CHAPTER-4 RESULTS & DISCUSSION

i s

4.1 Effect of alloy variation on Corrosion behaviour of weld overlays at different locations

4.1.1 Corrosion Behaviour of weld overlays at different location in 0.1 N HHO₃ Solution

4.1.1.1 Corrosion behaviour 309 L cladded weld overlay develop with 160mm / min. welding speed at different location in 0.1 N HHO₃ Solution

Fig. 4.1: Potentiodynamic scans of 309 L cladded weld overlay develop with 160mm / min. welding speed at different locations in 0.1 N HHO₃Solution

Table-4.1: Electrochemical Parameters of Potentio-dynamic 309 L cladded weld overlay develop with 160mm / min. welding speed at different location in 0.1 N HHO₃Solution

Sr. No	Samples	i _{Corr} (μA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC 309L BM 160 WS	609.0	-465	228.9
2	ESSC 309L IF 160 WS	431.2	-428	161.7
3	ESSC 309L Clad 160 WS	361.3	-374.0	135.5

Fig. 4.1 shows the results of potentiodynamic scans of 309 L cladded weld overlay develop with 160 mm / min. welding speed at different locations in 0.1 N HHO₃ solution. By comparing corrosion behavior of weld overlay at different locations, it shows that (i) all sample exhibit active potentials in given environments,(ii) cladded region has good corrosion resistance as compared to base metal and interfaces due to higher content of Cr

and Ni in cladded region that lead to passive film formation (iii)interface region also having good corrosion resistance as compared to base metal due to presence of some amount of Cr and Ni in interface region that lead to passive film formation, (iv) corrosion rate was decreased with increasing the alloying elements from base metal to interface to cladded region.

4.1.1.2 Corrosion behaviour 309 L cladded weld overlay develop with 180mm / min. welding speed at different location in 0.1 N HHO₃ Solution

Fig. 4.2: Potentiodynamic scans of 309 L cladded weld overlay develop with 180mm / min. welding speed at different location in 0.1 N HHO₃Solution

Table-4.2: Electrochemical Parameters of Potentio-dynamic 309 L cladded weld overlay develop with 180mm / min. welding speed at different location in 0.1 N HHO₃ Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC 309L BM 180 WS	567.0	-404.0	213.0
2	ESSC 309L IF 180 WS	254.0	-383	95.31
3	ESSC 309L Clad 180 WS	48.5	-440.0	18.24

Fig. 4.2 shows the results of potentiodynamic scans of 309 L cladded weld overlay develop with 180 mm / min. welding speed at different locations in 0.1 N HHO₃ solution. By comparing corrosion behavior of weld overlay at different locations, it shows that (i)

all sample exhibit active potentials in given environments,(ii) cladded region has good corrosion resistance as compared to base metal and interfaces due to higher content of Cr and Ni in cladded region that lead to passive film formation (iii)interface region also having good corrosion resistance as compared to base metal due to presence of some amount of Cr and Ni in interface region that lead to passive film formation, (iv) corrosion rate was decreased with increasing the alloying elements from base metal to interface to cladded region.

4.1.1.3 Corrosion behaviour 309 L cladded weld overlay develop with 200 mm / min. welding speed at different location in 0.1 N HHO₃ Solution

Fig. 4.3: Potentiodynamic scans of 309 L cladded weld overlay develop with 200 mm / min. welding speed at different location in 0.1 N HHO₃ Solution

Table-4.3: Electrochemical Parameters of Potentio-dynamic 309 L cladded weld overlay develop with 200 mm / min. welding speed at different location in 0.1 N HHO₃ Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC 309L BM 200 WS	518.0	-404.0	194.6
2	ESSC 309L IF 200 WS	245.0	-423	92.1
3	ESSC 309L Clad 200 WS	35.7	-402.0	13.41

Fig. 4.3 shows the results of potentiodynamic scans of 309 L cladded weld overlay develop with 200 mm / min. welding speed at different locations in 0.1 N HHO₃ solution.. By comparing corrosion behavior of weld overlay at different locations, it shows that (i)

all sample exhibit active potentials in given environments,(ii) cladded region has good corrosion resistance as compared to base metal and interfaces due to higher content of Cr and Ni in cladded region that lead to passive film formation (iii)interface region also having good corrosion resistance as compared to base metal due to presence of some amount of Cr and Ni in interface region that lead to passive film formation, (iv) corrosion rate was decreased with increasing the alloying elements from base metal to interface to cladded region.

4.1.1.4 Corrosion behaviour 309 L Nb cladded weld overlay develop with 160mm / min. welding speed $\,$ at different location in 0.1 N HHO₃ Solution

Fig. 4.4: Potentiodynamic scans of 309 L Nb cladded weld overlay develop with 160mm / min. welding speed at different location in 0.1 N HHO₃Solution

Table-4.4: Electrochemical Parameters of Potentio-dynamic 309 L Nb cladded weldoverlay develop with 160mm / min. welding speedat different location in 0.1 NHHO3 Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC 309L Nb BM 160 WS	609.0	-465	228.9
2	ESSC 309L Nb IF 160 WS	564.0	-458	211.6
3	ESSC 309L Nb Clad 160 WS	393.0	-424.0	147.3

Fig.4.4 shows the results of potentiodynamic scans of 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed at different locations in 0.1 N HHO₃ solution.

By comparing corrosion behavior of weld overlay at different locations, it shows that (i) all sample exhibit active potentials in given environments,(ii) cladded region has good corrosion resistance as compared to base metal and interfaces due to higher content of Cr and Ni in cladded region that lead to passive film formation (iii)interface region also having good corrosion resistance as compared to base metal due to presence of some amount of Cr and Ni in interface region that lead to passive film formation, (iv) corrosion rate was decreased with increasing the alloying elements from base metal to interface to cladded region.

4.1.1.5 Corrosion behaviour 309 L Nb cladded weld overlay develop with 180mm / min. welding speed at different location in 0.1 N HHO₃ Solution

Fig. 4.5: Potentiodynamic scans of 309 L Nb cladded weld overlay develop with 180mm / min. welding speed at different location in 0.1 N HHO₃Solution

Table-4.5: Electrochemical Parameters of Potentio-dynamic 309 L Nb cladded weld overlay develop with 180mm / min. welding speed at different location in 0.1 N HHO₃ Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC 309L Nb BM 180 WS	567.0	-404.0	213.0
2	ESSC 309L Nb IF 180 WS	436.0	-386	163.6
3	ESSC 309L Nb Clad 180 WS	257.6	-354.0	96.62

Fig. 4.5 shows the results of potentiodynamic scans of 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed at different locations in 0.1 N HHO₃ solution. By comparing corrosion behavior of weld overlay at different locations, it shows that (i) all sample exhibit active potentials in given environments,(ii) cladded region has good corrosion resistance as compared to base metal and interfaces due to higher content of Cr and Ni in cladded region that lead to passive film formation (iii)interface region also having good corrosion resistance as compared to base metal due to presence of some amount of Cr and Ni in interface region that lead to passive film formation, (iv) corrosion rate was decreased with increasing the alloying elements from base metal to interface to cladded region.

4.1.1.6 Corrosion behaviour 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed at different location in 0.1 N HHO₃ Solution

Fig. 4.6: Potentiodynamic scans of 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed at different location in 0.1 N HHO₃ Solution

Table-4.6: Electrochemical Parameters of Potentio-dynamic 309 L Nb cladded weldoverlay develop with 200 mm / min. welding speedat different location in 0.1 NHHO3 Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC 309L Nb BM 200 WS	518.0	-496	194.6
2	ESSC 309L Nb IF 200 WS	441.0	-406	163.7
3	ESSC 309L Nb Clad 200 WS	242.1	-359.0	90.80

114

Fig.4.6 shows the results of potentiodynamic scans of 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed at different locations in 0.1 N HHO₃ solution. By comparing corrosion behavior of weld overlay at different locations, it shows that (i) all sample exhibit active potentials in given environments,(ii) cladded region has good corrosion resistance as compared to base metal and interfaces due to higher content of Cr and Ni in cladded region that lead to passive film formation (iii)interface region also having good corrosion resistance as compared to base metal due to presence of some amount of Cr and Ni in interface region that lead to passive film formation, (iv) corrosion rate was decreased with increasing the alloying elements from base metal to interface to cladded region.

4.1.2 Corrosion Behaviour of weld overlays at different location in 0.1 N HCl Solution

4.1.2.1 Corrosion behaviour 309 L cladded weld overlay develop with 160mm / min. welding speed at different location in 0.1 N HCl Solution

Fig. 4.7 Potentiodynamic scans of 309 L cladded weld overlay develop with 160mm / min. welding speed at different location in 0.1 N HCl Solution

Table-4.7: Electrochemical Parameters of Potentio-dynamic 309 L cladded weld overlay develop with 160mm / min. welding speed at different location in 0.1 N HCl Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC 309L BM 160 WS	91.8	-509	34.5
2	ESSC 309L IF 160 WS	48.50	-523	18.22
3	ESSC 309L Clad 160 WS	26.7	-486	10.03

Fig. 4.7 shows the results of potentiodynamic scans of 309 L cladded weld overlay develop with 160 mm / min. welding speed at different locations in 0.1 N HCl solution. By comparing corrosion behavior of weld overlay at different locations, it shows that (i) all sample exhibit active potentials in given environments,(ii) cladded region has good corrosion resistance as compared to base metal and interfaces due to higher content of Cr and Ni in cladded region that lead to passive film formation (iii)interface region also having good corrosion resistance as compared to base metal due to presence of some

amount of Cr and Ni in interface region but does not exhibit any passivasion behavior, (iv) corrosion rate was decreased with increasing the alloying elements from base metal to interface to cladded region.

4.1.2.2 Corrosion behaviour 309 L cladded weld overlay develop with 180mm / min. welding speed at different location in 0.1 N HCl Solution

Fig.4.8 Potentiodynamic scans of 309 L cladded weld overlay develop with 180mm / min. welding speed at different location in 0.1 N HCl Solution

Table-4.8: Electrochemical Parameters of Potentio-dynamic 309 L cladded weldoverlay develop with 180mm / min. welding speedat different location in 0.1 NHCl Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC 309L BM 180 WS	60.5	-535	22.73
2	ESSC 309L IF 180 WS	42.50	-528	15.97
3	ESSC 309L Clad 180 WS	0.075	-137	0.0282

Fig. 4.8 shows the results of potentiodynamic scans of 309 L cladded weld overlay develop with 180 mm / min. welding speed at different locations in 0.1 N HCl solution. By comparing corrosion behavior of weld overlay at different locations, it shows that (i) all sample exhibit active potentials in given environments,(ii) cladded region has good corrosion resistance as compared to base metal and interfaces due to higher content of Cr and Ni in cladded region but does not exhibit any passivasion behavior (iii)interface

region also having good corrosion resistance as compared to base metal due to presence of some amount of Cr and Ni in interface region but does not exhibit any passivasion behavior, (iv) corrosion rate was decreased with increasing the alloying elements from base metal to interface to cladded region.

4.1.2.3 Corrosion behaviour 309 L cladded weld overlay develop with 200 mm / min. welding speed at different location in 0.1 N HCl Solution

Fig. 4.9 Potentiodynamic scans of 309 L cladded weld overlay develop with 200 mm / min. welding speed at different location in 0.1 N HCl Solution

Table-4.9: Electrochemical Parameters of Potentio-dynamic 309 L cladded weld overlay develop with 200 mm / min. welding speed at different location in 0.1 N HCl Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC 309L BM 200 WS	81.5	-536	30.63
2	ESSC 309L IF 200 WS	39.30	-502	14.77
3	ESSC 309L Clad 200 WS	7.56	-427	2.843

Fig. 4.9 shows the results of potentiodynamic scans of 309 L cladded weld overlay develop with 200 mm / min. welding speed at different locations in 0.1 N HCl solution. By comparing corrosion behavior of weld overlay at different locations, it shows that (i) all sample exhibit active potentials in given environments,(ii) cladded region has good corrosion resistance as compared to base metal and interfaces due to higher content of Cr and Ni in cladded region that lead to passive film formation (iii)interface region also

having good corrosion resistance as compared to base metal due to presence of some amount of Cr and Ni in interface region but does not exhibit any passivasion behavior, (iv) corrosion rate was decreased with increasing the alloying elements from base metal to interface to cladded region.

4.1.2.4 Corrosion behaviour 309 L Nb cladded weld overlay develop with 160mm / min. welding speed at different location in 0.1 N HCl Solution

Fig. 4.10: Potentiodynamic scans of 309 L Nb cladded weld overlay develop with 160mm / min. welding speed at different location in 0.1 N HCl Solution

Table-4.10: Electrochemical Parameters of Potentio-dynamic 309 L Nb cladded weldoverlay develop with 160mm / min. welding speedat different location in 0.1 N HClSolution

Sr. No	Samples	i _{Corr} (μA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC 309L Nb BM 160 WS	91.8	-509	34.5
2	ESSC 309L Nb IF 160 WS	69.6	-518	26.15
3	ESSC 309L Nb Clad 160 WS	39.6	-493	14.9

Fig. 4.10 shows the results of potentiodynamic scans of 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed at different locations in 0.1 N HCl solution. By comparing corrosion behavior of weld overlay at different locations, it shows that (i) all sample exhibit active potentials in given environments,(ii) cladded region has good corrosion resistance as compared to base metal and interfaces due to higher content of Cr and Ni in cladded region that lead to passive film formation (iii)interface region also

having good corrosion resistance as compared to base metal due to presence of some amount of Cr and Ni in interface region but does not exhibit any passivasion behavior, (iv) corrosion rate was decreased with increasing the alloying elements from base metal to interface to cladded region.

4.1.2.5 Corrosion behaviour 309 L Nb cladded weld overlay develop with 180mm / min. welding speed at different location in 0.1 N HCl Solution

Fig. 4.11: Potentiodynamic scans of 309 L Nb cladded weld overlay develop with 180mm / min. welding speed at different location in 0.1 N HCl Solution

Table-4.11: Electrochemical Parameters of Potentio-dynamic 309 L Nb claddedweld overlay develop with 180mm / min. welding speedat different location in 0.1N HCl Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC 309L Nb BM 180 WS	60.5	-535	22.73
2	ESSC 309L Nb IF 180 WS	50.60	-513	19.01
3	ESSC 309L Nb Clad 180 WS	7.53	-494	2.829

Fig. 4.11 shows the results of potentiodynamic scans of 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed at different locations in 0.1 N HCl solution. By comparing corrosion behavior of weld overlay at different locations, it shows that (i) all sample exhibit active potentials in given environments,(ii) cladded region has good corrosion resistance as compare to base metal and interfaces due to higher content of Cr

and Ni in cladded region that lead to passive film formation (iii)interface region also having good corrosion resistance as compare to base metal due to presence of some amount of Cr and Ni in interface region but does not exhibit any passivasion behavior, (iv) corrosion rate was decrease with increasing the alloying elements from base metal to interface to cladded region.

4.1.2.6 Corrosion behaviour 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed at different location in 0.1 N HCl Solution

Fig. 4.12: Potentiodynamic scans of 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed at different location in 0.1 N HCl Solution

Table-4.12: Electrochemical Parameters of Potentio-dynamic 309 L Nb claddedweld overlay develop with 200 mm / min. welding speed at different location in 0.1N HCl Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC 309L Nb BM 200 WS	81.5	-536	30.63
2	ESSC 309L Nb IF 200 WS	49.3	-521	17.7
3	ESSC 309L Nb Clad 200 WS	20.9	-491	7.872

Fig. 4.12 shows the results of potentiodynamic scans of 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed at different locations in 0.1 N HCl solution.

By comparing corrosion behavior of weld overlay at different locations, it shows that (i) all sample exhibit active potentials in given environments,(ii) cladded region has good corrosion resistance as compared to base metal and interfaces due to higher content of Cr and Ni in cladded region that lead to passive film formation (iii)interface region also having good corrosion resistance as compared to base metal due to presence of some amount of Cr and Ni in interface region but does not exhibit any passivasion behavior, (iv) corrosion rate was decreased with increasing the alloying elements from base metal to interface to cladded region.

