input variables, as perceived by first seven
neural network models in the committee. The ow value represents the extent to which a
particular input explains the variation in the output, rather like a particular correlation coefficient
in linear regression analysis. The post-weld heat treatment time on the whole explains a large
proportion of variation in the yield strength Figure. 3.3. All variables considered are found to

have a significant effect on the output indicating a good choice of inputs.

77



3.1.3 Comparison of Neural network models and procedure (MLP, RBF, and
GRNN)

1 Data of yield strength were collected and plotted in the form of Scatter plots.
2. Data prepared according to the file format required to run in Neural Network Softwares.
(.csv format for Linux base software NeuroMat. And .sta format for Statistica Software)

3. Data were randomly divided into three parts (70% training dataset, 20% validation dataset
and 10 % testing dataset). (Training dataset: this data set is used to adjust the weights on the
neural network. Validation dataset: this data set is used to minimize overfitting. Testing dataset:
this data set is used only for testing the final solution in order to confirm the actual predictive
power of the network.)

4. Data of Ferritic Steel Weld Yield Strength 2121 run in Statistica Software, which were set in
its hyperparameter or Neural network architecture (Software converts the Raw Data into
Normalized condition, i.e. it can convert into a specified range like 0 to 1 etc.. for processing) in
Chapter 2.11

Neural network architecture was set in Statistica software for MLP, RBF and GRNN :
MLP 17:17-10-1:1  Algorithms : BP100,CG20,CG18b

RBF 17:17-530-1:1 Algorithms : SS,KN,PI

GRNN 17:17-1061-2-1:1 Algorithms : SS

BP Back propagation, CG Conjugate gradient descent, SS (sub) sample, KN K-nearest neighbor
(deviation assignment), Pl Pseudo-invert (linear least squares), b Best network (the network with
lowest selection error in the run was restored)

A neural network’s architecture is of form 1:N-N-N:O, where | is the number of input
variable, O the number of output variables, N the number of units in each layer.
5. The data of Ferritic Steel Weld Yield Strength 2121 run in Statistica Software with above

Neural network architecture for best Neural Network model in all three MLP, RBF and GRNN.

6. For best model, the data of Ferritic Steel Weld Yield Strength 2121 run in Statistica Software
repeatedly hundred of times and finalise the best Neural Network model with smallest training
error in all three MLP, RBF and GRNN.

7. The neural network model with the smallest training error was the GRNN model.
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Table 3.2 shows the comparison of selected Neural Network models on the basis of their
Training Errors. The GRNN models have lowest Training Errors for Yield Strength of Feritic
Steel Welds. The GRNN models are selected for modeling from three basic neural network
methods (MLP, RBF, and GRNN). Statistica 7.1 software is used for MLP,RBF and GRNN.

Table 3.2 Comparison of Neural network models {MLP, RBF, GRNN}

Yield Strength Models

MLP Train Error | Test Error | Training/Members Remarks

MLP 17:17-10-1:1 0.062442 | 0.078690 | BP100,CG20,CG18b | 1 Hidden layer
(Model:No.05)

MLP 17:17-13-6-1:1 0.058963 | 0.067180 | BP100,CG20,CG59b | 2 Hidden layers
(Model:No.25)

MLP 17:17-6-8-13-1:1 0.058458 | 0.065638 | BP100,CG396hb 3 Hidden layers
(Model:No.14)

MLP 17:17-14-9-1:1 0.036248 0.063303 | BP100,CG458b 2 Hidden layers
(Model:No.07)

MLP 17:17-9-14-1:1 0.047847 | 0.058474 | BP100,CG492b 2 Hidden layers
(Model:No.10)

MLP 17:17-6-7-1:1 0.054954 | 0.065891 | BP100,CG353hb 2 Hidden layers

(Model:No.18)

Yield Strength Models
RBF Train Error | Test Error | Training/Members Remarks

RBF 17:17-530-1:1 0.001791 0.002782 | SS,KN,PI 1 H layer
(Model:No.10)

Yield Strength Models
GRNN Train Error | Test Error | Training/Members Remarks

GRNN 17:17-1061-2-1:1 | 0.000668 0.004186 | SS 2 H layer
(Model:No.21)

Note: See Appendix C for Profile String of Statistical Neural Network Software

3.1.4 Best GRNN Model for the Yield Srength

The normal behaviour of the Predicted Yield Strength and Observed Yield Strength are observed
in the Figure. 3.4 for Training data, Validation data and Testing data. Training of the model is
excellent by GRNN method.
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The best model of GRNN has training error 0.000668, validation error (selection error)
0.004426, and testing error 0.004186. This model is used for getting the results in form of
various response graphs to understand the trend between the input variables and output variable
(Yield Strength).(Figure 4.2)

Table 3.3 Comparison of Significance of Best Trained Models of Yield Strength

Input Variables Significance Significance
GRNN Model BNN Model
Carbon(wt%) 7 15
Silicon(wt%) 11 9
Manganese(wt%) 3 17
Sulphur(wt%) 17 11
Phosphorus(wt%) 16 10
Nickel(wt%) 1 4
Chromium(wt%) 6 6
Molybdenum(wt%) 4 2
Vanadium(wt%) 5 12
Copper(wt%) 13 14
Titanium(ppm) 14 13
Boron(ppm) 15 16
Niobium(ppm) 10 7
Heat_input(kJ.mm-1) 12 5
Interpass_temperature(C) 8 8
Postweld_heat_treatment_temperature(C) | 2 3
Post-weld_heat_treatment_time(h) 9 1

Table 3.3 shows the comparison of Significance of the GRNN and BNN models. Number 1
indicates highest value of significance and Number 17 lowest value of significance. Most of the
Input Variables are closer in significance for both the models. All input variables considered are

found to have a significant effect on the output indicating a good choice of inputs.
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3.1.5 Neural Network and Genetic Algorithms Modelling for Yield Strength
of Ferritic Steel Welds

3.1.5.1 Genetic Algorithms parameters and procedure

A genetic algorithm has been developed in language C considering the following
parameters:

Number of populations = 3

Number of generations = 3000

Population size =20 chromosomes

When a new generation is created, the following steps are followed: after ranking the
20 chromosomes according to their scores, the first chromosome is copied without change.
The chromosomes 2 to 19 are recombined with each others. One gene of one of these
chromosomes is mutated between +0.2%. The chromosome 20, with the worst score, is
killed and a new random chromosome is generated and incorporated in the new population.

This program can calculate the best set ( X1 ,X2, ... ,x j) of input parameters for a desired
output y, which is in this study, the yield strength of ferritic steel welds, for which a
Bayesian neural network model was developed[32].
The steps for Genetic Algorithms Modelling:

e First, all the files related to the neural network created for the yield strength were put in the
folder "gacode™ to optimise. These files were the following:

generate44.exe
norm_test.in
_w*f

*.lu

specl.tl
outran.x
MINMAX

e Then, the labels of the inputs variables of the neural network were written in the "labels.tct"
file

¢ Then the all inputs variables were define in the "values” file to vary.

e Then, the desired target value of yield strength was normalised and entered it in the "nninput”
file, as well as the wanted accuracy.

e Finally, the C program "ga_code™ was compiled and executed.
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After execution of the Genetic Algorithms program, the output was the values of 17 input
variables for given target value of the yield strebgth of Ferritic Steel Weld. The calculation time
was in hours.

