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Chapter 4 

Results and Discussion 

4.1 Yield Strength Models 

 

4.1.1 Response graphs of Input variables and Yield Strength of Ferritic Steel 

Welds using committee model of Bayesian Neural Network 

The Trends of the Input Variables (Independent Variables)and Yield Strength of Ferritic Steel 

Welds are given below in form of the graphs. 

Trends of Yield Strength Model 

 
 

Fig a. Predicted variations in Yield Strength with 
Boron variation. 

Fig b. Predicted variations in Yield Strength with 
Carbon variation. 
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Fig c. Predicted variations in Yield Strength with 
Chromium  variation. 

Fig d. Predicted variations in Yield Strength with 
Copper  variation. 

  
Fig e. Predicted variations in Yield Strength with Heat 
input variation. 

Fig f. Predicted variations in Yield Strength with 
Interpass Temperature variation. 
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Fig g. Predicted variations in Yield Strength with 
Manganese variation. 

Fig h. Predicted variations in Yield Strength with 
Molybdenum variation. 

 

 

Fig i. Predicted variations in Yield Strength with 
Niobium variation. 

Fig j. Predicted variations in Yield Strength with 
Nickel variation. 
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Fig k. Predicted variations in Yield Strength with 
Phosphorus variation. 

Fig l. Predicted variations in Yield Strength with Post 
Weld Heat Treatment Temperature variation. 

 

 

Fig m. Predicted variations in Yield Strength with 
Post Weld Heat Treatment Time variation. 

Fig n. Predicted variations in Yield Strength with  
Sulphur  variation. 
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Figure 4.1 (a to q) Response graphs (a to q) of Input variables and Yield Strength of Ferritic 

Steel Welds using committee model of Bayesian Neural Network 

 

  
Fig o. Predicted variations in Yield Strength with 
Silicon variation. 

Fig p. Predicted variations in Yield Strength with 
Titanium variation. 

                                Fig q. Predicted variations in Yield Strength with Vanadium variation. 
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These trends are confirmed in the present analysis as illustrated in Figure 4.1 (a to q). It is 

emphasized that these calculations are done without permitting any of the other variables to 

change. They are impossible to reproduce in practice. 

All the graphs show the error bars. The error bars are uniform in size indicate that the uniformity 

of data, like the graph the prediction of the Yield Strength as a function of Manganese.  The error 

bars are large in size indicate non-uniformity of data, like the graph the prediction of the Yield 

Strength as a function of Chromium. 

In this case, when the concentration of Nickel and Chromium is respectively below 6 

and 8 wt%, the prediction can be reliable But above those limits (6 wt% for Ni and 8 wt% 

for Cr), the model can no more be trusted and this is inferred by the large error bars. 

Similarly it is applicable to other graphs where larger error bars are present. More 

experiments with concentrations in this range of values need to be carried out to improve 

the model. Uncertainty because of a lack of data is one of the limitations of a neural 

network. The error bars and output variable (Yield Strength) sometimes showing 

unphysical (negative) values, this is because of the empirical equation in Neural Network  

modelling.[29]. 

 

The input variables like Boron, Carbon, Copper, Manganese, Molybdenum, Niobium, 

Nickel, and Vanadium are increasing in concentration, increase the Yield Strength of 

ferritic Steel welds. 

The input variables like Post Weld Heat Treatment Temperature and Sulphur increase 

quantitatively decrease the Yield Strength of ferritic Steel welds. The Phosphorus has 

shown little effect on the Yield Strength. 

The input  variables like Chromium, Heat Input, Interpass Temperature, Post Weld Heat 

Treatment Time, Silicon, and Titanium indicate their non linear behavior with the Yield 

Strength.  

The trends of the graphs by Bayesian Neural network model are useful to design the Yield 

Strength of Ferritic Steel welds efficiently.  
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In summary, a reasonable committee model has been obtained for Yield Strength. It 

appears that these input variables are affected on the Yield Strength of Ferritc Steel Welds, 

as could be expected from a metallurgical point of view.  

4.1.2  Response Graphs  of the Yield Strength GRNN model 

 
Fig. a Response Graph of Yield Strength MPa and Carbon(wt%) 
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Fig. b Response Graph of Yield Strength MPa and Silicon(wt%) 
 

 
Fig. c Response Graph of Yield Strength MPa and Manganese(wt%) 
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Fig. d Response Graph of Yield Strength MPa and Sulphur(wt%) 

 
Fig. e Response Graph of Yield Strength MPa and Phosphorus(wt%) 
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Fig. f Response Graph of Yield Strength MPa and Nickel(wt%) 
 

 
Fig. g Response Graph of Yield Strength MPa and Chromium(wt%) 
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Fig. h Response Graph of Yield Strength MPa and Molybdenum(wt%) 
 

 
Fig. i Response Graph of Yield Strength MPa and Vanadium(wt%) 
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Fig. j Response Graph of Yield Strength MPa and Copper(wt%) 
 

 
Fig. k Response Graph of Yield Strength MPa and Titanium(ppmw) 
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Fig. l Response Graph of Yield Strength MPa and Boron(ppmw) 
 

 
Fig. m Response Graph of Yield Strength MPa and Niobium(ppmw) 
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Fig. n Response Graph of Yield Strength MPa and Heat input(kJ mm-1) 
 

 
Fig. o Response Graph of Yield Strength MPa and Interpass temperature(C) 
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Figure 4.2 (a to q) Response graphs of Input variables and Yield Strength of Ferritic Steel Welds 

(GRNN) 

 
Fig. p Response Graph of Yield Strength MPa and Post-weld heat treatment 

temperature(C) 

 
Fig. q Response Graph of Yield Strength MPa and Post-weld heat treatment 

time(h) 
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The influence of each of the variables on the yield strength of welding alloys which is discussed 

here. The carbon increases the yield strength up to 522 MPa with 0.05% then drop to 477 MPa at 

0.1%. After 0.15% C, yield strength increases to 536 MPa than decrease to 519 MPa at 0.2% C. 

In the case of silicon between 0.1% to 0.2%, there is a drop of the 440 MPa to 431 MPa in yield 

strength and then increases to 505 MPa at 0.45%. At 0.8%, yield strength is 515 MPa and 

decreases between 1.0% to 1.2% from 515 MPa to 504 MPa. The trend of manganese shows the 

increase in the Mn% the value of the yield strength is also increased from 400 MPa to 563 MPa.  

At various points, 0.8%, 1.1%, 2.1% the decrease in yield strength is observed. The sulphur 

shows the first decrease in the yield strength from 490 MPa to 464 MPa. At slightly more than 

0.09%,  it is increased from 464 MPa to 537 MPa. The Phosphorus gives the increase in yield 

strength from 485 MPa to 537 MPa. The nickel has the maximum yield strength of 629 MPa at 

7.8% and minimum 490 MPa at 1%. In figure. It shows at 4.9% the yield strength value drop to 

528 MPa. More than 7.8 %i Ni gives a further drop in yield strength 539 MPa. The Chromium 

has a maximum yield strength of 740 MPa between 3% to 7%. More than 7% Cr reduces the 

yield strength to 539 MPa. Increase in the yield strength from 479 MPa to 740 MPa only by the 

gradual addition of chromium up to 3%. Molybdenum increases the yield strength from 490 MPa 

to 730 MPa at 1.98%. At 0.8% Mo gives yield strength 719 MPa. More than 1.98% Mo 

decreases yield strength from 730 MPa to 539 MPa.   Vanadium increases the yield strength 

from 492 MPa to 600 MPa at 0.15%. At 0.22% V, yield strength decreases to 538 MPa. Copper 

increases the yield strength from 490 MPa to 513 MPa at 0.6%. At 1.2% Cu, yield strength 

decreases to 488 MPa. Cu gives maximum yield strength of 570 MPa when it is more than 

1.27%. Titanium gives a minimum yield strength of 457 MPa to maximum 553 MPa. At 700 

ppm yield strength is the highest. In between some range of Titanium from 90 ppm to 630 ppm, 

up and down in yield strength. Boron shows maximum yield strength of 535 MPa at 50 ppm. 

More than 50 ppm decreases the yield strength to 454 MPa. Niobium has a trend of increase in 

yield strength from 490 to 644 MPa with an increase from 180 to 1400 ppm.  

Heat Input has stated of the yield strength of 490 MPa, then drops in between 1.5 to 6.6 kJ mm-1 

to 406 MPa. The highest value of yield strength 537 MPa is obtained at and more than 6.7 kJ 

mm-1. When the Interpass temperature is less than 70 C, the yield strength is 538 MPa. More 
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than 70 C decrease in yield strength is observed to 470 MPa and further increase to 490 MPa at 

150 C. Minimum yield strength is 430 MPa at 270 C. Post weld heat treatment temperature 

increases up to 425 C shows yield strength 480 MPa and 490 MPa. More than 455 C, the yield 

strength increases to maximum 655 MPa at 710 C then drop to 510MPa. Post weld heat 

treatment time has a trend of increase in yield strength from 420 to 490 MPa between 4 to 5 

hours. More than 25 hours, it increases maximum yield strength to 538 MPa. 

The relationship between  the input variables and yield strength is a nonlinear as seen above in 

response graphs(Figure 4.2 (a to q)). 

The GRNN model has good accuracy in prediction of yield strength of ferritic steel welds on 

unseen data which is excellent for the design of welds.(Table.3.5) The predicted yield strength 

for the unseen data of three weld alloys are compared with measured values of  yield strength 

shows the prediction capacity of the GRNN model. This GRNN model can be used for practical 

applications, research and development of ferritic steel alloys. 

 

 

 

 

 

 

 

 

4.1.3 3D Contour plots of the Yield Strength GRNN model 

The effect in combination of any two input variables (Independent variables) from Carbon, 

Silicon, Manganese, Sulphur, Phosphorus, Nickel, Chromium, Molybdenum, Vanadium, Copper, 

Titanium, Boron, Niobium, Heat_input, Interpass_temperature, Post- weld heat treatment 

temperature and  Post-weld heat treatment time on the Yield Strength of Ferritic Steel Welds are 

given in form of 3D contour plots.(Figure.4.3.1 to4.3.18) 
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Figure.4.3.1  Predicted variations in Yield Strength (MPa)  as a function of the Carbon and 

Manganese concentrations 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.3.1 shows the relations between Carbon, Manganese and Yield Strength by GRNN. 

The graph gives the information about how these two, Carbon and Manganese control the Yield 

Strength from 550MPa to 1000MPa.. Traditionally in alloy design it is known that increase the 

Carbon  decrease  the Yield Strength. In Figure. 4.3.1, it is very critical to maintain the Yield 

Strength with Carbon and Manganese. Higher Yield Strength is maintained by the Carbon and 

Manganese with lower concentrations in weld deposits. Higher Yield Strength  can achieve with 

very low carbon less than 0.03 wt%and higher amount of Manganese more than 2 wt% in 

ferritic steel weld deposits.  To achieve a 950 MPa and more, the compositions of Carbon must 

be maintained below 0.20 wt% and Manganese must be maintained maximum 0.2 wt%.  
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Figure.4.3.2  Predicted variations in Yield Strength (MPa)  as a function of the Carbon and 

Nickel concentrations 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.3.2 shows the relations between Carbon, Nickel and Yield Strength by GRNN. The 

graph gives the information about how these two, Carbon and Nickel control the Yield Strength 

from 500MPa to 1200MPa. Both alloying elements, Carbon 0.21 wt% and Nickel 11 wt% 

increase the Yield strength more than 1100 MPa in ferritic steel welds (fsw). Reduction in 

the concentrations of Carbon and Nickel, lowering the Yield Strength to 500 MPa.  
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Figure.4.3.3  Predicted variations in Yield Strength (MPa)  as a function of the Carbon and 

Chromium concentrations 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.3.3 shows the relations between Carbon, Chromium and Yield Strength by GRNN. 

The graph gives the information about how these two, Carbon and Chromium control the Yield 

Strength from 100MPa to 900MPa. 
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Figure. 4.3.4  Predicted variations in Yield Strength (MPa)  as a function of the Carbon and 

Molybdenum concentrations 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.3.4 shows the relations between Carbon, Molybdenum and Yield Strength by GRNN. 

The graph gives the information about how these two, Carbon and Molybdenum control the 

Yield Strength from 100MPa to 600MPa. 
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Figure. 4.3.5  Predicted variations in Yield Strength (MPa)  as a function of the Carbon and 

Vanadium concentrations 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.3.5 shows the relations between Carbon, Vanadium and Yield Strength by GRNN. The 

graph gives the information about how these two, Carbon and Vanadium control the Yield 

Strength from 550MPa to 800MPa. 
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Figure. 4.3.6  Predicted variations in Yield Strength (MPa)  as a function of the Carbon and 

Silicon concentrations 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.3.6 shows the relations between Carbon, Silicon and Yield Strength by GRNN. The 

graph gives the information about how these two, Carbon and Silicon control the Yield Strength 

from 450 MPa to 950 MPa. 

 

 

 



162 
 

 

Figure. 4.3.7  Predicted variations in Yield Strength (MPa)  as a function of the Carbon and 

Boron concentrations 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.3.7 shows the relations between Carbon, Boron and Yield Strength by GRNN. The 

graph gives the information about how these two, Carbon and Boron control the Yield Strength 

from 200MPa to 1200MPa. 
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Figure. 4.3.8  Predicted variations in Yield Strength (MPa)  as a function of the Carbon and 

Titanium concentrations 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.3.8 shows the relations between Carbon, Titanium and Yield Strength by GRNN. The 

graph gives the information about how these two, Carbon and Titanium control the Yield 

Strength from 400MPa to 1200MPa. 
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Figure. 4.3.9  Predicted variations in Yield Strength (MPa)  as a function of the Carbon and 

Niobium concentrations 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.3.9 shows the relations between Carbon, Niobium and Yield Strength by GRNN. The 

graph gives the information about how these two, Carbon and Niobium control the Yield 

Strength from 500MPa to 1200MPa. 
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Figure. 4.3.10  Predicted variations in Yield Strength (MPa)  as a function of the Carbon 

concentration and Heat input  

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.3.10 shows the relations between Carbon, Heat input and Yield Strength by GRNN. 

The graph gives the information about how these two, Carbon and Heat input control the Yield 

Strength from 350MPa to 750MPa. 
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Figure. 4.3.11  Predicted variations in Yield Strength (MPa)  as a function of the Carbon 

concentration and Interpass temperature 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.3.11 shows the relations between Carbon, Interpass temperature and Yield Strength by 

GRNN. The graph gives the information about how these two, Carbon and Interpass 

temperature control the Yield Strength from 550MPa to 1000MPa. 
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Figure. 4.3.12  Predicted variations in Yield Strength (MPa)  as a function of the Carbon 

concentration and Post-weld heat treatment time  

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.3.12 shows the relations between Carbon, Post-weld heat treatment time and Yield 

Strength by GRNN. The graph gives the information about how these two, Carbon and Post-

weld heat treatment time control the Yield Strength from 350MPa to 700MPa. 
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Figure. 4.3.13  Predicted variations in Yield Strength (MPa)  as a function of the Nickel and 

Chromium concentrations 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.3.13 shows the relations between Nickel, Chromium and Yield Strength by GRNN. 

The graph gives the information about how these two, Nickel and Chromium control the Yield 

Strength from 400MPa to 1100MPa. 
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Figure. 4.3.14  Predicted variations in Yield Strength (MPa)  as a function of the Molybdenum 

and Vanadium concentrations 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.3.14 shows the relations between Molybdenum, Vanadium and Yield Strength by 

GRNN. The graph gives the information about how these two, Molybdenum and Vanadium 

control the Yield Strength from 100MPa to 800MPa. 
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Figure 4.3.15.  Predicted variations in Yield Strength (MPa)  as a function of the Boron and 

Niobium concentrations 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.3.15 shows the relations between Boron, Niobium and Yield Strength by GRNN. The 

graph gives the information about how these two, Boron and Niobium control the Yield Strength 

from 400MPa to 650MPa. 
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Figure. 4.3.16  Predicted variations in Yield Strength (MPa)  as a function of the Heat input and 

Interpass temperature 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.3.16 shows the relations between Heat input, Interpass temperature and Yield Strength 

by GRNN. The graph gives the information about how these two, Heat input and Interpass 

temperature control the Yield Strength from 350MPa to 750MPa. 
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Figure. 4.3.17  Predicted variations in Yield Strength (MPa)  as a function of the Post-weld heat 

treatment temperature and Post-weld heat treatment time 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.3.17 shows the relations between the Post-weld heat treatment temperature, Post-weld 

heat treatment time and Yield Strength by GRNN. The graph gives the information about how 

these two, the Post-weld heat treatment temperature and Post-weld heat treatment time control 

the Yield Strength from 350MPa to 850MPa. 
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Figure. 4.3.18  Predicted variations in Yield Strength (MPa)  as a function of the Carbon and 

Post-weld heat treatment temperature 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure.4.3.18 shows the relations between the Carbon, Post-weld heat treatment temperature and 

Yield Strength by GRNN. The graph gives the information about how these two, the Carbon and 

Post-weld heat treatment temperature control the Yield Strength from 550MPa to 850MPa. 
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Figure 4.3.1. YS (z) - Mn (y) - C (x) 3D plot. 

Figure 4.3.1. shows the contour of Yield Strength 550 MPa with the Carbon in the range from 

0.02% to 0.158% and the Manganese in the range from 0.5% to 1.78%. The increase in the Yield 

Strength is achieved outside the 550 MPa contour by keeping Manganese  constant and Carbon 

concentration varies and vice versa. The concentration of %C and %Mn give the Yield Strength 

in wide range from less than 550 MPa to 1000 MPa. The trends of both the independent variables 

are less complex and flexible for designing the Yield Strength. 

Figure 4.3.2. YS (z) - Ni (y) - C (x) 3D plot. 

Figure 4.3.2. shows the increase in the Yield Strength from 500 MPa to 1200 MPa with an 

increase in the concentrations of both Carbon and Nickel. The increase in the Yield Strength is 

also achieved by keeping Carbon constant and Nickel concentration varies and vice versa. The 

higher value of Yield Strength 1200 MPa is obtained with %wt C in the range from 0.176% to 

0.22% and %wt Ni in the range from 9.4% to 12%.  The trends of both the independent variables 

are less complex and flexible for designing the Yield Strength. 

Figure 4.3.3. YS (z) - Cr (y) - C (x) 3D plot. 

Figure 4.3.3. shows the increase in the Yield Strength from 700 MPa to more than 900 MPa with 

the increase and decrease in the concentrations Chromium from 1% to 12.2% and the increase in 

concentrations of  Carbon from 0.084% to 0.22%. The  Chromium in the range from 7.8% to 

14% and Carbon in the range from 0% to 0.22% decrease the Yield Strength from 600MPa to 

less than 100 MPa. The Yield Strength 700MPa is obtained with %wt C in the range from 

0.084% to 0.22% and %wt Cr in the range from 1% to 12.2%. The Yield Strength 900 MPa and 

higher are obtained with %wt C in the range from 0.21% to 0.22% and %wt Cr in the range from 

5.2% to 8.2%. The independent variables Carbon and Chromium both have a wide range for 

designing the Yield Strength between 600 MPa to 700 MPa. The trends of both the independent 

variables are complex for designing the Yield Strength 900 MPa and higher. 

Figure 4.3.4. YS (z) - Mo (y) - C (x) 3D plot. 

Figure 4.3.4. shows the Yield Strength 600 MPa is obtained with %wt C in the range from 0% 

to0.22% and %wt Mo in the range from 0.32% to 1.5%. The content of %wt Mo more than 1.5% 

and  %wt C in the range from 0% to 0.22% decrease the Yield Strength from 600 MPa to less 
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than 100 MPa. The content of %wt Mo less  than 0.32% and  %wt C in the range from 0% to 

0.22% decrease the Yield Strength from 600 MPa to less than 500 MPa. The trends of both the 

independent variables are complex for designing the Yield Strength with a wide range of 

combinations available. 

Figure 4.3.5.  YS (z) - V (y) - C (x) 3D plot. 

Figure 4.3.5. shows the Yield Strength values 700 MPa and more than 800MPa are observed in 

the left side of the graph. Left side of the graph has a range of the Vanadium from 0.1% to 0.35% 

and the Carbon from 0% to 0.092%. The Yield Strength 800MPa and higher are obtained with 

the range of %wt V from 0.202% to 0.35% and by maintaining the Carbon, in the range from 0% 

to0.024%. The Upper side right corner of the plot show the contours of the decrease in the Yield 

Strength from 650 MPa and less than 600 MPa with %wt V in the range from 0.25% to 0.35% 

and %wt C in the range from 0.112% to 0.22%. The bottom side of the plot show the contours of 

the decrease in the Yield Strength from 650 MPa and less than 550 MPa with %wt V in the range 

from 0% to 0.14% and %wt C in the range from 0% to 0.22%.. Both the independent variables 

have a complex relationship with the Yield Strength. The trends of the independent variables is 

significant for designing the Yield Strength. 

Figure 4.3.6.  YS (z) - Si (y) - C (x) 3D plot. 

Figure 4.3.6. shows the increase in the Yield Strength from 550 MPa to 950 MPa with an 

increase in the concentration of both Carbon and Silicon. The Yield Strength 550 MPa and more 

than 950 MPa are obtained with %wt C in the range from 0.092% to 0.22%C and wt% Silicon in 

the range from 0% to 1.2%. The Yield Strength in this range from 550 MPa to 950 MPa are 

obtained by keeping the wt% Si constant and varying the wt% of Carbon. The Yield Strength in 

this range from 600 MPa to 950 MPa are obtained by keeping the wt% C constant in between the 

0.14% to 0.22% and varying the wt% of Si in the range from 0% to 1.2%. The decrease in the 

Yield Strength from less than 550 MPa to 450 MPa is obtained with %wt C less than 0.074%  

and Silicon in the range from 0.88% to 1.2% at the left upper side corner of the graph. The 

increase in the Yield Strength from 550 MPa to more than 660 MPa is obtained with %wt C less 

than 0.038%  and Silicon in the range from 0% to 0.62% at the left bottom side corner of the 

graph. Both the independent variables have a complex relationship with the Yield Strength. The 

trends of the independent variables are significant for designing the Yield Strength. 
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Figure 4.3.7.  YS (z) - B (y) - C (x) 3D plot. 