4.1.3 Corrosion Behaviour of weld overlays at different location in 0.1 N H₂SO₄ Solution

4.1.3.1 Corrosion behaviour 309 L cladded weld overlay develop with 160mm / min. welding speed at different location in 0.1 N H₂SO₄ Solution

Fig. 4.13: Potentiodynamic scans of 309 L cladded weld overlay develop with 160mm / min. welding speed at different location in 0.1 N H₂SO₄ Solution

Table-4.13: Electrochemical Parameters of Potentio-dynamic 309 L cladded weld overlay develop with 160mm / min. welding speed at different location in 0.1 N H₂SO₄ Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC 309L BM 160 WS	295.0	-551.0	539.2
2	ESSC 309L IF 160 WS	240.0	-522.0	439.6
3	ESSC 309L Clad 160 WS	85.80	-462	156.8

Fig. 4.13 shows the results of potentiodynamic scans of 309 L cladded weld overlay develop with 160 mm / min. welding speed at different locations in 0.1 N H_2SO_4 solution. By comparing corrosion behavior of weld overlay at different locations, it shows that (i) all sample exhibit active potentials in given environments,(ii) cladded region has good corrosion resistance as compared to base metal and interfaces due to higher content of Cr

and Ni in cladded region that lead to passive film formation (iii)interface region also having good corrosion resistance as compared to base metal due to presence of some amount of Cr and Ni in interface region but does not exhibit any passivasion behavior, (iv) corrosion rate was decreased with increasing the alloying elements from base metal to interface to cladded region.

4.1.3.2 Corrosion behaviour 309 L cladded weld overlay develop with 180mm / min. welding speed at different location in 0.1 N H₂SO₄ Solution

Fig. 4.14: Potentiodynamic scans of 309 L cladded weld overlay develop with 180mm / min. welding speed at different location in 0.1 N H₂SO₄ Solution

Table-4.14: Electrochemical Parameters of Potentio-dynamic 309 L cladded weld overlay develop with 180mm / min. welding speed at different location in 0.1 N H₂SO₄ Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC 309L BM 180 WS	247.0	-554.0	451.7
2	ESSC 309L IF 180 WS	174.0	-529.0	318.9
3	ESSC 309L Clad 180 WS	56.10	-493	102.5

Fig. 4.14 shows the results of potentiodynamic scans of 309 L cladded weld overlay develop with 180 mm / min. welding speed at different locations in 0.1 N H_2SO_4 solution. By comparing corrosion behavior of weld overlay at different locations, it shows that (i)

all sample exhibit active potentials in given environments,(ii) cladded region has good corrosion resistance as compare to base metal and interfaces due to higher content of Cr and Ni in cladded region that lead to passive film formation (iii)interface region also having good corrosion resistance as compare to base metal due to presence of some amount of Cr and Ni in interface region but does not exhibit any passivasion behavior, (iv) corrosion rate was decrease with increasing the alloying elements from base metal to interface to cladded region.

4.1.3.3 Corrosion behaviour 309 L cladded weld overlay develop with 200 mm / min. welding speed at different location in 0.1 N H₂SO₄ Solution

Fig. 4.15: Potentiodynamic scans of 309 L cladded weld overlay develop with 200 mm / min. welding speed at different location in 0.1 N H₂SO₄ Solution

Table-4.15: Electrochemical Parameters of Potentio-dynamic 309 L cladded weld overlay develop with 200 mm / min. welding speed at different location in 0.1 N H_2SO_4 Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC 309L BM 200 WS	349.0	-547.0	637.1
2	ESSC 309L IF 200 WS	155.4	-478.0	284.0
3	ESSC 309L Clad 200 WS	97.30	-489	177.9

Fig. 4.15 shows the results of potentiodynamic scans of 309 L cladded weld overlay develop with 200 mm / min. welding speed at different locations in 0.1 N H_2SO_4 solution.

By comparing corrosion behavior of weld overlay at different locations, it shows that (i) all sample exhibit active potentials in given environments,(ii) cladded region has good corrosion resistance as compared to base metal and interfaces due to higher content of Cr and Ni in cladded region that lead to passive film formation (iii)interface region also having good corrosion resistance as compared to base metal due to presence of some amount of Cr and Ni in interface region but does not exhibit any passivasion behavior, (iv) corrosion rate was decreased with increasing the alloying elements from base metal to interface to cladded region.

4.1.3.4 Corrosion behaviour 309 L Nb cladded weld overlay develop with 160mm / min. welding speed at different location in 0.1 N H₂SO₄ Solution

Fig. 4.16: Potentiodynamic scans of 309 L Nb cladded weld overlay develop with 160mm / min. welding speed at different location in 0.1 N H₂SO₄ Solution

Table-4.16: Electrochemical Parameters of Potentio-dynamic 309 L Nb cladded weldoverlay develop with 160mm / min. welding speedat different location in 0.1 N H_2SO_4 Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC 309L Nb BM 160 WS	295.0	-551.0	539.2
2	ESSC 309LNb IF 160 WS	66.40	-452.0	122.8
3	ESSC 309L Nb Clad 160 WS	72.60	-452.0	132.6

Fig. 4.16 shows the results of potentiodynamic scans of 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed at different locations in 0.1 N H_2SO_4 solution. By comparing corrosion behavior of weld overlay at different locations, it shows that (i) all sample exhibit active potentials in given environments,(ii) cladded region has good corrosion resistance as compared to base metal and interfaces due to higher content of Cr and Ni in cladded region that lead to passive film formation (iii)interface region also having good corrosion resistance as compared to base metal due to presence of some amount of Cr and Ni in interface region but does not exhibit any passivasion behavior, (iv) corrosion rate was decreased with increasing the alloying elements from base metal to interface to cladded region.

4.1.3.5 Corrosion behaviour 309 L Nb cladded weld overlay develop with 180mm / min. welding speed at different location in 0.1 N H₂SO₄ Solution

Fig. 4.17: Potentiodynamic scans of 309 L Nb cladded weld overlay develop with 180mm / min. welding speed at different location in 0.1 N H₂SO₄ Solution

Table-4.17: Electrochemical Parameters of Potentio-dynamic 309 L Nb claddedweld overlay develop with 180mm / min. welding speed at different location in 0.1N H2SO4 Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC 309L Nb BM 180 WS	247.0	-554.0	451.7
2	ESSC 309L Nb IF 180 WS	61.0	-531.0	113.0
3	ESSC 309L Nb Clad 180 WS	53.40	-451	97.64

Fig. 4.17 shows the results of potentiodynamic scans of 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed at different locations in 0.1 N H₂SO₄ solution. By comparing corrosion behavior of weld overlay at different locations, it shows that (i) all sample exhibit active potentials in given environments,(ii) cladded region has good corrosion resistance as compare to base metal and interfaces due to higher content of Cr and Ni in cladded region that lead to passive film formation (iii)interface region also having good corrosion resistance as compare to base metal due to presence of some amount of Cr and Ni in interface region but does not exhibit any passivasion behavior, (iv) corrosion rate was decrease with increasing the alloying elements from base metal to interface to cladded region.

4.1.3.6 Corrosion behaviour 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed at different location in 0.1 N H₂SO₄ Solution

Fig. 4.18: Potentiodynamic scans of 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed at different location in 0.1 N H₂SO₄ Solution

Table-4.18: Electrochemical Parameters of Potentio-dynamic 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed at different location in 0.1 N H_2SO_4 Solution

Sr. No	Samples	i _{Corr} (μA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC 309L Nb BM 200 WS	349.0	-547.0	637.1
2	ESSC 309L Nb IF 200 WS	75.20	-440.0	137.4
3	ESSC 309L Nb Clad 200 WS	52.8	-454	96.4

Fig. 4.18 shows the results of potentiodynamic scans of 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed at different locations in $0.1 \text{ N H}_2\text{SO}_4$ solution. By comparing corrosion behavior of weld overlay at different locations, it shows that (i) all sample exhibit active potentials in given environments,(ii) cladded region has good corrosion resistance as compared to base metal and interfaces due to higher content of Cr and Ni in cladded region that lead to passive film formation (iii)interface region also having good corrosion resistance as compared to base metal due to presence of some amount of Cr and Ni in interface region that lead to passive film formation, (iv) corrosion rate was decreased with increasing the alloying elements from base metal to interface to cladded region.

4.1.4 Corrosion Behaviour of weld overlays at different location in 3.5 % NaCl Solution

4.1.4.1 Corrosion behaviour 309 L cladded weld overlay develop with 160mm / min. welding speed at different location in 3.5 % NaCl Solution

Fig. 4.19: Potentiodynamic scans of 309 L cladded weld overlay develop with 160mm / min. welding speed at different location in .5 % NaCl Solution

Table-4.19 : Electrochemical Parameters of Potentio-dynamic 309 L cladded weld overlay develop with 160mm / min. welding speed at different location in 3.5 % NaCl Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC 309L BM 160 WS	157.4	-668	289.6
2	ESSC 309L IF 160 WS	120.2	-639	224.9
3	ESSC 309L Clad 160 WS	102.2	-462	186.8

Fig. 4.19 shows the results of potentiodynamic scans of 309 L cladded weld overlay develop with 160 mm / min. welding speed at different locations in 3.5 % NaCl solution. By comparing corrosion behavior of weld overlay at different locations, it shows that (i) all sample exhibit active potentials in given environments,(ii) cladded region has good corrosion resistance as compared to base metal and interfaces due to higher content of Cr and Ni in cladded region that lead to passive film formation (iii)interface region also

having good corrosion resistance as compared to base metal due to presence of some amount of Cr and Ni in interface region but does not exhibit any passivasion behavior, (iv) corrosion rate was decreased with increasing the alloying elements from base metal to interface to cladded region.

4.1.4.2 Corrosion behaviour 309 L cladded weld overlay develop with 180mm / min. welding speed at different location in 3.5 % NaCl Solution

Fig.4. 20: Potentiodynamic scans of 309 L cladded weld overlay develop with 180mm / min. welding speed at different location in .5 % NaCl Solution

Table-4.20 : Electrochemical Parameters of Potentio-dynamic 309 L cladded weld overlay develop with 180mm / min. welding speed at different location in 3.5 % NaCl Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC 309L BM 180 WS	148.0	-584	272.3
2	ESSC 309L IF 180 WS	94.9	-709	174.7
3	ESSC 309L Clad 180 WS	73.61	-660	134.5

Fig. 4.20 shows the results of potentiodynamic scans of 309 L cladded weld overlay develop with 180 mm / min. welding speed at different locations in 3.5 % NaCl solution. By comparing corrosion behavior of weld overlay at different locations, it shows that (i)

all sample exhibit active potentials in given environments,(ii) cladded region has good corrosion resistance as compared to base metal and interfaces due to higher content of Cr and Ni in cladded region that lead to passive film formation (iii)interface region also having good corrosion resistance as compared to base metal due to presence of some amount of Cr and Ni in interface region but does not exhibit any passivasion behavior, (iv) corrosion rate was decreased with increasing the alloying elements from base metal to interface to cladded region.

4.1.4.3 Corrosion behaviour 309 L cladded weld overlay develop with 200 mm / min. welding speed at different location in 3.5 % NaCl Solution

Fig.4.21: Potentiodynamic scans of 309 L cladded weld overlay develop with 200 mm / min. welding speed at different location in .5 % NaCl Solution

Table-4.21: Electrochemical Parameters of Potentio-dynamic 309 L cladded weld overlay develop with 200 mm / min. welding speed $\$ at different location in 3.5 % NaCl Solution

Sr. No	Samples	i _{Corr} (μA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC 309L BM 200 WS	176.1	-709	324.1
2	ESSC 309L IF 200 WS	134.07	-663	246.7
3	ESSC 309L Clad 200 WS	121.61	-651	222.7

Fig. 4.21 shows the results of potentiodynamic scans of 309 L cladded weld overlay develop with 200 mm / min. welding speed at different locations in 3.5 % NaCl solution.

By comparing corrosion behavior of weld overlay at different locations, it shows that (i) all sample exhibit active potentials in given environments,(ii) cladded region has good corrosion resistance as compare to base metal and interfaces due to higher content of Cr and Ni in cladded region that lead to passive film formation (iii)interface region also having good corrosion resistance as compare to base metal due to presence of some amount of Cr and Ni in interface region but does not exhibit any passivasion behavior, (iv) corrosion rate was decrease with increasing the alloying elements from base metal to interface to cladded region.

4.1.4.4 Corrosion behaviour 309 L Nb cladded weld overlay develop with 160mm / min. welding speed at different location in 3.5 % NaCl Solution

Fig. 4.22: Potentiodynamic scans of 309 L Nb cladded weld overlay develop with 160mm / min. welding speed at different location in .5 % NaCl Solution

Table-4.22: Electrochemical Parameters of Potentio-dynamic 309 L Nb cladded weld overlay develop with 160mm / min. welding speed at different location in .5 % NaCl Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC 309LNb BM 160 WS	157.4	-668	289.6
2	ESSC 309L Nb IF 160 WS	107.0	-688	195.1
3	ESSC 309L NbClad 160 WS	82.7	-640	152.2

Fig. 4.22 shows the results of potentiodynamic scans of 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed at different locations in 3.5 % NaCl solution.

By comparing corrosion behavior of weld overlay at different locations, it shows that (i) all sample exhibit active potentials in given environments,(ii) cladded region has good corrosion resistance as compare to base metal and interfaces due to higher content of Cr and Ni in cladded region that lead to passive film formation (iii)interface region also having good corrosion resistance as compare to base metal due to presence of some amount of Cr and Ni in interface region but does not exhibit any passivasion behavior, (iv) corrosion rate was decrease with increasing the alloying elements from base metal to interface to cladded region.

4.1.4.5 Corrosion behaviour 309 L Nb cladded weld overlay develop with 180mm / min. welding speed at different location in 3.5 % NaCl Solution

Fig. 4.23: Potentiodynamic scans of 309 L Nb cladded weld overlay develop with 180mm / min. welding speed at different location in 3.5 % NaCl Solution

Table-4.23: Electrochemical Parameters of Potentio-dynamic 309 L Nb cladded weld overlay develop with 180mm / min. welding speed at different location in 3 .5 % NaCl Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC 309L Nb BM 180 WS	148.0	-584	272.3
2	ESSC 309L Nb IF 180 WS	86.00	-681	157.3
3	ESSC 309L Nb Clad 180 WS	57.40	-661	104.9

Fig. 4.23 shows the results of potentiodynamic scans of 309 LNb cladded weld overlay develop with 180 mm / min. welding speed at different locations in 3.5 % NaCl solution. By comparing corrosion behavior of weld overlay at different locations, it shows that (i) all sample exhibit active potentials in given environments,(ii) cladded region has good corrosion resistance as compared to base metal and interfaces due to higher content of Cr and Ni in cladded region that lead to passive film formation (iii)interface region also having good corrosion resistance as compared to base metal due to presence of some amount of Cr and Ni in interface region but does not exhibit any passivasion behavior, (iv) corrosion rate was decreased with increasing the alloying elements from base metal to interface to cladded region.

Fig. 4.24: Potentiodynamic scans of 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed at different location in .5 % NaCl Solution

Table-4.24: Electrochemical Parameters of Potentio-dynamic 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed at different location in .5 % NaCl Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC 309L Nb BM 200 WS	176.1	-709	324.1
2	ESSC 309L Nb IF 200 WS	115.0	-692	211.7
3	ESSC 309L Nb Clad 200 WS	105.70	-623	194.6

135

Fig. 4.24 shows the results of potentiodynamic scans of 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed at different locations in 3.5 % NaCl solution. By comparing corrosion behavior of weld overlay at different locations, it shows that (i) all sample exhibit active potentials in given environments,(ii) cladded region has good corrosion resistance as compared to base metal and interfaces due to higher content of Cr and Ni in cladded region that lead to passive film formation (iii)interface region also having good corrosion resistance as compared to base metal due to presence of some amount of Cr and Ni in interface region but does not exhibit any passivasion behavior, (iv) corrosion rate was decreased with increasing the alloying elements from base metal to interface to cladded region.