Three different target values of Ferritic Steel Weld’s yield strengths were taken and Genetic
Algorithms programs were run. The outputs were given in result and discussion Chapter 4.
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3.2 Ultimate Tensile Strength Models

3.2.1 Experimental Data base

All of the data collected are from multi run weld deposits in which the joint is designed to
minimize dilution from the base metal, to enable specifically the measurement of all weld metal
properties. Furthermore, they all represent electric arc welds made using one of the following
processes: manual metal arc (MMAW), submerged arc welding (SAW) and tungsten inert gas
(TIG). The welding process itself was represented only by the level of heat input. This is because
a large number of published papers did not specify welding parameters in sufficient detail to
enable the creation of a dataset without missing values. Missing values cannot be tolerated in the
method used here. If the effect of a welding process is not properly represented by the heat input
and chemical composition, then neglect of any important parameters will make the predictions
more ‘noisy'. As discussed below, the noise in the output was found to be acceptable; a greater
uncertainty arises from the lack of a uniform coverage of the input space. The data were
collected from a large number of sources [33] to [76]. The aim of the neural network analysis
was to predict the ultimate tensile strength as a function of a large number of variables, including
the chemical composition, the welding heat input and any heat treatment. The ultimate tensile
strength database consists of 2091 separate experiments. Neural network methods used in this

work cannot cope with missing values of any of the variables.

3.2.1.1 Ultimate Tensile Strength Database

Table 3.4 shows the range, mean and standard deviation of each variable including the output
(ultimate tensile strength). The purpose here is simply to list the variables and provide an idea of
the range covered. It is emphasized however, that unlike linear regression analysis, the
information in Table 3.4 cannot be used to define the range of applicability of the neural network
model. This is because the inputs are in general expected to interact. We shall see later that it is

the Bayesian framework of our neural network analysis which allows the calculation of error
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bars which define the range of useful applicability of the trained network. A visual impression of
the spread of data is shown in Fig. 3.5. It can be concluded from Figure. 4.4(a to r) and Figure.
45(a to r) that the effect of Carbon, Silicon, Manganese, Sulphur, Phosphorus, Nickel,
Chromium, Molybdenum, Vanadium, Copper, Oxygen, Titanium, Boron, Niobium, Heat input,
Interpass_temperature, Post- weld heat treatment temperature and Post-weld heat treatment time
on the Ultimate Tensile Strength of Ferritic Steel Welds have been systematically studied by
BNN and GRNN.[27]

It can be concluded from Figure. 4.6.1 to 4.6.19 that the effect in combination of any two input
variables (Independent variables) from Carbon, Silicon, Manganese, Sulphur, Phosphorus,
Nickel, Chromium, Molybdenum, Vanadium, Copper, Oxygen, Titanium, Boron, Niobium,
Heat_input, Interpass_temperature, Post- weld heat treatment temperature and Post-weld heat
treatment time on the Ultimate Tensile Strength of Ferritic Steel Welds have been systematically
studied by GRNN.

The prediction of the all Input variables for Targeted Ultimate Tensile Strength by Genetic
Algorithms are given in Table 4.4 . These can be useful for the design of the Ferritic Steel
Welds. Genetic Algorithms can design the Ferritic Steel Welds by extrapolation beyond the

existing data.
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Table 3.4: The Input Variables for Ultimate Tensile Strength Model.

Variables Min Max | Average | StDev

Cwt% 0.01 | 0.22 | 0.0705 0.021

Si wt% 0.01 |1.63 |0.3477 0.1283

Mn wt% 0.23 | 231 | 1.1955 0.4156

S wt% 0.001 | 0.14 | 0.008 0.0051

P wt% 0.001 | 0.25 | 0.0107 0.0073
Ni wt% 0 10.66 | 0.581 1.5071
Cr wt% 0 12.1 | 0.5869 1.4827
Mo wt% 0 2.4 0.1988 0.3606

V wt% 0 0.32 | 0.0187 0.0506
Cu wt% 0 2.18 | 0.0597 0.1953

O ppm 0 1650 | 377.6982 | 166.9297
Ti ppm 0 1000 | 80.0548 | 124.85

B ppm 0 200 9.3161 28.1533
Nb ppm 0 1770 | 51.1751 | 141.6126

HI kJmm-1 | 0.55 | 7.9 1.3392 0.9366

IPTC 20 375 206.4539 | 41.9047

PWHTT C 20 770 333.6054 | 206.2762

PWHTt h 0 50 9.7532 6.5109

UTS MPa 273 1184 | 621.2198 | 123.4969

(“p.p.m .” corresponds to parts per million by weight.)



Scatter Plots of Ultimate Tensile Strength-Data-2091
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Figure 3.5 : Database distribution used for Ultimate Tensile Strength model. “p.p.m .’
corresponds to parts per million by weight.

3.2.2 Neural Network Models for Ultimate Tensile Strength

3.2.2.1 Bayesian Neural Network Model and procedure

1 Data of ultimate tensile strength were collected and plotted in the form of Scatter plots.

2. Data prepared according to the file format required to run in Neural Network Softwares.
(.csv format for Linux base software NeuroMat. And .sta format for Statistica Software)

3. Data were randomly divided into three parts (70% training dataset, 20% validation dataset
and 10 % testing dataset). (Training dataset: this data set is used to adjust the weights on the
neural network. Validation dataset: this data set is used to minimize overfitting. Testing dataset:
this data set is used only for testing the final solution in order to confirm the actual predictive
power of the network.)

4. Data of Ferritic Steel Weld’s Ultimate Tensile Strength 2091 run in NeuroMat Software,
which were set in its hyperparameter or Neural network architecture (Software converts the Raw
Data into Normalized condition, i.e. it can convert into a specified range like 0 to 1 etc.. for
processing) in Chapter 2.10

Neural network architecture for Bayesian Neural Network was set in NeuroMat Software :
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Three layers : Input Layer(Input Variables), Hidden Layer (Algorithms) and Output
Layer (Yield Strength)

Algorithms : Bigback 5

5. The data of Ferritic Steel Weld’s Ultimate Tensile Strength 2091 run in NeuroMat Software
with above Neural network architecture for best Neural Network Committee model. The best
committee model was decided on the basis of smallest test error of the committee model.

6. For best committee model, the data of Ferritic Steel Weld’s Ultimate Tensile Strength 2091
run in NeuroMat Software repeatedly hundred of times and finalise the best committee model
with smallest test error. (NeuroMat gives in single run set of 200 models which required time in
hours. Out of these 100 models, the models in the committee are selected on the basis of smallest
test error. The number of models in committee varies everytime with repeatedly running the data
in NeuroMat. Thus the selection of committee model with a smallest test error is time
consuming.)