Figure 4.3.7. shows the contours of the Yield Strength increase from 200 MPa to 1200 MPa with 

an increase in wt% C in the range from 0% to 0.22% and Boron ppm in the range from 0 ppm to 

220 ppm. The increase in the Yield Strength is achieved by keeping Boron ppm constant and 

Carbon concentration varies in the range from 0% to 0.22%. The increase in Yield Strength is 

obtained by maintaining the higher wt% C, more than 0.14% and the constant  Boron ppm and 

vice versa.  The decrease in the Yield Strength from 500 MPa to less than 200MPa is observed  

with wt% C in the range from 0% to 0.09% and Boron ppm from 72 ppm to 220 ppm at the left 

upper side corner of the graph. The trends of both the independent variables are not complex for 

designing the Yield Strength. 

Figure 4.3.8.  YS (z) - Ti (y) - C (x) 3D plot. 

Figure 4.3.8. shows the decrease in the Yield Strength from 500 MPa to less than 400 MPa with 

an increase in the concentration of both Carbon and Titanium. The Yield Strength 600 MPa and 

more than 1200 MPa are obtained with %wt C in the range from 0% to 0.144% and Titanium 

ppm in the range from 130 ppm to 1000 ppm.  The Yield Strength 600 MPa and more than 700 

MPa are also achieved with %wt C in the range from 0.144%  to 0.22% and Titanium ppm in the 

range from 0 ppm to 160 ppm. Selection of these two independent variables is very important for 

the design of the Yield Strength. Because both the independent variables have a nonlinear 

complex relationship with the Yield Strength. 

Figure 4.3.9.  YS (z) - Nb (y) - C (x) 3D plot. 

Figure 4.3.9. shows the increase in the Yield Strength from 700 MPa to 1200 MPa with an 

increase in the concentration of both Carbon and Niobium. The Yield Strength 700 MPa and 

more than 1200 MPa are obtained with %wt C in the range from 0.068% to 0.22%C and 

Niobium ppm in the range from 0 ppm to 2000 ppm. In this range 700 MPa to 1200 MPa is 

obtained by keeping the Nb ppm constant and varying the wt% of Carbon. The decrease in the 

Yield Strength from 600 MPa to less than 600 MPa is obtained with %wt C less than 0.056%  

and Niobium ppm in the range from 1520 ppm to 2000 ppm at the upper left corner of the graph. 

The decrease in the Yield Strength from 600 MPa to less than 600 MPa is obtained with %wt C 

less than 0.166%  and Niobium ppm in the range from 0 ppm to 340 ppm at the bottom side 
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contour of 600MPa. Both the independent variables have a complex relationship with the Yield 

Strength. The trends of the independent variables are significant for designing the Yield 

Strength. 

Figure 4.3.10.  YS (z) - HI (y) - C (x) 3D plot. 

Figure 4.3.10. shows the increase in the Yield Strength from 600 MPa to 750 MPa with an 

increase in the concentration of  Carbon and changing Heat input lower value  to higher value. 

The Yield Strength 600 MPa and more than 750 MPa are obtained with %wt C in the range from 

0.132% to 0.22%C and Heat input kJmm-1 in the range from 0 kJmm-1 to 9 kJmm-1. In this 

range 700 MPa to 1000 MPa is obtained by keeping the Heat input constant and varying the wt% 

of Carbon. But for the Yield Strength 750 MPa and higher is obtained with the Heat input in the 

range from 1.8 kJmm-1 to 7.4 kJmm-1 and the wt% C in the range from 0.2065 to 0.22%. The 

decrease in the Yield Strength from less than 550 MPa to less than 350 MPa is obtained with 

%wt C less than 0.132% and the Heat input in the range from 0 kJmm-1 to 9 kJmm-1. Both the 

independent variables have a complex relationship with the Yield Strength. The trends of the 

independent variables are significant for designing the Yield Strength. 

 

 

Figure 4.3.11.  YS (z) - IPT (y) - C (x) 3D plot. 

Figure 4.3.11. shows the contour of Yield Strength 550 MPa with the Carbon in the range from 

0.006% to 0.138% and the Interpass temperature in the range from 155 C to 320 C. The increase 

in the Yield Strength is achieved outside the 550 MPa contour by keeping Interpass temperature 

constant and increasing Carbon concentration. The decrease  in the Yield Strength is achieved 

outside the 700 MPa contour by keeping Carbon concentration constant and increasing the 

Interpass temperature. The concentration of  the Carbon and the Interpass temperature 

combinations give the Yield Strength in wide range from less than 550 MPa to 1000 MPa. The 

trends of both the independent variables are a complex and flexible for designing the Yield 

Strength. The trends of the independent variables are significant for designing the Yield 

Strength. 
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Figure 4.3.12.  YS (z) – PWHTt (y) - C (x) 3D plot. 

Figure 4.3.12. shows the increase in the Yield Strength from 550 MPa to 700 MPa with an 

increase in the concentration of Carbon and Post Weld Heat Treatment time. The Yield Strength 

550 MPa and more than 700 MPa are obtained with %wt C in the range from 0.096% to 0.22%C 

and Post Weld Heat Treatment time in the range from 0 h to 30 h. The Yield Strength in this 

range from 550 MPa to 700 MPa are obtained by keeping the Post Weld Heat Treatment time 

constant and varying the wt% of Carbon. The decrease in the Yield Strength from less than 500 

MPa to 350 MPa is obtained with %wt C in the range from 0% to 0.22% and Post Weld Heat 

Treatment time in the range from 19.5 h to 35 h at the upper side of the graph. The increase in 

the Yield Strength from 550 MPa to more than 550 MPa is obtained with %wt C less than 

0.052%  and Post Weld Heat Treatment time in the range from 0 h to 22 h at the left bottom side 

corner of the graph. Both the independent variables have a complex relationship with the Yield 

Strength. The trends of the independent variables are significant for designing the Yield 

Strength. 

Figure 4.3.13.  YS (z) – Cr (y) - Ni (x) 3D plot. 

Figure 4.3.13 shows the increase in the Yield Strength from 500 MPa to 1000 MPa with equally 

increase in wt% Chromium from 0% to 4.6%  and wt% Nickel from 0% to 4.6%. The increase in 

the Yield Strength is also achieved by keeping Chromium constant and Nickel concentration 

varies and vice versa. Both independent variables show complexity and uniqueness in their 

trends. The independent variables are significant for designing the Yield Strength. 

 

 

Figure 4.3.14.  YS (z) – V (y) - Mo (x) 3D plot. 

Figure 4.3.14. shows the contour of Yield Strength 700 MPa with the Molybdenum in the range 

from 0% to 1.4% and the Vanadium in the range from 0.16% to 0.35%. The 800 MPa and more 

than 800 MPa Yield Strength are obtained with wt% Mo in the range from 0.1% to 1% and wt% 

V in the range from 0.305% to 0.35%. The decrease in the Yield Strength from 600 MPa to 100 

MPa are obtained by keeping Vanadium concentration constant and increasing Molybdenum 

concentration. The Molybdenum less than 0.44% and more than 1.24% decreases the Yield 
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Strength. Both independent variables show complexity in their trends. The independent variables 

are significant for designing the Yield Strength. 

Figure 4.3.15.  YS (z) – Nb (y) - B (x) 3D plot. 

Figure 4.3.15. shows the contour of Yield Strength 650 MPa with the Boron in the range from 0 

ppm to 136 ppm and the Niobium in the range from 540 ppm to 1660 ppm. The decrease in the 

Yield Strength is achieved outside the 650 MPa contour by keeping Niobium constant and 

increasing Boron concentration. The concentration of  the Boron and the Niobium combinations 

give the Yield Strength in wide range from less than less than 450 MPa to more than 650 MPa. 

The trends of both the independent variables are a complex and flexible for designing the Yield 

Strength. The trends of the independent variables are significant for designing the Yield 

Strength. 

Figure 4.3.16.  YS (z) – IPT (y) - HI (x) 3D plot. 

Figure 4.3.16. shows the Yield Strength values 550 MPa and more than 550MPa are observed in 

the upper side and bottom side of the graph. Right side of the graph has the range of the Interpass 

Temperature from 0 C to 350 C and the Heat Input from 5.5 kJmm-1 to 9 kJmm-1. Left side of 

the graph has the range of the Interpass Temperature from 220 C to 300 C and the Heat Input 

from 0 kJmm-1 to 0.3 kJmm-1. The Yield Strength 650 MPa and higher are obtained with the 

range of the Interpass Temperature from 375 C to 400 C and by maintaining the Heat Input, in 

the range from 2.1 kJmm-1 to 7.4 kJmm-1 at the upper side of the plot. The Yield Strength 

700MPa and higher are obtained with the range of the Interpass Temperature from 0 C to 25 C 

and by maintaining the Heat Input, in the range from 0 kJmm-1 to 3.8 kJmm-1 at the bottom side 

of the plot. The Upper side and bottom side of the plot show the contours of the increase in the 

Yield Strength from 550 MPa and more than 550 MPa. Both the independent variables have a 

complex relationship with the Yield Strength. The trends of the independent variables are 

significant for designing the Yield Strength. 
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Figure 4.3.17.  YS (z) – PWHTt (y) – PWHTT (x) 3D plot. 

Figure 4.3.17. shows the Yield Strength values 450 MPa and less than 450MPa are observed in 

the upper side and bottom side of the graph. Right side of the graph has the range of the Post 

Weld Heat Treatment Time from 0 h to 35 h and the Post Weld Heat Treatment temperature 

from 0 C to 330 C. Left side of the graph has the range of the Post Weld Heat Treatment Time 

from 0 h to 31.5 h and the Post Weld Heat Treatment temperature from 570 C to 900 C. The 

Yield Strength 500 MPa and higher are obtained with the range of the Post Weld Heat Treatment 

temperature from 0 C to 330 C and by maintaining the Post Weld Heat Treatment Time, in the 

range from 0 h  to 35 h at the left side of the plot. The Yield Strength 500 MPa and higher are 

obtained with the range of the Post Weld Heat Treatment temperature from 570 C to 900 C and 

by maintaining the Post Weld Heat Treatment Time, in the range from 0 h to 31.5 h at the right 

side of the plot. The Upper side and bottom side of the plot show the contours of the decrease in 

the Yield Strength from 450 MPa and less than 350 MPa. The Right side and left side of the plot 

show the contours of the increase in the Yield Strength from 500 MPa and more than 8500 MPa 

Both the independent variables have a complex relationship with the Yield Strength. The trends 

of the independent variables are significant for designing the Yield Strength. 

Figure 4.3.18.  YS (z) – PWHTT (y) - C (x) 3D plot. 

Figure 4.3.18. shows the increase in the Yield Strength from 550 MPa to 850 MPa with the 

increase in the Post Weld Heat Treatment Temperature in the range from 280 C to 900 C and the 

increase in the Carbon in the range from 0% to 0.22% at the upper side of the graph. The 

increase in the Yield Strength from 550 MPa to 650 MPa with the decrease in the Post Weld 

Heat Treatment Temperature in the range from 0 C to 290 C and the increase in the Carbon in 

the range from 0%  to 0.114% at the bottom left corner of the graph.Both the independent 

variables have a complex relationship with the Yield Strength. The trends of the independent 

variables are significant for designing the Yield Strength. 

 

 

 

 



181 
 

4.1.4 Application of Trained Best Neural Network Models 

4.1.4.1 Prediction of The Yield Strength on unseen data by BNN Model  

The BNN model has good accuracy in prediction of yield strength of ferritic steel welds on 

unseen data which is excellent for the design of welds.(Table 4.1) The predicted yield strength 

for the unseen data of three weld alloys are compared with measured values of  yield strength 

shows the prediction capacity of the BNN model. This BNN  model can be used for practical 

applications, research and development of ferritic steel alloys. 

Table 4.1  Predicted yield strength by BNN model for unseen data of three ferritic weld deposits 

Variable Weld alloy 1 Weld alloy 2 Weld alloy 3 

Carbon(wt%) 0.041 0.049 0.081 

Silicon(wt%) 0.30 0.35 0.24 

Manganese(wt%) 0.62 1.37 0.59 

Sulphur(wt%) 0.007 0.007 0.009 

Phosphorus(wt%) 0.010 0.013 0.012 

Nickel(wt%) 2.38 1.06 10.8 

Chromium(wt%) 0.03 0.03 1.17 

Molybdenum(wt%) 0.005 0.005 0.300 

Vanadium(wt%) 0.012 0.012 0.006 

Copper(wt%) 0.03 0.03 0.30 

Titanium(ppm) 55 55 00 

Boron(ppm) 2 2 1 

Niobium(ppm) 20 20 10 

Heat_input(kJ.mm-1) 1.0 1.0 1.2 

Interpass_temperature(C) 200 200 150 

Postweld_heat_treatment_temperature(C) 250 250 250 

Post-weld_heat_treatment_time(h) 14 14 14 

Measured YS/MPa 466 498 896 

Predicted YS/MPa 456.22 509.9 895.03 
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4.1.4.2 Prediction of The Yield Strength on unseen data by GRNN Model  

The GRNN model has good accuracy in prediction of yield strength of ferritic steel welds on 

unseen data which is excellent for the design of welds.(Table.4.2) The predicted yield strength 

for the unseen data of three weld alloys are compared with measured values of  yield strength 

shows the prediction capacity of the GRNN model. This GRNN model can be used for practical 

applications, research and development of ferritic steel alloys. 

Table 4.2 Predicted yield strength by GRNN model for unseen data of three ferritic weld deposits 

Variable Weld alloy 1 Weld alloy 2 Weld alloy 3 

Carbon(wt%) 0.041 0.049 0.081 

Silicon(wt%) 0.30 0.35 0.24 

Manganese(wt%) 0.62 1.37 0.59 

Sulphur(wt%) 0.007 0.007 0.009 

Phosphorus(wt%) 0.010 0.013 0.012 

Nickel(wt%) 2.38 1.06 10.8 

Chromium(wt%) 0.03 0.03 1.17 

Molybdenum(wt%) 0.005 0.005 0.300 

Vanadium(wt%) 0.012 0.012 0.006 

Copper(wt%) 0.03 0.03 0.30 

Titanium(ppm) 55 55 00 

Boron(ppm) 2 2 1 

Niobium(ppm) 20 20 10 

Heat_input(kJ.mm-1) 1.0 1.0 1.2 

Interpass_temperature(C) 200 200 150 

Postweld_heat_treatment_temperature(C) 250 250 250 

Post-weld_heat_treatment_time(h) 14 14 14 

Measured YS/Mpa 466 498 896 

Predicted YS/Mpa 466 497 913 

 

Prediction of The Yield Strength for new data of input variables can be achieved accurately with 

best trained models by BNN and GRNN as given in above Tables 4.1 and 4.2. These Models 

have capacity for changing any individual input variable, any combination of more than one 

input variables or all input variables to predict the Yield Strength of Ferritic Steel Welds. These 

are only possible with the BNN and GRNN Models which are impossible practically. By simply 

running these Models the various design of the Ferritic Steel Welds are possible which save 

money, time and labour during Research and Development of the Ferritic Steel Welds. 
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4.1.5 Genetic Algorithms and applications to the yield strength of Ferritic 

Steel Welds  

 

4.1.5.1 Target yield strength of 466 MPa and High value of yield strength 1200 

MPa 

The first simulation is made to check the behaviour of the genetic algorithm. The target 

value of yield strength is set to -0.7. which correspond to an unnormalised value of 466 

MPa. The dataset provides such values of yield strength and the aim of this simulation is to 

check the results of the genetic algorithm.. The 17 parameters(input variables)  are allowed 

to vary, in between -1 and + 1 during the genetic algorithm process. After 3000 

generations, the best results obtained is shown Table 4.3.  

The second simulation is made to check the genetic algorithm for high value of the Yield 

Strength. The target value of yield strength is set to 0.2 which correspond to an 

unnormalised value of 1200 MPa. The dataset does not provide such value of yield strength 

and the aim of this simulation is to check the results of the genetic algorithm.. The 17 

parameters (input variables)  are allowed to vary, in between -1 and + 1 during the genetic 

algorithm process. After 3000 generations, the best results obtained is shown Table 4.3.  

 

      According to Table 4.3, the genetic algorithm has managed to reach the target after 

3000 generations. Moreover, the associated error obtained is very reasonable.  

To check if the given compositions correspond to Ferritic Steel Weld, compare with the 

actual data of Yield Strength.  
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Table 4.3 Predicted Input variables by NN-GA model for two targeted Yield Strength of ferritic 

weld deposits 

Variable Weld 1 Weld 1 Weld 2 

 Result GA Data  Result GA 

Carbon(wt%) 0.039 0.041 0.22 

Silicon(wt%) 0.28 0.30 1.58 

Manganese(wt%) 0.7 0.62 2.01 

Sulphur(wt%) 0.004 0.007 0.006 

Phosphorus(wt%) 0.010 0.010 0.01 

Nickel(wt%) 1.98 2.38 11.2 

Chromium(wt%) 0.02 0.03 13.1 

Molybdenum(wt%) 0.005 0.005 2.4 

Vanadium(wt%) 0.012 0.012 0.32 

Copper(wt%) 0.01 0.03 1.78 

Titanium(ppm) 51 55 980 

Boron(ppm) 0 2 210 

Niobium(ppm) 19 20 1760 

Heat_input(kJ.mm-1) 1.2 1.0 7.4 

Interpass_temperature(C) 190 200 365 

Postweld_heat_treatment_temperature(C) 249 250 680 

Post-weld_heat_treatment_time(h) 14 14 48 

GA calculated  YS/MPa 463    --- 1184 

Target Value YS/MPa 466    --- 1200 

Error YS/MPa 22   ---   43 

Measured YS/MPa   --- 466   --- 

 

 

 

The NNGA models have good accuracy in predicting 18 input variables of the Yield 

Strength of ferritic steel welds, which is excellent for weld design.(Table.4.3).  The predicted res

ults  of the targeted values of the two weld deposits are very close. The results of Genetic 

Algorithms  are match with trends of measured data and fundamental of metallurgy. The output 

results show the predictive capacity of the NN-GA model. This NN 

GA model can be used in practical applications, research and development of ferritic steel alloys.

[Appendix-B] 
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4.1.6 Summary 

The Neural Network and Genetic algorithms Methods have been used for efficient design of the 

Yield strength of Ferritic Steel Welds. From the Modelling works and  Results and Discussion of 

this Chapter some useful conclusions can be drawn: 

The distribution of the Data of the Yield Strength of Ferritic Steel Welds is uniform for some 

Inpurt variables and non-uniform for some Inpurt variables. The distribution is clearly observed 

in Scatter plots. 

In the case of Bayesian Neural Network method, all the response graphs show error bars  when 

the concentration of Nickel and Chromium is respectively below 6 and 8 wt%, the prediction can 

be reliable But above those limits (6 wt% for Ni and 8 wt% for Cr), the model can no more be 

trusted and this is inferred by the large error bars. Similarly it is applicable to other graphs where 

larger error bars are present. More experiments with concentrations in this range of values need 

to be carried out to improve the model. Uncertainty because of a lack of data is one of the 

limitations of a neural network. The error bars and output variable (Yield Strength) sometimes 

showing unphysical (negative) values, this is because of the empirical equation in Neural 

Network  modelling. This error bars feature of Bayesian Neural Network is an excellent 

guideline for research and Development. 

In the case of General Regression Neural Network method, there is no problems of noisy data. It 

can handle noises in the Inputs. The Response graphs of the GRNN show more define about the 

non linearity or complexity between the Input variables and the Yield Strength of Ferritic Steel 

Welds.  

The Response Graphs show about  the individual relationship between the input variables and 

Output variable (Yield Strength). The 3D contour plots show the relationship between the two 

Input variables with Output variable (Yield Strength).  

These trends are confirmed in the present analysis as illustrated in both the types of the Graphs 

Figure 4.1 (a to q) and Figure 4.2 (a to q). They are impossible to reproduce in practice. They 

give a clear understanding of the relationship between the Input variables and the Yield Strength 

of Ferritic Steel Welds. These pieces of information are very valuable for design, as well 
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as understanding the existing theory and also guiding about new research and new finding for 

the Ferritic steel Welds.    

The 3D contour plots show the relationship between the two Input variables with Yield Strength. 

There is a total combination of 136 3D contour plots formed by 17 Input variables  with the 

Yield Strength. In the present work, 18 3D contour plots are given with their important 

relationship with the Yield Strength. These 3D contour plots show some hidden complex 

behaviour of the input variables with the Yield Strength which is not available and not well 

understood . Some innovative theoretical relations can be established by the proper interpretation 

of these 3D contour plots which become the new knowledge base for the future work on Ferritic 

Steel Welds. The Input variables show complex trends because during welding, there are 

formation of various types of the microstructures in Ferritic Steel Welds, qualitatively and 

quantitatively. 

The trained BNN and GRNN models give the accurate  predictions of unseen data which is 

useful in designing the Ferritic Steel Welds for the welding electrodes industries. With simply 

change the quantity of Input variables in model and run it, the predicted Yield Strength is 

obtained in the seconds. 

The Genetic Algorithms method gives the prediction of the Input Variables for the Targeted 

Yield Strength value. It also predicted Input variables for the Targeted Yield Strength value 

which is beyond the range of data. The results are excellent. 
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4.2 Ultimate Tensile Strength Models 

4.2.1 Response graphs of Input variables and Ultimate Tensile Strength of 

Ferritic Steel Welds using committee model of Bayesian Neural Network 

The Trends of the Input Variables (Independent Variables)and Ultimate Tensile Strength of 

Ferritic Steel Welds are given below in the form of the graphs. 

 

 

Trends of Ultimate Tensile  Strength Model 

  

Fig a. Predicted variations in Ultimate Tensile 
Strength with Boron variation. 