4.2 Effect of Welding Speed on Microstructural Changes, Ferrite Content, Alloying Elements, Hardness and Corrosion Behaviour of Weld Overlays

4.2.1 Effect of Welding Speed on Microstructure of Weld Overlays

4.2.1.1 Effect of Welding Speed on Microstructure of Base Metal:

Fig.4.25 Base Metal (Etchant : 5 % Nital, Magnification : 250X)

Fig. 4.25 shows the microstructure at base metal which is similar for the both weld overlays developed at different welding speeds. It reveals mixture of tempered bainite with martensite structure.

4.2.1.2 Effect of Welding Speed on clad & interface region 309L & 30L Nb cladded weld overlays

Fig.4.26 Taper section of 309L Nb cladded weld overlay developed at 180 mm/min welding speed at as-welded condition (Etchant : Aquaregia , Magnification : 400X)

- 138

Results as-welded microstructures

The microstructure of the cladded region of weld overlay developed with 309L Nb at 180 mm/min welding speed is shown in Fig. 4.26 in as welded condition. This is in the form of a taper section in which the top surface of the specimen makes a small angle with the weld interface so that the width of any interface feature is magnified. The micrograph shows a transition layer between the bulk weld metal at the left and the base metal on the right. The Aquaregia etchant used reveals predominantly the ferrite distribution in the austenite matrix and it may be observed Fig. 4.26 that the mode of solidification as well as the ferrite content changes as one moves from the weld interface into the overlay.

> Micro-structural characterization

There are structural changes occurring in the base metal close to the weld, at the weld interface itself and in the bulk weld metal. In the present case, near the top and in the bulk clad metal, the composition approximates to that of the strip electrode, modified by the average dilution, but near the weld interface there are significant composition gradients produced due to a combination of dilution and other factors which have a profound effect on the micro-structural development. The changes in composition and microstructure across the transition zone at the weld interface are of particular importance because this is where possible hydrogen disbonding can occur in service. While the dilution level in the bulk weld metal under ESSC conditions is known to be not more than about 8 to 10 %, near the fusion boundary the degree of dilution will be much higher. This is most likely to be the result of the formation of a stagnant fluid layer in the weld pool adjacent to the base metal. The transition from the low alloy content (Cr, Mo) in the base metal to the high alloy content (Cr, Ni, Nb) in the bulk weld metal occurs in this transition zone. The layer originally had the same composition as the base metal, but develops higher chromium and nickel contents as a result of diffusion from the cladding due to the concentration gradients [79]. The stagnation layer has also been called the unmixed zone [80]. It may be seen from Table 3.39 that Cr contents over 9.06 % and Ni contents around 9.35 % could develop in the transition zone during cladding The composition in the layer is such that during cooling following overlaying this region transforms to martensite.

Fig.4.27 (a) clad region of 3 09 L clad weld overlay 160 WS

Fig.4.28 (a) clad region of 309 L Clad 180 WS

Fig.4.29 (a) clad region of 309 L Clad 200 WS

Fig.4.27 (b) Interface region of 309 L Clad 160 WS

Fig.4.28 (b) Interface region of 309 L Clad 180 WS

Fig.4.29 (b) Interface region o 309 L Clad 200 WS

RESULTS & DISCUSSION

Fig.4.30 (a) clad region of 309 L Nb Clad 160 WS

Fig.4.31 (a) clad region of 309 L Nb Clad 180 WS

Fig.4.32 (a) clad region of 309 L Nb Clad 200 WS

Fig.4.30 (b) Interface region o309 L Nb Clad 160 WS

Fig.4.31 (b) Interface region o 309 L Nb Clad 180 WS

Fig.4.32 (b) Interface region o 309 L Nb Clad 200 WS

> Results as-welded microstructures of both weld overlays

The microstructure of the cladded region of weld overlay developed with 309L & 309L Nb at different welding speed is shown in Fig. 4.27 (a) to 4.32 (a) in as welded

[141]-

RESULTS & DISCUSSION

condition. The microstructure of the Interface region of weld overlay developed with 309L & 309L Nb at different welding speed is shown in Fig. 4.27 (b) to 4.32 (b) as welded conditions. The Aquaregia etchant used to reveals predominantly the ferrite distribution in the austenite matrix and it may be observed from Fig. 4.27 to 4.32 that the mode of solidification as well as the ferrite content changes as one moves from the weld interface into the overlay.

> Discussions -welded microstructures of both weld overlays:

It may be noted in Fig. 4.27 (b) that the weld metal immediately adjoining the transition zone contains virtually no ferrite and solidification has occurred fully as austenite. As one move away from the interface, primary solidification is still austenitic, but the remaining liquid between the dendrites solidifies as ferrite. This trend continues in Fig. 4.27 (b) to 4.32 (b). Traversing into the bulk cladding, as seen in Fig. 4.27(a) the solidification mode changes from primary austenitic to primary ferritic, both types weld overlays which shows totally skeletal or vermicular ferrite, the ferrite being the primary phase forming at the core of the dendrites. This trend continues in Fig. 4.27 (a) to 4.32 (a). As the welding speed were increases from 160 mm/min (high heat input) to 200 mm /min. (low heat input), the cooling rate were also increases.

From Fig. 4.27 (a) & 4.30 (a), it observed that when 309L & 309L Nb weld overlay developed at 160 mm /min welding speed i.e at higher heat input (0.1875 kJ/mm²) this causes a slower cooling rate which allow more time for nucleation and growth of delta ferrite due to which these weld overlays at cladded region has higher amount of delta ferrite than other weld overlays developed at 180 mm /min & 200 mm /min welding speed.

From Fig. 4.28 (a) & 4.31 (a) it observed that when 309L & 309L Nb weld overlay developed at 180 mm /min welding speed i.e at medium heat input (0.1666 kJ/mm²) this causes a somewhat faster cooling rate compared to 160 mm /min welding speed which allow less time for nucleation and growth of delta ferrite due to which these weld overlays at cladded region has slightly lower amount of delta ferrite than weld overlays developed at 160 mm /min welding speed.

From Fig. 4.29 (a) & 4.32(a) it observed that when 309L & 309L Nb weld overlay
developed at 200 mm /min welding speed i.e at lower heat input (0.1500 kJ/mm²) this causes a somewhat faster cooling rate compared to 160 & 180 mm /min welding speed which allow less time for nucleation and growth of delta ferrite due to which these weld overlays at cladded region has slightly lower amount of delta ferrite than weld overlays developed at 160 & 180 mm /min welding speed. It is to note that that Nb is strong ferrite former which leads to increase the amount of ferrite in 309 L Nb cladded weld overlay than 309L cladded weld overlay at all welding speed[81].

4. 2.2 Effect of welding speed on alloying elements of the weld overlay

4.2.2.1 EDAX Analysis of cladded region of 309 L cladded weld overlay at 160 mm /min. welding speed

Spectrum processing: No peaks omitted

Table-4.25 : EDAX analysis of cladded region of 309L cladded weld overlay at 160 mm /min. welding speed

Atomic%	1.10	21.25	1.37	66.13	10.14	
Weight%	0.56	20.09	1.37	67.15	10.83	100.00
Element	Si K	Cr K	Mn K	Fe K	Ni K	Totals

Fig. 4.33 EDAX analysis of cladded region of 309L cladded weld overlay developed with 160mm/ min welding speed

CHAPTER -4

RESULTS & DISCUSSION

4.2.2.2 EDAX Analysis of cladded region of 309 L cladded weld overlay at 180 mm /min. welding speed

Spectrum processing: No peaks omitted

Table-4.26: EDAX analysis of cladded region of 309L Cladded weld overlay at 180 mm /min. welding speed

Atomic%	7.85	1.79	0.26	19.80	1.58	59.75	86.8		
Weight%	2.43	0.93	0.16	19.95	1.68	64.64	10.21	100.00	
Element	0 K	Al K	ΡK	Cr K	Mn K	Fe K	Ni K	Totals	

Fig. 4.34 EDAX analysis of cladded region of 309L cladded weld overlay developed with 180mm/ min welding speed

4.2.2.3 EDAX Analysis of cladded region of 309 L cladded weld overlay at 200 mm /min. welding speed

Spectrum processing: No peaks omitted

Table-4.27 EDAX analysis of cladded region of 309L Cladded weld overlay at 200 mm /min. welding speed

Atomic%	1.50	18.68	1.57	69.14	9.11	
Weight%	0.76	17.68	1.57	70.26	9.73	100.00
Element	Si K	Cr K	Mn K	Fe K	Ni K	Totals

Fig. 4.35 EDAX analysis of cladded region of 309L cladded weld overlay developed with 200mm/ min welding speed

4.2.2.4 EDAX Analysis of cladded region of 309 L Nb cladded weld overlay at 160 mm /min. welding speed

Spectrum processing: No peaks omitted

Table-4.28EDAX analysis of cladded region of309LNbCladded weld overlay at 160 mm /min.welding speed

Atomic%	1.32	20.14	1.82	67.19	9.52	
Weight%	0.68	19.06	1.82	68.27	10.17	100.00
Element	SiK	Cr K	Mn K	Fe K	Ni K	Totals

Fig. 4.36 EDAX analysis of cladded region of 309L Nb cladded weld overlay developed with 160mm/ min welding speed

4.2.2.5 EDAX analysis of cladded region of 309 L Nb cladded weld overlay at 180 mm /min. welding speed

Spectrum processing: No peaks omitted

Table-4.29 EDAX analysis of cladded region of 309L Nb Cladded weld overlay at 180 mm /min. welding speed

Atomic%	4.79	1.27	19.49	1.67	63.54	9.24	
Weight%	1.44	0.67	19.09	1.73	66.85	10.22	100.00
Element	0 K	Si K	Cr K	Mn K	Fe K	Ni K	Totals

Full Scale 1648 cts Cursor: 0.000 keV| Fig. 4.37 EDAX analysis of cladded region of 309L Nb cladded weld overlay developed with 180mm/ min welding speed 4.2.2.6 EDAX analysis of cladded region of 309 L Nb cladded weld overlay at 200 mm /min. welding speed

Spectrum processing: No peaks omitted

Table-4.30 EDAX analysis of cladded region of 309LNb Cladded weld overlay at 200 mm /min. welding speed

Atomic%	5.99	0.64	0.83	18.49	1.46	64.64	
Weight%	1.82	0.33	0.44	18.29	1.53	68.70	100.00
Element	0 K	Al K	Si K	Cr K	Mn K	Fe K	Totals

Fig. 4.38 EDAX analysis of cladded region of 309L Nb cladded weld overlay developed with 200 mm/ min welding speed

ull Scale 1704 cts Cursor: 0.000

4.2.2.7 EDAX analysis of Interface region of 309 L cladded weld overlay at 160 mm /min. welding speed

Spectrum processing: No peaks omitted

Table-4.31 EDAX analysis of interface region of 309L cladded weld overlay at 160 mm /min. welding speed

Atomic%	3.02	0.98	17.97	1.48	67.66	8.89	
Weight%	0.93	0.54	18.30	1.38	68.93	9.92	100 %
Element	С	Si K	Cr K	Mn K	Fe K	Ni K	Total

Fig. 4.39 EDAX analysis of interface region of 309L cladded weld overlay developed with 160mm/ min welding speed

overlay developed with tooling mu

CHAPTER-4

RESULTS & DISCUSSION

4.2.2.8 EDAX analysis Interface region of 309 L cladded weld overlay at 180 mm /min. welding speed

Spectrum processing: No peaks omitted

Table-4.32 EDAX analysis of interface region of 309L Cladded weld overlay at 180 mm /min. welding speed

Atomic%	4.78	1.20	17.62	1.48	64.23	10.69	
Weight%	1.41	0.67	18.14	1.63	69.05	9.10	100.00
Element	СK	Si K	Cr K	Mn K	Fe K	Ni K	Totals

Fig. 4.40 EDAX analysis of interface region of 309L cladded weld overlay developed with 180mm/ min welding speed

4.2.2.9 EDAX analysis of interface region of 309 L cladded weld overlay at 200 mm /min. welding speed

Spectrum processing: No peaks omitted

Table-4.33 EDAX analysis of interface region of 309L Cladded weld overlay at 200 mm /min. welding speed

Atomic%	4.92	1.34	15.72	0.63	70.35	7.04	
Weight%	1.84	0.73	16.02	0.67	71.94	8.80	100.00
Element	СK	Si K	Cr K	Mn K	Fe K	Ni K	Totals

Fig. 4.41 EDAX analysis of interface region of 309L cladded weld overlay developed with 200 mm/ min welding speed

4.2.2.10 EDAX analysis of interface region of 309 L Nb cladded weld overlay at 160 mm /min. welding speed

Spectrum processing: No peaks omitted Table-4.34 EDAX analysis of cladded region of 309LNb Cladded weld overlay at 160 mm /min. welding speed

- the bar							
Atomic%	5.98	1.17	16.58	0.96	8.81	66.50	
Weight%	1.4	0.40	17.38	1.10	9.31	70.41	100 %
Element	СК	Si K	Cr K	Mn K	NiK	Fe K	Totals

Fig. 4.42 EDAX analysis of interface region of 309LNb cladded weld overlay developed with 160 mm/ min welding speed

(C

ŝ

all Scale 945 cts Cursor: 0.000

4.2.2.11 EDAX analysis of interface region of 309 L Nb cladded weld overlay at 180 mm /min. welding

Spectrum processing: No peaks omitted

Table-4.35 EDAX analysis of interface region of 309L Cladded weld overlay at 180 mm /min. welding speed

Atomic%	7.54	1.25	16.51	1.50	65.90	7.30	
Weight%	1.40	0.68	17.36	1.54	69.67	9.35	100%
Element	C K	Si K	Cr K	Mn K	Fe K	Ni K	Totals

Fig. 4.43 EDAX analysis of interface region of 309LNb cladded weld overlay developed with 180 mm/ min welding speed

4.2.2.12 EDAX analysis of interface region of 309 L Nb cladded weld overlay at 200 mm /min. welding speed

Spectrum processing: No peaks omitted

Table-4.36 EDAX analysis of interface region of 309LNb Cladded weld overlay at 200 mm /min. welding speed

Atomic%	1.27	16.31	1.3	73.31	7.81	
Weight%	0.60	16.56	1.30	73.46	8.08	100.00
Element	Si K	Cr K	Mn K	Fe K	Ni K	Totals

Fig. 4.44 EDAX analysis of interface region of 309LNb cladded weld overlay developed with 200 mm/ min welding speed Table-4.37 : Elemental Analysis of cladding by EDAX Analysis

Mn	1.37	1.68	1.57	1.82	1.73	1.53
Si	0.56	0.61	0.76	0.68	0.67	0.44
Nî	10.83	10.21	9.73	10.17	10.22	8.88
Cr.	20.09	19.95	17.68	19.06	19.09	18.29
Welding Speed (mm/min)	180	200	200	160	180	200
Strip	309L			9N T60£		

Table -4.37 shows the EDAX Analysis of cladded region of both weld overlays at different welding speeds. The amount of Cr and Ni content in the cladding were increase with increase in the welding speed from 160 to 180 mm / min but with further increase in welding speed from 180 to 200 mm / min. amount of Cr and Ni content in the cladding were decrease. Table-4.38 : Elemental Analysis of Interface region by EDAX Analysis

Strip	Welding Speed (mm/min)	Cr	Ni	Si	Mn
309L	160	18.30	9.92	0.54	1.38
	180	18.14	9.10	0.67	1.63
	200	16.02	8.80	0.73	0.67
309L Nb	160	17.38	16.9	0.4	1.10
	180	17.36	9.35	0.68	1.54
	200	16.56	8.08	0.60	1.30

Table 4.38 shows the EDAX Analysis of interface region of both weld overlays at different welding speeds. The amount of further increase in welding speed from 180 to 200 mm / min. amount of Cr and Ni content in the cladding were decrease. It is to be noted that there were decrease in the amount of Cr & Ni at interface region as compared to cladded region which Cr and Ni content in the cladding were increase with increase in the welding speed from 160 to 180 mm / min but with indicate dilution of alloying element.