Some more than hundred ultimate tensile strength neural network models were trained on a
training dataset which consisted of a random selection of 70%of the data 1464 from the ultimate
tensile strength dataset. And 20% of the data 418 from ultimate tensile strength data set was used
for cross validation. The remaining 209 data formed the test dataset which was used to see how
the model generalizes on unseen data. Each model contained the 18 inputs listed in Table 1 but
with different numbers of hidden units or the random seeds used to initiate the values of the
weights. Fig. 3.6 shows the results. As expected, the perceived level of noise (oy) in the
normalised ultimate tensile strength decreases as the number of hidden units increases, Fig.
3.6a.This is not the case for the test error, which goes through a minimum at sixteen hidden
units, Fig. 3.6b, and for the log predictive error which reaches a maximum at seventeen hidden

units, Fig. 3.6c.

The error bars presented throughout this work represent a combination of the perceived level of
noise ay in the output and the fitting uncertainty estimated from the Bayesian framework. It is
evident that there are a few outliers in the plot of the predicted versus measured ultimate tensile
strength for the test dataset, Fig. 3.6f. Each of these outliers has been investigated and found to
represent unique data which are not represented in the training dataset, Fig. 3.6e. It is possible
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that a committee of models can make a more reliable prediction than an individual model
(Chapter 2).

The best models are ranked using the values of the log predictive errors Fig. 3.6c. Committees
are then formed by combining the predictions of the best L models, where L - 1, 2, . . .; the size
of the committee is therefore given by the value of L. A plot of the test error of the committee
versus its size gives a minimum which defines the optimum size of the committee, as shown in
Fig. 3.6d. The test error associated with the best single model is clearly greater than that of any
of the committees Fig. 3.6d. The committee with eight models was found to have an optimum
membership with the smallest test error. The committee was therefore retrained on the entire data

set without changing the complexity of any of its member models.
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Figure 3.7 The perceived significance 0w value of best eight Ultimate Tensile Strength models
for each of the inputs.

Fig. 3.7 indicates the significance ow of each of the input variables, as perceived by first eight
neural network models in the committee. The ow value represents the extent to which a
particular input explains the variation in the output, rather like a particular correlation coefficient
in linear regression analysis. The post-weld heat treatment temperature on the whole explains a
large proportion of variation in the ultimate tensile strength Figure. 3.7. All variables considered

are found to have a significant effect on the output indicating a good selection of inputs.
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3.2.3 Comparision of Neural network models and procedure (MLP, RBF,
GRNN)

1 Data of ultimate tensile strength were collected and plotted in the form of Scatter plots.
2. Data prepared according to the file format required to run in Neural Network Softwares.
(.csv format for Linux base software NeuroMat. And .sta format for Statistica Software)

3. Data were randomly divided into three parts (70% training dataset, 20% validation dataset
and 10 % testing dataset). (Training dataset: this data set is used to adjust the weights on the
neural network. Validation dataset: this data set is used to minimize overfitting. Testing dataset:
this data set is used only for testing the final solution in order to confirm the actual predictive
power of the network.)

4. Data of Ferritic Steel Weld’s Ultimate Tensile Strength 2091 run in Statistica Software, which
were set in its hyperparameter or Neural network architecture (Software converts the Raw Data
into Normalized condition, i.e. it can convert into a specified range like 0 to 1 etc.. for
processing) in Chapter 2.11

Neural network architecture was set in Statistica software for MLP, RBF and GRNN :
MLP 17:17-10-1:1  Algorithms : BP100,CG20,CG18b

RBF 17:17-530-1:1 Algorithms : SS,KN,PI

GRNN 17:17-1061-2-1:1 Algorithms : SS

BP Back propagation, CG Conjugate gradient descent, SS (sub) sample, KN K-nearest neighbor
(deviation assignment), Pl Pseudo-invert (linear least squares), b Best network (the network with
lowest selection error in the run was restored)

A neural network’s architecture is of form I:N-N-N:O, where | is the number of input
variable, O the number of output variables, N the number of units in each layer.
5. The data of Ferritic Steel Weld’s Ultimate Tensile Strength 2091 run in Statistica Software

with above Neural network architecture for best Neural Network model in all three MLP, RBF
and GRNN.

6. For best model, the data of Ferritic Steel Weld’s Ultimate Tensile Strength 2091 run in
Statistica Software repeatedly hundred of times and finalise the best Neural Network model with
smallest training error in all three MLP, RBF and GRNN.

7. The neural network model with the smallest training error was the GRNN model.
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Table 3.5 shows the comparision of selected Neural Network models on the basis of their
Training Errors. The GRNN models have lowest Training Errors for Ultimate Tensile Strength of
Feritic Steel Welds. The GRNN models are selected for modeling from three basic neural
network methods (MLP, RBF, GRNN). Statistica 7.1 software is used for MLP,RBF and GRNN.

Table 3.5 Comparision of Neural network models (MLP, RBF, GRNN)

Ultimate Tensile Strength Models

MLP Train Error | Test Error | Training/Members | Remarks
MLP 18:18-12-1:1 0.035736 | 0.044758 | BP100,CG481b 1H layer
(Model:No.3)

MLP 18:18-13-7-1:1 0.039741 | 0.060027 | BP100,CG454b 2 H layer
(Model:No.8)

MLP 18:18-13-8-10-1:1 | 0.039139 | 0.046157 | BP100,CG478b 3 H layer
(Model:No.6)

Ultimate Tensile Strength Models

RBF Train Error | Test Error | Training/Members | Remarks
RBF 18:18-81-1:1 0.002626 | 0.003150 | SS,EX,PI 1H layer
(Model:N0.18)

Ultimate Tensile Strength Models

GRNN Train Error | Test Error | Training/Members | Remarks
GRNN 18:18-1047-2-1:1 | 0.000290 | 0.003402 | SS 2 H layer
(Model:No.1)

Note: See Appendix C for Profile String of Statistica Neural Network Software

3.2.4 Best GRNN Model for Ultimate Tensile Strength

The normal behaviour of the Predicted Ultimate Tensile and Observed Ultimate Tensile Strength
are observed in the Figure. 3.8 for Training data, Validation data and Testing data. Training of
the model is excellent by GRNN method.
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Figure 3.8 Training data, validation data and test data of the Best GRNN model for Ultimate
tensile Strength.