Fig b. Predicted variations in Ultimate Tensile 
Strength with Carbon variation. 
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Fig c. Predicted variations in in Ultimate Tensile 
Strength with Chromium  variation. 

Fig d. Predicted variations in in Ultimate Tensile 
Strength with Copper  variation. 

  
Fig e. Predicted variations in in Ultimate Tensile 
Strength with Heat input variation. 

Fig f. Predicted variations in in Ultimate Tensile 
Strength with Interpass Temperature variation. 
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Fig g. Predicted variations in in Ultimate Tensile 
Strength with Manganese variation. 

Fig h. Predicted variations in in Ultimate Tensile 
Strength with Molybdenum variation. 

  
Fig i. Predicted variations in in Ultimate Tensile 
Strength with Niobium variation. 

Fig j. Predicted variations in in Ultimate Tensile 
Strength with Nickel variation. 
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Fig k. Predicted variations in in Ultimate Tensile 
Strength with Oxygen variation. 

Fig l. Predicted variations in in Ultimate Tensile 
Strength with Phosphorus variation. 

 
 

Fig m. Predicted variations in in Ultimate Tensile 
Strength with Post Weld Heat Treatment 
Temperature variation. 

Fig n. Predicted variations in in Ultimate Tensile 
Strength with Post Weld Heat Treatment Time 
variation. 
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Fig o. Predicted variations in in Ultimate Tensile 
Strength with Sulphur variation. 

Fig p. Predicted variations in in Ultimate Tensile 
Strength with Silicon variation. 

  

Fig q. Predicted variations in in Ultimate Tensile 
Strength with Titanium variation. 

Fig r. Predicted variations in in Ultimate Tensile 
Strength with Vanadium variation. 

 

Figure 4.4 Response graphs (a to r) of Input variables and Ultimate Tensile Strength of Ferritic 

Steel Welds using committee model of Bayesian Neural Network 
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These trends are confirmed in the present analysis as illustrated in Figure 4.4 (a to r). It is 

emphasised that these calculations are done without permitting any of the other variables to 

change. They are impossible to reproduce in practice. 

All the graphs show the error bars. The error bars are uniform in size indicate that the uniformity 

of data, like the graph the prediction of the Ultimate Tensile Strength as a function of 

Manganese.  The error bars are large in size indicate non-uniformity of data, like the graph the 

prediction of the Ultimate Tensile Strength as a function of Chromium. 

In this case, when the concentration of Nickel and Chromium is respectively below 8 and 6 wt%, 

the prediction can be reliable but above those limits (8 wt% for Ni and 6 wt% for Cr), the model 

can no more be trusted and this is inferred by the large error bars. Similarly it is applicable to 

other graphs where larger error bars are present. More experiments with concentrations in this 

range of values need to be carried out to improve the model. Uncertainty because of a lack of 

data is one of the limitations of a neural network. The error bars and output variable (Ultimate 

Tensile Strength) sometimes showing unphysical (negative) values, this is because of the 

empirical equation in Neural Network modelling. [Ref.Jun Hak, Pak] 

 

The input variables like Carbon, Chromium, Copper, Heat Input, Interpass Temperature, 

Manganese, Molybdenum, Niobium, Nickel, Titanium and Vanadium are increasing in 

concentration or in amount, increase the Ultimate Tensile Strength of ferritic Steel welds. 

The input variables like Boron, Oxygen, Post Weld Heat Treatment Time, and Sulphur increase 

quantitatively, decrease the Ultimate Tensile Strength of ferritic Steel welds. The Phosphorus has 

shown little effect on the Ultimate Tensile Strength. 

The input  variable like Post Weld Heat Treatment Temperature, and Silicon indicate their non 

linear behaviour with the Ultimate Tensile Strength.  

The trends of the graphs of Bayesian Neural network model are useful to design the Ultimate 

Tensile Strength of Ferritic Steel welds efficiently.  

In summary, a reasonable committee model has been obtained for Ultimate Tensile Strength. It 

appears that these input variables are affected on the Ultimate Tensile Strength of Ferritc Steel 

Welds, as could  be expected from a metallurgical point of view.  
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4.2.2 Response Graphs of the Ultimate Tensile Strength GRNN model 

 
Fig. a Response Graph of Ultimate Tensile Strength MPa and Carbon(wt%) 

 
Fig. b Response Graph of Ultimate Tensile Strength MPa and Silicon(wt%) 
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Fig. c Response Graph of Ultimate Tensile Strength MPa and Manganese(wt%) 

 
Fig. d Response Graph of Ultimate Tensile Strength MPa and Sulphur(wt%) 
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Fig. e Response Graph of Ultimate Tensile Strength MPa and Phosphorus(wt%) 

 
Fig. f Response Graph of Ultimate Tensile Strength MPa and Nickel(wt%) 
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Fig. g Response Graph of Ultimate Tensile Strength MPa and Chromium(wt%) 

 
Fig. h Response Graph of Ultimate Tensile Strength MPa and Molubdenum(wt%) 
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Fig. i Response Graph of Ultimate Tensile Strength MPa and Vanadium(wt%) 

 
Fig. j Response Graph of Ultimate Tensile Strength MPa and Copper(wt%) 
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Fig. k Response Graph of Ultimate Tensile Strength MPa and Oxygen(ppmw) 

 
Fig. l Response Graph of Ultimate Tensile Strength MPa and Titanium (ppm) 
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Fig. m Response Graph of Ultimate Tensile Strength MPa and Boron(ppmw) 

 
Fig. n Response Graph of Ultimate Tensile Strength MPa and Niobium(ppmw) 
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Fig. o Response Graph of Ultimate Tensile Strength MPa and Heat input (kJ mm-1) 

 
Fig. p Response Graph of Ultimate Tensile Strength MPa and Interpass 

temperature (C) 
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Figure 4.5 (a to r) Response graphs of Input variables Ultimate Tensile Strength of Ferritic Steel 

Welds 

 
Fig. q Response Graph of Ultimate Tensile Strength MPa and Post-weld heat 

treatment temperature (C) 

 
Fig. r Response Graph of Ultimate Tensile Strength MPa and Post-weld heat 

treatment time(h) 
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The influence of each of the variables on the ultimate tensile  strength of welding alloys, which is 

discussed here. The carbon increases the ultimate tensile  strength up to 635 MPa near to 0.13%, 

and the minimum at 530 MPa at 0.02%. Overall %C increases between 0.02% to 0.22%, give a 

general increase in the ultimate tensile  strength.  Some points are observed to decrease 

maximum up to 27 MPa at 0.08%C and 25 MPa at 0.198%C. In the case of silicon between 0.1% 

to 0.8%, there is an increase of the 505 MPa to 580 MPa in the ultimate tensile  strength and then 

constant to 570 MPa between 0.9% to 1.3% Si with drop in 10MPa at0. 82% Si. At 1.35%, the 

ultimate tensile  strength is maximum 625 MPa. The trend of manganese shows the increase in 

the Mn% from 0.2% to 2.08%, the value of the ultimate tensile  strength is also increased from 

478 MPa to 648 MPa.  After 2.08% Mn, there is reduced to 592 MPa at 2.4% Mn. The sulphur 

shows the first decrease in the ultimate tensile  strength from 548 MPa to 523 MPa. At  0.08%,  

it is increased from 523 MPa to 625MPa. The Phosphorus gives the increase in the ultimate 

tensile  strength from 536 MPa to 625 MPa. The nickel has the maximum ultimate tensile  

strength of 680 MPa at 5.8% and minimum 538 MPa at 1.3%. In the figure, it shows at 2.5% the 

ultimate tensile  strength value drops from 622 MPa to 605 MPa. More than 5.8 %i Ni gives a 

further drop in ultimate tensile  strength 625 MPa. The Chromium has a maximum ultimate 

tensile strength of 809 MPa between 3% to 5.5%. More than 5.5% Cr reduces the ultimate tensile 

strength to 623 MPa. Increase in the ultimate tensile strength from 538 MPa to 809 MPa only by 

the gradual addition of chromium up to 4%. Molybdenum increases the ultimate tensile strength 

from 547 MPa to 880 MPa at 1.68%. At 1.68% Mo gives a maximum ultimate tensile strength 

880 MPa. More than 1.68% Mo decreases ultimate tensile strength from 880 MPa to 625 MPa.   

Vanadium increases the ultimate tensile strength from a minimum 532 MPa to a maximum 626 

MPa at 0.17%. At 0.17% V, ultimate tensile strength is constant to 626 MPa. Copper increases 

the ultimate tensile strength from 538 MPa to 638 MPa at 1.45%. Between 0.48% to 0.74% Cu, 

the ultimate tensile strength decreases to 535 MPa. Cu gives maximum tensile strength of 638 

MPa when it is in range, from 1.45% to 2.0%. Oxygen lowers the ultimate tensile strength of 570 

MPa to 500 MPa when it is in the range of 820 ppm to 1020 ppm Oxygen content. Higher than 

1020ppm Oxygen, there is an increase in the ultimate tensile strength from 500 MPa to 625 MPa. 

Titanium gives a minimum ultimate tensile strength of 539 MPa to maximum 625 MPa. At 775 

ppm ultimate tensile strength is the highest. In between some range of Titanium from 40 ppm to 

675 ppm, up and down in range of 5 MPa to 20MPa in the ultimate tensile strength. Boron shows 
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maximum ultimate tensile strength of 587 MPa at 58 ppm. More than 58 ppm, there is an up and 

down in ultimate tensile strength between the difference of 50MPa to 20 MPa. Niobium has a 

trend of increase in ultimate tensile strength from 542 MPa to 708 MPa with an increase from 

180 to 1400 ppm.  

Heat Input has stated that the maximum ultimate tensile strength of 625 MPa at 5.5 kJ mm-1. 

Between 0.5 kJ mm-1 to 5.5 kJ mm-1 reduces from 540 MPa to 500 MPa. When the Interpass 

temperature is less than 70 C, the ultimate tensile strength is 575 MPa. More than 70 C, a 

decrease in ultimate tensile strength is observed to 513 MPa with increase in Interpass 

temperature up to 270 C. Post weld heat treatment temperature increases from 50 C to 750 C, 

shows ultimate tensile strength decrease from 596 MPa to 530 MPa. Post weld heat treatment 

time has a trend of increase in ultimate tensile strength from 500 to 539 MPa between 2 to 25 

hours. More than 25 hours, it increases maximum ultimate tensile strength to 625 MPa. 

The relationship between  the input variables and the ultimate tensile strength is a nonlinear as 

seen above in response graphs (Figure 4.5 (a to r)). 

The GRNN model has good accuracy in prediction of ultimate tensile strength of ferritic steel 

welds on unseen data which is excellent for the design of welds.(Table.4.5 ) The predicted yield 

strength for the unseen data of three weld alloys are compared with measured values of  yield 

strength shows the prediction capacity of the GRNN model. This GRNN model can be used for 

practical applications, research and development of ferritic steel alloys. 

 

4.2.3 3D Contour plots of the Ultimate Tensile Strength GRNN model 

The effect in combination of any two input variables (Independent variables) from Carbon, 

Silicon, Manganese, Sulphur, Phosphorus, Nickel, Chromium, Molybdenum, Vanadium, Copper, 

Oxygen, Titanium, Boron, Niobium, Heat_input, Interpass_temperature, Post- weld heat 

treatment temperature and  Post-weld heat treatment time on the Ultimate Tensile Strength of 

Ferritic Steel Welds are given in form of 3D contour plots. (Figure.4.6.1 to 4.6.19) 
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Figure.4.6.1  Predicted variations in Ultimate Tensile Strength (MPa)  as a function of the 

Carbon and Silicon concentrations 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure.4.6.1 shows the relations between Carbon, Silicon and Ultimate Tensile Strength by 

GRNN. The graph gives the information about how these two, Carbon and Silicon control the 

Ultimate Tensile Strength from 700MPa to 1200 MPa. 
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Figure.4.6.2 Predicted variations in Ultimate Tensile Strength (MPa)  as a function of the Carbon 

and Manganese concentrations 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure.4.6.2 shows the relations between Carbon, Manganese and Ultimate Tensile Strength by 

GRNN. The graph gives the information about how these two, Carbon and Manganese control 

the Ultimate Tensile Strength from 600MPa to 1200 MPa.  
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Figure.4.6.3  Predicted variations in Ultimate Tensile Strength (MPa)  as a function of the 

Carbon and Nickel concentrations 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure.4.6.3 shows the relations between Carbon, Nickel and Ultimate Tensile Strength by 

GRNN. The graph gives the information about how these two, Carbon and Nickel control the 

Ultimate Tensile Strength from 600MPa to 1200 MPa. 
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Figure.4.6.4  Predicted variations in Ultimate Tensile Strength (MPa)  as a function of the 

Carbon and Chromium concentrations 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure.4.6.4 shows the relations between Carbon, Chromium and Ultimate Tensile Strength by 

GRNN. The graph gives the information about how these two, Carbon and Chromium control 

the Ultimate Tensile Strength from 200MPa to 1000MPa. 
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Figure.4.6.5 Predicted variations in Ultimate Tensile Strength (MPa) as a function of the Carbon 

and Molybdenum concentrations 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure.4.6.5 shows the relations between Carbon, Molybdenum and Ultimate Tensile Strength 

by GRNN. The graph gives the information about how these two, Carbon and Molybdenum 

control the Ultimate Tensile Strength from 200MPa to 800MPa. 
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Figure.4.6.6 Predicted variations in Ultimate Tensile Strength (MPa) as a function of the Carbon 

and Vanadium concentrations 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure.4.6.6 shows the relations between Carbon, Vanadium and Ultimate Tensile Strength by 

GRNN. The graph gives the information about how these two, Carbon and Vanadium control the 

Ultimate Tensile Strength from 600MPa to 1000MPa. 
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Figure.4.6.7 Predicted variations in Ultimate Tensile Strength (MPa) as a function of the Carbon 

and Titanium concentrations 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure.4.6.7 shows the relations between Carbon, Titanium and Ultimate Tensile Strength by 

GRNN. The graph gives the information about how these two, Carbon and Titanium control the 

Ultimate Tensile Strength from 200MPa to 1100MPa. 
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Figure.4.6.8 Predicted variations in Ultimate Tensile Strength (MPa)  as a function of the Carbon 

and Boron concentrations 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure.4.6.8 shows the relations between Carbon, Boron and Ultimate Tensile Strength by 

GRNN. The graph gives the information about how these two, Carbon and Boron control the 

Ultimate Tensile Strength from 300MPa to 1200MPa. 
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Figure.4.6.9 Predicted variations in Ultimate Tensile Strength (MPa)  as a function of the Carbon 

and Niobium concentrations 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure.4.6.9 shows the relations between Carbon Niobium and Ultimate Tensile Strength by 

GRNN. The graph gives the information about how these two, Carbon and Niobium control the 

Ultimate Tensile Strength from 600MPa to 1200MPa. 
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Figure.4.6.10 Predicted variations in Ultimate Tensile Strength (MPa)  as a function of the 

Carbon  concentration and Heat input 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure.4.6.10 shows the relations between Carbon Heat input and Ultimate Tensile Strength by 

GRNN. The graph gives the information about how these two, Carbon and Heat input control the 

Ultimate Tensile Strength from 500MPa to 1100MPa. 
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Figure.4.6.11 Predicted variations in Ultimate Tensile Strength (MPa)  as a function of the 

Carbon  concentration and Interpass temperature 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure.4.6.11 shows the relations between Carbon, Interpass temperature and Ultimate Tensile 

Strength by GRNN. The graph gives the information about how these two, Carbon and Interpass 

temperature control the Ultimate Tensile Strength from 700MPa to 1200MPa. 
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Figure.4.6.12  Predicted variations in Ultimate Tensile Strength (MPa)  as a function of the 

Carbon  concentration and Post-weld heat treatment temperature 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure.4.6.12 shows the relations between Carbon, Post-weld heat treatment temperature and 

Ultimate Tensile Strength by GRNN. The graph gives the information about how these two, 

Carbon and Post-weld heat treatment temperature control the Ultimate Tensile Strength from 

600MPa to 1100MPa. 
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Figure.4.6.13 Predicted variations in Ultimate Tensile Strength (MPa)  as a function of the 

Carbon  concentration and Post-weld heat treatment time 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure.4.6.13 shows the relations between Carbon, Post-weld heat treatment time and Ultimate 

Tensile Strength by GRNN. The graph gives the information about how these two, Carbon and 

Post-weld heat treatment time control the Ultimate Tensile Strength from 600MPa to 1200MPa. 
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Figure.4.6.14 Predicted variations in Ultimate Tensile Strength (MPa)  as a function of the 

Nickel and Chromium concentrations 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure.4.6.14 shows the relations between Nickel, Chromium and Ultimate Tensile Strength by 

GRNN. The graph gives the information about how these two, Nickel and Chromium control the 

Ultimate Tensile Strength from 400MPa to 1200MPa 
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Figure.4.6.15 Predicted variations in Ultimate Tensile Strength (MPa)  as a function of the 

Molybdenum and Vanadium concentrations 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure.4.6.15 shows the relations between Molybdenum, Vanadium and Ultimate Tensile 

Strength by GRNN. The graph gives the information about how these two, Molybdenum and 

Vanadium control the Ultimate Tensile Strength from 100MPa to 800MPa 
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Figure.4.6.16 Predicted variations in Ultimate Tensile Strength (MPa)  as a function of the 

Oxygen and Titanium concentrations 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure.4.6.16 shows the relations between Oxygen, Titanium and Ultimate Tensile Strength by 

GRNN. The graph gives the information about how these two, Oxygen and Titanium control the 

Ultimate Tensile Strength from 600MPa to 800MPa. 
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Figure.4.6.17  Predicted variations in Ultimate Tensile Strength (MPa)  as a function of the 

Boron and Niobium concentrations 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure.4.6.17 shows the relations between Boron, Niobium and Ultimate Tensile Strength by 

GRNN. The graph gives the information about how these two, Boron and Niobium control the 

Ultimate Tensile Strength from 500MPa to 1200MPa. 
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Figure.4.6.18  Predicted variations in Ultimate Tensile Strength (MPa)  as a function of the Heat 

input and Interpass temperature 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure.4.6.18 shows the relations between the Heat input, Interpass temperature and Ultimate 

Tensile Strength by GRNN. The graph gives the information about how these two, the Heat 

input and Interpass temperature control the Ultimate Tensile Strength from 500MPa to 800MPa. 
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Figure.4.6.19  Predicted variations in Ultimate Tensile Strength (MPa)  as a function of the Post-

weld heat treatment temperature and Post-weld heat treatment temperature time 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure.4.6.19 shows the relations between the Post-weld heat treatment temperature, Post-weld 

heat treatment temperature time and Ultimate Tensile Strength by GRNN. The graph gives the 

information about how these two, the Post-weld heat treatment temperature and Post-weld heat 

treatment time control the Ultimate Tensile Strength from 600MPa to 1200MPa. 
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Figure 4.6.1. UTS (z) - Si (y) - C (x) 3D plot. 

Figure 4. 6.1. shows the increase in the Ultimate Tensile Strength from 700 MPa to 1200 MPa 

with increase in the concentration of both Carbon and Silicon. The increase in the Ultimate 

Tensile Strength is also achieved by keeping Carbon constant and Silicon concentration varies 

and vice versa. The contour of Ultimate Tensile Strength 700 MPa has a wt% Carbon in range 

from 0.116% to 0.144% and wt% Silicon in the range from 0.8% to 1.18%. The trends of the 

both independent variables are not simple, but more flexible for designing the Ultimate Tensile 

Strength in wide range as shown in the plot from less than 700 MPa to 1200 MPa. 

Figure 4.6.2. UTS (z) - Mn (y) - C (x) 3D plot. 

Figure 4. 6.2. shows the contour of Ultimate Tensile Strength 600 MPa with the Carbon in the 

range from 0.01% to 0.104% and the Manganese in the range from 0.72% to 1.44%. The 

increase in the Ultimate Tensile Strength is achieved outside the 600 MPa contour by keeping 

Manganese  constant and Carbon concentration varies and vice versa. The concentration of  %C 

and %Mn give the Ultimate Tensile Strength in wide range from less than 600MPa to 1200 MPa. 

The trends of both the independent variables are less complex and flexible for designing the 

Ultimate Tensile Strength. 

Figure 4. 6.3. UTS (z) - Ni (y) - C (x) 3D plot. 

Figure 4. 6.3. shows the increase in the Ultimate Tensile Strength from 600 MPa to 1200 MPa 

with an increase in the concentrations of both Carbon and Nickel. The increase in the Ultimate 

Tensile Strength is also achieved by keeping Carbon constant and Nickel concentration varies 

and vice versa. The higher value of Ultimate Tensile Strength 1200 MPa is obtained with %wt C 

in the range from 0.128% to0.24% and %wt Ni in the range from 6.4% to 12%.  The trends of 

both the independent variables are less complex and flexible for designing the Ultimate Tensile 

Strength. 

Figure 4. 6.4. UTS (z) - Cr (y) - C (x) 3D plot. 

Figure 4. 6.4. shows the increase in the Ultimate Tensile Strength from 800 MPa to more than 

1000 MPa with the increase and decrease in the concentrations Chromium from 0% to 13.8% 

and the increase in concentrations of  Carbon from 0.065% to 0.24%. The Chromium in the 
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range from 9.4% to 14% and Carbon in the range from 0% to 0.198% decrease the Ultimate 

Tensile Strength from 600MPa to less than 200 MPa. The Ultimate Tensile Strength 

800MPa is obtained with %wt C in the range from 0.066% to 0.24% and %wt Cr in the range 

from 0% to 14%. The Ultimate Tensile Strength 1000 MPa and higher are obtained with %wt C 

in the range from 0.179% to 0.24% and %wt Cr in the range from 1.70% to 11.6%. The 

independent variables Carbon and Chromium both have a wide range for designing the Ultimate 

Tensile Strength between  600 MPa to 800 MPa. The trends of both the independent variables 

are complex for designing the Ultimate Tensile Strength 1000 MPa and higher. 

