List Of Tables

Table No	Title	Page No
2.1	Chemical composition of some steels have been used Power Plant, all units are in wt%.	11
2.2	Yield and Ultimate tensile strength (MPa) regression models of weld metals. The alloying element concentrations are expressed in wt%.	39
2.3	The fitness value fi of each chromosome i and the corresponding probability Pi of selection	63
3.1	The Input Variables for Yield Strength Model. "p.p.m.' corresponds to parts per million by weight.	68
3.2	Comparison of Neural network models {MLP, RBF, GRNN}	79
3.3	Comparison of Significance of Best Trained Models of Yield Strength	81
3.4	The Input Variables for UltimateTensileStrengthModel.	86
3.5	Comparison of Neural network models (MLP, RBF, GRNN)	96
3.6	Comparison of Significance of Best Trained Models of Ultimate Tensile Strength	99
3.7	The Input Variables for Elongation Model. "p.p.m.' corresponds to parts per million by weight.	104
3.8	Comparison of Neural network models (MLP, RBF, GRNN)	115
3.9	Comparison of Significance of Best Trained Models of Elongation	118
3.10	The Input Variables for Charpy Toughness Model. "p.p.m." corresponds to parts per million by weight.	123
3.11	Comparison of Neural network models (MLP, RBF, GRNN)	133
3.12	Comparison of Significance of Best Trained Models of Elongation	136
4.1	Predicted yield strength by BNN model for unseen data of three ferritic weld	181
4.2	Predicted yield strength by GRNN model for unseen data of three ferritic weld	182
4.3	Predicted Input variables by NN-GA model for two targeted Yield Strength of ferritic weld deposits	184
4.4	Predicted Ultimate Tensile strength by BNN model for unseen data of three ferritic weld deposits	230
4.5	Predicted Ultimate Tensile strength by GRNN model for unseen data of three ferritic weld deposits	231
4.6	Predicted Input variables by NN-GA model for two targeted Ultimate Tensile Strength of ferritic weld deposits	233
4.7	Predicted Elongation by BNN model for unseen data of three ferritic weld deposits	272
4.8	Predicted Elongation by GRNN model for unseen data of three ferritic weld deposits	273
		xviii

weld deposits The normalized scale of Ternary Plot 0 to 1 First row red colour converted to Actual scale of variables 4.10 Predicted Charpy Toughness by GRNN model for unseen data of three ferritic	275 324
4.10 Actual scale of variables 4.11 Predicted Charpy Toughness by BNN model for unseen data of three ferritic Predicted Charpy Toughness by GRNN model for unseen data of three ferritic	24
Actual scale of variables 4.11 Predicted Charpy Toughness by BNN model for unseen data of three ferritic Predicted Charpy Toughness by GRNN model for unseen data of three ferritic	'44
Predicted Charpy Toughness by GRNN model for unseen data of three ferritic	<i>32</i> 4
Predicted Charpy Toughness by GRNN model for unseen data of three ferritic	28
4.12 4.12	329
weld deposits	29
Predicted Input variables by NN-GA model for two targeted Charpy Toughness of	31
ferritic weld deposits	31