The best model of GRNN has training error 0.000290, validation error (selection error)
0.003058, and testing error 0.003402. This model is used for getting the results in form of
various response graphs to understand the trend between the input variables and output variable
(Ultimate Tensile Strength).(Figure 4.5)
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Table 3.6 Comparison of Significance of Best Trained Models of Ultimate Tensile Strength

Input Variables Significance Significance

GRNN Model BNN Model
Carbon(wt%) 9 13
Silicon(wt%) 11 11
Manganese(wt%) 3 17
Sulphur(wt%) 16 10
Phosphorus(wt%) 17 8
Nickel(wt%) 1 4
Chromium(wt%) 6 5
Molybdenum(wt%) 4 2
Vanadium(wt%) 5 7
Copper(wt%) 14 14
Oxygen(ppm) 18 15
Titanium(ppm) 13 12
Boron(ppm) 15 18
Niobium(ppm) 8 9
Heat_input(kJ.mm-1) 12 16
Interpass_temperature(C) 7 6
Postweld_heat_treatment_temperature(C) 2 1
Post-weld_heat_treatment_time(h) 10 3

Table 3.6. shows the comparison of Significance of the GRNN and BNN models. Number 1
indicates highest value of significance and Number 18 lowest value of significance. Most of the
Input Variables are closer in significance for both the models. All input variables considered
are found to have a significant effect on the output indicating a good selection of

inputs.
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3.2.5 Neural Network and Genetic Algorithms Modeling for Ultimate Tensile
Strength of Ferritic Steel Welds

3.2.5.1 Genetic Algorithms parameters and procedure

A genetic algorithm has been developed in language C considering the following
parameters:

Number of populations = 3

Number of generations = 3000

Population size =20 chromosomes
When a new generation is created, the following steps are followed: after ranking the 20
chromosomes according to their scores, the first chromosome is copied without change.
The chromosomes 2 to 19 are recombined with each others. One gene of one of these
chromosomes is mutated between +0.2%. The chromosome 20, with the worst score, is
killed and a new random chromosome is generated and incorporated in the new population.

This program can calculate the best set ( X1 ,X2, ... ,x j) of input parameters for a desired
output y, which is in this study, the Ultimate Tensile Strength of ferritic steel welds, for
which a Bayesian neural network model was developed[32].
The steps for Genetic Algorithms Modelling:

e First, all the files related to the neural network created for the ultimate tensile strength were put
in the folder "gacode" to optimise. These files were the following:

generate44.exe
norm_test.in
_w*f

*.lu

specl.tl
outran.x
MINMAX

e Then, the labels of the inputs variables of the neural network were written in the "labels.tct"
file

¢ Then the all inputs variables were define in the "values" file to vary.

e Then, the desired target value of ultimate tensile strength was normalised and entered it in the
"nninput” file, as well as the wanted accuracy.

e Finally, the C program "ga_code™ was compiled and executed.
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After execution of the Genetic Algorithms program, the output was the values of 18 input
variables for given target value of the ultimate tensile strength of Ferritic Steel Weld. The
calculation time was in hours.

Three different target values of Ferritic Steel Weld’s ultimate tensile strength were taken and

Genetic Algorithms programs were run. The outputs were given in result and discussion
Chapter 4.

101



3.3 Elongation Models

3.3.1 Experimental Data base

All of the data collected are from multi runweld deposits in which the joint is designed to
minimize dilution from the base metal, to enable specifically the measurement of all 'weld metal
properties. Furthermore, they all represent electric arc welds made using one of the following
processes: manual metal arc (MMAW), submerged arc welding (SAW) and tungsten inert gas
(TIG). The welding process itself was represented only by the level of heat input. This is because
a large number of published papers did not specify welding parameters in sufficient detail to
enable the creation of a dataset without missing values. Missing values cannot be tolerated in the
method used here. If the effect of a welding process is not properly represented by the heat input
and chemical composition, then neglect of any important parameters will make the predictions
more ‘noisy'. As discussed below, the noise in the output was found to be acceptable; a greater
uncertainty arises from the lack of a uniform coverage of the input space. The data were
collected from a large number of sources [33] to [76].

The aim of the neural network analysis was to predict the Elongationas a function of a large
number of variables, including the chemical composition, the welding heat input and any heat
treatment. The Elongation database consists of 1827 separate experiments. Neural network

methods used in this work cannot cope with missing values of any of the variables.

3.3.1.1 Elongation Database

Table 3.7 shows the range, mean and standard deviation of each variable including the output
(elongation). The purpose here is simply to list the variables and provide an idea of the range
covered. It is emphasized however, that unlike linear regression analysis, the information in
Table 3.7 cannot be used to define the range of applicability of the neural network model. This is
because the inputs are in general expected to interact. We shall see later that it is the Bayesian
framework of our neural network analysis which allows the calculation of error bars which

define the range of useful applicability of the trained network. A visual impression of the spread
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of data is shown in Fig. 3.9. It can be concluded from from Figure. 4.7(a to r) and Figure. 4.8(a
to r) that the effect of Carbon, Silicon, Manganese, Sulphur, Phosphorus, Nickel, Chromium,
Molybdenum, Vanadium, Copper, Oxygen, Titanium, Boron, Niobium, Heat input,
Interpass_temperature, Post- weld heat treatment temperature and Post-weld heat treatment time
on the Elongation of Ferritic Steel Welds have been systematically studied by BNN and
GRNN.[28]

It can be concluded from Figure. 4.9.1 to 4.9.13 that the effect in combination of any two input
variables (Independent variables) from Carbon, Silicon, Manganese, Sulphur, Phosphorus,
Nickel, Chromium, Molybdenum, Vanadium, Copper, Oxygen, Titanium, Boron, Niobium, Heat
input, Interpass temperature, Post- weld heat treatment temperature and Post-weld heat
treatment time on the Elongation of Ferritic Steel Welds have been systematically studied by
GRNN.

The prediction of the all Input variables for Targeted Elongation by Genetic Algorithms is given
in Table 4.8. These can be useful for the design of the Ferritic Steel Welds. Genetic Algorithms

can design the Ferritic Steel Welds by extrapolation beyond the existing data.

Table 3.7 shows the range, mean and standard deviation of each variable including the output
(Elongation).
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Table 3.7 The Input Variables for Elongation Model. “p.p.m .’ corresponds to parts per million by

weight.
Variables Min | Max | Average | StDev
Cwt% 0.01 |0.16 |0.0688 0.0189
Si wt% 0.01 |1.14 |0.352 0.1229
Mn wt% 0.24 | 231 |1.2102 0.3986
S wt% 0.002 | 0.14 | 0.0078 0.0049
P wt% 0.001 | 0.25 |0.0101 0.0071
Ni wt% 0 10.66 | 0.5374 1.5246
Cr wt% 0 9.35 | 0.4452 1.1844
Mo wt% 0 24 0.1798 0.3569
V wt% 0 0.32 | 0.0151 0.0437
Cu wt% 0 2.04 |0.0628 0.202
O ppm 63 1650 | 411.2567 | 117.9406
Ti ppm 0 1000 | 84.9978 | 126.1291
B ppm 0 200 | 10.306 29.8403
Nb ppm 0 1770 | 47.0246 | 139.0368
HI k) mm-1 0.55 | 4.8 1.2294 0.7057
IPT C 20 350 | 203.8697 | 35.2603
PWHTT C 20 750 | 319.5599 | 188.6206
PWHTT h 0 32 10.3452 | 6.1765
Elongation% | 7.4 41.1 | 25.6466 | 4.6985
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Scatter Plots of Elongation- Data-1827
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3.3.2 Neural Network Models for Elongation

3.3.2.1 Bayesian Neural Network Model and procedure

1 Data of elongation were collected and plotted in the form of Scatter plots.

2. Data prepared according to the file format required to run in Neural Network Softwares.
(.csv format for Linux base software NeuroMat. And .sta format for Statistica Software)

3. Data were randomly divided into three parts (70% training dataset, 20% validation dataset
and 10 % testing dataset). (Training dataset: this data set is used to adjust the weights on the
neural network. Validation dataset: this data set is used to minimize overfitting. Testing dataset:
this data set is used only for testing the final solution in order to confirm the actual predictive
power of the network.)