CHAPTER-4

ł

RESULTS & DISCUSSION

Table 4.39 : Percentage Dilution at interface region

Strip	Welding Speed (mm/min)	Cr at cladded region (%)	Cr at interface region (%)	% Dilution of Cr	Ni at cladded region (%)	Ni at interface region (%)	% Dilution of Ni
309L	160	20.09	18.30	8.90	10.83	9.92	8.40
	180	19.95	18.14	9.07	10.21	9.10	9.17
	200	17.68	16.02	9.39	9.73	8.80	9.56
309L Nb	160	19.06	17.38	8.81	10.17	9.31	8.45
	180	19.09	17.36	9.06	10.22	9.35	8.51
	200	18.29	16.56	9.46	8.88	8.08	9.01

Table 4.39 shows that there were decrease in the alloy content at interface region and dilution about 8% to 9% were observed for Cr & Ni elements.

4.2.2.13 EDAX analysis of particle at cladded region of 309 L Nb cladded weld overlay at 160 mm /min. welding speed

Spectrum processing: No peaks omitted

Table-4.40 EDAX analysis of white spot at cladded region of 309LNb Cladded weld overlay at 160 mm /min. welding speed

Atomic%	26.10	1.15	15.88	1.55	43.42	9.45	2.44		
Weight%	7.02	0.73	18.50	1.90	54.34	12.44	5.08	100.00	
Element	СK	Si K	Cr K	Mn K	Fe K	Ni K	Nb L	Totals	

region of 309L Nb cladded weld overlay developed Fig. 4.45 EDAX analysis of particle at cladded with 160 mm/ min welding speed

4.2.2.14 EDAX analysis of particle at cladded region of 309 L Nb cladded weld overlay at 180 mm /min. welding speed

Spectrum processing: No peaks omitted

Table-4.41 EDAX analysis of cladded region of 309LNb Cladded weld overlay at 180 mm /min. welding speed

Element	Weight%	Atomic%
СK	15.46	53.07
Cr K	7.50	5.95
Fe K	19.76	14.59
Ni K	3.80	2.67
Nb L	53.48	23.73
Totals	100.00	

Fig. 4.46 EDAX analysis of particle at cladded region of 309L Nb cladded weld overlay developed with 180 mm/ min welding speed

4.2.2.15 EDAX analysis of particle at cladded region of 309 L Nb cladded weld overlay at 200 mm /min. welding speed

Spectrum processing: No peaks omitted

region of 309LNb Cladded weld overlay at 200 mm Table-4.42 EDAX analysis of white spot at cladded /min. welding speed

Atomic%	1.27	1.55	19.42	1.35	65.75	8.55	2.11	
Weight%	0.62	0.79	18.26	1.34	66.38	9.08	3.54	100 %
Element	AI K	Si K	Cr K	Mn K	Fe K	Ni K	Nb L	Total

Fig. 4.47 EDAX analysis of particle at cladded region of 309L Nb cladded weld overlay developed with 200 mm/ min welding speed (900 X magnification)

4.2.2.16 EDAX analysis of clad region near to interface of 309 L cladded weld overlay at 180 mm /min. welding speed

Spectrum processing: No peaks omitted

Table-4.43 EDAX analysis of clad region near to interface of 309L Cladded weld overlay at 180 mm /min. welding speed

Atomic%	8.24	1.06	15.07	0.79	67.67	7.17		
Weight%	1.92	0.58	15.20	0.84	73.30	8.16	100 %	
Element	СК	Si K	Cr K	Mn K	Fe K	Ni K	Total	

Fig. 4.48 EDAX analysis of clad region of 309 L cladded weld overlay developed with 180 mm/ min welding speed

4.2.2.17 EDAX analysis at interface of 309 L cladded weld overlay at 180 mm /min. welding speed

Spectrum processing: No peaks omitted

Table-4.44 EDAX analysis at interface of 309L Cladded weld overlay at 180 mm /min. welding speed

Atomic%	16.39	1.06	10.06	1.00	68.13	3.36		
Weight%	4.10	0.62	10.88	1.14	79.16	4.10	100 %	
Element	СК	Si K	Cr K	Mn K	Fe K	Ni K	Total	

Fig. 4.49 EDAX analysis at interface of 309 L cladded weld overlay developed with 180 mm/ min welding speed

4.2.2.18 EDAX analysis at base metal near to interface of 309 L cladded weld overlay at 180 mm /min. welding speed

Spectrum processing: No peaks omitted

Table-4.45 EDAX analysis of base metal near to interfaceof 309L Cladded weld overlay at 180 mm /min. weldingspeed

Atomic%	8.20	1.36	1.72	88.73			
Weight%	1.90	0.74	1.72	95.64	100		
Element	СK	Si K	Cr K	Fe K	Total		

Fig. 4.50 EDAX analysis of base metal near interface of 309 L cladded weld overlay developed with 180 mm/ min welding speed

keV

full Scale 1994 cts Cursor: 0.000

4.2.2.19 EDAX analysis at base metal of 309 L cladded weld overlay at 180 mm /min. welding speed

Spectrum processing: No peaks omitted

Table-4.46 EDAX analysis base metal of 309L Cladded weld overlay at 180 mm /min. welding speed

Atomic%	9.11	1.28	1.34	88.27			
Weight%	2.13	0.70	1.36	95.82	100		
Element	СК	Si K	Cr K	Fe K	Total		

Fig. 4.51 EDAX analysis of clad region of 309 LNb cladded weld overlay developed with 180 mm/ min welding speed 4.2.2.20 EDAX analysis of clad region near to interface of 309 L Nb cladded weld overlay at 180 mm /min. welding speed

Spectrum processing: No peaks omitted

Table-4.47 EDAX analysis of clad region near to interface of 309LNb Cladded weld overlay at 180 mm /min. welding speed

Atomic%	11.67	1.14	16.53	1.09	62.02	7.54		
Weight%	2.81	0.64	17.19	1.20	69.30	8.86	100	
Element	СК	Si K	Cr K	Mn K	Fe K	Ni K	Total	

Fig. 4.52 EDAX analysis base metal of 309 L cladded weld overlay developed with 180 mm/ min welding speed

4.2.2.21 EDAX analysis at interface of 309 L Nb cladded weld overlay at 180 mm /min. welding speed

Spectrum processing: No peaks omitted

Table-4.48 EDAX analysis at interface of 309L Nb Cladded weld overlay at 180 mm /min. welding speed

Atomic%	17.04	1.00	10.85	0.60	67.01		
Weight%	4.28	0.59	11.81	0.69	78.32	100	
Element	СК	Si K	Cr K	Mn K	Fe K	Total	

Fig. 4.53 EDAX analysis at interface of 309 LNb cladded weld overlay developed with 180 mm/ min welding speed

4.2.2.22 EDAX analysis at base metal near to interface of 309 L Nb cladded weld overlay at 180 mm /min. welding speed

Spectrum processing: No peaks omitted

Table-4.49 EDAX analysis of base metal near to interface of309L Nb Cladded weld overlay at 180 mm /min. weldingspeed

Atomic%	8.94	1.03	1.62	0.58	87.83		
Weight%	2.08	0.56	1.64	0.62	95.10	100	
Element	СК	Si K	Cr K	Mn K	Fe K	Total	

Fig. 4.54 EDAX analysis of base metal near interface of 309 L Nb cladded weld overlay developed with 180 mm/ min welding speed

4.2.2.3 EDAX analysis at base metal of 309 LNb cladded weld overlay at 180 mm /min. welding speed

Spectrum processing: No peaks omitted

Table-4.50 EDAX analysis base metal of 309LNb Cladded weld overlay at 180 mm /min. welding speed

Atomic%	8.56	1.09	1.47	88.88			
Weight%	1.99	0.59	1.48	95.94	100		
Element	СК	Si K	Cr K	Fe K	Total		

Fig. 4.55 EDAX analysis of base metal ne of 309 L Nb cladded weld overlay developed with 180 mm/ min welding speed

ke 10

ശ

ŝ

Full Scale 3015 cts Cursor: 0.000

E PUPONE AND TO A

Table-4.51 Percentage elements present at different location of weld overlay

	ental near to base metal c	1.90 2.13	1.92 2.16	95.64 95.82	95.10 95.77	1.72 1.36	1.64 1.48
Location	erface base me ion interface	4.10	4.02	79.16	78.60	10.88	11.81
	Clad region near int interface regi	1.42	1.39	69.96	70.57	18.14	17.34
Weld overlay	strip	309L	309L Nb	309L	309L Nb	309L	309L Nb
Elements		Carbon(%)		Iron(%)		Chromium(%)	

Results of SEM & EDAX analysis shows that % of carbon is increase at interface region of both weld overlays after PWHT due to the migration Cr23C6 (volume fraction is not matching with Cr23C6). This may lead to increase the hardness at interface region as compared to clad & base from base metal near to interface as well as from clad region near to interface which may from FeC and small amount of chromium carbide but not metal after PWHT for both weld overlay.

4.2.3 Effect of Welding Speed on Ferrite Content of the weld overlays

Welding	Amount of ferrite Content			
speed	309 L Cladded surface	309 LNb cladded		
(mm/min.)	and the second	surface		
160	5.4	. 5.5		
180	3.7	4.6		
200	3.3	4.3		

 Table- 4.52 : Variation of ferrite content at different welding speed

Table - 4.52 shows the variation of ferrite content at cladded region of both weld overlays developed with different welding speeds. It was found that the ferrite content decrease with increase in the welding speed from 160 to 200 mm / min. This is because with increasing welding speed, the cooling rate is also increases which provide less time for nucleation and growth of ferrite during solidification[82].

.4.2.4 Effect of Welding Speed on Hardness Value of the weld overlays

 Table- 4.53: Micro harness at different location of weld overlays in as welded condition

		Location				
Exp. No	Samples	base metal	Interface	Clad		
1	309L - 160WS	206	278	242		
2	309L - 180WS	208	289	260		
3	309L - 200WS	210	312	271		
4	309LNb - 160WS	206	249	222		
5	309LNb - 180WS	208	266	235		
6	309LNb - 200WS	210	281	254		

Fig-4.56 Effect of welding speed on Hardness Value of 309 L cladded weld overlay

Fig-4.57 Effect of welding speed on Hardness Value of 309 L Nb cladded weld overlay

Fig -4.56 & 4.57 shows effect of welding speed on hardness value of 309 L & 309 L Nb austenitic stainless steel cladded weld overlay respectively. There were considerable increases in the hardness value with increase in the welding speed from 160 mm /min to 200 mm / min. in as welded condition. This is because as welding speed increase, the amount of heat input was decrease which result in decrease the ferrite content. There is a moderate increase in hardness at the weld interface region, which can be attributed to the formation of a low-carbon martensite for all weld overlays developed at different welding speeds[83].

4.2.5 Effect of welding speed on corrosion behaviour of weld overlays

- 4.2.5.1 Effect of welding speed on General Corrosion susceptibility of weld overlays in 0.1 N HNO₃ solution
- 4.2.5.1.1 Effect of Welding Speed on corrosion behaviour of Base metal in 0.1 HNO₃ solution

Fig. 4.58 : Potentiodynamic scans of Base Metal at different WS in 0.1N HNO₃ solution

Table No-4.54: Electrochemical Parameters of Potentiodynamic studies on BaseMetal in 0.1N HNO3 solution

Sr. No	Samples	i _{Corr}	E _{Corr} (mV)	Corrosion Rate (mpy)
1	Base Metal 160 WS	609.0	-465	228.9
2	Base Metal 180 WS	567.0	-404.0	213.0
3	Base Metal 200 WS	518.0	-496.0	194.6

Fig. 4.58 shows the results of Potentiodynamic studies on Base Metal in 0.1N HNO₃ solution. By comparing corrosion behavior of base metal which was overlaid at different welding speeds in 0.1N HNO₃ solution, it shows that (i) corrosion rate decreases with

increase in the welding speed (ii) all other samples also exhibit similar kind of corrosion resistance at different welding speeds [84].

4.2.5.1.2 Effect of Welding Speed on corrosion behaviour of 309 L cladded weld overlay in N HNO₃ Solution

Fig. 4.59 : Potentiodynamic scans of 309L cladded weld overlays at different welding speed in 0.1N HNO₃ solution

Table No- 4.55: Electrochemical Parameters of Potentio-dynamic studies of 309 Lcladdedweld overlay in 0.1N HNO₃Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC-309L Clad 160 WS	361.3	-374.0	135.5
2	ESSC-309L Clad 180 WS	48.5	-440.0	81.24
3	ESSC-309L Clad 200 WS	0.35	-402.0	13.41

Fig. 4.59 shows the results of Potentiodynamic studies on 309 L cladded weld overlays in 0.1N HNO₃ solution. By comparing corrosion behavior of 309L cladded weld overlays at different welding speed in 0.1N HNO₃ solution it shows that (i) All weld overlays show passivation behavior during several potential scan cycles (ii) weld overlay developed at 200 mm / min. welding speed has best corrosion resistance compared to weld overlay developed at the 160 & 180 mm / min. welding speed. (iii) Weld overlay developed at

180 & 200 mm / min. welding speed exhibit similar kind of corrosion rate (iv) corrosion rate decreases with increasing weld speed from 160 to 200 mm / min [84].

4.2.5.1.3	Effect of Welding Speed on corrosion behaviour interface of	309 L	cladded
weld over	rlay in N HNO3 Solution		

Fig. 4.60: Potentiodynamic scans of interface of 309L cladded weld overlays at different welding speed in 0.1N HNO₃ solution

Table No- 4.56 :	Electrochemical Parameters of Potentio-dynamic studies interface
of 309 L cladded	weld overlay in 0.1N HNO ₃ Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC- 309L IF 160 WS	431.2	-428	161.7
2	ESSC- 309L IF 180 WS	254.0	-383	95.31
3	ESSC-309L IF 200 WS	245.0	-423	92.1

Fig. 4.60 shows the results of Potentiodynamic studies on interface of 309 L cladded weld overlays in 0.1N HNO₃ solution. By comparing corrosion behavior of interface of 309L cladded weld overlays at different welding speed in 0.1N HNO₃ solution it shows that (i) interface of weld overlays developed at different welding speed shows passivation behavior during several potential scan cycles (ii) weld overlay developed at 180 mm / min. welding speed has best corrosion resistance compared to weld overlay developed at the 160 & 200 mm / min. welding speed.

Fig. 4.61: Potentiodynamic scans of 309L Nb cladded weld overlays at different welding speed in 0.1N HNO₃ solution

Table No-4.57: Electrochemical Parameters of Potentiodynamic studies of 309 LNbcladded weld overlays in 0.1N HNO3Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC-309L Nb Clad 160 WS	393.0	-424.0	147.3
2	ESSC-309L Nb Clad 180 WS	257.6	-354.0	96.62
3	ESSC-309L Nb Clad 200 WS	242.1	-359.0	90.80

Fig. 4.61 shows the results of Potentiodynamic studies on 309 L Nb cladded weld overlays in 0.1N HNO₃ solution. By comparing corrosion behavior of 309L Nb cladded weld overlays at different welding speed in 0.1N HNO₃ solution it shows that (i) all weld overlays exhibit passive behavior in 0.1N HNO₃ solution (ii) weld overlay developed at 200 mm / min. welding speed has best corrosion resistance compared to weld overlay developed at the 160 & 180 mm / min. welding speed (iii) but the weld overlay developed at 180 & 200 mm / min. welding speed exhibit similar kind of corrosion rate (iv) corrosion rate decreases with increasing weld speed from 160 to 200 mm / min [84].

4.2.5.1.5 Effect of Welding Speed on corrosion behaviour interface of 309 LNb cladded weld overlay in N HNO₃ Solution

Fig.4.62 : Potentiodynamic scans of interface of 309L Nb cladded weld overlays at different welding speed in 0.1N HNO₃ solution

Table No- 4.58: Electrochemical Parameters of Potentio-dynamic studies interfaceof 309 L Nb claddedweld overlay in 0.1N HNO₃Solution

Sr. No	Samples	i _{Corr} (μA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC-309L Nb IF 160 WS	564.0	-458	211.6
2	ESSC-309L Nb IF 180 WS	436.0	-386	163.6
3	ESSC-309L Nb IF 200 WS	441.0	-406	166.7

Fig. 4.62 shows the results of Potentiodynamic studies on interface of 309 L cladded weld overlays in 0.1N HNO₃ solution. By comparing corrosion behavior of interface of 309L cladded weld overlays at different welding speed in 0.1N HNO₃ solution it shows that (i) interface of weld overlays developed at different welding speed show passivation behavior during several potential scan cycles (ii) weld overlay developed at 200 mm / min. welding speed has best corrosion resistance compared to weld overlay developed at the 160 & 180 mm / min. welding speed. (iv) corrosion rate decreases with increasing weld speed from 160 to 200 mm / min.

