## List Of Figures

| Figure | Title                                                                                     | Page |
|--------|-------------------------------------------------------------------------------------------|------|
| No     | The                                                                                       | No   |
| 1.1    | Flow diagram illustrating the research work                                               | 4    |
| 2.1    | Schematic diagram of tensile test specimen a) before testing b) After testing. $\Delta L$ | 12   |
| 2.1    | is the total extension of the specimen during the tensile test.                           | 15   |
| 2.2    | Engineering stress=strain curve showing a) different stresses, b) 0.2% proof              | 1.5  |
| 2.2    | stress                                                                                    | 13   |
| 2.3    | True stress - true strain curve (flow curve).                                             | 15   |
| 2.4    | The stress-elongation curve. The elastic elongation is exaggerated for clarity.           | 16   |
| 25     | The Charpy impact test sample and impact toughness versus test temperature                | 10   |
| 2.5    | curve.                                                                                    | 18   |
| 2.6    | Schematic view of arc welding process.                                                    | 21   |
| 2.7    | Schematic view of manual metal arc welding (MMAW).                                        | 22   |
| 2.8    | Different types of joint preparations.                                                    | 23   |
| 2.9    | Schematic view of the various zones in a single pass weld metal.                          | 28   |
|        | a) Schematic diagram showing different constituents of the primary                        |      |
| 2 10   | microstructure in the columnar austenite grains of a steel weld, b) scanning              | 20   |
| 2.10   | electron micrograph of the primary microstructure of a steel weld. $\alpha$ -             | 29   |
|        | allotrimorphic ferrite $\alpha$ w- Widmanstatten ferrite and $\alpha$ a-acicular ferrite. |      |
| 2.11   | Various regions in a multilayer welding.                                                  | 30   |
| 0.10   | Microstructural variations in heat affected zone The banded structure is a                | 31   |
| 2.12   | characteristic feature of segregated steels which have been rolled                        |      |
|        | Schematic CCT diagram for steel weld metal, summanzmg the possible effect of              |      |
| 2.13   | microstructure and alloying on the transformation products for a given weld               | 32   |
|        | cooling time.                                                                             |      |
| 2.14   | Temperature dependence of the yield strength of iron (gettered with titanium) at a        | 22   |
|        | plastic strain of 0.002. The strain rate is 2.5x IO-4s-I.                                 | 33   |
| 2.15   | Contributions to the solid solution strengthening of ferrite.                             | 36   |

- 2.16 The effect of some substitutional solutes (3 at.%) on the yield strength of iron. The strain rate is  $2.5 \times 10-4 \text{ s-1}$ .
- 2.17 Carbide sequence in water quenched 2<sup>1</sup>/<sub>4</sub>Cr-1Mo steel, where 'M' represents 38 metallic elements.

The weld microstructure consists of allotriomorphic ferrite ( $\alpha$ ), Wimanstetten ferrite ( $\alpha$ w) and acciular ferrite ( $\alpha$ a). Nitrogen is assumed to be in solid solution

and any Strain ageing effects in the as-welded microstructure are assumed to be 41 negligible. The solid solution strengthening (σss) is expressed as the sum of the contributions from each solute:

A schematic diagram of a three-layer feed-forward network. The model's

2.19 complexity is controlled by the number of neurons in the second layer, known as 45 hidden units.

Under-and over-fitting. A set of noisy data points (hollow boxes) has been fitted

- 2.20 by (a) linear regression and (b) an overly complex function. In the first case the fit clearly does not represent the data, and in the second case the fit over lies the training data perfectly but generalizes poorly to new points (crosses).
- Comparison of error on training and testing sets as a function of network
   complexity, illustrating the problem of over complex models as in Figure 3.2.
   Schematic illustration of the uncertainty in defining a fitting function in regions
   where data are sparse (B) or noisy (A). The thinner lines represent error bounds
- 2.22 due to uncertainties in determining the weights. Note that, outside the range of 50 data, the extrapolation is increasingly uncertain(C). Are as of high uncertainty will provide the most informative new experiments.
- 2.23 A schematic representation of a simple neural network with the elements 51 2.24 Shows the functions in Neural Networks. 53 2.25 Activation function in Neural Network 54 2.26 The process of the genetic algorithm 60 2.27 Principle of the Uniform crossover 64 Database distribution used for yield strength model. "p.p.m.' corresponds to parts 3.1 71 per million by weight. 3.2 (a to f) Yield Strength (YS) model features. 76

