Contents

Chapter No	Title	Page No
	Abstract	i
	List of Figures	ix
	List of Tables	xviii
	Nomenclature	xx
1	Introduction	1
1.1	Introduction	1
1.2	Problem Formulation	5
1.3	Objectives of work	5
1.4	Scope of the work	5
1.5	Important Research Findings	7
1.6	Research work layout	9
2	Theory and Literature Review	10
2.1	Introduction	10
2.2	Ferritic Steels	10
2.2.1	Heat Resistant Steels	10
2.2.2	Structural steels	12
2.3	Mechanical properties of weld deposits	12
2.3.1	Strength	12
2.3.2	Ductility	16
2.3.3	Charpy impact toughness	17
2.4	Arc Welding Processes	19
2.4.1	Arc Welding	19
2.4.2	Manual Metal Arc Welding	19
2.4.3	GasTungstenArc(TIG)Welding	20
2.4.4	GasMetalArcWelding	20

2.4.5	SubmergedArcWelding	20
2.5	VariablesAssociatedwithWelding	20
2.6	WeldMicrostructure	24
2.6.1	WeldMetalSolidification	24
2.6.2	As-depositedWeldMicrostructure	25
2.6.3	SecondaryMicrostructure	26
2.6.4	The microstructure and CCT diagram of weld metals	27
2.7	Strengthening Mechanism	33
2.7.1	Grain Refinement	34
2.7.2	Solid Solution Strengthening	34
2.7.3	Precipitation Hardening	35
2.7.4	Post Weld HeatTreatment	35
2.8	Previous Weld Mechanical Property Models	39
2.9	NEURAL NETWORKS OVERVIEW	44
2.10	Bayesian neural networks	44
2.11	Theory of Multilayer perceptron (MLP). Radial Basis function (RBF).	51
2.11	Generalized Regression neural networks(GRNN)	31
2.11.1	KEY ELEMENTS OF NEURAL NETWORKS	51
2.12	NETWORK TYPES	55
2.12.1	Multilayer perceptron(MLP)	55
2.12.2	Radial Basis function(RBF)	56
2.12.3	Generalized Regression neural networks(GRNN)	57
2.13	TYPICAL PROBLEM-SOLVING APPROACH	57
2.14	Neural Network and Genetic Algorithm Modelling	59
2.14.1	Genetic algorithm	59
2.14.2	Process	59
3	Modeling Work	65
3.1	Yield Strength Models	65
3.1.1	Introduction	65
3.1.1.1	Experimental Data base	65
3.1.1.2	Yield Strength Database	66

3.1.2	Neural Network Models for Yield Strength	71	
3.1.2.1	Bayesian Neural Network Model and Procedure	71	
3.1.3	Comparision of Neural network models and Procedure (MLP, RBF, GRNN)	78	
3.1.4	Best GRNN Model for the Yield Srength	79	
3.1.5	Neural Network and Genetic Algorithms Modelling for Yield Strength of Ferritic Steel Welds	82	
3.1.5.1	Genetic Algorithms parameters and Procedure	82	
3.2	Ultimate Tensile Strength Models	84	
3.2.1	Experimental Data base	84	
3.2.1.1	Ultimate Tensile Strength Database	84	
3.2.2	Neural Network Models for Ultimate Tensile Strength	89	
3.2.2.1	Bayesian Neural Network Model and Procedure	89	
3.2.3	Comparison of Neural network models and Procedure (MLP, RBF, GRNN)	95	
3.2.4	Best GRNN Model for Ultimate Tensile Strength	96	
2.2.5	Neural Network and Genetic Algorithms Modelling for Ultimate	100	
3.2.5	Tensile Strength of Ferritic Steel Welds	100	
3.2.5.1	Genetic Algorithms parameters and Procedure	100	
3.3	Elongation Models	102	
3.3.1	Experimental Data base	102	
3.3.1.1	Elongation Database	102	
3.3.2	Neural Network Models for Elongation	108	
3.3.2.1	Bayesian Neural Network Model and Procedure	108	
3.3.3	Comparision of Neural network models and Procedure (MLP, RBF, GRNN)	114	
3.3.4	Best GRNN Model for Elongation	115	
3.3.5	Neural Network and Genetic Algorithm Modelling for Elongation of Ferritic	119	
3.3.3	Steel Welds		
3.3.5.1	Genetic Algorithms parameters and Procedure	119	
3.4	Charpy Toughness Models	121	
3.4.1	Experimental Data base	121	
3.4.1.1	Charpy Toughness Database	121	
3.4.2	Neural Network Models for Charpy Toughness	126	