4. Data of Ferritic Steel Weld’s Elongation 1827 run in NeuroMat Software, which were set in
its hyperparameter or Neural network architecture (Software converts the Raw Data into
Normalized condition, i.e. it can convert into a specified range like 0 to 1 etc.. for processing) in
Chapter 2.10

Neural network architecture for Bayesian Neural Network was set in NeuroMat Software :

Three layers : Input Layer(Input Variables), Hidden Layer (Algorithms) and Output
Layer (Yield Strength)

Algorithms : Bigback 5

5. The data of Ferritic Steel Weld’s Elongation 1827 run in NeuroMat Software with above
Neural network architecture for best Neural Network Committee model. The best committee
model was decided on the basis of smallest test error of the committee model.

6. For best committee model, the data of Ferritic Steel Weld’s Elongation 1827 run in NeuroMat
Software repeatedly hundred of times and finalise the best committee model with smallest test
error. (NeuroMat gives in single run set of 100 models which required time in hours. Out of
these 100 models, the models in the committee are selected on the basis of smallest test error.
The number of models in committee varies everytime with repeatedly running the data in
NeuroMat. Thus the selection of committee model with a smallest test error is time consuming.)

Some more than hundred elongation neural network models were trained on a training dataset

which consisted of a random selection of 70%of the data 1279 from the ultimate tensile strength
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dataset. And 20% of the data 365 from ultimate tensile strength data set was used for cross
validation.The remaining 183 data formed the test dataset which was used to see how the model
generalizes on unseen data. Each model contained the 18 inputs listed in Table 3.7 but with
different numbers of hidden units or the random seeds used to initiate the values of the weights.
Fig. 3.10 shows the results. As expected, the perceived level of noise (oy) in the normalised
ultimate tensile strength decreases as the number of hidden units increases, Fig. 3.10a. This is not
the case for the test error, which goes through a minimum at six hidden units, Fig. 3.10b, and for

the log predictive error which reaches a maximum at twelve hidden units, Fig. 3.10c.

The error bars presented throughout this work represent a combination of the perceived level of
noise ay in the output and the fitting uncertainty estimated from the Bayesian framework. It is
evident that there are a few outliers in the plot of the predicted versus measured Elongation for
the test dataset, Fig. 3.10f. Each of these outliers has been investigated and found to represent

unique data which are not represented in the training dataset, Fig. 3.10e.

It is possible that a committee of models can make a more reliable prediction than an individual
model (Chapter 2). The best models are ranked using the values of the log predictive errors Fig.
3.10c. Committees are then formed by combining the predictions of the best L models, where L -
1, 2, .. .; the size of the committee is therefore given by the value of L. A plot of the test error of
the committee versus its size gives a minimum which defines the optimum size of the committee,

as shown in Fig. 3.10d.

The test error associated with the best single model is clearly greater than that of any of the
committees Fig. 3.10d. The committee with two models was found to have an optimum
membership with the smallest test error. The committee was therefore retrained on the entire data
set without changing the complexity of any of its member models.
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Figure 3.11 The perceived significance ow value of best two Elongation models for each of the
inputs.

Fig. 3.11 indicates the significance ow of each of the input variables, as perceived by first Two
neural network models in the committee. The ow value represents the extent to which a
particular input explains the variation in the output, rather like a particular correlation coefficient
in linear regression analysis. The Vanadium on the whole explains a large proportion of variation
in the Elongation Figure. 3.11. All variables considered are found to have a significant effect on

the output indicating a good choice of inputs.
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3.3.3 Comparision of Neural network models and procedure (MLP, RBF,
GRNN)

1 Data of elongation were collected and plotted in the form of Scatter plots.
2. Data prepared according to the file format required to run in Neural Network Softwares.
(.csv format for Linux base software NeuroMat. And .sta format for Statistica Software)

3. Data were randomly divided into three parts (70% training dataset, 20% validation dataset
and 10 % testing dataset). (Training dataset: this data set is used to adjust the weights on the
neural network. Validation dataset: this data set is used to minimize overfitting. Testing dataset:
this data set is used only for testing the final solution in order to confirm the actual predictive
power of the network.)

4. Data of Ferritic Steel Weld’s Elongation 1827 run in Statistica Software, which were set in its
hyperparameter or Neural network architecture (Software converts the Raw Data into
Normalized condition, i.e. it can convert into a specified range like 0 to 1 etc.. for processing) in
Chapter 2.11

Neural network architecture was set in Statistica software for MLP, RBF and GRNN :
MLP 17:17-10-1:1  Algorithms : BP100,CG20,CG18b

RBF 17:17-530-1:1 Algorithms : SS,KN,PI

GRNN 17:17-1061-2-1:1 Algorithms : SS

BP Back propagation, CG Conjugate gradient descent, SS (sub) sample, KN K-nearest neighbor
(deviation assignment), Pl Pseudo-invert (linear least squares), b Best network (the network with
lowest selection error in the run was restored)

A neural network’s architecture is of form I:N-N-N:O, where | is the number of input
variable, O the number of output variables, N the number of units in each layer.

5. The data of Ferritic Steel Weld’s Elongation 1827 run in Statistica Software with above
Neural network architecture for best Neural Network model in all three MLP, RBF and GRNN.

6. For best model, the data of Ferritic Steel Weld’s Elongation 1827 run in Statistica Software
repeatedly hundred of times and finalise the best Neural Network model with smallest training
error in all three MLP, RBF and GRNN.

7. The neural network model with the smallest training error was the GRNN model.
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Table 3.8 shows the comparision of selected Neural Network models on the basis of their
Training Errors. The GRNN models have lowest Training Errors for Elongation of Feritic Steel
Welds. The GRNN models are selected for modeling from three basic neural network methods
(MLP, RBF, GRNN). ). Statistica 7.1 software is used for MLP, RBF and GRNN.