х

| 3.3   | The perceived significance value of best seven yield strength models in a            | 76  |
|-------|--------------------------------------------------------------------------------------|-----|
|       | committee for each of the input variables.                                           |     |
| 3.4   | (a to c) 2 Training data, validation data and test data of the Best GRNN model for   | 80  |
|       | Yield Strength.                                                                      |     |
| 3.5   | Database distribution used for Ultimate Tensile Strength model. "p.p.m .'            | 89  |
|       | corresponds to parts per million by weight.                                          |     |
| 3.6   | (a,b,c,d,e,f) 5.2 : Ultimate Tensile Strength (UTS) model features.                  | 93  |
| 37    | The perceived significance of best eightUltimate Tensile Strength                    | 94  |
| 517   | models for each of the inputs.                                                       |     |
| 38    | Training data, validation data and test data of the Best GRNN model for Ultimate     | 98  |
| 5.0   | Tensile Strength.                                                                    | 70  |
| 39    | Database distribution used for Elongation model. "p.p.m .' corresponds to parts      | 107 |
| 5.7   | per million by weight.                                                               | 107 |
| 3.10  | (a,b,c,d,e,f) Elongation (EL) model features.                                        | 112 |
| 2 1 1 | The perceived significance $\sigma$ wvalue of best two Elongation models for each of | 112 |
| 5.11  | the inputs.                                                                          | 115 |
| 3 1 2 | Training data, validation data and test data of the Best GRNN model for              | 117 |
| 5.12  | Elongation                                                                           | 11/ |
| 2 1 2 | Database distribution used for Charpy Toughness model. "p.p.m .' corresponds to      | 126 |
| 5.15  | parts per million by weight.                                                         | 126 |
| 3.14  | (a,b,c,d,e,f) : Charpy Toughness (CT) model features.                                | 130 |
| 2 15  | The perceived significance $\sigma$ wvalue of best eight Charpy Toughness models for | 121 |
| 5.15  | each of the inputs.                                                                  | 151 |
| 2.16  | (a to c) Training data, validation data and test data of the Best GRNN model for     | 125 |
| 5.10  | Charpy Toughness.                                                                    | 155 |
| 4 1   | (a to q) Response graphs (a to q) of Input variables and Yield Strength of Ferritic  | 142 |
| 4.1   | Steel Welds using committee model of Bayesian Neural Network                         | 143 |
| 4.2   | (a to q) Response graphs of Input variables and Yield Strength of Ferritic Steel     | 150 |
|       | Welds (GRNN)                                                                         | 153 |
| 4.3.1 | Predicted variations in Yield Strength (MPa) as a function of the Carbon and         | 155 |
|       | Manganese concentrations                                                             | 130 |
|       |                                                                                      |     |

xi

| 4.3.2          | Predicted variations in Yield Strength (MPa) as a function of the Carbon and     | 157 |
|----------------|----------------------------------------------------------------------------------|-----|
|                | Nickel concentrations                                                            | 157 |
| 4.3.3          | Predicted variations in Yield Strength (MPa) as a function of the Carbon and     | 158 |
|                | Chromium concentrations                                                          | 150 |
| 4.3.4          | Predicted variations in Yield Strength (MPa) as a function of the Carbon and     | 159 |
|                | Molybdenum concentrations                                                        | 157 |
| 125            | Predicted variations in Yield Strength (MPa) as a function of the Carbon and     | 160 |
| 4.3.5          | Vanadium concentrations                                                          | 100 |
| 436            | Predicted variations in Yield Strength (MPa) as a function of the Carbon and     | 161 |
| ч.э.0          | Silicon concentrations                                                           | 101 |
| 437            | Predicted variations in Yield Strength (MPa) as a function of the Carbon and     | 162 |
| ч. <i>э</i> .т | Boron concentrations                                                             | 102 |
| 438            | Predicted variations in Yield Strength (MPa) as a function of the Carbon and     | 163 |
| 4.5.0          | Titanium concentrations                                                          | 105 |
| 439            | Predicted variations in Yield Strength (MPa) as a function of the Carbon and     | 164 |
| 1.5.9          | Niobium concentrations                                                           | 101 |
| 4310           | Predicted variations in Yield Strength (MPa) as a function of the Carbon         | 165 |
| 1.5.10         | concentration and Heat input                                                     | 105 |
| 4311           | Predicted variations in Yield Strength (MPa) as a function of the Carbon         | 166 |
| 1.5.11         | concentration and Interpass temperature                                          | 100 |
| 4.3.12         | Predicted variations in Yield Strength (MPa) as a function of the Carbon         | 167 |
| 110112         | concentration and Post-weld heat treatment time                                  | 107 |
| 43.13          | Predicted variations in Yield Strength (MPa) as a function of the Nickel and     | 168 |
|                | Chromium concentrations                                                          | 100 |
| 4.3.14         | Predicted variations in Yield Strength (MPa) as a function of the Molybdenum     | 169 |
|                | and Vanadium concentrations                                                      | 10) |
| 4.3.15         | Predicted variations in Yield Strength (MPa) as a function of the Boron and      | 170 |
|                | Niobium concentrations                                                           | 170 |
| 4.3.16         | Predicted variations in Yield Strength (MPa) as a function of the Heat input and | 171 |
|                | Interpass temperature                                                            | 1/1 |
| 4.3.17         | Predicted variations in Yield Strength (MPa) as a function of the Post-weld heat | 172 |