- 4.2.5.2 Effect of welding speed on General Corrosion susceptibility of weld overlays in 0.1 N HCl solution
- 4.2.5.2.1 Effect of Welding Speed on corrosion behaviour of Base metal in 0.1 HCl Solution

Fig. 4.63: Potentiodynamic scans of Base metal at different welding speed in 0.1N HCl solution

Table No-4.59: Electrochemical Parameters of Potentiodynamic study of Base Metalin 0.1N HCl

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC-Base Metal -160 WS	91.8	-509	34.5
2	ESSC-Base Metal- 180 WS	60.5	-535	22.73
3	ESSC-Base Metal -200 WS	81.5	-536	30.63

Fig. 4.63 shows the results of Potentiodynamic studies on Base Metal in 0.1N HCl solution. Base metal does not show any passivation behavior even after several potential scan cycles. By comparing corrosion behavior of Base Metal at different welding speed, it exhibit similar kind of corrosion resistance at all welding speed but base metal of weld
overlay developed at 180 mm / min. exhibit good corrosion resistance then that of 160 mm/ min. & 200 mm/ min welding speed.

Fig. 4.64: Potentiodynamic scans of 309L cladded weld overlays at different WS in 0.1N HCl Solution

Table No- 4.60: Electrochemical Parameters of Potentiodynamic study of 309 Lcladded weld overlay in 0.1N HCl Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC-309L Clad 160 WS	26.7	-486	10.03
2	ESSC-309L Clad 180 WS	75 nA	-137	0.0282
3	ESSC-309L Clad 200 WS	7.56	-427	2.843

Fig. 4.64 shows the results of Potentiodynamic studies on 309 L cladded weld overlays in 0.1N HCl solution. Except weld overlay developed at 160 mm /min. welding speed, All other weld overlays show passivation behavior during several potential scan cycles. By comparing corrosion behavior of weld overlays at different welding speed, it indicates that (i) weld overlay developed with 180 mm/ min. welding speed, exhibit good corrosion resistance while weld overlays developed with 160 mm/ min. & 200 mm/ min welding

speed, exhibit lower corrosion resistance but the values of corrosion rate are well within the acceptable limit (ii) weld overlay developed at 180 & 200 mm / min. welding speed exhibit similar kind of corrosion rate.

Fig. 4.65 Potentiodynamic scans of interface of 309L cladded weld overlays at different welding speed in 0.1N HCl solution

Table No- 4.61: Electrochemical Parameters of Potentio-dynamic studies interface of309 L claddedweld overlay in 0.1N HCl Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC-309L IF 160 WS	48.5	-523	18.22
2	ESSC-309L 1F 180 WS	39.0	-528	14.60
3	ESSC-309L 1F 200 WS	39.3	-521	14.77

Fig. 4.65 shows the results of Potentiodynamic studies on interface of 309 LNb cladded weld overlays in 0.1N HCl solution. By comparing corrosion behavior of interface of 309L Nb cladded weld overlays at different welding speed in 0.1N HCl solution it shows that (i) interface regions does not show any passivation behavior during several potential

scan cycles (ii) interface of weld overlay developed at 180 mm / min. welding speed has best corrosion resistance compare to weld overlay developed at the 160 & 200 mm / min. welding speed. (iii) interface of weld overlay developed at 180 & 200 mm / min. welding speed exhibit similar kind of corrosion rate.

4.2.5.2.4 Effect of Welding Speed on corrosion behaviour of 309 L Nb cladded weld overlay in 0.1 HCl Solution

Fig. 4.66 Potentiodynamic scans of 309LNb cladded weld overlays at different WS in 0.1N HCl Solution

Table No- 4.62: Electrochemical Parameters of Potentio-dynamic study of 309 LNbcladdedweld overlay in 0.1N HCl Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC-309L Nb Clad 160 WS	39.6	-493	14.9
2	ESSC-309L Nb Clad 180 WS	7.53	-494	2.829
3	ESSC-309L Nb Clad 200 WS	20.9	-491	7.872

Fig. 4.66 shows the results of Potentiodynamic studies on 309 L Nb cladded weld overlays in 0.1N HCl solution. All weld overlays show passivation behavior during several potential scan cycles. By comparing corrosion behavior of weld overlays at different welding speed, it

indicates that (i) weld overlay developed with 180 mm/ min & 200 mm/ min. welding speed, exhibit good corrosion resistance with compared to weld overlay developed at 160 mm/ min. welding speed, but the values of corrosion rate are well within the acceptable limit. (ii) corrosion rate decreases with increasing the welding speed from 160 mm/ min to 200 mm/ min.

Fig. 4.67 : Potentiodynamic scans of interface of 309L Nb cladded weld overlays at different welding speed in 0.1N HCl solution

Table No- 4.63: Electrochemical Parameters of Potentio-dynamic studies interface of309 LNb claddedweld overlay in 0.1N HCl Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	IF 309L Nb 160 WS	69.6	-518	26.15
2	IF 309L Nb 180 WS	50.60	-513	19.01
3	IF 309L Nb 200 WS	49.30	-521	17.70

Fig. 4.67 shows the results of Potentiodynamic studies on interface of 309 LNb cladded weld overlays in 0.1N HCl solution. By comparing corrosion behavior of interface of

309L Nb cladded weld overlays at different welding speed in 0.1N HCl solution it shows that (i) interface of all weld overlays does not show any passivation behavior during several potential scan cycles (ii) weld overlay developed at 200 mm / min. welding speed has best corrosion resistance compared to weld overlay developed at the 160 & 180 mm / min. welding speed. (iii) weld overlay developed at 160 & 180 mm / min. welding speed exhibit similar kind of corrosion rate.

4.2.5.3 Effect of welding speed on General Corrosion susceptibility of weld overlays in 0.1 N H₂S0₄ solution

4.2.5.3.1 Effect of Welding Speed on corrosion behaviour of Base metal in 0.1 N $\rm H_2S0_4$ Solution:

Fig. 4.68 : Potentiodynamic scans of Base Metal at different WS in 0.1N $\rm H_2S0_4$ solution

Table No-4.64: Electrochemical Parameters of Potentiodynamic studies on BaseMetal in 0.1N H2S04solution

Sr. No	Samples	i _{Corr}	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC-Base Metal 160 WS	295.0	-551.0	539.2
2	ESSC-Base Metal 180 WS	247.0	-554.0	451.7
3	ESSC-Base Metal 200 WS	349.0	-547.0	637.1

Fig. 4.68 shows the results of Potentiodynamic studies on base metal of different weld overlays in $0.1N H_2SO_4$ solution.By comparing corrosion behavior of base metal which were overlaid at different welding speed in $0.1N H_2SO_4$ solution, it shows that (i) base metal of weld overlay developed at 180 mm / min. welding speed has best corrosion resistance compare to weld overlay developed at the 160 & 200 mm / min. welding speed (iii) corrosion resistance of weld overlay developed at 160 & 200 mm / min. welding speed were similar[85].

4.2.5.3.2 Effect of Welding Speed on corrosion behaviour of 309 L cladded weld overlay in N $\rm H_2S0_4$ Solution

Fig. 4.69 : Potentiodynamic scans of 309L cladded weld overlays at different welding speed in $0.1N H_2S0_4$ solution

Table No- 4.65 : Electrochemical Parameters of Potentio-dynamic studies of 309 L cladded weld overlay in 0.1N HNO₃Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC-309L Clad 160 WS	85.80	-462	156.8
2	ESSC-309L Clad 180 WS	56.10	-493	102.5
3	ESSC-309L Clad 200 WS	97.30	-489	177.9

Fig. 4.69 shows the results of Potentiodynamic studies 309L cladded weld overlays which were developed at different welding speed in $0.1N H_2SO_4$ solution. By comparing corrosion behavior of 309L cladded weld overlays at different welding speed in $0.1N H_2SO_4$ solution, it shows that (i) all weld overlays exhibit passive behavior (ii) weld overlay developed at 180 mm / min. welding speed has best corrosion resistance compared to weld overlay developed at the 160 & 200 mm / min. welding speed (iii) weld overlay developed at 160 & 200 mm / min. welding speed has similar corrosion behavior [85].

4.2.5.3.3 Effect of Welding Speed on corrosion behaviour interface of 309 L cladded weld overlay in N H₂S0₄ Solution

Fig. 4.70 : Potentiodynamic scans of interface of 309L cladded weld overlays at different welding speed in 0.1N H₂S0₄ solution

Table No- 4.66: Electrochemical Parameters of Potentio-dynamic studies interface of309 L claddedweld overlay in 0.1N H2S04Solution

Sr. No	Amples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC- 309L IF 160 WS	240.0	-522.0	439.6
2	ESSC- 309L IF 180 WS	174.0	-529.0	318.9
3	ESSC-309L IF 200 WS	155.4	-478.0	284.0

Fig. 4.70 shows the results of Potentiodynamic studies interface region of 309L cladded weld overlays which were developed at different welding speed in 0.1N H₂SO₄ solution. By comparing corrosion behavior of interface region of 309L cladded weld overlays at different developed welding speed in 0.1N H₂SO₄ solution shows that (i) only interface region of weld overlay developed at180 mm / min welding speed exhibit passive behavior while other two interface region does not exhibit any passivity (ii) interface region of weld overlay developed at 180 mm / min. welding speed has best corrosion resistance compared to weld overlay developed at the 160 & 200 mm / min. welding speed (iii) weld overlay developed at 180 mm / min. welding speed has similar corrosion behavior.

Fig. 4.71: Potentiodynamic scans of 309L Nb cladded weld overlays at different welding speed in $0.1N H_2S0_4$ solution

Table No-4.67: Electrochemie	al Parameters of	Potentiodynamic	studies of	of 309	LNb
cladded weld overlays in 0.1N	H ₂ SO ₄ Solution				

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC-309L Nb Clad 160 WS	72.60	-452	132.6
2	ESSC-309L Nb Clad 180 WS	51.40	-451	95.64
3	ESSC-309L Nb Clad 200 WS	52.8	-454	96.40

186

Fig. 4.71 shows the results of Potentiodynamic studies 309L Nb cladded weld overlays which were developed at different welding speed in $0.1N H_2SO_4$ solution. By comparing corrosion behavior of 309L Nb cladded weld overlays at different welding speed in $0.1N H_2SO_4$ solution it shows that (i) all weld overlays exhibit passive behavior (ii) weld overlay developed at 180 mm /min. welding speed has best corrosion resistance compare to weld overlay developed at the 160 & 200 mm / min. welding speed iii) corrosion resistance of weld overlay developed at all welding speed exhibit similar in nature [85].

4.2.5.3.5 Effect of Welding Speed on corrosion behaviour interface of 309 LNb cladded weld overlay in 0.1 N H₂S0₄ Solution

Fig. 4.72: Potentiodynamic scans of interface of 309L Nb cladded weld overlays at different welding speed in 0.1N H₂S0₄ solution

Table No- 4.68: Electrochemical Parameters of Potentio-dynamic studies interface of309 L Nb claddedweld overlay in 0.1N H2S04 Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC-309L Nb IF 160 WS	66.40	-452.0	122.8
2	ESSC-309L Nb IF 180 WS	61.0	-531.0	113.1
3	ESSC-309L Nb IF 200 WS	75.2	-541.0	137.4

Fig. 4.72 shows the results of Potentiodynamic studies interface region of 309L Nb cladded weld overlays which were developed at different welding speed in $0.1N H_2SO_4$ solution. By comparing corrosion behavior of interface region of 309L Nb cladded weld overlays at different developed welding speed in $0.1N H_2SO_4$ solution shows that (i) interface region of weld overlay developed at 160 & 180 mm / min welding speed exhibit passive behavior while at interface region of weld overlay developed at 200 mm / min welding speed does not exhibit passive behaviour (ii) interface region of weld overlay developed at 180 mm / min. welding speed has best corrosion resistance compared to weld overlay developed at the 160 & 200 mm / min. welding speed.

4.2.5.4 Effect of welding speed on General Corrosion susceptibility of weld overlays in 3.5 % NaCl Solution:

4.2.5.4.1 Effect of welding speed on General Corrosion susceptibility of weld overlays in 3.5 % NaCl Solution:

Fig. 4.73: Potentiodynamic scans of Base Metal at different WS in 3.5 % NaCl solution

Table No-4.69: Electrochemical Parameters of Potentiodynamic studies on Base Metalin3.5 % NaCl solution

Sr. No	Samples	i _{Corr}	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC-Base Metal 160 WS	157.4	-668	289.6
2	ESSC-Base Metal 180 WS	148	-584	272.3
3	ESSC-Base Metal 200 WS	176.1	-699	324.1

188

Fig. 4.73 shows the results of Potentiodynamic studies on Base Metal in 3. 5 % NaCl solution. Base metal does not show any passivation behavior even after several potential scan cycles. By comparing corrosion behavior of Base Metal at different welding speed, it exhibit similar kind of corrosion resistance at all welding speed but base metal of weld overlay developed at 180 mm / min. exhibit good corrosion resistance then that of 160 mm/ min. & 200 mm/ min welding speed [86].

Fig. 4.74 : Potentiodynamic scans of 309L cladded weld overlays at different welding speed in 3.5 % NaCl solution

Table No- 4.70 : Electrochemical Parameters of Potentio-dynamic studies of 309 Lcladded weld overlay in 3.5 % NaCl Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC-309L Clad 160 WS	102.2	-676	186.8
2	ESSC-309L Clad 180 WS	73.61	-709	132.5
3	ESSC-309L Clad 200 WS	121.61	-651	222.7

189

Fig. 4.74 shows the results of Potentiodynamic studies 309L cladded weld overlays which were developed at different welding speed in 3.5 % NaCl solution. By comparing corrosion behavior of 309L cladded weld overlays at different welding speed in 3.5 % NaCl solution, it shows that (i) all weld overlays do not exhibit passive behavior (ii) weld overlay developed at 160 mm / min. welding speed has best corrosion resistance compared to weld overlay developed at the 180 & 200 mm / min. welding speed [86].

4.2.5.4.3 Effect of Welding Speed on corrosion behaviour interface of 309 L cladded weld overlay in 3.5 % NaCl Solution

Fig. 4.75: Potentiodynamic scans of interface of 309L cladded weld overlays at different welding speed in 3.5 % NaCl solution

Table No- 4.71: Electrochemical Parameters of Potentio-dynamic studies interface of

309 L cladded weld overlay in 3	3.5 9	% NaCl	Solution
---------------------------------	-------	--------	----------

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC- 309L IF 160 WS	122.2	-639	224.9
2	ESSC- 309L IF 180 WS	94.9	-660	174.7
3	ESSC-309L IF 200 WS	134.07	-663	246.7

Fig. 4.75 shows the results of Potentiodynamic studies interface region of 309L cladded weld overlays which were developed at different welding speed in 3.5 % NaCl solution. By comparing corrosion behavior of interface region of 309L cladded weld overlays at different welding speed in 3.5 % NaCl solution, it shows that (i) all weld overlays does not exhibit passive behavior (ii) weld overlay developed at 160 mm / min. welding speed has best corrosion resistance compared to weld overlay developed at the 180 & 200 mm / min. welding speed.