Table 3.8 Comparision of Neural network models (MLP, RBF, GRNN)

Elongation Models

MLP Train Error | Test Error | Training/Members | Remarks
MLP 18:18-15-10-5-1:1 | 0.056027 | 0.071757 | BP100,CG462b 3 H layers
(Model:No.11)

MLP 18:18-29-1:1 0.05845 0.076457 | BP100,CG498b 1H layer
(Model:No.11)

MLP 18:18-8-1:1 0.056123 | 0.191787 | DD100,LM187b 1 H layer
(Model:No.43)

MLP 18:18-11-7-1:1 0.061902 | 0.077359 | BP100,CG475b 2 H layer
(Model:No.15)

Elongation Models

RBF Train Error | Test Error | Training/Members | Remarks
RBF 18:18-193-1:1 0.0787 0.1125 SS,EX,PI 1H layer
(Model:No.46)

Elongation Models

GRNN Train Error | Test Error | Training/Members | Remarks
GRNN 18:18-915-2-1:1 | 0.010208 SS 2 H layer
(Model:No.01) 0.123726

Note: See Appendix C for Profile String of Statistica Neural Network Software

3.3.4 Best GRNN Model for Elongation

The normal behaviour of the Predicted Elongation and Observed Elongation are observed in the
Figure. 3.12 for Training data, Validation data and Testing data. Training of the model is
excellent by GRNN method.
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Figure 3.12 Training data, validation data and test data of the Best GRNN model for Elongation

The best model of GRNN has training error 0.010208, validation error (selection error) 0.134319
and testing error 0.123726. This model is used for getting the results in form of various response

graphs to understand the trend between the input variables and output variable (Elongation).
(Figure 4.8)
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Table 3.9. Comparison of Significance of Best Trained Models of Elongation

Input Variables

Significance GRNN Model

Significance BNN Model

Carbon(wt%) 7 16
Silicon(wt%) 12 10
Manganese(wt%) 2 18
Sulphur(wt%) 17 4
Phosphorus(wt%) 15 12
Nickel(wt%) 1 11
Chromium(wt%) 3 5
Molybdenum(wt%) 6 2
Vanadium(wt%) 11 1
Copper(wt%) 18 17
Oxygen(ppm) 16 9
Titanium(ppm) 5 6
Boron(ppm) 13 15
Niobium(ppm) 8 7
Heat_input(kJ.mm-1) 10 8
Interpass_temperature(C) 9 14
Postweld_heat_treatment_temperature(C) 4 3
Post-weld_heat_treatment_time(h) 14 13

Table 3.9 shows the comparison of Significance of the GRNN and BNN models. Number 1

indicates highest value of significance and Number 18 lowest value of significance. Most of the

Input Variables are closer in significance for both the models. All input variables considered

are found to have a significant effect on the output indicating a good selection of

inputs.
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3.3.5 Neural Network and Genetic Algorithms Modeling for Elongation of
Ferritic Steel Welds

3.3.5.1 Genetic Algorithms parameters and procedure

A genetic algorithm has been developed in language C considering the following
parameters:

Number of populations = 3

Number of generations = 3000

Population size =20 chromosomes

When a new generation is created, the following steps are followed: after ranking the
20 chromosomes according to their scores, the first chromosome is copied without change.
The chromosomes 2 to 19 are recombined with each others. One gene of one of these
chromosomes is mutated between +0.2%. The chromosome 20, with the worst score, is
killed and a new random chromosome is generated and incorporated in the new population.

This program can calculate the best set ( X1 ,X2, ... ,x j) of input parameters for a desired
output y, which is in this study, the elongation of ferritic steel welds, for which a Bayesian
neural network model was developed[32].
The steps for Genetic Algorithms Modelling:

e First, all the files related to the neural network created for the elongation were put in the folder
"gacode" to optimise. These files were the following:

generated4.exe
norm_test.in
_w*f

*.lu

specl.tl
outran.x
MINMAX

e Then, the labels of the inputs variables of the neural network were written in the "labels.tct"
file

e Then the all inputs variables were define in the "values” file to vary.

e Then, the desired target value of elongation was normalised and entered it in the "nninput” file,
as well as the wanted accuracy.
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e Finally, the C program "ga_code" was compiled and executed.

After execution of the Genetic Algorithms program, the output was the values of 18 input
variables for given target value of the elongation of Ferritic Steel Weld. The calculation time was

in hours.

Three different target values of Ferritic Steel Weld’s elongation were taken and Genetic
Algorithms programs were run. The outputs were given in result and discussion Chapter 4.
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3.4 Charpy Toughness Models

3.4.1 Experimental Data base

All of the data collected are from multi run weld deposits in which the joint is
designed to minimize dilution from the base metal, to enable specifically the
measurement of all weld metal properties. Furthermore, they all represent electric arc
welds made using one of the following processes: manual metal arc (MMAW),
submerged arc welding (SAW) and tungsten inert gas (T1G). The welding process
itself was represented only by the level of heat input. This is because a large number
of published papers did not specify welding parameters in sufficient detail to enable
the creation of a dataset without missing values. Missing values cannot be
tolerated in the method used here. If the effect of a welding process is not properly
represented by the heat input and chemical composition, then neglect of any
important parameters will make the predictions more ‘noisy'. As discussed below, the
noise in the output was found to be acceptable; a greater uncertainty arises from the
lack of a uniform coverage of the input space. The data were collected from a large

number of sources [33] to [76].

The aim of the neural network analysis was to predict the Charpy Toughness as a
function of a large number of variables, including the chemical composition, the
welding heat input and any heat treatment. The Charpy Toughness database consists of
3449 separate experiments. Neural network methods used in this work cannot cope

with missing values of any of the variables.

3.4.1.1 Charpy Toughness Database

Table 3.10 shows the range, mean and standard deviation of each variable including
the output (charpy toughness). The purpose here is simply to list the variables and

provide an idea of the range covered. It is emphasized however, that unlike linear
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regression analysis, the information in Table 3.10 cannot be used to define the range of
applicability of the neural network model. This is because the inputs are in general
expected to interact. We shall see later that it is the Bayesian framework of our neural
network analysis which allows the calculation of error bars which define the range of
useful applicability of the trained network. A visual impression of the spread of data is
shown in Fig. 3.13. It can be concluded from Figure. 4.10 (a to t) and Figure. 4.11(a to
t) that the effect of Carbon, Silicon, Manganese, Sulphur, Phosphorus, Nickel,
Chromium, Molybdenum, Vanadium, Copper, Oxygen, Titanium, Nitrogen, Boron,
Niobium, Heat input, Interpass temperature, Post- weld heat treatment temperature,
Post-weld heat treatment time and Testing Temperature Charpy Toughness on the
Charpy Toughness of Ferritic Steel Welds have been systematically studied by BNN
and GRNN.[28]

It can be concluded from Figure.4.12.1 to 4.12.18 that the effect in combination of
any two input variables (Independent variables) from Carbon, Silicon, Manganese,
Sulphur, Phosphorus, Nickel, Chromium, Molybdenum, VVanadium, Copper, Oxygen,
Titanium, Nitrogen, Boron, Niobium, Heat input, Interpass temperature, Post- weld
heat treatment temperature, Post-weld heat treatment time and Testing Temperature
Charpy Toughness on the Charpy Toughness of Ferritic Steel Welds have been
systematically studied by GRNN.