treatment temperature and Post-weld heat treatment time

| 4.3.18 | Predicted variations in Yield Strength (MPa) as a function of the Carbon and      | 173 |
|--------|-----------------------------------------------------------------------------------|-----|
|        | Post-weld heat treatment temperature                                              | 175 |
| 4.4    | Response graphs (a to r) of Input variables and Ultimate Tensile Strength of      | 101 |
|        | Ferritic Steel Welds using committee model of Bayesian Neural Network             | 171 |
| 4.5    | (a to r) Response graphs of Input variables Ultimate Tensile Strength of Ferritic | 201 |
|        | Steel Welds                                                                       | 201 |
| 161    | Predicted variations in Ultimate Tensile Strength (MPa) as a function of the      | 204 |
| 4.0.1  | Carbon and Silicon concentrations                                                 | 204 |
| 162    | Predicted variations in Ultimate Tensile Strength (MPa) as a function of the      | 205 |
| 4.0.2  | Carbon and Manganese concentrations                                               | 203 |
| 162    | Predicted variations in Ultimate Tensile Strength (MPa) as a function of the      | 206 |
| 4.0.3  | Carbon and Nickel concentrations                                                  | 200 |
| 1 6 1  | Predicted variations in Ultimate Tensile Strength (MPa) as a function of the      | 207 |
| 4.0.4  | Carbon and Chromium concentrations                                                | 207 |
| 165    | Predicted variations in Ultimate Tensile Strength (MPa) as a function of the      | 200 |
| 4.0.3  | Carbon and Molybdenum concentrations                                              | 208 |
| 100    | Predicted variations in Ultimate Tensile Strength (MPa) as a function of the      | 200 |
| 4.6.6  | Carbon and Vanadium concentrations                                                | 209 |
|        | Predicted variations in Ultimate Tensile Strength (MPa) as a function of the      | 010 |
| 4.6.7  | Carbon and Titanium concentrations                                                | 210 |
| 1 6 0  | Predicted variations in Ultimate Tensile Strength (MPa) as a function of the      | 011 |
| 4.6.8  | Carbon and Boron concentrations                                                   | 211 |
| 1.6.0  | Predicted variations in Ultimate Tensile Strength (MPa) as a function of the      | 010 |
| 4.6.9  | Carbon and Niobium concentrations                                                 | 212 |
| 4.6.10 | Predicted variations in Ultimate Tensile Strength (MPa) as a function of the      | 010 |
|        | Carbon concentration and Heat input                                               | 213 |
| 4.6.11 | Predicted variations in Ultimate Tensile Strength (MPa) as a function of the      |     |
|        | Carbon concentration and Interpass temperature                                    | 214 |
| 4.6.12 | Predicted variations in Ultimate Tensile Strength (MPa) as a function of the      |     |
|        | Carbon concentration and Post-weld heat treatment temperature                     | 215 |
|        |                                                                                   |     |