Figure 4. 6.5. UTS (z) - Mo (y) - C (x) 3D plot 

Figure 4. 6.5. shows the Ultimate Tensile Strength 600 MPa and higher are obtained with %wt C 

in the range from 0% to0.24% and %wt Mo in the range from 0% to 1.8%. The Ultimate Tensile 

Strength 800 MPa and higher are obtained with %wt C in the range from 0.14% to0.24% and 

%wt Mo in the range from 0.16% to 1.25%. The content of %wt Mo more than 1.8% and  %wt C 

in the range from 0% to 0.24% decrease the Ultimate Tensile Strength from 600 MPa to less than 

200 MPa. The trends of both the independent variables are complex for designing the Ultimate 

Tensile Strength with a wide range of combinations available. 

Figure 4.6.6 UTS (z) - V (y) - C (x) 3D plot 

Figure 4.6.6. shows the Ultimate Tensile Strength values 800 MPa and more than 800MPa are 

observed in the left side and right side of the graph. Right side of the graph has almost full range 

of the Vanadium from 0% to 0.35% and the Carbon from 0.1% to 0.24%. Left side of the graph 

has the range of Vanadium from 0.101% to 0.335%  and the Carbon from 0% to 0.066%.  The 

Ultimate Tensile Strength 900MPa and higher are obtained with the range of %wt V from 0% to 

0.35% and by maintaining the Carbon, in the range from 0.184% to 0.24%. The Ultimate Tensile 

Strength 1000MPa and higher are obtained with the range of %wt V from 0.065% to 0.26% and 

the %wt C in the range from 0.224% to 0.24%. The Upper side and bottom side of the plot show 

the contours of the decrease in the Ultimate Tensile Strength from 700MPa and less than 

700MPa. Both the independent variables have a complex relationship with the Ultimate Tensile 

Strength. The trends of the independent variables is significant for designing the Ultimate 

Tensile Strength. 
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Figure 4. 6.7. UTS (z) - Ti (y) - C (x) 3D plot    

Figure 4. 6.7 shows the decrease in the Ultimate Tensile Strength from 600 MPa to 200 MPa 

with an increase in the concentration of both Carbon and Titanium. The Ultimate Tensile 

Strength 700 MPa and more than 1100 MPa are obtained with %wt C in the range from 0% to 

0.074% and Titanium ppm in the range from 160 ppm to 900 ppm.  The Ultimate Tensile 

Strength 700 MPa and more than 1000 MPa are also achieved with %wt C in the range from 

0.129% to 0.24% and Titanium ppm in the range from 0 ppm to 310 ppm. Selection of these two 

independent variables is very important for the design of the Ultimate Tensile Strength. Because 

both the independent variables have a nonlinear complex relationship with the Ultimate Tensile 

Strength. 

Figure 4. 6.8. UTS (z) - B (y) - C (x) 3D plot    

Figure 4. 6.8 shows the contours of the Ultimate Tensile Strength increase from 300 MPa to 

1200 MPa with an increase in wt% C in the range from 0% to 0.24% and Boron ppm in the range 

from 0 ppm to 220 ppm. The increase in the Ultimate Tensile Strength is achieved by keeping 

Boron ppm constant and Carbon concentration varies in the range from 0% to 0.24%. The 

increase Ultimate Tensile Strength is obtained by maintaining the increase wt% C and the 

constant Boron ppm and vice versa.  The trends of both the independent variables are not 

complex for designing the Ultimate Tensile Strength. 

Figure 4. 6.9 UTS (z) - Nb (y) - C (x) 3D plot    

Figure 4. 6.9 shows the increase in the Ultimate Tensile Strength from 800 MPa to 1200 MPa 

with an increase in the concentration of both Carbon and Niobium. The Ultimate Tensile 

Strength 800 MPa and more than 1200 MPa are obtained with %wt C in the range from 0.086% 

to 0.24%C and Niobium ppm in the range from 0 ppm to 2000 ppm. In this range 800 MPa to 

1200 MPa is obtained by keeping the Nb ppm constant and varying the wt% of Carbon. The 

decrease in the Ultimate Tensile Strength from less than 700 MPa to less than 700 MPa are 

obtained with %wt C less than 0.146%  and Niobium ppm in the range from 0 ppm to 560 ppm 

at bottom contour of 700 MPa. The decrease in the Ultimate Tensile Strength from less than 700 

MPa to 600 MPa are obtained with %wt C less than 0.064%  and Niobium ppm in the range from 

1260 ppm to 2000 ppm at upper left corner of the graph. Both the independent variables have a 
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complex relationship with the Ultimate Tensile Strength. The trends of the independent variables 

are significant for designing the Ultimate Tensile Strength. 

Figure 4. 6.10 UTS (z) - HI (y) - C (x) 3D plot    

Figure 4. 6.10 shows the increase in the Ultimate Tensile Strength from 700 MPa to 1100 MPa 

with an increase in the concentration of both Carbon and Heat input. The Ultimate Tensile 

Strength 700 MPa and more than 1100 MPa are obtained with %wt C in the range from 0.114% 

to 0.24%C and Heat input kJmm-1 in the range from 0 kJmm-1 to 9 kJmm-1. In this range 700 

MPa to 1000 MPa is obtained by keeping the Heat input constant and varying the wt% of 

Carbon. But for the Ultimate Tensile Strength 1100 MPa and higher is obtained with the Heat 

input in the range from 2.6 kJmm-1 to 5.7 kJmm-1 and the wt% C in the range from 0.236% to 

0.24%. The decrease in the Ultimate Tensile Strength from less than 700 MPa to less than 500 

MPa are obtained with %wt C less than 0.114%  and the Heat input in the range from 0 kJmm-1 

to 9 kJmm-1. Both the independent variables have a complex relationship with the Ultimate 

Tensile Strength. The trends of the independent variables are significant for designing the 

Ultimate Tensile Strength. 

Figure 4. 6.11 UTS (z) - IPT (y) - C (x) 3D plot    

Figure 4. 6.11 shows the contour of Ultimate Tensile Strength 700 MPa with the Carbon in the 

range from 0% to 0.146% and the Interpass temperature in the range from 45 C to 330 C. The 

increase in the Ultimate Tensile Strength is achieved outside the 700 MPa contour by keeping 

Interpass temperature constant and increasing Carbon concentration. The decrease  in the 

Ultimate Tensile Strength is achieved outside the 700 MPa contour by keeping Carbon 

concentration constant and increasing the Interpass temperature. The concentration of  the 

Carbon and the Interpass temperature combinations give the Ultimate Tensile Strength in wide 

range from less than 700MPa to 1200 MPa. The trends of both the independent variables are a 

complex and flexible for designing the Ultimate Tensile Strength. The trends of the independent 

variables are significant for designing the Ultimate Tensile Strength. 

Figure 4. 6.12 UTS (z) - PWHTT(y) - C (x) 3D plot    

Figure 4, 6,12 shows the contour of Ultimate Tensile Strength 600 MPa with the Carbon in the 

range from 0.006% to 0.106% and the Post Weld Heat Treatment Temperature in the range from 
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250 C to 560 C. The increase in the Ultimate Tensile Strength from 700 MPa to 1100 MPa are 

achieved outside the 600 MPa contour by an increasing both the %Carbon in the range from 

0.106% to 0.24% and the Post Weld Heat Treatment Temperature in the range from 300 C to 800 

C. The Ultimate Tensile Strength less than 600 MPa is obtained inside the contour of 600 MPa. 

Below the Post Weld Heat Treatment Temperature 300 C, the Ultimate Tensile Strength values 

are obtained in the range more than 600 MPa to 800 MPa with a full range of wt% C from 0% to 

0.24%. Both independent variables show complexity in their trends. The independent variables 

are significant for designing the Ultimate Tensile Strength. 

Figure 4. 6.13 UTS (z) – PWHTtime (y) - C (x) 3D plot    

Figure 4. 6.13 shows the contour of Ultimate Tensile Strength 600 MPa with the Carbon in the 

range from 0% to 0.084% and the Post Weld Heat Treatment Time in the range from 16 h to 60 

h. The increase in the Ultimate Tensile Strength from 700 MPa to 1000 MPa are achieved 

outside the 600 MPa contour by an increasing both the %Carbon in the range from 0.084%  to 

0.232% and the Post Weld Heat Treatment Time in the range from 0 h to 60 h. The Ultimate 

Tensile Strength 1100 MPa and higher are achieved  with wt% C in the range from 0.218% to 

0.24% and Post Weld Heat Treatment Time in the range from 35 h to 60 h. The Ultimate Tensile 

Strength less than 600 MPa is obtained inside the contour of 600 MPa. The increase in the 

Ultimate Tensile Strength is achieved more than 600 MPa to 1000 MPa by keeping Post Weld 

Heat Treatment Time constant and increasing Carbon concentration. The trends of both the 

independent variables are less complex and flexible for designing the Ultimate Tensile Strength. 

Figure 4. 6.14 UTS (z) - Cr (y) - Ni (x) 3D plot    

Figure 4. 6.14 shows the increase in the Ultimate Tensile Strength from 600 MPa to 1200 MPa 

with equally increase in wt% Chromium from 0% to 4.4%  and wt% Nickel from 0% to 4.4%. 

The increase in the Ultimate Tensile Strength is also achieved by keeping Chromium constant 

and Nickel concentration varies and vice versa. Both independent variables show complexity and 

uniqueness in their trends. The independent variables are significant for designing the Ultimate 

Tensile Strength. 
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Figure 4. 6.15 UTS (z) - V (y) - Mo (x) 3D plot    

Figure 4. 6.15 shows the contour of Ultimate Tensile Strength 800 MPa with the Molybdenum in 

the range from 0% to 1.14% and the Vanadium in the range from 0.135% to 0.35%. More than 

800 MPa Ultimate Tensile Strength is obtained inside the contour of 800MPa.The decrease in the 

Ultimate Tensile Strength from 700 MPa to 100 MPa are obtained by keeping Vanadium 

concentration constant and increasing Molybdenum concentration. The Molybdenum less than 

0.44% and more than 1.38% decreases the Ultimate Tensile Strength. Both independent variables 

show complexity in their trends. The independent variables are significant for designing the 

Ultimate Tensile Strength. 

Figure 4. 6.16 UTS (z) - Ti (y) - O (x) 3D plot    

Figure 4. 6.16 shows the contour of Ultimate Tensile Strength 600 MPa with the Oxygen in the 

range from 410 ppm to 1620 ppm and the Titanium in the range from 0 ppm to 670 ppm. Inside 

the 600 MPa contour the Values of the  Ultimate Tensile Strength  are less than 600 MPa for the 

combinations of the Oxygen ppm and the Tianium ppm. The increase in the Ultimate Tensile 

Strength is achieved outside the 600 MPa contour by keeping Oxygen in the range between 0 

ppm to 410 ppm and Titanium in the range between 0 ppm to 900 ppm concentration. The 

increase in the  Ultimate Tensile Strength 700 MPa, 800 MPa and higher are achieved with 

increase in the Oxygen in the range from 1240 ppm to 1800 ppm and in the Titanium in the 

range from 370 ppm to 900 ppm. Tensile Strength. Both independent variables show complexity 

in their trends. The independent variables are significant for designing the Ultimate Tensile 

Strength. 

Figure 4. 6.17 UTS (z) - Nb (y) - B (x) 3D plot  

 Figure 4. 6.17 shows the increase in the Ultimate Tensile Strength from 700 MPa to 1200 MPa 

with an increase in the Niobium from 200 ppm to 1200 ppm and the Boron from 40 ppm to 140 

ppm. The increase in the Ultimate Tensile Strength is also achieved by keeping Niobium 

constant and Boron concentration varies and vice versa. These trends are observed for higher 

values of both the Niobium in range, from 800 ppm to 2000 ppm and the Boron in the range 

from 80 ppm to 220 ppm. The Ultimate Tensile Strength 600 MPa and less is obtained with the 

Niobium in the range from 0 ppm to 120 ppm and the Boron in the range from 65 ppm to 220 
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ppm. Both independent variables show complexity and uniqueness in their trends. The 

independent variables are significant for designing the Ultimate Tensile Strength. 

 

Figure 4. 6.18 UTS (z) - ITP (y) - HI (x) 3D plot  

 Figure 4.6.18 shows the Ultimate Tensile Strength values 700 MPa and more than 700MPa are 

observed in the upper side and bottom side of the graph. Right side of the graph has the range of 

the Interpass Temperature from 25 C to 365 C and the Heat Input from 5.7 kJmm-1 to 9 kJmm-1. 

Left side of the graph has the range of the Interpass Temperature from 140 C to 250 C and the 

Heat Input from 0 kJmm-1 to 0.6 kJmm-1. The Ultimate Tensile Strength 800MPa and higher 

are obtained with the range of the Interpass Temperature from 320 C to 400 C and by 

maintaining the Heat Input, in the range from 0 kJmm-1 to 6.5 kJmm-1 at the upper side of the 

plot. The Ultimate Tensile Strength 800MPa and higher are obtained with the range of the 

Interpass Temperature from 0 C to 20 C and by maintaining the Heat Input, in the range from 0.7 

kJmm-1 to 5.7 kJmm-1 at the bottom side of the plot. The Upper side and bottom side of the plot 

show the contours of the increase in the Ultimate Tensile Strength from 700MPa and more than 

700MPa. Both the independent variables have a complex relationship with the Ultimate Tensile 

Strength. The trends of the independent variables are significant for designing the Ultimate 

Tensile Strength. 

Figure 4.7.19 UTS (z) - PWHTt (y) - PWHTT (x) 3D plot    

Figure 4.7.19 shows the increase in the Ultimate Tensile Strength from 600 MPa to 1200 MPa 

with the increase in the Post Weld Heat Treatment Time in the range from 0 h to 60 h and the 

decrease in the Post Weld Heat Treatment Temperature in the range from 630 C to 0 C. The 

increase in the Ultimate Tensile Strength from 600 MPa to 800 MPa with the decrease in the 

Post Weld Heat Treatment Time in the range from 39 h to 0 h and the increase in the Post Weld 

Heat Treatment Temperature in the range from 575 C to 800 C at the bottom right corner of the 

graph. Both the independent variables have a complex relationship with the Ultimate Tensile 

Strength. The trends of the independent variables are significant for designing the Ultimate 

Tensile Strength. 
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4.2.4. Application of Trained Best Models 

4.2.4.1 Prediction of The Ultimate Tensile Strength on unseen data by BNN 

Model  

The BNN model has good accuracy in prediction of ultimate tensile strength of ferritic steel 

welds on unseen data which is excellent for the design of welds. (Table.4.4) The predicted 

ultimate tensile strength of the unseen data of three weld alloys are compared with measured 

values of  ultimate tensile strength shows the prediction capacity of the BNN model. This BNN 

model can be used for practical applications, research and development of ferritic steel alloys. 

Table 4.4 Predicted Ultimate Tensile strength by BNN model for unseen data of three ferritic 

weld deposits 

Variable Weld alloy 1 Weld alloy 2 Weld alloy 3 

Carbon(wt%) 
0.041 

 
0.088 0.11 

Silicon(wt%) 
0.3 

 
0.35 0.28 

Manganese(wt%) 
0.62 

 
0.54 0.6 

Sulphur(wt%) 0.007 0.007 0.007 

Phosphorus(wt%) 
0.010 

 
0.009 0.016 

Nickel(wt%) 2.38 7.0 10.62 
Chromium(wt%) 0.03 0.15 1.13 

Molybdenum(wt%) 0.005 0.4 0.3 
Vanadium(wt%) 0.012 0.016 0.006 

Copper(wt%) 0.03 0.01 0.3 
Oxygen(ppm) 440 290 290 
Titanium(ppm) 55 0.0 0.0 

Boron(ppm) 2.0 1.0 1.0 
Niobium(ppm) 20 10 10 

Heat_input(kJ.mm-1) 1.0 1.4 1.4 
Interpass_temperature(C) 200 150 200 

Postweld_heat_treatment_temperature(C) 250 250 250 
Post-weld_heat_treatment_time(h) 14 16 16 

Measured UTS/MPa 538 972 1194 
Predicted UTS/MPa 523.44 

 
978.12 

1176.12 
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4.2.4.2 Prediction of The Ultimate Tensile Strength on unseen data by GRNN 

Model  

The GRNN model has good accuracy in prediction of ultimate tensile strength of ferritic steel 

welds on unseen data which is excellent for the design of welds. (Table.4.5) The predicted 

ultimate tensile strength of the unseen data of three weld alloys are compared with measured 

values of  ultimate tensile strength shows the prediction capacity of the GRNN model. This 

GRNN model can be used for practical applications, research and development of ferritic steel 

alloys. 

Table 4.5  Predicted Ultimate Tensile strength by GRNN model for unseen data of three ferritic 

weld deposits 

Variable Weld alloy 1 Weld alloy 2 Weld alloy 3 

Carbon(wt%) 
0.041 

 
0.088 0.11 

Silicon(wt%) 
0.3 

 
0.35 0.28 

Manganese(wt%) 
0.62 

 
0.54 0.6 

Sulphur(wt%) 0.007 0.007 0.007 

Phosphorus(wt%) 
0.010 

 
0.009 0.016 

Nickel(wt%) 2.38 7.0 10.62 
Chromium(wt%) 0.03 0.15 1.13 

Molybdenum(wt%) 0.005 0.4 0.3 
Vanadium(wt%) 0.012 0.016 0.006 

Copper(wt%) 0.03 0.01 0.3 
Oxygen(ppm) 440 290 290 
Titanium(ppm) 55 0.0 0.0 

Boron(ppm) 2.0 1.0 1.0 
Niobium(ppm) 20 10 10 

Heat_input(kJ.mm-1) 1.0 1.4 1.4 
Interpass_temperature(C) 200 150 200 

Postweld_heat_treatment_temperature(C) 250 250 250 
Post-weld_heat_treatment_time(h) 14 16 16 

Measured UTS/MPa 538 972 1194 
Predicted UTS/MPa 538 978 1183 

 

Prediction of  The Ultimate Tensile Strength for new data of input variables can be achieved 

accurately with best trained models by BNN and GRNN as given in above Table 4.4. and Table 

4.5. These Models have capacity for changing any individual input variable, any combination of 

more than one input variables or all input variables to predict the The Ultimate Tensile Strength 

of Ferritic Steel Welds. These are only possible with the BNN and GRNN Models which are 

impossible practically. By simply running these Models the various design of the Ferritic Steel 

Welds are possible which save money, time and labour during Research and Development of the 

Ferritic Steel Welds. 
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4.2.5 Genetic Algorithms and applications to the Ultimate Tensile 

Strength of Ferritic Steel Welds  

 

4.2.5.1 Target Ultimate tensile strength of 538 MPa and High value 

of Ultimate tensile strength 1300 MPa 

 
The first simulation is made to check the behaviour of the genetic algorithm. The target 

value of ultimate tensile strength is set to -0.7. which correspond to an unnormalised value 

of 538 MPa. The dataset provides such values of yield strength and the aim of this 

simulation is to check the results of the genetic algorithm.. The 18 parameters(input 

variables)  are allowed to vary, in between -1 and + 1 during the genetic algorithm process. 

After 3000 generations, the best results obtained is shown Table 4.6.  

 

The second simulation is made to check the genetic algorithm for high value of the 

Ultimate tensile strength.. The target value of ultimate tensile strength is set to 0.13 which 

correspond to an unnormalised value of 1300 MPa. The dataset does not provide such 

value of ultimate tensile strength and the aim of this simulation is to check the results of 

the genetic algorithm.. The 18 parameters (input variables) are allowed to vary, in between 

-1 and + 1 during the genetic algorithm process. After 3000 generations, the best results 

obtained are shown Table 4.6.  

 According to Table 4.6, the genetic algorithm has managed to reach the target after 

3000 generations.  

Moreover, the associated error obtained is very reasonable.  

To check if the given input variables correspond to Ferritic Steel Weld, compare with 

the actual data of Ultimate tensile strength. 
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Table 4.6  Predicted Input variables by NN-GA model for two targeted Ultimate Tensile Strength 

of ferritic weld deposits  

Variable Weld 1 Weld 1 Weld  2 

 Result GA Data  Result GA 

Carbon(wt%) 0.04 
0.041 

 
0.098 

Silicon(wt%) 
0.28 

 

0.3 

 
0.35 

Manganese(wt%) 
0.59 

 

0.62 

 
0.74 

Sulphur(wt%) 0.007 0.007 0.007 

Phosphorus(wt%) 
0.010 

 

0.010 
 

0.009 

Nickel(wt%) 2.24 2.38 8.0 
Chromium(wt%) 0.03 0.03 0.25 

Molybdenum(wt%) 0.006 0.005 0.4 
Vanadium(wt%) 0.014 0.012 0.02 

Copper(wt%) 0.03 0.03 0.01 
Oxygen(ppm) 436 440 290 
Titanium(ppm) 52 55 55 

Boron(ppm) 2.0 2.0 1.0 
Niobium(ppm) 20 20 20 

Heat_input(kJ.mm-1) 1.1 1.0 1.4 
Interpass_temperature(C) 210 200 150 

Postweld_heat_treatment_temperature(C) 240 250 250 
Post-weld_heat_treatment_time(h) 13 14 16 

GA calculated  UTS/MPa 534 --- 1281 

Target Value UTS/MPa 538 --- 1300 
Error UTS/MPa 28 --- 45 

Measured UTS/MPa --- 538 --- 

 

The NNGA models have good accuracy in predicting 18 input variables of the Ultimate Tensile 

Strength of ferritic steel welds, which is excellent for weld design.(Table.4.6) The predicted resul

ts  of the targeted values of the two weld deposits are very close. The results of Genetic 

Algorithms  are match with trends of measured data and fundamental of metallurgy. The output 

results show the predictive capacity of the NNGA model.  