Fig. 4.76: Potentiodynamic scans of 309L Nb cladded weld overlays at different welding speed in 3.5 % NaCl solution

Table No-4.72 : Electrochemical Parameters of Potentiodynamic studies of 309 LNbcladded weld overlays in 3.5 % NaCl Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC-309L Nb Clad 160 WS	82.70	-640	152.2
2	ESSC-309L Nb Clad 180 WS	57.40	-661	104.9
3	ESSC-309L Nb Clad 200 WS	105.7	-623	194.6

Fig. 4.76 shows the results of Potentiodynamic studies 309L Nb cladded weld overlays which were developed at different welding speed in 3.5 % NaCl solution. By comparing corrosion behavior of 309L Nb cladded weld overlays at different welding speed in 3.5 % NaCl solution, it shows that (i) all weld overlays does not exhibit passive behavior (ii) weld overlay developed at 200 mm / min. welding speed has best corrosion resistance compared to weld overlay developed at the 160 & 180 mm / min. welding speed (iii) corrosion rate is decreases with increasing the welding speed from 160 mm/ min to 200 mm/ min [86].

4.2.5.4.5 Effect of Welding Speed on corrosion behaviour interface of 309 LNb cladded weld overlay in 3.5 % NaCl Solution

Fig. 4.77: Potentiodynamic scans of interface of 309L Nb cladded weld overlays at different welding speed in 3.5 % NaCl solution

Table No- 4.73: Electrochemical Parameters of Potentio-dynamic studies interface of309 L Nb claddedweld overlay in 3.5 % NaCl Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC-309L Nb IF 160 WS	107.0	-688	195.1
2	ESSC-309L Nb IF 180 WS	86.00	-681	157.3
3	ESSC-309L Nb IF 200 WS	115.0	-692	211.7

Fig. 4.77 shows the results of Potentiodynamic studies interface region of 309L Nb cladded weld overlays which were developed at different welding speed in 3.5~% NaCl

solution. By comparing corrosion behavior of interface region of 309L Nb cladded weld overlays at different welding speed in 3.5 % NaCl solution, it shows that (i) all weld overlays does not exhibit passive behavior (ii) weld overlay developed at 200 mm / min. welding speed has best corrosion resistance compare to weld overlay developed at the 160 & 180 mm / min. welding speed (iii) corrosion rate is decreases with increasing the welding speed from 160 mm/ min to 200 mm/ min.

4.2.6 Effect of welding speed on pitting Corrosion susceptibility of the weld overlays

4.2.6.1 Effect of Welding Speed on Pitting corrosion behaviour of Base metal of cladded weld overlay in 6% FeCl₃ Solution

Fig. 4.78 : Cyclic polarization scans of base metal at different welding speed in 6% FeCl₃ Solution

Table-4.74: Electrochemical Parameters of cyclic polarization Scan in 6%FeCl3Solution

Sr. No	Samples	I _{Corr\} (µA)	E _{Corr} (mV)	E _{rp} (mV)	Corrosion Rate (mpy)
1	ESSC-BM 160 WS	1420	-481	-488.0	2127
2	ESSC-BM 180 WS	886	-479	-529.6	1330
3	ESSC-BM 200 WS	1790	-505	-502.5	2687

Fig. 4.78 show the Cyclic polarization scans of base metal at different welding speed in 6% FeCl₃ Solution. By comparing corrosion behavior of base metal, it shows that all

scans exhibit positive hysteresis which indicates that the reverse scan current density is greater than that for the forward scan. Here $E_{rp} < E_{corr}$ for 160,180 & 200 mm / minute welding speeds which implies that pitting will occur and damaged passive film will not repaired .The results is increase in pitting corrosion susceptibility[87].

4.2.6.2 Effect of Welding Speed on Pitting corrosion behaviours of 309 L cladded weld overlays in 6% FeCl₃ Solution

Fig. 4.79 : cyclic polarization scans of 309L cladded weld overlays at different welding speed in 6% FeCl₃ Solution

 Table-4.75: Electrochemical Parameters of cyclic polarization Scan of 309L cladded weld overlays in 6% FeCl₃ Solution

Sr. No	Samples	I _{Corr\} (µA)	E _{Corr} (mV)	E _{rp} (mV)	Corrosion Rate (mpy)
1	ESSC -309L Clad 160 WS	309.0	-13.00	-195.3	463.0
2	ESSC- 309L Clad 180 WS	135.0	-291.00	-350.4	203.2
3	ESSC-309L Clad 200 WS	264.0	-70.80	-136.2	395.5

Fig. 4.79 show the Cyclic polarization scans of 309L cladded weld overlays at different welding speed in 6% FeCl₃ Solution. By comparing corrosion behavior of cladded region, it shows that all scans exhibit positive hysteresis which indicates that the reverse

scan current density which is greater than that for the forward scan. Here $E_{rp} < E_{corr}$ for 160,180 & for 200 mm / minute welding speeds which implies that pitting will occur and damage passive film will not repaired that results in increase in pitting corrosion susceptibility [87].

4.2.6.3 Effect of Welding Speed on Pitting corrosion behaviours of 309 L Nb cladded weld overlays in 6% FeCl₃ Solution

Fig. 4.80 : cyclic polarization scans of 309LNb Cladded weld overlays at different welding speed in 6% FeCl₃ Solution

Table-4.76: Electrochemical Parameters of cyclic polarization Scan in 6% FeCl3Solution

Sr. No	Samples	I _{Corr} (µA)	E _{Corr} (mV)	Erp (mV)	Corrosion Rate (mpy)
1	ESSC -309LNb Clad 160 WS	184.0	-388.0	-478.6	275.9
2	ESSC- 309L Nb Clad 180 WS	47.10	-222.0	-192.8	70.62
3	ESSC-309L Nb Clad 200 WS	103.0	-153.0	-167.3	155.0

Fig. 4.80 show the Cyclic polarization scans of 309L Nb cladded weld overlays at different welding speed in 6% FeCl₃ Solution. By comparing corrosion behavior of cladded region, it shows that cladded region of 180 mm / min welding speed exhibit negative hysteresis which indicates that the reverse scan current density is less than that for the forward scan while cladded region developed with 160 & 200 mm / min welding

speeds exhibit positive hysteresis which indicates that the reverse scan current density is greater than that for the forward scan. Here $E_{rp} < E_{corr}$ for 160 & 200 mm / minute welding speeds which implies that pitting will occur and damage passive film will not repaired that results in increase in pitting corrosion susceptibility while $E_{rp} > E_{corr}$ for 180 mm / minute welding speed which indicate that the pitting will occur but damage passive film will get repaired & protecting further pitting corrosion susceptibility[87].

4.2.6.4 Effect of Welding Speed on Pitting corrosion behaviours of Interface 309 L cladded weld overlays in 6% FeCl₃ Solution

Fig. 4.81 : cyclic polarization scans of Interface 309L cladded weld overlays at different welding speed in 6% FeCl₃ Solution

Table-4.77 : Electrochemical Parameters of cyclic polarization Scan in 6% FeCl3Solution

Sr. No	Samples	I _{Corr\} (µA)	E _{Corr} (mV)	E _{rp} (mV)	Corrosion Rate (mpy)
1	ESSC- 309L IF 160 WS	489.0	-434.0	-470.03	893.0
2	ESSC- 309L IF 180 WS	434.0	-433.0	-488.68	793.1
3	ESSC- 309L IF 200 WS	267.0	-461.0	-498.6	488.6

Fig. 4.81 shows the Cyclic polarization scans interface region of 309L cladded weld overlays at different welding speed in 6% FeCl₃ Solution. By comparing corrosion behavior of interface region, it shows that cladded region of at all welding speeds

exhibit positive hysteresis which indicates that the reverse scan current density is greater than that for the forward scan. Here $E_{rp} < E_{corr}$ for all welding speeds which implies that pitting will occur and damage passive film will not repaired that results in increase in pitting corrosion susceptibility.

4.2.6.5 Effect of Welding Speed on Pitting corrosion behaviours of interface 309 L Nb cladded weld overlays in 6% FeCl₃ Solution

Fig. 4.82 : cyclic polarization scans of interface 309LNb Cladded weld overlays at different welding speed in 6% FeCl₃ Solution

Table-4.78: Electrochemical Parameters of cyclic polarization Scanin 6% FeCl3Solution

Sr. No	Samples	I _{Corr\} (µA)	E _{Corr} (mV)	E _{rp} (mV)	Corrosion Rate (mpy)
1	ESSC- 309L Nb IF 160 WS	352.0	-465.0	-480.0	352.0
2	ESSC- 309L Nb IF 180 WS	305.0	-445.0	-463.3	305.0
3	ESSC- 309L Nb IF 200 WS	460.0	-427.0	-451.6	460.0

Fig. 4.82 shows the Cyclic polarization scans interface region of 309L Nb cladded weld overlays at different welding speed in 6% FeCl₃ Solution. By comparing corrosion behavior of interface region, it shows that cladded region of at all welding speeds

exhibit positive hysteresis which indicates that the reverse scan current density is greater than that for the forward scan. Here $E_{pit} < E_{corr}$ for all welding speeds which implies that pitting will occur and damaged passive film will get not repaired that results in increase in pitting corrosion susceptibility.

4.2.7 Effect of welding speed on Degree of sensitization of the weld overlays

4.2.7.1 Effect of Welding Speed on corrosion behaviour of cladded region of 309 L Cladded weld overlay in 0.1 H2SO4 + 0.01 M NaCl Solution

Fig. 4.83 EPR scans of 309L cladded weld overlays at different welding speed in $0.1 H_2SO_4 + 0.01 M$ NaCl Solution

Table-4.79 : Peak Current density ofEPR scans of cladded region of 309Lcladded weld overlays at as weldedcondition

Sr. No	Samples	Peak Current density (A/cm ³)
1	ESSC -EPR 309L Clad 160 WS	2.72 x 10 ⁻²
2	ESSC-EPR 309L Clad 180 WS	1.16 x 10 ⁻²
3	ESSC-EPR 309L Clad 200 WS	1.86 x 10 ⁻²

Fig. 4.83 show the combination of single loop electrochemical potentio-kinetic reactivation (EPR) test of cladded region of 309L cladded weld overlay which were developed at different welding speed. EPR test was conducted under de-aerated condition at room temperature in 0.1 $H_2SO_4 + 0.01$ M NaCl solution to assess the degree of sensitization (DOS) in terms of peak current density. Results indicate that degree of sensitization get decreased with increasing the welding speed from 160 to 180 mm /min welding speed then after it get increased at 200 mm / min welding speed but it was less than that of 160 mm/min welding speed.

4.2.7.2 Effect of Welding Speed on corrosion behaviour of interface region of 309 L Cladded weld overlay in 0.1 H2SO4 + 0.01 M NaCl Solution

Fig. 4.84 EPR scans of interface of 309L cladded weld overlays at different welding speed in 0.1 H_2SO_4 + 0.01 M NaCl Solution

 Table-4.80: Peak Current density of EPR scans of interfce region of 309L cladded weld overlays at as welded condition

Sr. No	Samples	Peak Current density (A/cm ³)
1	ESSC -EPR 309L IF 160 WS	3.86 x 10 ⁻²
2	ESSC-EPR 309L IF 180 WS	2.71 x 10 ⁻²
3	ESSC-EPR 309L IF 200 WS	9.16 x 10 ⁻²

Fig. 4.84 show the combination of single loop electrochemical potentio-kinetic reactivation (EPR) test of interface of 309L cladded weld overlay which were developed at different welding speed. EPR test was conducted under de-aerated condition at room temperature in 0.1 H_2SO_4 + 0.01 M NaCl solution to assess the degree of sensitization (DOS) in terms of peak current density. Results indicate that sensitization was decrease with increasing the welding speed from 160 to 180 mm /min welding speed then after it gets increased at 200 mm / min welding speed but it was less than that of 160 mm/min welding speed.

4.2.7.3 Effect of Welding Speed on corrosion behaviour of cladded region of 309 L Nb Cladded weld overlay in 0.1 H2SO4 + 0.01 M NaCl Solution

Fig. 4.85 EPR scans of 309LNb cladded weld overlays at different welding speed in 0.1 H₂SO₄ + 0.01 M NaCl Solution

Table-4.81 : Peak Current density ofEPR scans of cladded region of 309L Nbcladded weld overlays at as welded condition

Sr. No	Samples	Peak Current density (A/cm ³)
1	ESSC -EPR 309L Nb Clad 160 WS	1.52 x 10 ⁻²
2	ESSC-EPR 309L Nb Clad 180 WS	1.04 x 10 ⁻²
3	ESSC-EPR 309L Nb Clad 200 WS	1.22 x 10 ⁻²

Fig. 4.85 shows the combination of single loop electrochemical potentio-kinetic reactivation (EPR) test of cladded region of 309L Nb cladded weld overlay which were developed at different welding speed. EPR test was conducted under de-aerated condition at room temperature in 0.1 H_2SO_4 + 0.01 M NaCl solution to assess the degree of sensitization (DOS) in terms of peak current density. Results indicate that sensitization was decreased with increasing the welding speed from 160 to 180 mm /min welding speed then after it get increased at 200 mm / min welding speed but it was less than that of 160 mm/min welding speed.

4.2.7.4 Effect of Welding Speed on corrosion behaviour of interface region of 309 L Nb Cladded weld overlay in 0.1 H2SO4 + 0.01 M NaCl Solution

Fig. 4.86 EPR scans of interface of 309LNb cladded weld overlays at different welding speed in $0.1 H_2SO_4 + 0.01 M$ NaCl Solution

Table-4.82 : Peak Current density ofEPR scans of interfce region of 309L Nbcladded weld overlays at as welded condition

Sr. No	Samples	Peak Current density (A/cm ³)
1	ESSC -EPR 309L Nb IF 160 WS	3.91 x 10 ⁻²
2	ESSC-EPR 309L Nb IF 180 WS	1.81 x 10 ⁻²
3	ESSC-EPR 309L Nb IF 200 WS	6.55 x 10 ⁻²

201

Fig. 4.86 show the combination of single loop electrochemical potentio-kinetic reactivation (EPR) test of interface of 309LNb cladded weld overlay which were developed at different welding speed. EPR test was conducted under de-aerated condition at room temperature in 0.1 $H_2SO_4 + 0.01$ M NaCl solution to assess the degree of sensitization (DOS) in terms of peak current density. Results indicate that sensitization was decreased with increasing the welding speed from 160 to 180 mm /min welding speed then after it get increased at 200 mm / min welding speed but it was less than that of 160 mm/min welding speed.

4.3 Result of Niobium Addition on Micro-structural changes, ferrite content, Micro-hardness and Corrosion behaviour of Weld Overlays

4.3.1 Effect of Niobium addition on Microstructure changes of the weld overlays

4.3.1.1 Effect of Niobium addition on Microstructure changes at cladded region:

Fig. 4.89 (a) Cladded region of 309 I Clad 200 WS

Fig. 4.89 (b) Cladded region of 309 L Nb Clad 200 WS

The microstructure of the cladded region of weld overlay developed with 309L & 309L Nb at different welding speed is shown in Fig. 4.87(a) to 4.89 (a) & Fig. 4.87 (b) to 4.89 (b) respectively in as welded condition. The Aquaregia etchant used reveals predominantly the ferrite distribution in the austenite matrix. In bulk cladding, the

Clad 200 WS

modes of solidification were primary ferritic in both 309 L & 309 Nb types weld overlays at all welding speeds. It shows at the end of primary ferrite solidification, a peritectic-eutectic reaction results in the formation of austenite along the ferrite cell & dendrite boundaries which is also known as skeletal or vermicular ferrite [88]. There were no any micro-structural changes observed but in case of 309 L Nb cladded weld overlay ,little bit higher amount of ferrite as compared to 309L cladded weld overlay as Nb is strong ferrite forming elements.

Fig.4.92(b) Interface region of 309 L Nb Clad 200 WS

The microstructure of the interface region of weld overlay developed with 309L & 309L Nb at different welding speed is shown in Fig. 4.90(a) to 4.92 (a) & Fig. 4.90 (b) to 4.92 (b) respectively in as welded condition. At interface region there were significant composition gradients produced due to a combination of dilution and other factors which have a profound effect on the micro-structural development. The dilution level in the bulk weld metal under ESSC conditions is known to be not more than about 8 to 10%, but at interface the degree of dilution will be much higher which result in the formation of a stagnant fluid layer in the weld pool adjacent to the base metal. The transition from the low alloy content (Cr, Mo) in the base metal to the high alloy content (Cr, Ni, Nb) in the bulk weld metal occurs in this transition zone. The layer originally had the same composition as the base metal, but develops higher chromium and nickel contents as a result of diffusion from the cladding due to the concentration gradients [89]. The stagnation layer has also been called the unmixed zone. It may be seen from Table -4.39 that Cr contents over 9.06 % and Ni contents around 9.35 % could develop in the transition zone during cladding The composition in the layer is such that during cooling following overlaying this region transforms to martensite. There were no any micro-structural changes observed but in case of 309 L Nb cladded weld overlay, little bit higher amount of ferrite as compared to 309L cladded weld overlay as Nb is strong ferrite forming elements.