| Predicted variations in Ultimate Tensile Strength (MPa) as a function of the       | 216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Carbon concentration and Post-weld heat treatment time                             | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Predicted variations in Ultimate Tensile Strength (MPa) as a function of the       | 217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Nickel and Chromium concentrations                                                 | 217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Predicted variations in Ultimate Tensile Strength (MPa) as a function of the       | 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Molybdenum and Vanadium concentrations                                             | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Predicted variations in Ultimate Tensile Strength (MPa) as a function of the       | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Oxygen and Titanium concentrations                                                 | 219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Predicted variations in Ultimate Tensile Strength (MPa) as a function of the       | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Boron and Niobium concentrations                                                   | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Predicted variations in Ultimate Tensile Strength (MPa) as a function of the Heat  | 221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| input and Interpass temperature                                                    | 221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Predicted variations in Ultimate Tensile Strength (MPa) as a function of the Post- | 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| weld heat treatment temperature and Post-weld heat treatment temperature time.     | LLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (a to r) Response graphsof Input variables and Elongation of Ferritic Steel Welds  | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| using committee model of Bayesian Neural Network                                   | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (a to r) Response graphs (a to r) of Input variables Elongation of Ferritic Steel  | 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Welds                                                                              | 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Predicted variations in Elongation (%) as a function of the Carbon and             | 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Manganese concentrations                                                           | 233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Predicted variations in Elongation (%) as a function of the Carbon and Silicon     | 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| concentrations                                                                     | 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Predicted variations in Elongation (%) as a function of the Silicon and Manganese  | 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| concentrations                                                                     | 237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Predicted variations in Elongation (%) as a function of the Nickel and Chromium    | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| concentrations                                                                     | 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Predicted variations in Elongation (%) as a function of the Molybdenum and         | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Vanadium concentrations                                                            | 239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Predicted variations in Elongation (%) as a function of the Copper and Oxygen      | 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| concentrations                                                                     | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                    | <ul> <li>Predicted variations in Ultimate Tensile Strength (MPa) as a function of the Carbon concentration and Post-weld heat treatment time</li> <li>Predicted variations in Ultimate Tensile Strength (MPa) as a function of the Nickel and Chromium concentrations</li> <li>Predicted variations in Ultimate Tensile Strength (MPa) as a function of the Molybdenum and Vanadium concentrations</li> <li>Predicted variations in Ultimate Tensile Strength (MPa) as a function of the Oxygen and Titanium concentrations</li> <li>Predicted variations in Ultimate Tensile Strength (MPa) as a function of the Boron and Niobium concentrations</li> <li>Predicted variations in Ultimate Tensile Strength (MPa) as a function of the Heat input and Interpass temperature</li> <li>Predicted variations in Ultimate Tensile Strength (MPa) as a function of the Post-weld heat treatment temperature and Post-weld heat treatment temperature time.</li> <li>(a to r) Response graphsof Input variables and Elongation of Ferritic Steel Welds using committee model of Bayesian Neural Network</li> <li>(a to r) Response graphs (a to r) of Input variables Elongation of the Carbon and Manganese concentrations</li> <li>Predicted variations in Elongation (%) as a function of the Silicon and Manganese concentrations</li> <li>Predicted variations in Elongation (%) as a function of the Nickel and Chromium concentrations</li> <li>Predicted variations in Elongation (%) as a function of the Nickel and Chromium concentrations</li> <li>Predicted variations in Elongation (%) as a function of the Nickel and Chromium concentrations</li> <li>Predicted variations in Elongation (%) as a function of the Molybdenum and Vanadium concentrations</li> <li>Predicted variations in Elongation (%) as a function of the Copper and Oxygen concentrations</li> <li>Predicted variations in Elongation (%) as a function of the Copper and Oxygen concentrations</li> </ul> |

xiv

concentrations

| 4.9.8  | Predicted variations in Elongation (%) as a function of the Boron and Oxygen      | 262 |
|--------|-----------------------------------------------------------------------------------|-----|
|        | concentrations                                                                    | 202 |
| 4.9.9  | Predicted variations in Elongation (%) as a function of the Niobium concentration | 263 |
|        | and Heat input                                                                    | 203 |
| 4.9.10 | Predicted variations in Elongation (%) as a function of the Heat input and        | 264 |
|        | Interpass temperature                                                             | 204 |
| 4011   | Predicted variations in Elongation (%) as a function of the Post-weld Heat        | 265 |
| 4.9.11 | treatment temperature and Post-weld Heat treatment time                           | 203 |
| 4012   | Predicted variations in Elongation (%) as a function of the Nickel concentration  | 266 |
| 4.9.12 | and Heat input                                                                    | 266 |
| 4012   | Predicted variations in Elongation (%) as a function of the Chromium              | 267 |
| 4.9.15 | concentration and Heat input                                                      | 267 |
| 4 10   | (a to t) Response graphs (a to t) of Input variables and Charpy Toughness of      | 202 |
| 4.10   | Ferritic Steel Welds using committee model of Bayesian Neural Network             | 283 |
| 4 1 1  | (a to t) Response graphs of Input variables and Charpy Toughness of Ferritic      | 204 |
| 4.11   | Steel Welds (GRNN)                                                                | 294 |
| 4 10 1 | Contour plot showing the variation in Predicted Charpy Toughness as a function    | 200 |
| 4.12.1 | of the Carbon and Manganese concentrations.                                       | 298 |
| 4 10 0 | Predicted variations in Charpy Toughness (J) as a function of the Manganese and   | 200 |
| 4.12.2 | Nickel concentrations                                                             | 299 |
| 4 10 2 | Predicted variations in Charpy Toughness (J) as a function of the Manganese       | 200 |
| 4.12.3 | concentration and Interpass temperature                                           | 300 |
| 4 10 4 | Predicted variations in Charpy Toughness (J) as a function of the Nickel          | 201 |
| 4.12.4 | concentration and Interpass temperature                                           | 301 |
| 4 10 5 | Predicted variations in Charpy Toughness (J) as a function of the Chromium        | 202 |
| 4.12.5 | concentration and Interpass temperature                                           | 302 |
| 4.12.6 | Predicted variations in Charpy Toughness (J) as a function of the Heat Input(kJ   | 202 |
|        | mm-1) and Interpass temperature                                                   | 303 |
| 4.12.7 | Predicted variations in Charpy Toughness (J) as a function of the Carbon and      | 204 |
|        | Silicon concentrations                                                            | 304 |