This NNGA model can be used in practical applications, research and development of ferritic ste

el alloys. [Appendix-B] 
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4.2.6 Summary 

The Neural Network and Genetic algorithms Methods have been used for efficient design of the 

Ultimate Tensile strength of Ferritic Steel Welds. From the Modelling works and  Results and 

Discussion of this Chapter some useful conclusions can be drawn: 

The distribution of the Data of the Ultimate Tensile Strength of Ferritic Steel Welds is uniform 

for some Inpurt variables and non-uniform for some Inpurt variables. The distribution is clearly 

observed in Scatter plots. 

In this case, of Bayesian Neural Network method, all the response graphs show error bars when 

the concentration of Nickel and Chromium is respectively below 8 and 6 wt%, the prediction can 

be reliable but above those limits (8 wt% for Ni and 6 wt% for Cr), the model can no more be 

trusted and this is inferred by the large error bars. Similarly it is applicable to other graphs where 

larger error bars are present. More experiments with concentrations in this range of values need 

to be carried out to improve the model. Uncertainty because of a lack of data is one of the 

limitations of a neural network. The error bars and output variable (Ultimate Tensile Strength) 

sometimes showing unphysical (negative) values, this is because of the empirical equation in 

Neural Network  modelling. This error bars feature of Bayesian Neural Network is excellent 

guideline for research and Development. 

In the case of General Regression Neural Network method, there is no problems of noisy data. It 

can handle noises in the Inputs. The Response graphs of the GRNN show more define about the 

non linearity or complexity between the Input variables and the Ultimate Tensile Strength of 

Ferritic Steel Welds.  

The Response Graphs show about  the individual relationship between the input variables and 

Output variable (Ultimate Tensile Strength). The 3D contour plots show the relationship between 

the two Input variables with Output variable (Ultimate Tensile Strength).  

These trends are confirmed in the present analysis as illustrated in both the types of the Graphs 

Figure 4.4 (a to r) and Figure 4.5 (a to r). They are impossible to reproduce in practice. They give 

a clear understanding of the relationship between the Input variables and the Ultimate Tensile 

Strength of Ferritic Steel Welds. These pieces of information are very valuable for design, as 

well as understanding the existing theory and also guiding about new research and new finding 

for the Ferritic steel Welds. 

The 3D contour plots show the relationship between the two Input variables with Ultimate 

Tensile Strength. There is a total combination of 153 3D contour plots formed by 18 Input 

variables  with the Ultimate Tensile Strength. In the present work, 19 3D contour plots are 

selected with their important relationship with the Ultimate Tensile Strength. These 3D contour 

plots show some hidden complex behaviour of the input variables with the Ultimate Tensile 

Strength which is not available and not well understood . Some innovative theoretical relations 
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can be established by the proper interpretation of these 3D contour plots which become the new 

knowledge base for the future work on Ferritic Steel Welds. The Input variables show complex 

trends because during welding, there are formation of various types of the microstructures in 

Ferritic Steel Welds, qualitatively and quantitatively. 

The trained BNN and GRNN models give the accurate  predictions of unseen data which is 

useful in designing the Ferritic Steel Welds for the welding electrodes industries. With simply 

change the quantity of Input variables in model and run it, the predicted Ultimate Tensile Stength 

is obtained in the seconds. 

The Genetic Algorithms method gives the prediction of the Input Variables for the Targeted  

Ultimate Tensile Strength value. It also predicted Input variables for the Targeted Ultimate 

Tensile Strength value which is beyond the range of data. The results are excellent. 
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4.3 Elongation Models 

4.3.1 Response graphs of Input variables and Elongation of Ferritic Steel 

Welds using committee model of Bayesian Neural Network 

The Trends of the Input Variables (Independent Variables)and Elongation of Ferritic Steel Welds 

are given below in the form of the graphs. 

Trends of Elongation Model 

 

 

Fig a. Predicted variations in Elongation with Boron 
variation. 

Fig b. Predicted variations in Elongation with 
Carbon variation. 
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Fig c. Predicted variations in in Elongation with 

Chromium  variation. 
Fig d. Predicted variations in in Elongation with 

Copper  variation. 

 

 

Fig e. Predicted variations in in Elongation with 
Heat input variation. 

Fig f. Predicted variations in in Elongation with 
Interpass Temperature variation. 
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Fig g. Predicted variations in in Elongation with 

Manganese variation. 
Fig h. Predicted variations in in Elongation with 

Molybdenum variation. 

  

Fig i. Predicted variations in in Elongation with 
Niobium variation. 

Fig j. Predicted variations in in Elongation with 
Nickel variation. 
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Fig k. Predicted variations in in Elongation with 

Oxygen variation. 
Fig l. Predicted variations in in Elongation with 

Phosphorus variation. 

  
Fig m. Predicted variations in in Elongation with 

Post Weld Heat Treatment Temperature variation. 
Fig n. Predicted variations in in Elongation with 

Post Weld Heat Treatment Time variation. 
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Fig o. Predicted variations in in Elongation with 
Sulphur variation. 

Fig p. Predicted variations in in Elongation with 
Silicon variation. 

  

Fig q. Predicted variations in in Elongation with 
Titanium variation. 

Fig r. Predicted variations in in Elongation with 
Vanadium variation. 

 

Figure 4.7 (a to r)  Response graphs of Input variables and Elongation of Ferritic Steel Welds 

using committee model of Bayesian Neural Network 
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These trends are confirmed in the present analysis as illustrated in Figure 4.7 (a to r). It is 

emphasised that these calculations are done without permitting any of the other variables to 

change. They are impossible to reproduce in practice. 

All the graphs show the error bars. The error bars are uniform in size indicate that the uniformity 

of data, like the graph the prediction of the Elongation, as a function of Manganese.  The error 

bars are large in size indicate non-uniformity of data, like the graph the prediction of the 

Elongation as a function of Chromium. 

In this case, when the concentration of Nickel and Chromium is respectively below 8 and 6 

wt%, the prediction can be reliable. But above those limits (7 wt% for Ni and 6 wt% for Cr), 

the model can no more be trusted and this is inferred by the large error bars. Similarly it is 

applicable to other graphs where larger error bars are present. More experiments with 

concentrations in this range of values need to be carried out to improve the model. 

Uncertainty because of a lack of data is one of the limitations of a neural network. The 

error bars and output variable (Elongation) sometimes showing unphysical (negative) values, 

this is because of the empirical equation in Neural Network  modelling.  

The input variables like Interpass Temperature, and Sulphur are increasing in concentration or in 

amount, increase the Elongation of ferritic Steel welds. The Sulphu has shown an increase on the 

Elongation too high 62% which is not reliable. 

The input variables like Boron, Carbon, Copper, Manganese, Niobium, Oxygen, and Silicon 

increase in content or in amount quantitatively, decrease the Elongation of ferritic Steel welds. 

The Phosphorus has shown an increase on the Elongation too high 58% which is not reliable. 

The input variable like Chromium, Heat Input, Molybdenum, Nickel, Post Weld Heat Treatment 

Temperature, Post Weld Heat Treatment Time, Titanium and Vanadium indicate their non linear 

behaviour with the Elongation.  

The trends of the graphs of Bayesian Neural network model are useful to design the Elongation  

of Ferritic Steel welds efficiently.  
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In summary, a reasonable committee model has been obtained for Yield Strength. It appears that 

these input variables are affected on the Elongation of Ferritc Steel Welds, as could  be expected 

from a metallurgical point of view.  
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4.3.2 Response Graphs  of the Elongation GRNN model 

 
Fig. a Response Graph of Elongation % and Carbon(wt%) 

 
Fig. b Response Graph of Elongation % and Silicon(wt%) 
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Fig. c Response Graph of Elongation % and Manganese(wt%) 

 
Fig. d Response Graph of Elongation % and Sulphur(wt%) 
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Fig. e Response Graph of Elongation % and Phosphorus(wt%) 

 
Fig. f Response Graph of Elongation % and Nickel(wt%) 
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Fig. g Response Graph of Elongation % and Chromium(wt%) 

 
Fig. h Response Graph of Elongation % and Molybdenum(wt%) 
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Fig. i Response Graph of Elongation % and Vanadium(wt%) 

 
Fig. j Response Graph of Elongation % and Copper(wt%) 
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Fig. k Response Graph of Elongation % and Oxygen(ppmw) 

 
Fig. l Response Graph of Elongation % and Titanium(ppm) 
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Fig. m Response Graph of Elongation % and Boron(ppm) 

 
Fig. n Response Graph of Elongation % and Niobium(ppmw) 
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Fig. o Response Graph of Elongation % and Heat input(kJ mm-1) 

 
Fig. p Response Graph of Elongation % and Interpass temperature(C) 
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Figure 4.8 (a to r) Response graphs(a to r) of Input variables Elongation of Ferritic Steel Welds 

 
Fig. q Response Graph of Elongation % and Post-weld heat treatment 

temperature(oC) 

 
Fig. r Response Graph of Elongation % and Post-weld heat treatment time(h) 
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The influence of each of the variables on the elongation of welding alloys, which is discussed 

here. The % elongation starts increasing from 26% at 0.01% C up to 30.7 % near to 0.055% C. 

Up and down of % elongation is maximum 2.5%, between the 0.055%C to 0.09%C. There is a 

decrease in %elongation after 0.09% C and it goes to 27.4 % at 0.0129% C.  . In the case of 

silicon between 0.01% to 1.14%, there is an increase from the 26.9% to 30% (at 0.16%Si) in the 

elongation and then further decrease to 29.4% Elongation in the range of 0.2% to 0.3% Si.At 

near to 0.4% Si, Elongation is 30.2%. Reduction of the Elongation of 27.7%  is observed near to 

0.5% Si in the graph. Highest value of 30.7% Elongation is observed between the 0.58% Si to 

0.78% Si.The drop in Elongation to 28.7% at 0.8% Si and then, it remains constant. The trend of 

manganese shows the increase in the Mn% from 0.24% to 2.3%, the value of the elongation also 

decreases  from 31.2% to 23.7%. Between 0.24% Mn to 0.84% Mn, there is decrease in % 

elongation to 26.8% and further increases to 30.8% at 1.1% Mn. Over 1.1% Mn, there is 

generally decreased in %Elongation with increase in %Mn, with little fluctuation of 0.6% 

Elongation at 1.9% Mn. The sulphur shows the first increase in the Elongation from 29.79% to 

30.3%, between 0.002%S to 0.006%S. Between 0.006%S to 0.012%S, Elongation is decreased 

from 30.0% to 29.4%. After 0.012%S, it starts increasing to a maximum 31.4%, at 0.015%S. The 

only reduction in 0.8% Elongation is observed between 0.02 %S to 0.045%S. The Phosphorus 

gives the increase in the Elongation from 27.95% to 31.2% in the range of 0.001%P to 

0.0175%P. Reduction in the Elongation from 31.2% to 29.2% is observed with increase in 

amount of Phosphorus up to 0.04%. The nickel has the maximum Elongation of 30% at 0.85% 

and decrease with increase in %Ni more than 0.85%. In the figure, it shows at 0.85% the 

Elongation value drops from 30% to 25.3%. More than 5.8 % Ni gives a  constant  value of the 

Elongation  25.8%. The Chromium has a maximum Elongation of 30.1% at less than and equal 

to 0.4% Cr. More than 0.4% Cr reduces the Elongation to 21%. Further increase in %Cr between 

0.7% to 5%, the Elongation drop from 21% to 15.4%. More than 5% Cr the Elongation increases 

of 25.8% and constant up to a maximum 9.3% Cr. Molybdenum has a maximum Elongation 

30.1% at less than and equal to 0.3% concentration. More than 0.3% Mo decreases the 

Elongation from 30.1% to 21% at 0.5% Mo. At 1.7% Mo, the value of Elongation is a minimum 

to 20.7%.  More than 1.7% Mo increases Elongation up to 25.7% and then it is constant till 2.4% 

Mo. Vanadium decreases the Elongation from a maximum 30.2% to a minimum 22.. 7% 

between 0.01% to 0.068%. At 0.092% V, the Elongation is 25.2%, then decrease to 20.8% 
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between 0.131% V to 0.16% V. More than 0.16% V increases the Elongation from 20.8% to 

25.8% and 25.8% is  constant up to a concentration of 0.32% V. Copper decreases the 

Elongation from 30.2%  to 25.8% between more than 0% Cu  to  2.05% Cu. Oxygen increases 

the Elongation of 28.15%  to 30.2% when it is in the range of 50 ppm to 450 ppm. Higher than 

450ppm Oxygen, there is a decrease  in the Elongation from 30.2% to 25.75%. At 850 ppm 

Oxygen, the Elongation is 25.75% and remains constant up to maximum 1650 ppm Oxygen. 

Titanium gives a minimum the Elongation of 22.7% to maximum 30.8%. At 60 ppm the 

Elongation is the highest. In between the range of Titanium from 60 ppm to 340 ppm, the 

Elongation reduces from 30.8% to 23.7%. In the Elongation approximately 3.7% variation is 

observed between 350 ppm and 685 ppm Titanium.  Boron shows the maximum Elongation of 

30.1% in between 0 ppm to18 ppm. More than 18 ppm to , there is a reduction  in the Elongation  

from 30.1% to 23.75% (at 134 ppm Boron) and the increase in 0.5% is observed at 84 ppm 

Boron and 200 ppm Boron. Niobium has a trend of decrease in the Elongation from 30.1% to 

20.3% with an increase from 0 to 1350 ppm.  More than 1420 ppm to 1700ppm, the Elongation 

is a constant value of 22% 

Heat Input has stated that the maximum Elongation of 32.65% between 3.8 kJ mm-1 to 4.65 kJ 

mm-1. Heat Input between 2.7 kJ mm-1 to 3.8 kJ mm-1 reduces the Elongation from 29.7% to 

25.75%. Heat Input starts from 0.5 kJ mm-1 with 30.1% an Elongation. The Elongation has a 

little change of 0.3% between 0.5 kJ mm-1  to 2.7kJ mm-1. When the Interpass temperature is 

20
0
C, the Elongation is 26.6%. More than 60

0
C, a decrease in the Elongation is observed to 

25.8%. To increase in Interpass temperature more than 119
0
C, there is an increase in the 

Elongation from 25.8% at 72
0
C to 33.45% at 350

0
C. Post weld heat treatment temperature 

increases from 50
0
 C to 750

0
 C, shows the Elongation have higher values, 30.1% and 31.3%. 

Reduction in the Elongation, 28.5% is observed between 4200C to 470
0
C and more than 660

0
C. 

Post weld heat treatment time has a trend of increase in the Elongation from 25.75% to 30.1%  

between 2 to 22.8 hours. More than 22.8 hours PWHTt, it decreases to minimum Elongation of 

25.75%.  

The relationship between  the input variables and the elongation is a nonlinear as seen above in 

response graphs (Figure 4.8). 
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4.3.3 3D Contour plots of the Elongation GRNN model 

The effect in combination of any two input variables (Independent variables) from Carbon, 

Silicon, Manganese, Sulphur, Phosphorus, Nickel, Chromium, Molybdenum, Vanadium, Copper, 

Oxygen, Titanium, Boron, Niobium, Heat_input, Interpass_temperature, Post- weld heat 

treatment temperature and  Post-weld heat treatment time on the Elongation of Ferritic Steel 

Welds are given in form of 3D contour plots. .(Figure. 4.9.1 to 4.9.13) 
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Figure.4.9.1  Predicted variations in Elongation (%) as a function of the Carbon and Manganese 

concentrations 

 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.9.1 shows the relations between Carbon, Manganese and Elongation by GRNN. The 

graph gives the information about how these two, Carbon and Manganese control the Elongation 

from 7.5% to 25%. 
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Figure. 4.9.2  Predicted variations in Elongation (%) as a function of the Carbon and Silicon 

concentrations 

 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.9.2 shows the relations between Carbon, Silicon and Elongation by GRNN. The graph 

gives the information about how these two, Carbon and Silicon control the Elongation from 12.5 

% to 27.5 %. 
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Figure. 4.9.3 Predicted variations in Elongation (%) as a function of the Silicon and Manganese 

concentrations 

 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.9.3 shows the relations between Silicon, Manganese and Elongation by GRNN. The 

graph gives the information about how these two, Silicon and Manganese control the Elongation 

from 19 % to 28 %. 
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Figure. 4.9.4 Predicted variations in Elongation (%) as a function of the Nickel and Chromium 

concentrations 

 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.9.4 shows the relations between Nickel, Chromium and Elongation by GRNN. The 

graph gives the information about how these two, Nickel and Chromium control the Elongation 

from 5 % to 25 %. 
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Figure. 4.9.5 Predicted variations in Elongation (%) as a function of the Molybdenum and 

Vanadium concentrations 

 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.9.5 shows the relations between Molybdenum, Vanadium and Elongation by GRNN. 

The graph gives the information about how these two, Molybdenum and Vanadium control the 

Elongation from 20 % to 25 %. 
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Figure. 4.9.6 Predicted variations in Elongation (%) as a function of the Copper and Oxygen 

concentrations 

 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.9.6 shows the relations between Copper, Oxygen and Elongation by GRNN. The 

graph gives the information about how these two, Copper and Oxygen control the Elongation 

from 5% to 25 %. 
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Figure. 4.9.7 Predicted variations in Elongation (%) as a function of the Oxygen and Titanium 

concentrations 

 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.9.7 shows the relations between Copper, Oxygen and Elongation by GRNN. The 

graph gives the information about how these two, Copper and Oxygen control the Elongation 

from 5% to 25 %. 
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Figure. 4.9.8 Predicted variations in Elongation (%) as a function of the Boron and Oxygen 

concentrations 

 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.9.8 shows the relations between Boron, Oxygen and Elongation by GRNN. The graph 

gives the information about how these two, Boron and Oxygen control the Elongation from 5% 

to 25 %. 
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Figure. 4.9.9 Predicted variations in Elongation (%) as a function of the Niobium concentration 

and Heat input 

 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.9.9 shows the relations between Niobium, Heat input and Elongation by GRNN. The 

graph gives the information about how these two, Niobium and Heat input control the Elongation 

from 5% to 35 %. 
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Figure. 4.9.10 Predicted variations in Elongation (%) as a function of the Heat input and 

Interpass temperature 

 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.9.10 shows the relations between Heat input, Interpass temperature and Elongation by 

GRNN. The graph gives the information about how these two, Heat input and Interpass 

temperature control the Elongation from 17.5% to 30 %. 
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Figure. 4.9.11 Predicted variations in Elongation (%) as a function of the Post-weld Heat 

treatment temperature and Post-weld Heat treatment time 

 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.9.11 shows the relations between Post-weld Heat treatment temperature, Post-weld 

Heat treatment time and Elongation by GRNN. The graph gives the information about how these 

two, Post-weld Heat treatment temperature and Post-weld Heat treatment time control the 

Elongation from 5% to 30 %. 

 



266 
 

 

Figure. 4.9.12 Predicted variations in Elongation (%) as a function of the Nickel concentration 

and Heat input 

 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.9.12 shows the relations between Nickel, Heat input and Elongation by GRNN. The 

graph gives the information about how these two, Nickel and Heat input control the Elongation 

from 5% to 30 %. 
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Figure. 4.9.13 Predicted variations in Elongation (%) as a function of the Chromium 

concentration and Heat input 

 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.9.13 shows the relations between Chromium, Heat input and Elongation by GRNN. 

The graph gives the information about how these two, Chromium and Heat input control the 

Elongation from 17.5% to 32.5 %. 
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Figure 4.9.1. EL (z) - Mn (y) - C (x) 3D plot.5  

Figure 4.9.1. shows the increase in the Elongation 25% and more than 25% inside  the area 

covered by the contour of 25% Elongation. The contour of 25% Elongation has the range of %wt 

Carbon from 0% to 0.116% and %wt Manganese from 0.36% to 1.6%. Any other combination of 

concentration of wt% C and wt% Mn gives the reduction in the % Elongation which is clearly 

observed by the contours of lower % Elongation from 22.5% to less than 7.5%. For design of 

higher % Elongation, both the variables wt% C and wt% Mn must be controlled in specific range 

as mentioned above for Ferritic Steel Welds.  

Figure 4.9.2. EL (z) - Si (y) - C (x) 3D plot. 

Figure 4.9.2. The Elongation contours 27.5%, and more than 27.5% are observed in the range of 

wt% C from 0% to 0.052% and the range of wt% Silicon from 0.68% to 1.2%. The Elongation 

25% and more than 25% can be achieved in the range of wt% C from 0% to 0.1% and in the 

range of Si from 0.06% to 1.2%. Higher amount of the both wt% C and wt% Si decreases the 

Elongation from less than 25% to 12.5%. The trends of the both the independent variables are 

less complex for the Elongation of Ferritic Steel Welds.  

Figure 4.9.3. EL (z) - Mn (y) - Si (x) 3D plot. 

Figure 4.9.3. shows an increase in the Elongation from 25% to more than 28% with the wt% Si 

in the range from 0% to 1.2% and the wt% Mn in the range from 0% to 1.8%. The   Elongation 

28% and more than 28% are obtained with the wt% Si in the range from 1.15% to 1.2% and the 

wt% Mn in the range from 0.78% to 0.9%. These are the very small range of the both 

independent variables for higher values of the Elongation of Ferritic Steel Welds. Any other 

combination of Si and Mn gradually decreases the Elongation from less than 25% to 19%. The 

selection of the Mn concentration is more critical compared to the concentration of Si for the 

design of Ferritic Steel welds. 

Figure 4.9.4. EL (z) - Cr (y) - Ni (x) 3D plot. 

Figure 4.9.4. shows the decreasing trends in the Elongation from more than 25% to less than 

5%with the increase in the %wt Ni and the %wt Cr. The higher values of Elongation 25% more 
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than 25% are observed with the Ni in the range from 0% to 1.6% and the Cr in the range from 

0% to 0.7% Cr. The bottom left of the plot indicates that for higher Elongation from more than 

25% to 20 % in Ferritic Steel Welds require more5 %Ni and less %Cr. The relationship of the 

both the independent variables %Ni and %Cr is l5ess complex with Elongation. 

Figure 4.9.5. EL (z) - V (y) - Mo (x) 3D plot. 