3.4.2.1	Bayesian Neural Network Model and Procedure	126
3.4.3	Comparison of Neural network models and Procedure (MLP, RBF, GRNN)	
3.4.4	Best GRNN Model for Charpy Toughness	134
3.4.5	Neural Network and Genetic Algorithms Modelling for CharpyToughness of Ferritic Steel Welds	137
3.4.5.1	Genetic Algorithms parameters and Procedure	137
4	Results and Discussions	139
4.1	Yield Strength Models	139
4.1.1	Response graphs of Input variables and Yield Strength of Ferritic Steel Welds using committee model of Bayesian Neural Network	139
4.1.2	Response Graphs of the Yield Strength GRNN model	145
4.1.3	3D Contour plots of the Yield Strength GRNN model	
4.1.4	Application of Trained Best Neural Network Models	
4.1.4.1	Prediction of The Yield Strength on unseen data by BNN Model	181
4.1.4.2	Prediction of The Yield Strength on unseen data by GRNN Model	182
4.1.5	Genetic Algorithms and applications to the Yield Strength of Ferritic Steel Welds	183
4.1.5.1	Target Yield strength of 466 MPa and High value of yield strength 1200 MPa	183
4.1.6	Summary	
4.2	Ultimate Tensile Strength Models	187
4.2.1	Response graphs of Input variables and Ultimate Tensile Strength of Ferritic Steel Welds using committee model of Bayesian Neural Network	187
4.2.2	Response Graphs of the Ultimate Tensile Strength GRNN model	193
4.2.3	3D Contour plots of the Ultimate Tensile GRNN model	203
4.2.4	Application of Trained Best Models	230
4.2.4.1	Prediction of The Ultimate Tensile Strength on unseen data by BNN Model	230
4.2.4.2	Prediction of The Ultimate Tensile Strength on unseen data by GRNN Model	231
4.2.5	Genetic Algorithms and applications to the Ultimate Tensile Strength of Ferritic Steel Welds	232
4.2.5.1	Target Ultimate Tensile strength of 538 MPa and High value of Ultimate	232

Tensile strength 1300 MPa

	References	340
6	Further scope of the work	339
5	Conclusions	335
4.4.7	Summary	332
4.4.6.1	Target Charpy Toughness of 100J and High value of Charpy Toughness 350J	330
4.4.6	Genetic Algorithms and applications to the Charpy Toughness of Ferritic Steel Welds	330
4.4.5.2	Prediction of The Charpy Toughness on unseen data by GRNN Model	328
4.4.5.1	Prediction of The Charpy Toughness on unseen data by BNN Model	328
4.4.5	Application of Trained Best Neural Network Models	328
4.4.4	Ternary Categorical Plots of Chapy Toughness GRNN Model	322
4.4.3	3D Contour plots of the Charpy Toughness GRNN model	297
4.4.2	Response Graphs of the Charpy toughness GRNN model	285
4.4.1	Response graphs of Input variables and Elongation of Ferritic Steel Welds using committee model of Bayesian Neural Network	278
4.4	Charpy Toughness Models Passenge graphs of Input variables and Florgation of Farritic Steel Welds	278
4.3.6	Summary Charmy Touchness Models	276
4.3.5.1	Target Elongation of 13% and High value of Elongation 45%	274
4.3.5	Genetic Algorithms and applications to the Elongation of Ferritic Steel Welds	274
4.3.4.2	Prediction of the Elongation on unseen data by GRNN Model	273
4.3.4.1	Prediction of the Elongation on unseen data by BNN Model	272
4.3.4	Application of Trained Best Models	272
4.3.3	3D Contour plots of the Elongation GRNN model	254
4.3.2	Response Graphs of the Elongation GRNN model	243
4.3.1	using committee model of Bayesian Neural Network	236
	Response graphs of Input variables and Elongation of Ferritic Steel Welds	
4.3	Elongation Models	236
4.2.6	Summary	234

Bibliography	347
Appendices	
Appendix-A Software for Bayesian neural network training	348
Appendix-B Provenance of Source Code - Anne Delorme (Genetic	349
Algorithm)	349
Appendix-C Profile String: Statistica Neural Network Software	370
Appendix-D Academic Contribution (Publications)	372