| 4.12.8  | Predicted variations in Charpy Toughness (J) as a function of the Nickel and     | 305 |
|---------|----------------------------------------------------------------------------------|-----|
|         | Chromium concentrations                                                          |     |
| 4.12.9  | Predicted variations in Charpy Toughness (J) as a function of the Molybdenum     | 306 |
|         | and Vanadium concentrations                                                      |     |
| 4.12.10 | Predicted variations in Charpy Toughness (J) as a function of the Copper and     | 307 |
|         | Qxygen concentrations                                                            | 201 |
| 4.12.11 | Predicted variations in Charpy Toughness (J) as a function of the Qxygen and     | 308 |
|         | Titanium concentrations                                                          | 500 |
| 1 12 12 | Predicted variations in Charpy Toughness (J) as a function of the Nitrogen and   | 300 |
| 4.12.12 | Boron concentrations                                                             | 309 |
| 1 12 12 | Predicted variations in Charpy Toughness (J) as a function of the Niobium        | 210 |
| 4.12.13 | concentration and Heat input(kJ mm-1)                                            | 510 |
| 1 10 11 | Predicted variations in Charpy Toughness (J) as a function of the Post-weld Heat | 211 |
| 4.12.14 | treatment temperature and Post-weld Heat treatment time                          | 311 |
| 4 10 15 | Predicted variations in Charpy Toughness (J) as a function of the Interpass      | 210 |
| 4.12.15 | temperature and Testing temperature for Charpy Toughness                         | 512 |
| 4 10 10 | Predicted variations in Charpy Toughness (J) as a function of the Nickel and     | 212 |
| 4.12.10 | Testing temperature for Charpy Toughness                                         | 313 |
| 4 10 17 | 3D Contour Plot of Charpy Toughness, Nickel Manganese and Testing                | 220 |
| 4.12.17 | Temperature for Charpy toughness $> 213K$ (-60C) (GRNN)                          | 320 |
| 4 10 10 | 3D Contour Plot of Charpy Toughness, Nickel Manganese and Testing                | 221 |
| 4.12.18 | Temperature for Charpy toughness > 233K (-40C) (GRNN)                            | 321 |
|         | Ternary Categorial Graph of Chromium, Manganese, Nickel, Heat Input and          |     |
| 4.13.1  | Charpy Toughness shows 25 J line with Heat input <=2.1 (wt% Mn range from 0      | 323 |
|         | to 2.31, wt% Ni range from 0 to 10.8, wt% Cr range from 0 to 11.8)               |     |
|         | Ternary Categorial Graph of Chromium, Manganese, Nickel, Heat Input and          |     |
|         | Charpy Toughness shows 25 J to 275 J lines with Heat input in range 3.6 to 5.11  |     |
| 4.13.2  | (wt% Mn range from 0 to 2.31, wt% Ni range from 0 to 10.8, wt% Cr range from     | 325 |
|         | 0 to 11.8)                                                                       |     |
| 4.13.3  | Ternary Categorial Graph of Chromium, Manganese, Nickel, Heat Input and          | _   |
|         | Charpy Toughness shows 25 J to 300 J lines with Heat input > 5.1 1 (wt% Mn       | 326 |

xvi

range from 0 to 2.31, wt% Ni range from 0 to 10.8, wt% Cr range from 0 to 11.8) Ternary Categorized Graph of Chromium, Manganese, Nickel, Heat Input and

4.13.4 Charpy Toughness(Enlarged view of Figure.10 near the Chromium.) (wt% Mn 327 range from 0 to 2.31, wt% Ni range from 0 to 10.8, wt% Cr range from 0 to 11.8)