The predictions of the all Input variables for Targeted Charpy Toughness by Genetic
Algorithms are given in Table 4.13. These can be useful for the design of the Ferritic
Steel Welds. Genetic Algorithms can design the Ferritic Steel Welds by extrapolation
beyond the existing data.

Table 3.10 shows the range, mean and standard deviation of each variable including

the output (Charpy Toughness).

122



Table 3.10 The Input Variables for Charpy Toughness Mode

million by weight.

I "

Variables Min | Max | Average | StDev

C wt% 0.022 | 0.19 | 0.0692 0.0207
Si wt% 0.01 |1.63 |0.3527 0.1214
Mn wt% 0.23 | 231 |1.2209 0.4446

S wt% 0.002 | 0.14 | 0.0078 | 0.0075

P wt% 0.003 | 0.25 |0.0101 |0.0128
Ni wt% 0 10.8 | 0.9933 | 2.26

Cr wt% 0 11.78 | 0.4406 1.323
Mo wt% 0 1.54 |0.1818 0.3341
V wit% 0 0.53 | 0.0139 0.0404
Cu wt% 0 2.18 | 0.0638 0.2128

O ppm 63 1535 | 399.6638 | 110.6312
Ti ppm 0 770 |96.0337 | 132.9401
N ppm 0 979 | 775725 |60.8648
B ppm 0 200 |13.1739 |33.4533
Nb ppm 0 1770 | 37.6917 | 133.0933
HI kJ mm-1 0.6 6.6 1.1954 0.6596
IPT C 20 350 | 199.0003 | 31.0232
PWHTT C 0 760 | 186.1773 | 249.8889
PWHTt h 0 100 |3.3429 | 6.6257
TTCT K 77 409 | 227.8425 | 38.3343
Charpy Toughness J | O 300 |72.714 42.8411

p.p.m .” corresponds to parts per
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Figure 3.13 Database distribution used for Charpy Toughness model. “p.p.m .’ corresponds to
parts per million by weight.

3.4.2 Neural Network Models for Charpy Toughness

3.4.2.1 Bayesian Neural Network Model and procedure

1 Data of charpy toughness were collected and plotted in the form of Scatter plots.

2. Data prepared according to the file format required to run in Neural Network Softwares.
(.csv format for Linux base software NeuroMat. And .sta format for Statistica Software)

3. Data were randomly divided into three parts (70% training dataset, 20% validation dataset
and 10 % testing dataset). (Training dataset: this data set is used to adjust the weights on the
neural network. Validation dataset: this data set is used to minimize overfitting. Testing dataset:
this data set is used only for testing the final solution in order to confirm the actual predictive
power of the network.)
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4. Data of Ferritic Steel Weld’s Charpy Toughness 3449 run in NeuroMat Software, which were
set in its hyperparameter or Neural network architecture (Software converts the Raw Data into
Normalized condition, i.e. it can convert into a specified range like 0 to 1 etc.. for processing) in
Chapter 2.10

Neural network architecture for Bayesian Neural Network was set in NeuroMat Software :

Three layers : Input Layer(Input Variables), Hidden Layer (Algorithms) and Output
Layer (Yield Strength)

Algorithms : Bigback 5

5. The data of Ferritic Steel Weld’s Charpy Toughness 3449 run in NeuroMat Software with
above Neural network architecture for best Neural Network Committee model. The best
committee model was decided on the basis of smallest test error of the committee model.

6. For best committee model, the data of Ferritic Steel Weld’s Charpy Toughness 3449 run in
NeuroMat Software repeatedly hundred of times and finalise the best committee model with
smallest test error. (NeuroMat gives in single run set of 100 models which required time in
hours. Out of these 100 models, the models in the committee are selected on the basis of smallest
test error. The number of models in committee varies everytime with repeatedly running the data
in NeuroMat. Thus the selection of committee model with a smallest test error is time
consuming.)

Some more than hundred charpy toughness neural network models were trained on a
training dataset which consisted of a random selection of 70%of the data 2414 from
the charpy toughness dataset. And 20% of the data 690 from charpy toughness data set
was used for cross validation.The remaining 345 data formed the test dataset which
was used to see how the model generalizes on unseen data. Each model contained the
20 inputs listed in Table 1 but with different numbers of hidden units or the random
seeds used to initiate the values of the weights. Fig. 3.14 shows the results. As
expected, the perceived level of noise (oy) in the normalised charpy toughness
decreases as the number of hidden units increases, Fig. 3.14a. This is not the case for
the test error, which goes through a minimum at nineteen hidden units, Fig. 3.14b, and
for the log predictive error which reaches a maximum at nineteen hidden units, Fig.

3.14c.
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The error bars presented throughout this work represent a combination of the
perceived level of noise oy in the output and the fitting uncertainty estimated from the
Bayesian framework. It is evident that there are a few outliers in the plot of the
predicted versus measured Charpy Toughness for the test dataset, Fig. 3.14f. Each of
these outliers has been investigated and found to represent unique data which are not
represented in the training dataset, Fig. 3.14e.

It is possible that a committee of models can make a more reliable prediction than an
individual model (Chapter 2). The best models are ranked using the values of the log
predictive errors Fig. 3.14c. Committees are then formed by combining the predictions
of the best L models, where L - 1, 2, . . .; the size of the committee is therefore given
by the value of L. A plot of the test error of the committee versus its size gives a
minimum which defines the optimum size of the committee, as shown in Fig. 3.14d.
The test error associated with the best single model is clearly greater than that of any
of the committees Fig. 3.14d. The committee with eigth models was found to have an
optimum membership with the smallest test error. The committee was therefore
retrained on the entire data set without changing the complexity of any of its member

models.
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Figure 3.14 (a) 0y vs Hidden units
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Figure 3.14 (b) Test Error vs Hidden units.
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Figure 3.14 . (a,b,c,d,e,f) Charpy Toughness (CT) model features.
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Figure 3.15 The perceived significance ow value of best eight Charpy Toughness models for each
of the inputs.

Fig. 3.15 indicates the significance ow of each of the input variables, as perceived by
first Eight neural network models in the committee. The ow value represents the
extent to which a particular input explains the variation in the output, rather like a
particular correlation coefficient in linear regression analysis. The Titanium on the
whole explains a large proportion of variation in the Charpy Toughness Figure. 3.15.
All variables considered are found to have a significant effect on the output indicating

a good selection of inputs.
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3.4.3 Comparisons of Neural network models and procedure (MLP, RBF,
GRNN)

1 Data of charpy toughness were collected and plotted in the form of Scatter plots.
2. Data prepared according to the file format required to run in Neural Network Softwares.
(.csv format for Linux base software NeuroMat. And .sta format for Statistica Software)

3. Data were randomly divided into three parts (70% training dataset, 20% validation dataset
and 10 % testing dataset). (Training dataset: this data set is used to adjust the weights on the
neural network. Validation dataset: this data set is used to minimize overfitting. Testing dataset:
this data set is used only for testing the final solution in order to confirm the actual predictive
power of the network.)