Figure 4.9.5. shows the decreasing trends in the Elongation from more than 25% to less than 

20% with the increase in the %wt Mo in the range from 0% to less than 2.5% and the %wt V in 

the range from 0% to 0.35%. Less than 0.68% Mo gives the % Elongation in higher side, more 

than 22.5% with a full %wt range of the Vanadium. More than 0.94% Mo reduces the Elongation 

which is less than 20%. The molybdenum is more effective variable compared to the Vanadium. 

The behaviour between the Molybdenum and the Vanadium is not much complex. 

Figure 4.9.6. EL (z) - O (y) - Cu (x) 3D plot. 

Figure 4.9. 6. shows the decreasing trends in the Elongation with an increase in the %wt Cu and 

Oxygen ppm from 25% to less than 5%. The high value of the Elongation 25% is observed with 

%wt Cu in the range, from 0.024% to 2.2% and Oxygen ppm in range from 200 ppm to 880 

ppm. The Oxygen is more effective variable compare to copper for controlling the Elongation in 

specific range as indicated by the different Elongation contours. 

Figure 4.9.7. EL (z) – Ti (y) - O (x) 3D plot. 

Figure 4.9.7. shows the decreasing trends in the Elongation with an increase in the Oxygen ppm 

and Titanium ppm, from 25% to less than 5%. Higher values of Elongation of 25% and more 

than 25% are observed with Oxygen ppm in range, from 20 ppm to 1000 ppm and Titanium ppm 

in the range from 0 ppm to 460 ppm. The behaviour of both variables is very critical for 

achieving higher Elongation. 

Figure 4.9.8. EL (z) – O (y) - B (x) 3D plot. 

Figure 4.9.8. shows the decreasing trends in the Elongation with an increase in the Boron ppm 

and Oxygen ppm, from 25% to less than 5%. Higher values of Elongation of 25% and more than 

25% are observed with Oxygen ppm in range, from 170 ppm to 910 ppm and Boron ppm in the 

range from 0 ppm to 48 ppm. Other contour of higher values of Elongation of 25% and more 
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than 25% is also observed with Oxygen ppm in range, from 0 ppm to 320 ppm and Boron ppm in 

the range from 72 ppm to 220 ppm. The Elongation between 20% and 25%, are observed with 

Oxygen ppm below the range from 600 ppm to 1000 ppm and the Boron ppm in range from 0 

ppm to 220 ppm. For higher Elongation the Oxygen is a very important independent variable 

compare to Boron. 

Figure 4.9.9. EL (z) – HI (y) - Nb (x) 3D plot. 

Figure 4.9.9. shows the decreasing trends in the Elongation with an increase in the Niobium ppm 

and Heat Input kJmm-1, from 25% to less than 5%. For higher values of the Elongation 20% and 

more than 20%, are observed with the Niobium ppm in range, from 0 ppm to 1800 ppm and Heat 

Input kJmm-1 in the range from 0 kJmm-1 to 5.0 kJmm-1. Both the independent variables have a 

significant role in designing the Elongation of the Ferritic Steel Welds. The values of the Heat 

Input which is below 0.5 kJmm-1 indicate that means these are the properties of welding 

electrodes not welds. 

Figure 4.9.10. EL (z) – IPT (y) - HI (x) 3D plot. 

Figure 4.9.10. shows the maximum Elongation values 25% and more than 25% are observed in 

the left side and right side of the graph. Left side of graph has almost full range of the Interpass 

temperature from 10 C to 380 C and the Heat Input less than 1.15 kJmm-1. Right side of graph 

has the range of Interpass temperature from 50 C to 400 C and the Heat Input more than 3.5 

kJmm-1. The Elongation are obtained between the range from 22.5% to 25% by maintaining the 

Heat Input, in the range from 1.15 kJmm-1 to 3.5 kJmm-1 and the Interpass temperature in the 

range from 145 C to 300 C. Both the independent variables have complex relationship with the 

Elongation. 

Figure 4.9.11. EL (z) – PWHTt (y) - PWHTT (x) 3D plot. 

Figure 4.9.11. shows a decrease in the Elongation values from 25% to 5%, are observed in the 

left side and right side of the graph. Left side of graph has almost full range of the Post Weld 

Heat Treatment Time h from 0 h to 35 h and the Post Weld Heat Treatment Temperature from 0 

C to 350 C. Right side of graph has the range of the Post Weld Heat Treatment Time h from 0 h 

to 23 h and the Post Weld Heat Treatment Temperature from 630 C to 800 C.The Elongation are 

obtained between the range from 25% to 30% and more by maintaining the Post Weld Heat 
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Treatment Time, in the range from 0 h to 35 h and Post Weld Heat Treatment Temperature in the 

range from 40 C to 800 C. Both the independent variables have complex relationship with the 

Elongation. 

Figure 4.9.12. EL (z) – HI (y) - Ni (x) 3D plot. 

Figure 4.9.12. shows increase in the Elongation more than 20%, with lower than 2.6% Ni and 

any value of Heat Inputs from 0 to 5 kJmm-1. Heat Input in range from 2.5 kJmm-1 to 5 kJmm-

1, the Elongation decreases with an increase in %Ni. Heat Input from 2.5 kJmm-1 to less than 

2.5 kJmm-1,the Elongation increases with an increase in %Ni. 

Figure 4.9.13. EL (z) – HI (y) - Cr (x) 3D plot. 

Figure 4.9.13. shows the Elongation 17.5% and less than 17.5%, are observed with the 

Chromium in the range from 3.2% to 8.8% and Heat Input in the range from 0.75 kJmm-1 to 3.3 

kJmm-1. Outside of the Elongation contour 17.5%, the %Elongation values are increased for all   

combinations of Heat Input and Chromium. The nature of both independent variables is observed 

complex and significant for designing the %Elongation of Ferritic Steel Welds.  
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 4.3.4 Application of Trained Best Models 

4.3.4.1 Prediction of the Elongation on unseen data by BNN Model  

The BNN model has good accuracy in prediction of elongation of ferritic steel welds on unseen 

data which is excellent for the design of welds. (Table. 4.7) The predicted elongation of the 

unseen data of three weld alloys are compared with measured values of elongation shows the 

prediction capacity of the BNN model. This BNN model can be used for practical applications, 

research and development of ferritic steel alloys. 

 

Table 4.7  Predicted Elongation by BNN model for unseen data of three ferritic weld deposits 

Variable Weld alloy 1 Weld alloy 2 Weld alloy 3 

Carbon(wt%) 0.041 0.088 0.11 

Silicon(wt%) 0.300 0.35 0.28 
Manganese(wt%) 0.62 0.54 0.6 

Sulphur(wt%) 0.007 0.007 0.007 
Phosphorus(wt%) 0.010 0.009 0.016 

Nickel(wt%) 2.38 7.0 10.62 
Chromium(wt%) 0.03 0.15 1.13 

Molybdenum(wt%) 0.005 0.4 0.3 
Vanadium(wt%) 0.012 0.016 0.006 

Copper(wt%) 0.03 0.01 0.3 
Oxygen(ppm) 440 290 290 

Titanium(ppm) 55 0.0 0.0 
Boron(ppm) 2.0 1.0 1.0 

Niobium(ppm) 20 10 10 

Heat_input(kJ.mm-1) 1.0 1.4 1.4 
Interpass_temperature(C) 200 150 200 

Postweld_heat_treatment_temperature(C) 250 250 250 
Post-weld_heat_treatment_time(h) 14 16 16 

Measured Elongation % 31 13 11 
Predicted Elongation % 30.03 17.02 13.62 
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4.3.4.2 Prediction of The Elongation on unseen data by GRNN Model  

The GRNN model has good accuracy in prediction of elongation of ferritic steel welds on unseen 

data which is excellent for the design of welds. (Table.4.8) The predicted elongation of the 

unseen data of three weld alloys are compared with measured values of elongation shows the 

prediction capacity of the GRNN model. This GRNN model can be used for practical 

applications, research and development of ferritic steel alloys. 

Table 4.8 Predicted Elongation by GRNN model for unseen data of three ferritic weld deposits 

Variable Weld alloy 1 Weld alloy 2 Weld alloy 3 

Carbon(wt%) 0.041 0.088 0.11 

Silicon(wt%) 0.300 0.35 0.28 
Manganese(wt%) 0.62 0.54 0.6 

Sulphur(wt%) 0.007 0.007 0.007 
Phosphorus(wt%) 0.010 0.009 0.016 

Nickel(wt%) 2.38 7.0 10.62 
Chromium(wt%) 0.03 0.15 1.13 

Molybdenum(wt%) 0.005 0.4 0.3 
Vanadium(wt%) 0.012 0.016 0.006 

Copper(wt%) 0.03 0.01 0.3 
Oxygen(ppm) 440 290 290 

Titanium(ppm) 55 0.0 0.0 
Boron(ppm) 2.0 1.0 1.0 

Niobium(ppm) 20 10 10 

Heat_input(kJ.mm-1) 1.0 1.4 1.4 
Interpass_temperature(C) 200 150 200 

Postweld_heat_treatment_temperature(C) 250 250 250 
Post-weld_heat_treatment_time(h) 14 16 16 

Measured Elongation % 31 13 11 
Predicted Elongation % 31 19 13 

 

Prediction of The Elongation for new data of input variables can be achieved accurately with 

best trained models by BNN and GRNN as given in above Tables 4.7 and Table 4.8. These 

Models have capacity for changing any individual input variable, any combination of more than 

one input variables or all input variables to predict the The Elongation of Ferritic Steel Welds. 

These are only possible with the BNN and GRNN Models which are impossible practically. By 

simply running these Models the various design of the Ferritic Steel Welds are possible which 

save money, time and labour during Research and Development of the Ferritic Steel Welds. 
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4.3.5 Genetic Algorithms and applications to the Elongation of 

Ferritic Steel Welds  

4.3.5.1 Target Elongation of 13% and High value of Elongation 

45% 

 

The first simulation is made to check the behaviour of the genetic algorithm. The target 

value of elongation is set to -0.8. Which correspond to an unnormalised value of 13%. The 

dataset provides such values of elongation and the aim of this simulation is to check the 

results of the genetic algorithm.. The 18 parameters (input variables) are allowed to vary, 

in between -1 and + 1 during the genetic algorithm process. After 3000 generations, the 

best results obtained are shown Table 4.9.  

The second simulation is made to check the genetic algorithm for high value of the 

Elongation.The target value of Elongation is set to 0.12 which correspond to an 

unnormalised value of 45%. The dataset does not provide such value of Elongation and the 

aim of this simulation is to check the results of the genetic algorithm.. The 18 

parameters(input variables)  are allowed to vary, in between -1 and + 1 during the genetic 

algorithm process. After 3000 generations, the best results obtained are shown Table 5.6.  

 

According to Table 4.9, the genetic algorithm has managed to reach the target after 3000 

generations.  

Moreover, the associated error obtained is very reasonable.  

To check if the given input variables correspond to Ferritic Steel Weld, compare with the 

actual data of Elongation. 
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Table 4.9 Predicted Input variables by NN-GA model for two targeted Elongation of ferritic weld 

deposits 

Variable Weld 1 Weld 1 Weld 2 

 Result GA Data  Result GA 

Carbon(wt%) 0.078 0.088 0.036 

Silicon(wt%) 0.34 0.35 0.290 
Manganese(wt%) 0.47 0.54 0.670 

Sulphur(wt%) 0.006 0.007 0.005 
Phosphorus(wt%) 0.007 0.009 0.015 

Nickel(wt%) 6.2 7.0 0.04 
Chromium(wt%) 0.13 0.15 1.26 

Molybdenum(wt%) 0.39 0.4 0.14 
Vanadium(wt%) 0.014 0.016 0.25 

Copper(wt%) 0.01 0.01 0.03 
Oxygen(ppm) 280 290 540 

Titanium(ppm) 0.0 0.0 90 
Boron(ppm) 1.0 1.0 0 

Niobium(ppm) 9 10 510 

Heat_input(kJ.mm-1) 1.3 1.4 0.55 
Interpass_temperature(C) 140 150 225 

Postweld_heat_treatment_temperature(C) 280 250 690 
Post-weld_heat_treatment_time(h) 17 16 2 

GA calculated  Elongation % 12 --- 43 

Targeted  Elongation % 13 --- 45 

Error 21 --- 39 
Measured Elongation % --- 13 --- 

 

The NNGA models have good accuracy in predicting 18 input variables of the Elongationof ferri

tic steel welds, which is excellent for weld design.(Table.4.9) The predicted results of the targete

d values of the two weld deposits are very close. The results of Genetic Algorithms are match 

with trends of measured data and fundamental of metallurgy. The output 

results show the predictive capacity of the NN-GA model. 

 

This NNGA model can be used in practical applications, research and development of ferri

tic steel alloys. [Appendix-B] 
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4.3.6 Summary 

The Neural Network and Genetic algorithms Methods have been used for efficient design of the 

Elongation of Ferritic Steel Welds. From the Modeling works and Results and Discussion of this 

Chapter some useful conclusions can be drawn: 

The distribution of the Data of the Elongation of Ferritic Steel Welds is uniform for some Inpurt 

variables and non-uniform for some Inpurt variables. The distribution is clearly observed in 

Scatter plots. 

In this case, of Bayesian Neural Network method, all the response graphs show error bars when 

the concentration of Nickel and Chromium is respectively below 8 and 6 wt%, the prediction can 

be reliable. But above those limits (7 wt% for Ni and 6 wt% for Cr), the model can no more be 

trusted and this is inferred by the large error bars. Similarly it is applicable to other graphs where 

larger error bars are present. More experiments with concentrations in this range of values need 

to be carried out to improve the model. Uncertainty because of a lack of data is one of the 

limitations of a neural network. The error bars and output variable (Elongation) sometimes 

showing unphysical (negative) values, this is because of the empirical equation in Neural 

Network modeling. This error bars feature of Bayesian Neural Network is excellent guideline for 

research and Development. 

In the case of General Regression Neural Network method, there are no problems of noisy data. 

It can handle noises in the Inputs. The Response graphs of the GRNN show more define about 

the non linearity or complexity between the Input variables and the Elongation of Ferritic Steel 

Welds.  

The Response Graphs show about the individual relationship between the input variables and 

Output variable (Elongation). The 3D contour plots show the relationship between the two Input 

variables with Output variable (Elongation).  

These trends are confirmed in the present analysis as illustrated in both the types of the Graphs 

Figure 4.7 (a to r) and Figure 4.8 (a to r). They are impossible to reproduce in practice. They give 

a clear understanding of the relationship between the Input variables and the Elongation of 

Ferritic Steel Welds. These pieces of information are very valuable for design, as well 



277 
 

as understanding the existing theory and also guiding about new research and new finding for 

the Ferritic steel Welds.      

The 3D contour plots show the relationship between the two Input variables with Elongation. 

There is a total combination of 153 3D contour plots formed by 18 Input variables with the 

Elongation. In the present work, 13 3D contour plots are given with their important relationship 

with the Elongation. These 3D contour plots show some hidden complex behavior of the input 

variables with the Elongation which is also not available and not well understood. Some 

innovative theoretical relations can be established by the proper interpretation of these 3D 

contour plots which become the new knowledge base for the future work on Ferritic Steel Welds. 

The Input variables show complex trends because during welding, there is formation of various 

types of the microstructures in Ferritic Steel Welds, qualitatively and quantitatively. 

The trained BNN and GRNN models give the accurate predictions of unseen data which is useful 

in designing the Ferritic Steel Welds for the welding electrodes industries. With simply change 

the quantity of Input variables in model and run it, the predicted Elongation is obtained in the 

seconds. 

The Genetic Algorithms method gives the prediction of the Input Variables for the Targeted 

Elongation value. It also predicted Input variables for the Targeted Elongation value which is 

beyond the range of data. The results are excellent. 
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4.4 Charpy Toughness Models 

 

4.4.1 Response graphs of Input variables and Charpy Toughness of Ferritic 

Steel Welds using committee model of Bayesian Neural Network  

The Trends of the Input Variables (Independent Variables) and Elongation of Ferritic Steel 

Welds are given below in the form of the graphs. 

Trends of Charpy Toughness Model 

 
 

Fig a. Predicted variations in Charpy Toughness 
with Boron variation. 

Fig b. Predicted variations in Charpy Toughness 
with Carbon variation. 
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Fig c. Predicted variations in in Charpy Toughness 
with Chromium  variation. 

Fig d. Predicted variations in in Charpy Toughness 
with Copper  variation. 

 

 

Fig e. Predicted variations in in Charpy Toughness 
with Heat input variation. 

Fig f. Predicted variations in in Charpy Toughness 
with Interpass Temperature variation. 
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Fig g. Predicted variations in in Charpy Toughness 
with Manganese variation. 

Fig h. Predicted variations in in Charpy Toughness 
with Molybdenum variation. 

  
Fig i. Predicted variations in in Charpy Toughness 
with Niobium variation. 

Fig j. Predicted variations in in Charpy Toughness 
with Nitrogen variation. 
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Fig k. Predicted variations in in Charpy Toughness 
with Nickel variation. 

Fig l. Predicted variations in in Charpy Toughness 
with Oxygen variation. 

  
Fig m. Predicted variations in in Charpy Toughness 
with Phosphorus variation. 

Fig n. Predicted variations in in Charpy Toughness 
with Post Weld Heat Treatment Temperature 
variation. 
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Fig o. Predicted variations in in Charpy Toughness 
with Post Weld Heat Treatment Time variation. 

Fig p. Predicted variations in in Charpy Toughness 
with Sulphur variation. 

  
Fig q. Predicted variations in in Charpy Toughness 
with Silicon variation. 

Fig r. Predicted variations in in Charpy Toughness 
with Titanium variation. 
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Figure 4.10 (a to t) Response graphs (a to t) of Input variables and Charpy Toughness of Ferritic 

Steel Welds using committee model of Bayesian Neural Network 

These trends are confirmed in the present analysis as illustrated in Figure 4.10 (a to t). It is 

emphasized that these calculations are done without permitting any of the other variables to 

change. They are impossible to reproduce in practice. 

All the graphs show the error bars. The error bars are uniform in size indicate that the uniformity 

of data, like the graph the prediction of Charpy Toughness, as a function of Manganese.  The 

error bars are large in size indicate non-uniformity of data, like the graph the prediction of the 

Charpy Toughness as a function of Chromium. 

In this case, when the concentration of Nickel and Chromium is respectively below 6 

and 2 wt%, the prediction can be reliable. But above those limits (6 wt% for Ni and 2 wt% 

for Cr), the model can no more be trusted and this is inferred by the large error bars. 

Similarly it is applicable to other graphs where larger error bars are present. More 

  
Fig s. Predicted variations in in Charpy Toughness 
with Testing Temperature Charpy Toughness  
variation. 

Fig t. Predicted variations in in Charpy Toughness 
with Vanadium variation. 
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experiments with concentrations in this range of values need to be carried out to improve 

the model. Uncertainty because of a lack of data is one of the limitations of a neural 

network. The error bars and output variable (Charpy Toughness) sometimes showing 

unphysical (negative) values, this is because of the empirical equation in Neural Network 

modelling.  

The input variables like Interpass Temperature, Post Weld Heat Treatment Time, and Silicon 

are increasing in concentration or in amount, increase the Charpy Toughness of ferritic Steel 

welds. The Sulphur has shown an unphysical negative value of the Charpy Toughness which is 

not reliable. The Phosphorus has shown an increase on the Charpy Toughness too high 800 J 

which is not reliable. 

The input variable like Boron, Carbon, Manganese, Molybdenum, Oxygen, Post Weld Heat 

Treatment Temperature, and Titanium indicate their non linear behavior with the Charpy 

Toughness.  

The input variable like Boron, Chromium, Copper, Heat Input, Nitrogen, Niobium, Nickel, 

Vanadium and Testing Temperature Charpy Toughness show unphysical prediction of the 

Charpy Toughness.  

 

The trends of the graphs of Bayesian Neural network model are useful to design the Charpy 

Toughness of Ferritic Steel welds efficiently.  

In summary, a reasonable committee model has been obtained for Charpy Toughness. It appears 

that these input variables are affected on the Charpy Toughness of Ferritc Steel Welds, as could 

be expected from a metallurgical point of view.  
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4.4.2 Response Graphs of the Charpy Toughness GRNN model 

 
Fig. a Response Graph of Charpy Toughness J and Carbon (wt%) 

 
Fig.bResponse Graph of Charpy Toughness J and Silicon(wt%) 
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Fig. c Response Graph of Charpy Toughness J and Manganese(wt%) 

 
Fig.d Response Graph of Charpy Toughness J and Sulphur(wt%) 
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Fig.e Response Graph of Charpy Toughness J and Phosphorus(wt%) 

 
Fig.f Response Graph of Charpy Toughness J and Nickel(wt%) 
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Fig.g Response Graph of Charpy Toughness J and Chromium(wt%) 

 
Fig.h Response Graph of Charpy Toughness J and Molybdenum(wt%) 
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Fig.i Response Graph of Charpy Toughness J and Vanadium(wt%) 

 
Fig.j Response Graph of Charpy Toughness J and Copper(wt%) 
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Fig.k Response Graph of Charpy Toughness J and Oxygen(wt%) 

 
Fig.l Response Graph of Charpy Toughness J and Titanium(ppmw) 
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Fig.m Response Graph of Charpy Toughness J and Nitrogen(ppmw) 

 
Fig.n Response Graph of Charpy Toughness J and Boron(ppmw) 



292 
 

 

 
Fig.o Response Graph of Charpy Toughness J and Niobium(ppmw) 

 
Fig.p Response Graph of Charpy Toughness J and Heat Input(kJ mm-1) 
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Fig.q Response Graph of Charpy Toughness J and Interpass temperature(C) 

 
Fig.r Response Graph of Charpy Toughness J and Post-weld heat treatment( 

temperatureC) 
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Figure 4.11 (a to t) Response graphs of Input variables and Charpy Toughness of Ferritic Steel 

Welds (GRNN) 

 

 
Fig.s Response Graph of Charpy Toughness J and Post-weld heat treatment 

time(h) 

 
Fig.t Response Graph of Charpy Toughness J and Testing temperature for Charpy 

toughness(K) 



295 
 

The influence of each of the variables on the Charpy toughness of welding alloys, which is 

discussed here. The Charpy toughness, initially decrease from 78.1 J to 76.8 J, between the 

0.02% C to 0.065% C. The Carbon concentration of the welds in between 0.065% to 0.0134%, 

the Charpy toughness increases very high from 76.8 J to 100.9 J. Between 0.0134% C to 0.19% 

C, the Charpy Toughness is a constant value of 100 J after a slight increase of 0.9 J. In the case 

of silicon between more than 0.0% to 0.75%, there is an increase of the 73 J to 77.8 J in the 

Charpy toughness and then maximum 77.8 J at 0.48% Si.   Between 0.75% to 0.95% Si, the 

Charpy toughness decreases from 73 J to 57 J. At 1.43%, the Charpy toughness increases to 67.8 

J and then decreases to 50 J at 1.62% Si. The trend of manganese shows the increase in the Mn% 

from 0.22% to 0.9%, the value of the Charpy toughness is also increased from 85.6 J  to 87.1 J. 