4.3.2 Effect of Noibium	additions on Ferrite Content	of weld overlay
Table- 4.83 :	Effect of Nb addition on the	amount of ferrite content

Welding speed	Amount of ferrite Content			
(mm/min.)	309 L Cladded surface	309 LNb cladded surface		
160	5.4	5.5		
180	3.7	4.6		
200	3.3	4.3		

Table-4.83 shows the effect of Nb addition on the amount of ferrite content in clad region of 309 L & 309L Nb cladded weld overlays. It reveals that 309L Nb cladded weld overlay exhibit higher amount of ferrite than 309 L cladded weld overlay at all welding

.

speed because Nb is strong ferrite former element.

4.3.3 Effect of Alloying Elements on Hardness Value weld overlays

Table- 4.84	:	Effect of Nb addition on the	Micro hardness value

Welding speed	Micro hardness (VPN)		
(mm/min.)	309 L Cladded surface	309 LNb cladded surface	
160	242	222	
180	260	235	
200	271	254	

Table-4.84 shows the effect of Nb addition on the hardness value in clad region of 309 L & 309L Nb cladded weld overlays. It reveals that 309L Nb cladded weld overlay exhibit lower value of hardness than 309 L cladded weld overlay at all welding speed because Nb is strong ferrite former element which lead to increase in the amount of ferrite content.

4.3.4 Effect of Niobium addition on Corrosion Behaviour of weld Overlays

- 4.3.4.1 Effect of Niobium addition on General Corrosion susceptibility:
- 4.3.4.1.1 Effect of Niobium addition ccorrosion behaviour of f 309 L and 309 L Nb

cladded weld overlays in 0.1 N HHO₃ Solution

4.3.4.1.1.1 Comparison of Corrosion behaviour of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed in 0.1 N HHO₃ Solution

Fig.4.93 Potentiodynamic scans of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed in 0.1 N HHO₃Solution

Table-4.85 : Electrochemical Parameters of Potentiodynamic scans of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed in 0.1 N HHO₃ Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	Clad 309L 160 WS	74.2	-374.0	135.5
2	Clad 309L Nb 160 WS	80.60	-424.0	147.3

Fig. 4.93 shows the results of potentiodynamic scans of cladded region of 309 L & 3091 Nb cladded weld overlay developed with 160 mm / min. welding speed in 0.1 N $\rm HHO_3$ solutions. By comparing corrosion behaviour of both weld overlays at cladded region, it

shows that (i) all samples exhibit active potentials in given environment,(ii) 309 L cladded weld overlay passivited much earlier than 309 L Nb cladded weld overlay due to which it has good corrosion resistance as compared to 309 L Nb cladded weld overlay

4.3.4.1.1.2 Comparison of Corrosion behaviour of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed 0.1 N HHO₃ Solution

Fig. 4.94 Potentiodynamic scans of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed in 0.1 N HHO₃Solution

Table- 4.86 : Electrochemical Parameters of Potentiodynamic scans of claddedregion of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min.welding speed in 0.1 N HHO3 Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	Clad 309L 180 WS	48.5	-440.0	18.24
2	Clad 309L Nb 180 WS	52.90	-354.0	96.62

Fig. 4.94 shows the results of potentiodynamic scans of cladded region of 309 L & 309L Nb cladded weld overlay develop with 180 mm / min. welding speed in 0.1 N HHO₃ solutions. By comparing corrosion behavior of both weld overlays at cladded region, it shows that (i) all sample exhibit active potentials in given environment,(ii) 309 L cladded weld overlay exhibit passivation behaviour due to which it has good

corrosion resistance as compared to 309 L Nb cladded weld overlay (iii) 309 L Nb cladded weld overlay does not exhibit any passivation behaviour due to which it has lower corrosion resistance as compared to 309 L cladded weld overlay.

4.3.4.1.1.3 Comparison of Corrosion behaviour of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed 0.1 N HHO₃ Solution

Fig. 4.95 Potentiodynamic scans of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed in 0.1 N HHO₃Solution

Table-4.87 : Electrochemical Parameters of Potentiodynamic scans of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed in 0.1 N HHO_3 Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	Clad 309L 200 WS	35.7	-402.0	13.41
2	Clad 309L Nb 200 WS	49.70	-359.0	90.80

Fig. 4.95 shows the results of potentiodynamic scans of cladded region of 309 L & 309 LNb cladded weld overlay develop with 200 mm / min. welding speed in 0.1 N HHO₃ solutions. By comparing corrosion behavior of both weld overlays at cladded region, it shows that (i) all sample exhibit active potentials in given environment,(ii) 309 L cladded weld overlay exhibit passivation behaviour due to which it has good corrosion resistance as compare to 309 L Nb cladded weld overlay (iii) 309 L Nb cladded weld overlay does not exhibit any passivation behaviour due to which it has lower corrosion resistance as compare to 309 L cladded weld overlay.

4.3.4.1.1.4 Comparison of Corrosion behaviour of Interface region of 309 L & 309

L Nb cladded weld overlay develop with 160 mm / min. welding speed 0.1 N HHO₃ Solution

Fig. 4.96 Potentiodynamic scans of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed in 0.1 N HHO₃Solution

Table-4.88 : Electrochemical Parameters of Potentiodynamic scans of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed in 0.1 N HHO₃ Solution

Sr. No	Samples	i _{Corr} (μA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC Clad 309L - IF 160 WS	106.0	-428	181.7
2	ESSC Clad 309L Nb - IF 160 WS	562.0	-458	211.6

Fig. 4.96 shows the results of potentiodynamic scans of interface region of 309 L and 3091 Nb cladded weld overlay develop with 160 mm / min. welding speed in 0.1 N HHO₃ solutions. By comparing corrosion behavior of both weld overlays at interface region, it shows that (i) all sample exhibit active potentials in given environment,(ii) interface region of 309 L cladded weld overlay has good corrosion resistance as compared to interface region 309 L Nb cladded weld overlay.

4.3.4.1.1.5 Comparison of Corrosion behaviour of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed 0.1 N HHO₃ Solution

Fig. 4.97 Potentiodynamic scans of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed in 0.1 N HHO₃Solution

Table-3.89 : Electrochemical Parameters of Potentiodynamic scans of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed in 0.1 N HHO₃ Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC Clad 309L - IF 180 WS	61.0	-383	45.31
2	ESSC Clad 309L Nb - IF 180 WS	124.0	-386	163.6

Fig. 4.97 shows the results of potentiodynamic scans of interface region of 309 L and 309L Nb cladded weld overlay developed with 180 mm / min. welding speed in 0.1 N HHO₃ solutions. By comparing corrosion behavior of both weld overlays at interface region, it shows that (i) all samples exhibit active potentials in given environment,(ii) interface region of 309 L cladded weld overlay exhibit passivation behaviour due to which it has good corrosion resistance as compared to interface region 309 L Nb cladded weld overlay.

4.3.4.1.1.6 Comparison of Corrosion behaviour of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed 0.1 N HHO₃ Solution

Fig. 4.98 Potentiodynamic scans of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed in 0.1 N HHO₃Solution

Table-4.90 : Electrochemical Parameters of Potentiodynamic scans of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed in 0.1 N HHO_3 Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC Clad 309L - IF 200 WS	70.6	-423	128.1
2	ESSC Clad 309L Nb - IF 200 WS	90.3	-406	166.7

Fig. 4.98 shows the results of potentiodynamic scans of interface region of 309 L and 309L Nb cladded weld overlay developed with 200 mm / min. welding speed in 0.1 N HHO₃ solutions. By comparing corrosion behavior of both weld overlays at interface region, it shows that (i) all samples exhibit active potentials in given environment,(ii) interface region of 309 L cladded weld overlay exhibit passivation behaviour due to

which it has good corrosion resistance as compared to interface region 309 L Nb cladded weld overlay.

 Table- 4.91 : Effect of Nb addition on corrosion resistance of weld overlay at clad

 as well as at interface clad as well as at interface in 0.1 N HNO₃ solution

Sr.		Corrosion Rate (mpy)		
No	Samples	309 L cladded region	309 L Nb cladded region	
1	ESSC Clad 160 WS	135.5	147.3	
2	ESSC Clad 180 WS	18.24	96.62	
3	ESSC Clad 200 WS	13.41	90.80	
4	ESSC IF 160 WS	181.7	211.6	
5	ESSC IF 180 WS	45.31	163.6	
6	ESSC IF 200 WS	128.1	166.7	

By comparing corrosion behavior of both weld overlays developed at different welding speed at clad as well as interface region in 0.1 N HNO₃ solution, it shows that 309 L cladded weld overlay exhibit passivation behaviour due to which it has good corrosion resistance as compared to 309 L Nb cladded weld overlay in 0.1 N HNO₃ solution.
- 4.3.4.1.2 Effect of Niobium addition corrosion behaviour of 309 L and 309 L Nb cladded weld overlay in 0.1 N H₂SO₄ Solution
- 4.3.4.1.2.1 Comparison of Corrosion behaviour of cladded region of 309 L & 309 L
 Nb cladded weld overlay develop with 160 mm / min. welding speed 0.1
 N H₂SO₄ Solution

Fig. 4.99 Potentiodynamic scans of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed in 0.1 N H₂SO₄ solution

Table-4.92Electrochemical Parameters of Potentiodynamic scans of claddedregion of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min.welding speed in $0.1 N H_2 SO_4 Solution$

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	Clad 309L 160 WS	85.80	-462	156.8
2	Clad 309L Nb 160 WS	64.60	-452	118.2

Fig. 4.99 shows the results of potentiodynamic scans of cladded region of 309 L and 309L Nb cladded weld overlay developed with 160 mm / min. welding speed in 0.1 N H_2SO_4 solutions. By comparing corrosion behavior of both weld overlays at cladded region, it shows that (i) all samples exhibit active potentials in given environment,(ii) 309 L Nb cladded weld overlay passivited much earlier than 309 L cladded weld

overlay and also form secondary passivation firm at latter part of anodic scan due to which it has good corrosion resistance as compared to 309 L cladded weld overlay.

4.3.4.1.2.2 Comparison of Corrosion behaviour of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed

Fig. 4.100 Potentiodynamic scans of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed in 0.1 N H₂SO₄ solution

Sr. No	Samples	i _{Corr} (μA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	Clad 309L 180 WS	56.10	-493	102.5
2	Clad 309L Nb 180 WS	53.40	-451	97.64

Fig. 4.100 shows the results of potentiodynamic scans of cladded region of 309 L & 309LNb cladded weld overlay developed with 180 mm / min. welding speed in 0.1 N H_2SO_4 solutions. By comparing corrosion behavior of both weld overlays at cladded region, it shows that (i) all samples exhibit active potentials in given environment,(ii) 309 L Nb cladded weld overlay passivited much earlier than 309 L cladded weld overlay

and also form secondary passivation firm at latter part of anodic scan due to which it has good corrosion resistance as compare to 309 L cladded weld overlay.

4.3.4.1.2.3 Comparison of corrosion behaviour of cladded region of 309 L and 309L Nb cladded weld overlay develop with 200 mm / min. Welding speed 0.1 N H₂SO₄ Solution

Fig. 4.101 : Potentiodynamic scans of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed in $0.1 \text{ N H}_2\text{SO}_4$ solution

Table-4.94: Electrochemical Parameters of Potentiodynamic scans of claddedregion of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min.welding speed in $0.1 N H_2 SO_4$ Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	Clad 309L 200 WS	97.30	-489	177.9
2	Clad 309L Nb 200 WS	72.60	-454	132.6

Fig. 4.101 shows the results of potentiodynamic scans of cladded region of 309 L & 3091 Nb cladded weld overlay developed with 200 mm / min. welding speed in 0.1 N H_2SO_4 solutions. By comparing corrosion behavior of both weld overlays at cladded region, it shows that (i) all samples exhibit active potentials in given environment,(ii) both weld

overlay exhibit double passivation behaviour,(iii) anodic scan at cladded region of 309 L Nb cladded weld overlay was more smoother than 309 L cladded weld overlay which indicate that the film form at this region was more uniform in nature due to which it has good corrosion resistance as compared to cladded region of 309 L cladded weld overlay.

4.3.4.1.2.4 Comparison of Corrosion behaviour of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed 0.1 N H₂SO₄ Solution

Fig. 4.102 : Potentiodynamic scans of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed in 0.1 N H_2SO_4 solution

Table-4.95 : Electrochemical Parameters of Potentiodynamic scans of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed in $0.1 \text{ N H}_2\text{SO}_4$ Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC Clad 309L - IF 160 WS	240.0	-522.0	439.6
2	ESSC Clad 309L Nb - IF 160 WS	66.40	-452.0	122.8

Fig. 4.102 shows the results of potentiodynamic scans of interface region of 309 L and 309L Nb cladded weld overlay developed with 160 mm / min. welding speed in 0.1 N H_2SO_4 solutions. By comparing corrosion behavior of both weld overlays at interface

region, it shows that (i) all samples exhibit active potentials in given environment,(ii) interface region of 309 L Nb cladded weld overlay exhibit passivation behaviour due to which it has good corrosion resistance as compared to interface region 309 L cladded weld overlay.

4.3.4.1.2.5 Comparison of Corrosion behaviour of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed 0.1 N H₂SO₄ Solution

Fig. 4.103 : Potentiodynamic scans of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed in 0.1 N H_2SO_4 solution

Table- 4.96: Electrochemical Parameters of Potentiodynamic scans of Interfaceregion of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min.welding speed in $0.1 \ N H_2 SO_4$ Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC Clad 309L - IF 180 WS	174.0	-529.0	318.9
2	ESSC Clad 309L Nb - IF 180 WS	84.0	-531.0	153.8

Fig. 4.103 shows the results of potentiodynamic scans of interface region of 309 L and 309L Nb cladded weld overlay developed with 180 mm / min. welding speed in 0.1 N H_2SO_4 solutions. By comparing corrosion behavior of both weld overlays at interface region, it shows that (i) all samples exhibit active potentials in given environment,(ii) interface region of 309 L Nb cladded weld overlay exhibit passivation behaviour due to which it has good corrosion resistance as compared to interface region 309 L cladded weld overlay.

4.3.4.1.2.6 Comparison of Corrosion behaviour of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed 0.1 N H₂SO₄ Solution

Fig. 4.104 : Potentiodynamic scans of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed in 0.1 N H₂SO₄ solution

Table-4.97 : Electrochemical Parameters of Potentiodynamic scans of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed in $0.1 \text{ N H}_2\text{SO}_4$ Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC Clad 309L - IF 200 WS	184.0	-478.0	335.7
2	ESSC Clad 309L Nb - IF 200 WS	75.20	-440.0	137.4

220

Fig. 4.104 shows the results of potentiodynamic scans of interface region of 309 L & 3091 Nb cladded weld overlay developed with 180 mm / min. welding speed in 0.1 N H₂SO₄ solutions. By comparing corrosion behavior of both weld overlays at interface region, it shows that (i) all samples exhibit active potentials in given environment,(ii) interface region of 309 L Nb cladded weld overlay exhibit passivation behaviour due to which it has good corrosion resistance as compared to interface region 309 L cladded weld overlay.