4. Data of Ferritic Steel Weld’s Charpy Toughness 3449 run in Statistica Software, which were
set in its hyperparameter or Neural network architecture (Software converts the Raw Data into
Normalized condition, i.e. it can convert into a specified range like 0 to 1 etc.. for processing) in
Chapter 2.11

Neural network architecture was set in Statistica software for MLP, RBF and GRNN :
MLP 17:17-10-1:1  Algorithms : BP100,CG20,CG18b

RBF 17:17-530-1:1  Algorithms : SS,KN,PI

GRNN 17:17-1061-2-1:1 Algorithms : SS

BP Back propagation, CG Conjugate gradient descent, SS (sub) sample, KN K-nearest neighbor
(deviation assignment), Pl Pseudo-invert (linear least squares), b Best network (the network with
lowest selection error in the run was restored)

A neural network’s architecture is of form I:N-N-N:O, where | is the number of input
variable, O the number of output variables, N the number of units in each layer.

5. The data of Ferritic Steel Weld’s Charpy Toughness 3449 run in Statistica Software with
above Neural network architecture for best Neural Network model in all three MLP, RBF and
GRNN.

6. For best model, the data of Ferritic Steel Weld’s Charpy Toughness 3449 run in Statistica
Software repeatedly hundred of times and finalise the best Neural Network model with smallest
training error in all three MLP, RBF and GRNN.

7. The neural network model with the smallest training error was the GRNN model.
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Table 3.11 shows the comparisons of selected Neural Network models on the basis of their
Training Errors. The GRNN models have lowest Training Errors for Charpy Toughness of
Feritic Steel Welds. . The GRNN models are selected for modeling from three basic neural
network methods (MLP, RBF, GRNN). Statistica 7.1 software is used for MLP, RBF and

GRNN.

Table 3.11 Comparisons of Neural network models (MLP, RBF, GRNN)

Charpy Toughness Models

(Model:No.7)

SR | MLP Train Error | Test Error | Training/Members | Remarks

No.

1 MLP 20:20-11-1:1 0.090335 | 0.096968 | BP100,CG289b 1 H layer
(Model:No.7)

2 MLP 20:20-14-8-1:1 0.085442 | 0.093736 | BP100,CG488b 2 H layer
(Model:No.8)

3 MLP 20:20-14-8-10-1:1 | 0.080723 | 0.091685 | BP100,CG499b 3 H layer
(Model:No.3)

Charpy Toughness Models

SR | RBF Train Error | Test Error | Training/Members | Remarks

No.

1 RBF 20:20-862-1:1 0.07513 0.013794 | SS,KN,PI 1 H layer
(Model:No.5)

Charpy Toughness Models

SR | GRNN Train Error | Test Error | Training/Members | Remarks

No.

1 GRNN 20:20-1725-2-1:1 | 0.011510 | 0.0198988 | SS 2 H layer
(Model:No.8)

2 GRNN 20:20-1725-2-1:1 | 0.011953 | 0.018632 | SS 2 H layer
(Model:No0.16)

3 GRNN 20:20-1725-2-1:1 | 0.011404 | 0.018669 | SS 2 H layer

Note: See Appendix C for Profile String of Statistica Neural Network Software
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3.4.4 Best GRNN Model for Charpy Toughness

The normal behavior of the Predicted Charpy Toughness and Observed Charpy Toughness are
observed in the Figure. 3.16 for Training data, Validation data and testing data. Training of the

model is excellent by GRNN method.
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Charpy-Toughness/J, Observed vs. Charpy-Toughness/J, Predicted (7 )
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Fig ¢ Test Data for GRNN model of Charpy Toughness

Figure 3.16 (a to ¢) Training data, validation data and test data of the Best GRNN model for
Charpy Toughness.

The best model of GRNN has training error 0.011404, validation error (selection error)
0.018101, and testing error 0.018669. This model is used for getting the results in form of
various response graphs to understand the trend between the input variables and output variable
(Charpy Toughness).(Figure 4.11 (a to t)).

135



Table 3.12 Comparison of Significance of Best Trained Models of Elongation

Input Variables Significance Significance
GRNN Model BNN Model

Carbon(wt%) 7 13
Silicon(wt%) 19 14
Manganese(wt%) 6 12
Sulphur(wt%) 18 7
Phosphorus(wt%) 16 2
Nickel(wt%) 4 6
Chromium(wt%) 10 5
Molybdenum(wt%) 5 16
Vanadium(wt%) 3 8
Copper(wt%) 15 20
Oxygen(ppm) 8 15
Nitrogen(ppm) 14 4
Titanium(ppm) 17 1
Boron(ppm) 20 11
Niobium(ppm) 12 10
Heat_input(kJ.mm-1) 11 17
Interpass_temperature(C) 9 19
Postweld_heat_treatment_temperature(C) | 2 18
Post-weld_heat_treatment_time(h) 13 9
Testing Temperature CT (K) 1 3

Table 3.12 shows the comparison of Significance of the GRNN and BNN models. Number 1
indicates highest value of significance and Number 20 lowest value of significance. Most of the
Input Variables are not closer in significance for both the models. All input variables
considered are found to have a significant effect on the output indicating a good

selection of inputs.
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3.45 Neural Network and Genetic Algorithms Modelling for Charpy
Toughness of Ferritic Steel Welds

3.4.5.1 Genetic Algorithms parameters and procedure

A genetic algorithm has been developed in language C considering the following parameters:
Number of populations = 3

Number of generations = 3000

Population size =20 chromosomes

When a new generation is created, the following steps are followed: after ranking the 20
chromosomes according to their scores, the first chromosome is copied without change. The
chromosomes 2 to 19 are recombined with each others. One gene of one of these chromosomes
is mutated between +0.2%. The chromosome 20, with the worst score, is killed and a new

random chromosome is generated and incorporated in the new population.

This program can calculate the best set ( x1 ,x2, ... ,x j) of input parameters for a desired output
y, which is in this study, the charpy toughness of ferritic steel welds, for which a Bayesian neural
network model was developed[32].

The steps for Genetic Algorithms Modelling:

e First, all the files related to the neural network created for the charpy toughness were put in the
folder "gacode™ to optimise. These files were the following:

generated4.exe
norm_test.in
_w*f

*.lu

specl.tl
outran.x
MINMAX

e Then, the labels of the inputs variables of the neural network were written in the "labels.tct"
file

e Then the all inputs variables were define in the "values" file to vary.

e Then, the desired target value of charpy toughness was normalised and entered it in the
"nninput” file, as well as the wanted accuracy.
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e Finally, the C program "ga_code" was compiled and executed.

After execution of the Genetic Algorithms program, the output was the values of 20 input
variables for given target value of the charpy toughness of Ferritic Steel Weld. The calculation
time was in hours.

Three different target values of Ferritic Steel Weld’s charpy toughness were taken and Genetic
Algorithms programs were run. The outputs were given in result and discussion Chapter 4.
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