The Charpy toughness has a maximum value of 87.1 J between 0.58% Mn to 0.74% Mn.  After 

1.96% Mn, there is a reduction in the Charpy toughness from 83J to 74J at 2.3 Mn. The sulphur 

shows a maximum value of the Charpy toughness 76.6 J, upto 0.02%S. After 0.02% S, increase 

in sulphur decreases in the Charpy toughness from 76.6 J to 50.3 J at 0.09% S. More than 0.09% 

S gives constant Charpy toughness 50.3 J.  The Phosphorus gives the maximum Charpy 

toughness 78.5 J at 0.064% P and increase in Phosphorus decreases the Charpy toughness to 70.7 

J at 0.24% P. The nickel has the maximum 90 J to 97 J Charpy toughness between 6% Ni to 7% 

Ni. Between 2% Ni to 8% Ni, the charpy toughness is maintain minimum 80 J to maximum 97 J. 

More than 8% Ni reduces the Charpy toughness to 32 J at 10.8% Ni. The Chromium has a 

maximum Charpy toughness 77 J to 75 J up to 1% Cr. More than 1% Cr reduces the value of the  

Charpy toughness to 28 J at 8% Cr. The Charpy toughness is constant value of 28 J after 8% Cr. 

Molybdenum increases the Charpy toughness from 75.8 J to 80.8 J at 0.33%. At 0.9% Mo, the 

Charpy toughness is the highest 97 J. Increase more than 0.9% Mo the charpy toughness is 

reduced to 71.9 J at 1.53% Mo. Vanadium increases the Charpy toughness from a minimum 76.5 

J to a maximum 87.5 J at 0.16V%. At 0.44% V, the Charpy toughness reduces and at 0.53% V, it 

is 27.5 J. Copper increases the Charpy toughness from 77 J to 93 J at 0.62%. Between 0.62% to 

1.2% Cu, the Charpy toughness decreases from 93 J to 46.5 J. At 2.19% Cu, rhe Charpy 

toughness is the lowest 42.5 J.  Oxygen increases the Charpy toughness from 72 J to 78.3 J at 

300 ppm and it reduces to 47 J at 760 ppm. Further increases to 68.2 J at 940ppm Oxygen and 

then drops to 54.3 J at 1180ppm Oxygen. Titanium gives a minimum Charpy toughness of 67.5 J 

to maximum 85 J at 180ppm. At 350ppm Ti, the Charpy toughness has a value of 76 J. Between 
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500 ppm Ti to 550 ppm Ti, the Charpy toughness is 82.5 J. More than 550 ppm Ti, the Charpy 

toughness decreases from 82.5 J to 31.5 J at 770ppm Ti. Nitrogen shows a decrease in the 

Charpy toughness from 76.9 J to 62.3 J with an increase in a Nitrogen ppm. Boron gives a little 

increase in the Charpy toughness from 76.5 J to 77.5 J between greater than 0 ppm to 58 ppm. 

Boron shows maximum Charpy toughness of 88 J at 118 ppm. More than 118 ppm Boron, there 

is a decrease in the Charpy toughness to 40 J at 200 ppm Boron. Niobium has a trend of a 

decrease in the Charpy toughness from 76.5 J to 31.5 J with an increase from a greater than 0 

ppm Nb to 1400 ppm Nb. Between 1470 ppm Nb to 1780 ppm Nb, the Charpy toughness 

increases and attains the highest vaule of 100 J. 

Heat Input has stated that the maximum  Charpy toughness of 113 J at 4.0 kJ mm-1. Between 0.5 

kJ mm-1 to 2.5 kJ mm-1, the Charpy toughness is a constant 76.5 J. More than 2.8 kJ mm-1 to 

4.0 kJ mm-1 Heat Input increases the Charpy toughness from 77.5 J to 113 J. Higher than 4.0 kJ 

mm-1 Heat Input, the Charpy toughness reduces from 113 J to minimum 74.9 J at 6.5 kJ mm-1. 

When the Interpass temperature is in range of 20 C to 75 C, the Charpy toughness decreases 

from 100 J to 73.5 J. Between 80 C to 118 C, the Charpy toughness increases from 74 J to 85.9 J 

and further it reduces to76.8 J at 170 C and constant 76.8 J up to 220 C. More than 220 C 

Interpass temperature, the Charpy toughness value increases to 99.9 J at 350 C. Post weld heat 

treatment temperature increases from 50 C to 750 C, shows the Charpy toughness is 82 J up to 

125 C then it decreases to 67.2 J between 250 C to 350 C. Between 350 C to 500 C, the Charpy 

toughness increases from 67.2 J to 97.2 J. More than 500 C Post weld heat treatment 

temperature, the Charpy toughness is almost constant 97.2 J upto 700 C. A Little decrease, from 

97.2 J to 96.8 J is observed between 700 C to 750 C Post weld heat treatment temperature. Post 

weld heat treatment time has a trend of a decrease in the Charpy toughness from 79.2 J to 67.2 J 

at 22 hours. Between 22 to 83 hours, post weld heat treatment time, the Charpy toughness is a 

constant 67.2 J. More than 83 hours, it increases a maximum Charpy toughness to 100 J at 91 

hours, Post weld heat treatment time and a constant till 100 hours. Testing Temperature of 

Charpy toughness shows the trend towards of an increase in the Charpy toughness from 28 J to 

109 J with  an increase in Testing Temperature of Charpy toughness from 80 K to 360 K and 

then a little reduction from 109 J to 106 J between 360 K to 390 K. 
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The relationship between the input variables and the Charpy Toughness is a nonlinear as seen 

above in response graphs Figure 4.11 (a to t). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.3 3D Contour plots of the Charpy Toughness GRNN model 

The effect in combination of any two input variables (Independent variables) from Carbon, 

Silicon, Manganese, Sulphur, Phosphorus, Nickel, Chromium, Molybdenum, Vanadium, Copper, 

Oxygen, Titanium, Nitrogen, Boron, Niobium, Heat_input, Interpass_temperature, Post- weld 

heat treatment temperature, Post-weld heat treatment time and Testing Temperature Charpy 

Toughness on the Charpy Toughness of Ferritic Steel Welds are given in form of 3D contour 

plots. (Figure.4.12.1 to 4.12.18) 
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Figure. 4.12.1  Contour plot showing the variation in Predicted Charpy Toughness as a function 

of the Carbon and Manganese concentrations. 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure.4.12.1 shows the relations between Carbon, Manganese and Charpy Toughness by 

GRNN. The graph gives the information about how these two, Carbon and Manganese control 

the Charpy Toughness from 30J to 90J. Decrease in Charpy Toughness from 60J to 30J is 

achieved in the range of %C between 0.06 to 0.20 and %Mn in the range of 0.0 to 0.59. This 

same range of Charpy Toughness exists with %C in range of 0.0 to 0.162 and %Mn in the range 

of 1.9 to 2.4.  
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Figure. 4.12.2  Predicted variations in Charpy Toughness (J) as a function of the Manganese and 

Nickel concentrations 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.12.2 shows the relations between Manganese, Nickel and Charpy Toughness by 

GRNN. The graph gives the information about how these two, Manganese and Nickel control 

the Charpy Toughness from 12.5J to 75J. 
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Figure. 4.12.3  Predicted variations in Charpy Toughness (J) as a function of the Manganese 

concentration and Interpass temperature  

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.12.3 shows the relations between Manganese, Interpass temperature and Charpy 

Toughness by GRNN. The graph gives the information about how these two, Manganese and 

Interpass temperature control the Charpy Toughness from 25J to 150J. 
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Figure. 4.12.4  Predicted variations in Charpy Toughness (J) as a function of the Nickel 

concentration and Interpass temperature  

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.12.4 shows the relations between Nickel, Interpass temperature and Charpy Toughness 

by GRNN. The graph gives the information about how these two, Nickel and Interpass 

temperature control the Charpy Toughness from 25J to 150J. 
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Figure. 4.12.5  Predicted variations in Charpy Toughness (J) as a function of the Chromium 

concentration and Interpass temperature  

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.12.5 shows the relations between Chromium, Interpass temperature and Charpy 

Toughness by GRNN. The graph gives the information about how these two, Chromium and 

Interpass temperature control the Charpy Toughness from 25J to 150J. 
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Figure. 4.12.6 Predicted variations in Charpy Toughness (J) as a function of the Heat Input(kJ 

mm-1) and Interpass temperature  

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.12.6 shows the relations between Heat Input, Interpass temperature and Charpy 

Toughness by GRNN. The graph gives the information about how these two, Heat Input and 

Interpass temperature control the Charpy Toughness from 25J to 175J. 
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Figure. 4.12.7 Predicted variations in Charpy Toughness (J) as a function of the Carbon and 

Silicon concentrations  

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.12.7 shows the relations between Carbon, Silicon and Charpy Toughness by GRNN. 

The graph gives the information about how these two, Carbon and Silicon control the Charpy 

Toughness from 25J to 150J. 
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Figure. 4.12.8 Predicted variations in Charpy Toughness (J) as a function of the Nickel and 

Chromium concentrations  

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.12.8 shows the relations between Nickel, Chromium and Charpy Toughness by 

GRNN. The graph gives the information about how these two, Nickel and Chromium control the 

Charpy Toughness from 12.5J to 87.5J. 
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Figure. 4.12.9 Predicted variations in Charpy Toughness (J) as a function of the Molybdenum 

and Vanadium  concentrations  

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.12.9 shows the relations between Molybdenum, Vanadium and Charpy Toughness by 

GRNN. The graph gives the information about how these two, Molybdenum and Vanadium 

control the Charpy Toughness from 25J to 175J. 
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Figure. 4.12.10 Predicted variations in Charpy Toughness (J) as a function of the Copper and 

Qxygen  concentrations  

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.12.10 shows the relations between Copper, Qxygen  and Charpy Toughness by 

GRNN. The graph gives the information about how these two, Copper and Qxygen control the 

Charpy Toughness from 12.5J to 75J. 
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Figure. 4.12.11 Predicted variations in Charpy Toughness (J) as a function of the Qxygen and 

Titanium concentrations  

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.12.11 shows the relations between Qxygen, Titanium  and Charpy Toughness by 

GRNN. The graph gives the information about how these two, Qxygen and Titanium control the 

Charpy Toughness from 10J to 70J. 
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Figure. 4.12.12 Predicted variations in Charpy Toughness (J) as a function of the Nitrogen and 

Boron concentrations  

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.12.12 shows the relations between Nitrogen, Boron  and Charpy Toughness by 

GRNN. The graph gives the information about how these two, Nitrogen and Boron control the 

Charpy Toughness from 10J to 70J. 
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Figure. 4.12.13 Predicted variations in Charpy Toughness (J) as a function of the Niobium 

concentration and Heat input(kJ mm-1) 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.12.13 shows the relations between Niobium, Heat input  and Charpy Toughness by 

GRNN. The graph gives the information about how these two, Niobium and Heat input control 

the Charpy Toughness from 10J to 110J. 
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Figure. 4.12.14 Predicted variations in Charpy Toughness (J) as a function of the Post-weld Heat 

treatment temperature and Post-weld Heat treatment time 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.12.14 shows the relations between Post-weld Heat treatment temperature, Post-weld 

Heat treatment time and Charpy Toughness by GRNN. The graph gives the information about 

how these two, Post-weld Heat treatment temperature and Post-weld Heat treatment time control 

the Charpy Toughness from 25J to 200J. 
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Figure. 4.12.15 Predicted variations in Charpy Toughness (J) as a function of the Interpass 

temperature and Testing temperature for Charpy Toughness 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.12.15 shows the relations between Interpass temperature, Testing temperature for 

Charpy Toughness and Charpy Toughness by GRNN. The graph gives the information about 

how these two, Interpass temperature and Testing temperature for Charpy Toughness control the 

Charpy Toughness from 25J to 175J. 
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Figure. 4.12.16 Predicted variations in Charpy Toughness (J) as a function of the Nickel and 

Testing temperature for Charpy Toughness 

3D contour Plot gives the relations between the two input variables and one output variable. 

Figure. 4.12.16 shows the relations between Nickel, Testing temperature for Charpy Toughness 

and Charpy Toughness by GRNN. The graph gives the information about how these two, Nickel 

and Testing temperature for Charpy Toughness control the Charpy Toughness from 25J to 100J. 

 

 

 

 

 

 

 



314 
 

Figure 4.12.1. CT (z) - Mn (y) - C (x) 3D plot. 

Figure 4.12.1. shows the maximum Charpy Toughness values 90 J and more than 90 J at the 

combination of wt% C less than 0,02% and wt% Mn in range of 0.08% to 1.3%. The decrease in 

Charpy Toughness is observed with an increase in wt% C and broadening the range of wt% Mn. 

(ie. Charpy Toughness contour from 90 J to 70 J). 

Higher wt% of C in the range of 0.14% to 0.2% and Mn in the range of 1.04% to 2.4%, increases 

the Charpy Toughness from 70 J to more than 80 J in the top right corner of the plot. 

The upper middle to the upper left corner portion of the graph shows that decrease in Charpy 

Toughness from 60 J to less than 50 J. In this region wt% Mn is the higher side and wt% C is 

spread maximum up to 0.162% C. 

From centre portion to right bottom corner of the graph shows decrease in Charpy Toughness 

from 60 J to less than 30 J. This is the region where wt% C is increasing from 0.054% to highest 

0.2 % and wt% Mn is decreasing from 0.78% to 0.0%.  

Wt% C and wt% Mn both have a good control over the Charpy Toughness within the range of 

given weld deposits data. 

The variations are observed in the Charpy Toughness is because of microstructural changes 

happened in the Ferritic Steel Welds. 

The microstructural changes are very complex in Ferritic Steel Welds. And due to this the 

Charpy Toughness values are also vary nonlinearly. 

Figure 4.12.2.CT(z) - Ni(y ) - Mn(x) 3D plot. 

Figure 4.12.2. shows the decrease in the Charpy Toughness from 75 J to 12.5 J with increase in 

the concentration of both Manganese and Nickel. Higher value of Charpy Toughness is observed 

in the contour of 75 J where wt% of Mn is 1.2% and wt% of Ni is 7.2. Increase in Nickel content 

is not improved the Charpy Toughness and it must be managed with content of Manganese. The 

General trend  of the Charpy toughness for Manganese indicates a reduction  with an increase in 

wt% Mn.  
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Figure 4.12.3. CT (z) - IPT (y) - Mn (x) 3D plot. 

Figure 4.12.3. shows the increase of the Charpy Toughness with the increase in the Interpass 

Temperature. The Manganese concentrations have less effect comparatively on the Charpy 

Toughness. The Charpy Toughness values from 75 J to 150 J and more is observed with increase 

in the Interpass Temperature in the range of 200 C to 400 C. Below the Interpass Temperature 

200 C, the Charpy Toughness values are observed between 50 J to 75 J for the wide range of Mn 

concentrations. The lower Charpy Toughness values of 50 J and less appears at very low wt% of 

Mn and higher wt% Mn. 

Figure 4.12.4. CT (z) - IPT (y) - Ni (x) 3D plot. 

Figure 4.12.4. In the plot from the upper left to middle portion shows the Charpy Toughness 

contours from 150 J to 75 J. The bottom right corner to the bottom middle portion of the plot 

gives the Charpy toughness values from more than 100 J to 75 J. These higher values of Charpy 

Toughness are observed above 200 C to 400 C Interpass temperature with wt% of Nickel up to 

6.6% and also below the Interpass Temperature 100 C and Ni wt% in the range of 2.8% to 12%. 

The pattern of decrease in the Charpy Toughness from 50 J to below 25 J appears at upper right 

corner to middle right where Wt% Ni is in the range of 7.8% to 12% and the Interpass 

Temperature in between 130 C to 400 C. Lower values below 50 J of the Charpy Toughness are 

also observed at very low wt% of Ni 0.4% and the Interpass Temperature below 80 C. The 

relation of the Nickel concentrations and Interpass Temperature are complex. 

Figure 4.12.5. CT (z) - IPT (y) - Cr (x) 3D plot. 

Figure 4.12.5. shows the increase in the Charpy Toughness from 75 J to more than 150 J in the 

upper left to middle left portion which is covered by contour of 75 J. Interpass Temperature in 

this portion is  in the range from  170 C to 400 C and wt% Cr from 0% to 10%. Below 100 C 

Interpass Temperatures and in a range of wt% Cr between 1.6% to 11% gives the Charpy 

Toughness 75 J to more than 75 J. The area between the contours 75 J and 50 J has stable values 

of the Charpy Toughness for different wt% Cr and Interpass Temperature. More than 8.8% to 

14% Cr and from 0 C to 400 C Interpass Temperature, the Charpy Toughness is in a range of 50 

J to less than 25 J at the right side of the Plot. 
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Figure 4.12.6. CT (z) - IPT (y) – Heat Input (x) 3D plot. 

Figure4.12. 6. shows the increase in the Charpy Toughness from 75 J to more than 175 J in the 

middle left to upper left corner portion which is covered by contour of 75 J. Interpass 

temperature in this region in the range from 200 C to 400 C and Heat input in the range between 

0 kJ mm-1 to 4.2 kJ mm-1. Below 160 Interpass Temperature and in the range Heat Input from 

2.1 kJ mm-1 to 7 kJ mm-1 increases the Charpy Toughness from 75 J to more than 175 J at 

bottom middle to right middle and right corner of the plot. Both opposite sides, bottom left and 

upper right corners of the plot indicates the Charpy Toughness values 50 J and less than 50 J. 

Right upper area has both Heat Input and Interpass Temperature in higher values and Left 

bottom area has both Heat Input and Interpass Temperature in lower values. The centre area of 

the plot has the Charpy toughness between 50 J to 75 J, more stable effect of both the 

independent variables. Both the Variables have a strong effect on the Charpy Toughness of the 

Ferritic Steel Welds. 

Figure 4.12.7. CT (z) - Si (y) – C (x) 3D plot. 

Figure 4.12.7. shows the increase in the Charpy Toughness from 75 J to more than 150 J mainly 

in right side of the plot in the area covered by the contour of 75 J. This area has the Silicon from 

0.14% to 1.8% and the Carbon below 0.068%.The area between the 50 J and 75 J in bottom 

middle to centre of the plot is more stable range of the Charpy Toughness. Higher concentration 

of both the elements reduces the Charpy Toughness from 50 J to less than 25 J. But in right 

bottom corner, an area covered by the 75 J contour has 75 J and more than 75 J with higher 

Carbon in the range from 0.14% to 0.20% and Silicon below 0.32%. Both the variables have a 

complex relationship with the Charpy Toughness. 

Figure 4.12.8. CT (z) - Cr (y) – Ni (x) 3D plot. 

Figure 4.12.8. shows a decrease in the Charpy Toughness from more than 87.5 J to 12.5 J in left 

side near middle, to bottom towards the centre of the plot. More than 87.5 J is obtained with 0.4

% of Ni and 2.8% to 5.7% Cr. Increase in %  Ni and decrease in % Cr and vice versa decreases i

n the  

Charpy Toughness General trend of the Charpy Toughness decrease with the increase in both % 

Ni and % Cr as illustrated by contours from 62.5 J to 12.5 J. Below 10% of both the Ni and Cr 
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gives 50 J and more than 50 J a sufficient Charpy Toughness. For more than 75 J Charpy 

Toughness, the role of Chromium is very significant compare to the Nickel. This is also a very 

important finding. Because traditionally in alloy design it is given that the Nickel improve the 

Charpy Toughness of weld alloys. 

 

 

Figure 4.12.9. CT (z) - V (y) – Mo (x) 3D plot. 

Figure 4.12.9. shows an increase in the Charpy Toughness from 25 J to more than 175 J with an 

increase in the Molybdenum in the range of 0% to 1.8% and decrease in Vanadium in the range 

of 0% to 0.4%. The higher Charpy Toughness, more than 175 J is obtained with less than 0.05 % 

V and more than 1.72% Mo. The relationship of both variables is straight forward for the Charpy 

Toughness. 

Figure 4.12.10. CT (z) - O (y) – Cu (x) 3D plot. 

Figure 4.12.10. shows the Charpy Toughness 75 J and more than 75 J, the left side of plot with 

430ppm to 580 ppm  Oxygen and 0.06% Cu and the right side of plot with 2.34% Cu and 130 

ppm to 260 ppm. Both the variables have the very good control on the Charpy Toughness values 

between the left and right contour of 75 J, and central contour and bottom contour of 50J. The 

Charpy Toughness is more sensitive to Oxygen concentration in Ferritic Steel Welds. 

Figure 4.12.11. CT (z) - Ti (y) – O (x) 3D plot. 

Figure 4.12.11. shows the Charpy Toughness 70 J and more than 70 J with Oxygen in the range 

from 240 ppm to 700 ppm and Titanium in the range from 0 ppm to 420 ppm . If the 

concentration of Oxygen is more or less and the concentration of Titanium more than as 

mentioned above reduces the Charpy Toughness from 70 J to less than 10 J. The selection of 

these independent variables is also very critical for the design of the Weld deposits. 

Figure 4.12.12. CT (z) - B (y) – N (x) 3D plot. 

Figure 4.12.12. shows the Charpy Toughness 50 J and more than 70 J at the left side of the plot 

where the Boron in the range from 0 ppm to 220 ppm and the Nitrogen in the range from 0 ppm 

to 600 ppm. The increase in the Nitrogen concentration reduces the Charpy Toughness from 50 J 
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to 10 J. To design, high Carpy Toughness, the concentrations of both B and N are critical. Boron 

is more effective at lower ppm and higher ppm with combinations of lower Nitrogen ppm for 

higher values of the Charpy Toughness. 

Figure 4.12.13. CT (z) - HI (y) – Nb (x) 3D plot. 

Figure 4.12.13. shows the Charpy Toughness  80 J and more than 100 J at the bottom area of the 

plot where the Heat Input less than 1 kJ mm-1 and the Niobium in the range from 180 ppm to 

1900 ppm. The increase in the Heat Input reduces the Charpy Toughness from 70 J to 10 J with 

constant value of  Nb ppm is observed in the plot. For the design of the wide range of the Charpy 

Toughness in the Ferritic Steel Welds maintain the Niobium 800 ppm for the Heat Input range up 

to 3 kJ mm-1.  

 

Figure 4.12.14. CT (z) - PWHTT (y) – PWHTt (x) 3D plot. 

Figure 4.12.14. The Charpy Toughness  contours 25 J, 50 J and 75 J show the curve shapes 

which indicate that at initially with low Post Weld Heat treatment Time and higher Post weld 

Heat treatment Temperature is required but  for higher PWHTt there is reduction in PWHTT. For 

the Charpy Toughness  contours 100 J, 125 J, 150 J 175 J and 200 J show with an increase in the 

PWHTT decrease the PWHTt. The response of the both the independent variables on the Charpy 

Toughness is not complex. It can be easily understood for the design of the Ferritic Steel Welds. 

  

Figure 4.12.15. CT (z) - TTCT (y) – IPT (x) 3D plot. 

Figure 4.12.15. shows the Charpy Toughness increases from 25 J to more than 175 J with the 

increase in the Testing Temperature of Charpy Toughness and the Interpass Temperature 

remains constant as given in the plot. More than 175J Charpy Toughness is observed with 

Interpass temperature in the range  from 260 C to 400 C and Testing Temperature for Charpy 

Toughness in the range from 425 K to 450 K. Testing Temperature for Charpy Toughness is 

more effective compare to the Interpass Temperature of the Ferritic Steel welds. Both the 

independent variables have a different relationship to the Charpy Toughness. 
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Figure 4.12.16. CT (z) - TTCT (y) – Ni (x) 3D plot. 

Figure 4.12.16. Shows the Charpy Toughness decreases from more than 100 J to 25 J with an 

increase in the increase in Nickel content from 0% to 12% and decrease in the Testing 

Temperature for Charpy Toughness from 450 K to 50 K. The higher Charpy Toughness more 

than 100 J is observed with Nickel in the range between 0% to 2.6% and Testing Temperature 

for Charpy Toughness from 280 K to 450 K. The Charpy Toughness is a very sensitive to %Ni 

and TTCT. 
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Figure. 4.12.17  3D Contour Plot of Charpy Toughness, Nickel Manganese and Testing 

Temperaturecfor Charpy toughness > 213K (-60C)  (GRNN)  

3D contour Plot gives the relations between the three input variables and one output variable. 

Figure. 4.12.17  shows the relations between Nickel, Manganese and Testing Temperature for 

Charpy toughness > 213K (-60C)  and Charpy Toughness by GRNN. Graph gives the 

information about how these three Nickel, Manganese and Testing Temperature for Charpy 

toughness > 213K control the Charpy Toughness from 10J to 80J. Traditionally in alloy design it 

is known that increase in the Nickel increases the Toughness. In Figure. 4.12.7, it is very critical 

to maintain the toughness with Nickel, Manganese and Testing Temperaturecfor Charpy 

toughness > 213K . To achieve a 80J and more, the compositions of Nickel must be maintained 

in range of 3.5 to 5.8 wt% and Manganese must be maintained maximum 0.9 wt%. In literature, 

to these values are  6 to 10.8 wt% Nickel and 0.6 wt% Manganese.(BNN)  
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Figure. 4.12.18  3D Contour Plot of Charpy Toughness, Nickel Manganese and Testing 

Temperaturec for Charpy toughness > 233K (-40C)  (GRNN)  

3D contour Plot gives the relations between the three input variables and one output variable. 

Figure. 4.12.18 shows the relations between Nickel, Manganese and Testing Temperaturec for 

Charpy toughness > 233K (-40C)  and Charpy Toughness by GRNN. Graph gives the 

information about how these three Nickel, Manganese and Testing Temperaturecfor Charpy 

toughness > 233K control the Charpy Toughness from 10J to 80J. Traditionally in alloy design it 

is known that increase the Nickel increase the Toughness. In Figure 4.12.8, it is very critical to 

maintain the toughness with Nickel, Manganese and Testing Temperaturec for Charpy toughness 

> 233K . To achieve a 75J and more, the compositions of Nickel must be maintained less than 

5.8 wt% and Manganese must be maintained in range of 0.7 to 2.1 wt%. In literature, to these 

values are  6 to 8 wt% Nickel and 0.8 wt% Manganese.(BNN) 
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4.4.4 Ternary Categorized Plots of Charpy Toughness GRNN Model 

The effect in combination of any three input variables (Independent variables) and one variable 

as a categorical from Carbon, Silicon, Manganese, Sulphur, Phosphorus, Nickel, Chromium, 

Molybdenum, Vanadium, Copper, Oxygen, Titanium, Nitrogen, Boron, Niobium, Heat_input, 

Interpass_temperature, Post- weld heat treatment temperature, Post-weld heat treatment time and 

Testing Temperature Charpy Toughness on the Charpy Toughness of Ferritic Steel Welds can be 

studied in form of Ternary Categorized Plots. 

The effect in the combination of Manganese, Nickel, Chromium with Heat Input as a categorical 

variable on the Charpy Toughness is presented in form of Ternary Categorized Plots in Figure. 

4.13.1, Figure. 4.13.2, Figure.4.13.3, and Figure. 4.13.4. 

Table 4.10 contains the scale of the Ternary Categorized Plot in Normalized values between 0 to 

1. The Normalized values related to exact Actual values of all input variables are given. 

 

 

 

 

 

 

 



323 
 

 

Figure.4.13.1 Ternary Categorized Graph of Chromium, Manganese, Nickel, Heat Input and 

Charpy Toughness shows 25 J line with Heat input <=2.1 (wt% Mn range from 0 to 2.31, wt% 

Ni range from 0 to 10.8, wt% Cr range from 0 to 11.8) 
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Table 4.10 The normalized scale of Ternary Plot 0 to 1 First row red colour converted to Actual 

scale of variables 
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Figure.4.13.2 Ternary Categorized  Graph of Chromium, Manganese, Nickel, Heat Input and 

Charpy Toughness shows 25 J to 275 J lines  with Heat input in range 3.6 to 5.1 1 (wt% Mn 

range from 0 to 2.31, wt% Ni range from 0 to 10.8, wt% Cr range from 0 to 11.8) 

Ternary Categorized Graph gives the relations between the four input variables and one output 

variable. Figure.4.13.2 , Figure. 4.13.3 and Figure. 4.13.4 show the relations between Chromium, 

Manganese, Nickel, Heat Input and Charpy Toughness by GRNN. Graphs gives the information 

about how these four Chromium, Manganese, Nickel, and Heat Input control the Charpy 

Toughness from 25J to 325J. Figure. 4.13.2, and Figure. 4.13.3 indicate the criticality  to 

maintain the toughness with Chromium, Manganese, Nickel, and Heat Input. In Figure. 4.13.2 

and Figure. 4.13.3 with Heat Input value <= 2.1 kJ mm-1,the toughness is achieved 25J and Heat 

Input 3.6 to 5.1 kJ mm-1 gives Toughness 25J to 275J. In Figure.4.12.10 shows that to increase 

the toughness, increase Chromium, decrease in Manganese and decrease in Nickel. There are 

number of combinations of alloying elements available for one value of Toughness. Figure. 

4.13.3 gives more flexibility for alloy design or weld deposit design for high Heat Inputs. 
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Figure. 4.13.3 Ternary Categorized  Graph of Chromium, Manganese, Nickel, Heat Input and 

Charpy Toughness shows 25 J to 300 J lines  with Heat input  > 5.1 1 (wt% Mn range from 0 to 

2.31, wt% Ni range from 0 to 10.8, wt% Cr range from 0 to 11.8) 
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Figure. 4.13.4 Ternary Categorized Graph of Chromium, Manganese, Nickel, Heat Input 

and Charpy Toughness (Enlarged view of Figure. 4.13.3 near the Chromium.)  (wt% Mn 

range from 0 to 2.31, wt% Ni range from 0 to 10.8, wt% Cr range from 0 to 11.8) 

Figure. 4.13.4 show the relations between Chromium, Manganese, Nickel, Heat Input and 

Charpy Toughness by GRNN. Graphs gives the information about how these four Chromium, 

Manganese, Nickel, and Heat Input control the Charpy Toughness from 25J to 300J. At High 

Heat Input > 5.1 kJ mm-1 can give wide range of Toughness, 25J to 300J. The alloying elements 

require for higher toughness more than 275J, Manganese less than 0.14 wt%, Chromium 9.0 to 

11.78 wt% and Nickel less than 1.35 wt%. This finding is totally new that with increase in the 

Chromium content and decreasing both Manganese and Nickel, increases the Charpy Toughness 

at higher input value greater than 5.1 kJ mm-1.  Figure.4.12.11 indicates more convenience for 

alloy design or weld deposit design because very small region available for input variables 

selection. This region also mentions that control of three alloying elements must be controlled 

very precisely for the desired Charpy Toughness. 
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4.4.5 Application of Trained Best Neural Network Models 

4.4.5.1Prediction of The Charpy Toughness on unseen data by BNN Model  

The BNN model has good accuracy in prediction of Charpy Toughness of ferritic steel welds on 

unseen data which is excellent for the design of welds. (Table. 4.11) The predicted Charpy 

Toughness of the unseen data of three weld alloys are compared with measured values of  

Charpy Toughness shows the prediction capacity of the BNN model. This BNN model can be 

used for practical applications, research and development of ferritic steel alloys. 

Table 4.11 Predicted Charpy Toughness by BNN model for unseen data of three ferritic weld 

deposits 

Variable Weld alloy 1 Weld alloy 2 Weld alloy 3 

Carbon(wt%) 
0.037 
 

0.033 
 

0.03 

Silicon(wt%) 0.3 0.3 0.04 

Manganese(wt%) 0.65 2.17 0.61 
Sulphur(wt%) 0.009 0.008 0.009 
Phosphorus(wt%) 0.011 0.012 0.01 
Nickel(wt%) 3.5 6.54 6.11 
Chromium(wt%) 0.03 0.44 0.16 
Molybdenum(wt%) 0.005 0.62 0.38 
Vanadium(wt%) 0.012 0.021 0.018 
Copper(wt%) 0.03 0.02 0.02 
Oxygen(ppm) 440 320 340 
Titanium(ppm) 55 0.0 0.0 
Nitrogen(ppm) 69 

 
139 129 

Boron(ppm) 2.0 1.0 1.0 
Niobium(ppm) 20 10 10 

Heat_input(kJ.mm-1) 1.0 1.3 1.3 
Interpass_temperature(C) 200 200 200 
Postweld_heat_treatment_temperature(C) 580 0.0 0.0 
Post-weld_heat_treatment_time(h) 2.0 0.0 0.0 
Testing Temperature CT (K) 210 293 293 

Measured CT (J) 100 41.5 123 
Predicted CT (J) 

83.11 
42.49 

 
114.43 

 

4.4.5.2 Prediction of The Charpy Toughness on unseen data by GRNN Model 

The GRNN model has good accuracy in prediction of Charpy Toughness of ferritic steel welds 

on unseen data which is excellent for the design of welds. (Table. 4.12) The predicted Charpy 

Toughness of the unseen data of three weld alloys are compared with measured values of  
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Charpy Toughness shows the prediction capacity of the GRNN model. This GRNN model can be 

used for practical applications, research and development of ferritic steel alloys. 

Table 4.12 Predicted Charpy Toughness by GRNN model for unseen data of three ferritic weld 

deposits 

Variable Weld alloy 1 Weld alloy 2 Weld alloy 3 

Carbon(wt%) 
0.037 
 

0.033 
 

0.03 

Silicon(wt%) 0.3 0.3 0.04 

Manganese(wt%) 0.65 2.17 0.61 
Sulphur(wt%) 0.009 0.008 0.009 
Phosphorus(wt%) 0.011 0.012 0.01 
Nickel(wt%) 3.5 6.54 6.11 
Chromium(wt%) 0.03 0.44 0.16 
Molybdenum(wt%) 0.005 0.62 0.38 
Vanadium(wt%) 0.012 0.021 0.018 
Copper(wt%) 0.03 0.02 0.02 
Oxygen(ppm) 440 320 340 
Titanium(ppm) 55 0.0 0.0 
Nitrogen(ppm) 69 

 
139 129 

Boron(ppm) 2.0 1.0 1.0 
Niobium(ppm) 20 10 10 

Heat_input(kJ.mm-1) 1.0 1.3 1.3 
Interpass_temperature(C) 200 200 200 
Postweld_heat_treatment_temperature(C) 580 0.0 0.0 
Post-weld_heat_treatment_time(h) 2.0 0.0 0.0 
Testing Temperature CT (K) 210 293 293 

Measured CT (J) 100 41.5 123 
Predicted CT (J) 100 39 113.5 

 

Prediction of The Charpy Toughness for new data of input variables can be achieved accurately 

with best trained models by BNN and GRNN as given in above Table 4.11 and Table 4.12. 

These Models have capacity for changing any individual input variable, any combination of 

more than one input variables or all input variables to predict the Charpy Toughness of Ferritic 

Steel Welds. These are only possible with the BNN and GRNN Models which are impossible 

practically. By simply running these Models the various design of the Ferritic Steel Welds are 

possible which save money, time and labor during Research and Development of the Ferritic 

Steel Welds. 
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4.4.6 Genetic Algorithms and applications to the yield strength of 

Ferritic Steel Welds  

 

4.4.6.1 Target Charpy Toughness of 100J and High value of Charpy 

Toughness 350J 

The first simulation is made to check the behavior of the genetic algorithm. The target value of 

charpy toughness is set to -0.7 which correspond to an unnormalised value of 100 J. The dataset 

provides such values of charpy toughness and the aim of this simulation is to check the results of 

the genetic algorithm. The 20 parameters (input variables) are allowed to vary, in between -1 and 

+ 1 during the genetic algorithm process. After 3000 generations, the best results obtained are 

shown Table 4.13.  

The second simulation is made to check the genetic algorithm for high value of the Charpy 

toughness. The target value of Charpy toughness is set to 0.2 which correspond to an 

unnormalised value of 350J. The dataset does not provide such value of Charpy toughness and 

the aim of this simulation is to check the results of the genetic algorithm. The 20 parameters 

(input variables) are allowed to vary, in between -1 and + 1 during the genetic algorithm process. 

After 3000 generations, the best results obtained are shown Table 4.13.  

According to Table 4.13, the genetic algorithm has managed to reach the target after 3000 

generations.  Moreover, the associated error obtained is very reasonable.  

To check if the given input variables correspond to Ferritic Steel Weld, compare with the actual 

data of Charpy toughness. 
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Table 4.13  Predicted Input variables by NN-GA model for two targeted Charpy Toughness of 

ferritic weld deposits 

Variable Weld 1 Weld 1 Weld  2 

 Result GA Data  Result GA 

Carbon(wt%) 0.04 0.037 0.09 

Silicon(wt%) 0.28 0.3 0.24 

Manganese(wt%) 0.65 0.65 0.65 
Sulphur(wt%) 0.006 0.009 0.005 
Phosphorus(wt%) 0.005 0.011 0.006 
Nickel(wt%) 3.8 3.5 0.19 
Chromium(wt%) 0.01 0.03 3.76 
Molybdenum(wt%) 0.004 0.005 0.12 
Vanadium(wt%) 0.011 0.012 0 
Copper(wt%) 0.023 0.03 0.32 
Oxygen(ppm) 453 440 190 
Titanium(ppm) 52 55 0 
Nitrogen(ppm) 71 69 119 

Boron(ppm) 1.0 2.0 0 
Niobium(ppm) 16 20 0 

Heat_input(kJ.mm-1) 1.2 1.0 2.5 
Interpass_temperature(C) 210 200 250 
Postweld_heat_treatment_temperature(C) 569 580 690 
Post-weld_heat_treatment_time(h) 2.5 2.0 10 
Testing Temperature CT (K) 220 210 293 

GA calculated CT (J)  98 --- 342 
Targeted  CT (J) 100 --- 350 

Error 32 --- 51 
Measured CT (J) --- 100 --- 

 

The NNGA models have good accuracy in predicting 20 input variables of the Charpy toughness 

of ferritic steel welds, which is excellent for weld design.(Table.4.13) The predicted results  of th

e targeted values of the two weld deposits are very close. The results of Genetic Algorithms are 

match with trends of measured data and fundamental of metallurgy. The output results 

show the predictive capacity of the NNGA model.This NNGA model can be used in practical ap

plications, research and development of ferritic steel alloys. [Appendix-B] 
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4.4.7 Summary 

The Neural Network and Genetic algorithms Methods have been used for efficient design of the 

Charpy Toughness of Ferritic Steel Welds. From the Modeling works and Results and 

Discussion of this Chapter some useful conclusions can be drawn: 

The distribution of the Data of the Charpy Toughness of Ferritic Steel Welds is uniform for some 

Input variables and non-uniform for some Input variables. The distribution is clearly observed in 

Scatter plots. 

In this case, of Bayesian Neural Network method, all the response graphs show error bars when 

the concentration of Nickel and Chromium is respectively below 8 and 6 wt%, the prediction can 

be reliable. But above those limits (7 wt% for Ni and 6 wt% for Cr), the model can no more be 

trusted and this is inferred by the large error bars. Similarly it is applicable to other graphs where 

larger error bars are present. More experiments with concentrations in this range of values need 

to be carried out to improve the model. Uncertainty because of a lack of data is one of the 

limitations of a neural network. The error bars and output variable (Charpy Toughness) 

sometimes showing unphysical (negative) values, this is because of the empirical equation in 

Neural Network modeling. This error bars feature of Bayesian Neural Network is excellent 

guideline for research and Development. 

In the case of General Regression Neural Network method, there are no problems of noisy data. 

It can handle noises in the Inputs. The Response graphs of the GRNN show more define about 

the non linearity or complexity between the Input variables and the Charpy Toughness of Ferritic 

Steel Welds.  

The Response Graphs show about the individual relationship between the input variables and 

Output variable (Charpy Toughness). The 3D contour plots show the relationship between the 

two Input variables with Output variable (Charpy Toughness).  

These trends are confirmed in the present analysis as illustrated in both the types of the Graphs 

Figure 4.10 (a to t) and Figure 4.11 (a to t). They are impossible to reproduce in practice. They 

give a clear understanding of the relationship between the Input variables and the Charpy 

Toughness of Ferritic Steel Welds. These pieces of information are very valuable for design, as 
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well as understanding the existing theory and also guiding about new research and new finding 

for the Ferritic steel Welds. 

The 3D contour plots show the relationship between the two Input variables with Charpy 

Toughness. There is a total combination of 190 3D contour plots formed by 20 Input variables 

with the Charpy Toughness. The Ternary Categorical plots show the relationship between the 

four Input variables with Charpy Toughness. There is a total combination of (three input 

variables) 1140 Ternary plots formed by 20 Input variables with the Charpy Toughness. In the 

present work, 18 3D contour plots and 4 Ternary Categorized plots are given with their important 

relationship with the Charpy Toughness. These 3D contour plots show some hidden complex 

behavior of the input variables with the Charpy Toughness which is also not available and well 

understood. Some innovative theoretical relations can be established by the proper interpretation 

of these 3D contour plots which become the new knowledge base for the future work on Ferritic 

Steel Welds. The Input variables show complex trends because during welding, there are 

formation of various types of the microstructures in Ferritic Steel Welds, qualitatively and 

quantitatively. 

The Ternary Categorized plots show the relations between Chromium, Manganese, Nickel, Heat 

Input and Charpy Toughness by GRNN model. Graphs give the information about how these 

four Chromium, Manganese, Nickel, and Heat Input control the Charpy Toughness from 25J to 

300J. At High Heat Input > 5.1 kJ mm-1 can give wide range of Toughness, 25J to 300J. The 

alloying elements require for higher toughness more than 275J, Manganese less than 0.14 wt%, 

Chromium 9.0 to 11.78 wt% and Nickel less than 1.35 wt%. This finding is totally new that with 

increase in the Chromium content and decreasing both Manganese and Nickel, increases the 

Charpy Toughness at higher input value greater than 5.1 kJ mm-1 (i.e. Chromium has a 

significant role in increase the Charpy Toughness of Ferritic Steel Welds).  Figure.4.13.4 

indicates more convenience for alloy design or weld deposit design because very small region 

available for input variable selection. This region also mentions that control of three alloying 

elements must be controlled very precisely for the desired Charpy Toughness. This region also 

mentions that control of three alloying elements must be done very precisely for the desired 

Charpy Toughness 
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The trained BNN and GRNN models give the accurate predictions of unseen data which is useful 

in designing the Ferritic Steel Welds for the welding electrodes industries. With simply change 

the quantity of Input variables in model and run it, the predicted Charpy Toughness is obtained 

in the seconds. 

The Genetic Algorithms method gives the prediction of the Input Variables for the Targeted 

Charpy Toughness value. It also predicted Input variables for the Targeted Charpy Toughness 

value which is beyond the range of data. The results are excellent. 

 

 