Table- 4.98 : Effect of Nb addition on corrosion resistance of weld overlay at clad as well as at interface clad as well as at interface in $0.1 \text{ N H}_2\text{SO}_4$ solution

Sr. No		Corrosion Rate (mpy)			
	Samples	309 L cladded region	309 L Nb cladded region		
1	ESSC Clad 160 WS	156.8	118.2		
2	ESSC Clad 180 WS	102.5	97.64		
3	ESSC Clad 200 WS	177.9	132.6		
4	ESSC IF 160 WS	439.6	122.8		
5	ESSC IF 180 WS	318.9	153.8		
6	ESSC IF 200 WS	355.7	137.4		

By comparing corrosion behavior of both weld overlays developed at different welding speed at clad as well as at interface region in $0.1 \text{ N H}_2\text{SO}_4$ solution, it shows that passivation film of 309 L Nb cladded weld overlay was more uniform as compared to 309 L cladded weld overlay due to which it has good corrosion resistance than 309 L cladded weld overlay in $0.1 \text{ N H}_2\text{SO}_4$ solution.

221

4.3.4.1.3 Effect of Niobium addition ccorrosion behaviour of 309 L and 309 L Nb cladded weld overlay in 0.1 N HCl Solution

4.3.4.1.3.1 Comparison of Corrosion behaviour of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed 0.1 N HCl Solution

Fig.4.105 : Potentiodynamic scans of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed in 0.1 N HCl solution

Table-4.99 : Electrochemical Parameters of Potentiodynamic scans of claddedregion of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min.welding speed in 0.1 N HCl Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	Clad 309L 160 WS	26.7	-486	10.03
2	Clad 309L Nb 160 WS	39.6	-493	14.9

Fig. 4.105 shows the results of potentiodynamic scans of cladded region of 309 L & 3091 Nb cladded weld overlay developed with 180 mm / min. welding speed in 0.1 N HCl solutions. By comparing corrosion behavior of both weld overlays at cladded region, it shows that (i) all samples exhibit active potentials in given environment,(ii) 309 L &

309 L Nb cladded weld overlay exhibit similar kind of corrosion behaviour (iii) 309 L cladded weld overlay has slightly better passive firm as compare to 309 L Nb cladded weld overlay due to which it has good corrosion resistance than 309 L Nb cladded weld overlay.

4.3.4.1.3.2 Comparison of Corrosion behaviour of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed 0.1 N HCl Solution

Fig. 4.106 : Potentiodynamic scans of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed in 0.1 N HCl solution

Table-4.100 : Electrochemical Parameters of Potentiodynamic scans of claddedregion of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min.welding speed in 0.1 N HCl Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	Clad 309L 180 WS	0.075	-137	0.0282
2	Clad 309L Nb 180 WS	7.53	-494	2.829

Fig. 4.106 shows the results of potentiodynamic scans of cladded region of 309 L & 309L Nb cladded weld overlay developed with 180 mm / min. welding speed in 0.1 N HCl solutions. By comparing corrosion behavior of both weld overlays at cladded

region, it shows that (i) all samples exhibit active potentials in given environment,(ii) 309 L cladded weld overlay has good corrosion resistance as compared to 309 L Nb cladded weld overlay.

4.3.4.1.3.3 Comparison of Corrosion behaviour of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed 0.1 N HCl Solution

Fig. 4.107 : Potentiodynamic scans of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed in 0.1 N HCl solution

Table-4.101 : Electrochemical Parameters of Potentiodynamic scans of claddedregion of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min.welding speed in 0.1 N HCl Solution

Sr. No	Samples	i _{Corr} (μA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	Clad 309L 200 WS	7.56	-427	2.843
2	Clad 309L Nb 200 WS	20.9	-491	7.872

Fig. 4.107 shows the results of potentiodynamic scans of cladded region of 309 L & 309L Nb cladded weld overlay developed with 200 mm / min. welding speed in 0.1 N HCl solutions. By comparing corrosion behavior of both weld overlays at cladded region, it

shows that (i) all samples exhibit active potentials in given environment,(ii) 309 L Nb cladded weld overlay exhibit good passivation film formation due to which it has good corrosion resistance as compared to 309 L cladded weld overlay (iii) 309 L cladded weld overlay also exhibit passivation behaviour due to which it also has good corrosion resistance but higher than that of 309 L Nb cladded weld overlay.

4.3.4.1.3.4 Comparison of Corrosion behaviour of Interface region of 309 L and 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed

Fig. 4.108 : Potentiodynamic scans of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed in 0.1 N HCl solution

Table-4.102 : Electrochemical Parameters of Potentiodynamic scans of Interfaceregion of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min.welding speed in 0.1 N HCl Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC Clad 309L - IF 160 WS	48.50	-523	18.22
2	ESSC Clad 309L Nb - IF 160 WS	69.6	-518	26.15

Fig. 4.108 shows the results of potentiodynamic scans of interface region of 309 L & 309L Nb cladded weld overlay developed with 160 mm / min. welding speed in 0.1 N HCl solutions. By comparing corrosion behavior of both weld overlays at interface

region, it shows that (i) all samples exhibit active potentials in given environment,(ii) 309 L cladded weld overlay has good corrosion resistance as compared to 309 L Nb cladded weld overlay.

4.3.4.1.3.5 Comparison of Corrosion behaviour of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed 0.1 N HCl Solution

Fig. 4.109 Potentiodynamic scans of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed in 0.1 N HCl solution

Table-4.103 : Electrochemical Parameters of Potentiodynamic scans of Interfaceregion of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min.welding speed in 0.1 N HCl Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC Clad 309L - IF 180 WS	42.50	-528	15.97
2	ESSC Clad 309L Nb - IF 180 WS	50.60	-513	19.01

Fig. 4.109 shows the results of potentiodynamic scans of interface region of 309 L & 3091 Nb cladded weld overlay developed with 180 mm / min. welding speed in 0.1 N HCl solutions. By comparing corrosion behavior of both weld overlays at interface region, it shows that (i) all samples exhibit active potentials in given environment,(ii) 309 L

cladded weld overlay has good corrosion resistance as compared to 309 L Nb cladded weld overlay.

4.3.4.1.3.6 Comparison of Corrosion behaviour of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed 0.1 N HCl Solution

Fig.4.110 Potentiodynamic scans of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed in 0.1 N HCl solution

Table-4.104 : Electrochemical Parameters of Potentiodynamic scans of Interfaceregion of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min.welding speed in 0.1 N HCl Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC Clad 309L - IF 200 WS	39.30	-502	14.77
2	ESSC Clad 309L Nb - IF 200 WS	65.4	-521	24.58

Fig. 4.110 shows the results of potentiodynamic scans of interface region of 309 L & 3091 Nb cladded weld overlay developed with 200 mm / min. welding speed in 0.1 N HCl solutions. By comparing corrosion behavior of both weld overlays at interface region, it shows that (i) all samples exhibit active potentials in given environment,(ii) 309 L

cladded weld overlay has good corrosion resistance as compared to 309 L Nb cladded weld overlay.

Table- 4.105 : Effect of Nb addition on corrosion resistance of weld overlay at cladas well as at interface clad as well as at interface in 0.1 N HCl solution

Sr.		Corrosion Rate (mpy)				
No	Samples	309 L cladded region	309 L Nb cladded region			
1	ESSC Clad 160 WS	10.03	14.9			
2	ESSC Clad 180 WS	0.0282	2.829			
3	ESSC Clad 200 WS	2.843	7.872			
4	ESSC IF 160 WS	18.22	26.15			
5	ESSC IF 180 WS	15.97	19.01			
_6	ESSC IF 200 WS	14.77	24.58			

By comparing corrosion behavior of both weld overlays developed at different welding speed at clad as well as interface region in 0.1 N HCl solution, it shows that 309 L cladded weld overlay exhibit passivation behaviour due to which it has good corrosion resistance as compared to 309 L Nb cladded weld overlay in 0.1 N HCl solution.

- 4.3.4.1.4 Effect of Niobium addition ccorrosion behaviour of 309 L and 309 L Nb cladded weld overlay in 3.5 % NaCl Solution
- 4.3.4.1.4.1Comparison of Corrosion behaviour of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed 3.5 % NaCl Solution

Fig. 4.111: Potentiodynamic scans of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed in 3.5 % NaCl solution

Table-4.106 : Electrochemical Parameters of Potentiodynamic scans of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed in 3.5~% NaCl Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	Clad 309L 160 WS	85.80	-462	156.8
2	Clad 309L Nb 160 WS	77.80	-640	142.2

Fig. 4.111 shows the results of potentiodynamic scans of cladded region of 309 L & 3091 Nb cladded weld overlay developed with 160 mm / min. welding speed in 3.5 % NaCl solution. By comparing corrosion behavior of both weld overlays at cladded region, it shows that (i) all samples exhibit active potentials in given environment,(ii) 309 L Nb

cladded weld overlay has good corrosion resistance as compared to 309 L cladded weld overlay [90].

4.3.4.1.4.2 Comparison of Corrosion behaviour of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed 3.5 % NaCl Solution

Fig. 4.112 : Potentiodynamic scans of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed in 3.5 % NaCl solution

Table-4.107 : Electrochemical Parameters of Potentiodynamic scans of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed in 3.5 % NaCl Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	Clad 309L 180 WS	68.30	-660	134.5
2	Clad 309L Nb 180 WS	59.40	-661	97.5

Fig. 4.112 shows the results of potentiodynamic scans of cladded region of 309 L & 3091 Nb cladded weld overlay developed with 180 mm / min. welding speed in 3.5 % NaCl solutions. By comparing corrosion behavior of both weld overlays at cladded region, it shows that (i) all samples exhibit active potentials in given environment,(ii) 309 L Nb

cladded weld overlay has good corrosion resistance as compared to 309 L cladded weld overlay due to passive film formation [90].

4.3.4.1.4.3 Comparison of Corrosion behaviour of cladded region of 309 L and 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed 3.5 % NaCl Solution

Fig. 4.113: Potentiodynamic scans of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed in 3.5 % NaCl solution

Table-4.108 : Electrochemical Parameters of Potentiodynamic scans of claddedregion of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min.welding speed in 3.5 % NaCl Solution

Sr. No	Samples	i _{Corr} (μA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	Clad 309L 200 WS	121.0	-651	222.7
2	Clad 309L Nb 200 WS	106.40	-623	194.6

Fig. 4.113 shows the results of potentiodynamic scans of cladded region of 309 L & 3091 Nb cladded weld overlay developed with 180 mm / min. welding speed in 3.5 % NaCl solutions. By comparing corrosion behavior of both weld overlays at cladded region, it shows that (i) all samples exhibit active potentials in given environment,(ii) 309 L Nb cladded weld overlay has good corrosion resistance as compared to 309 L cladded weld overlay [90].

231

4.3.4.1.4.4 Comparison of Corrosion behaviour of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed 3.5 % NaCl Solution

Fig. 4.114 : Potentiodynamic scans of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed in 3.5 % NaCl solution

Table-4.109 : Electrochemical Parameters of Potentiodynamic scans of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed in 3.5~% NaCl Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC Clad 309L - IF 160 WS	123.2	-639	224.9
2	ESSC Clad 309L Nb - IF 160 WS	107.0	-688	195.1

Fig. 4.114 shows the results of potentiodynamic scans of interface region of 309 L & 309L Nb cladded weld overlay developed with 160 mm / min. welding speed in 3.5 % NaCl solution. By comparing corrosion behavior of both weld overlays at interface region, it shows that (i) all samples exhibit active potentials in given environment,(ii) interface region of 309 L Nb cladded weld overlay has good corrosion resistance as compared to interface region of 309 L cladded weld overlay.

4.3.4.1.4.5 Comparison of Corrosion behaviour of Interface region of 309 L & 309 L
Nb cladded weld overlay develop with 180 mm / min. welding speed 3.5
% NaCl Solution

Fig. 4.115 : Potentiodynamic scans of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed in 3.5 % NaCl solution

Table-4.110: Electrochemical Parameters of Potentiodynamic scans of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed in 3.5 % NaCl Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC Clad 309L - IF 180 WS	97.00	-709	174.7
2	ESSC Clad 309L Nb - IF 180 WS	86.50	-681	157.3

Fig. 4.115 shows the results of potentiodynamic scans of interface region of 309 L & 309L Nb cladded weld overlay developed with 180 mm / min. welding speed in 3.5 % NaCl solution. By comparing corrosion behavior of both weld overlays at interface region, it shows that (i) all samples exhibit active potentials in given environment,(ii) interface region of 309 L Nb cladded weld overlay has good corrosion resistance as compared to interface region of 309 L cladded weld overlay.

4.3.4.1.4.6 Comparison of Corrosion behaviour of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed 3.5 % NaCl Solution

Fig. 4.116 : Potentiodynamic scans of Interface region of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed in 3.5 % NaCl solution

Table-4.111 : Electrochemical Parameters of Potentiodynamic scans of Interfaceregion of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min.welding speed in 3.5 % NaCl Solution

Sr. No	Samples	i _{Corr} (µA)	E _{Corr} (mV)	Corrosion Rate (mpy)
1	ESSC Clad 309L - IF 200 WS	132.90	-663	246.7
2	ESSC Clad 309L Nb - IF 200 WS	116.10	-692	211.7

Fig. 4.116 shows the results of potentiodynamic scans of interface region of 309 L & 309L Nb cladded weld overlay developed with 200 mm / min. welding speed in 3.5 % NaCl solution. By comparing corrosion behavior of both weld overlays at interface region, it shows that (i) all samples exhibit active potentials in given environment,(ii) interface region of 309 L Nb cladded weld overlay has good corrosion resistance as compared to interface region of 309 L cladded weld overlay.

234

Table- 4.112 : Effect of Nb addition on corrosion resistance of weld overlay at cladas well as at interface clad as well as at interface in 3.5 % NaCl solution

Sr.		Corrosion Rate (mpy)				
No	Samples	309 L cladded region	309 L Nb cladded region			
1	ESSC Clad 160 WS	156.8	142.2			
2	ESSC Clad 180 WS	204.5	104.9			
3	ESSC Clad 200 WS	222.7	164.6			
4	ESSC IF 160 WS	224.9	195.1			
5	ESSC IF 180 WS	174.7	157.3			
6	ESSC IF 200 WS	246.7	211.7			

By comparing corrosion behavior of both weld overlays developed at different welding speed at clad as well as at interface region in 3.5 % NaCl solution, it shows that passivation film of 309 L Nb cladded weld overlay was more uniform as compared to 309 L cladded weld overlay due to which it has good corrosion resistance than 309 L cladded weld overlay in in 3.5 % NaCl solution.

- 4.3.4.2 Effect of Niobium addition on pitting Corrosion susceptibility of weld overlays
- 4.3.4.2.1 Effect of Niobium addition on pitting Corrosion susceptibility of weld overlays in as welded conditions
- 4.3.4.2.1.1 Comparison of pitting susceptibility of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed in 6 % FeCl₃ Solution

Fig. 4.117 : Cyclic polarization scans of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed at cladded region in 6 % FeCl₃ Solution

Table- 4.113 : Electrochemical Parameters of cyclic polarization Scanin 6% FeCl3Solution

Sr. No	Samples	I _{Corr} (µA)	E _{Corr} (mV)	Erp (mV)	Corrosion Rate (mpy)
1	ESSC-309 L Clad 160 WS	309.0	-13.00	-195.3	463.0
2	ESSC- 309L Nb Clad 160 WS	184.0	-388.0	-478.6	275.9

Fig. 4.117 shows the Cyclic polarization scans of 309L & 309L Nb cladded weld overlays developed at 160 mm /min. welding speed in 6% FeCl₃ Solution. Results show that cladded region of both weld overlays exhibit positive hysteresis which indicates that the reverse scan current density is greater than that for the forward scan. Here $E_{rp} < E_{corr}$ that indicate pitting will occur and damage passive film will not repaired that results in increase in pitting corrosion susceptibility[91]. 4.3.4.2.1.2 Comparison of pitting susceptibility of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed in 6 % FeCl₃ Solution

Fig.4.118 Cyclic polarization scans of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed at cladded region in 6 % FeCl₃ Solution

Table-4.114 : Electrochemical Parameters of cyclic polarization Scanin 6% FeCl3Solution

Sr. No	Samples	I _{Corr} (µA)	E _{Corr} (mV)	Erp (mV)	Corrosion Rate (mpy)
1	ESSC-309 L Clad 180 WS	135.0	-291.00	-350.4	203.2
2	ESSC- 309L Nb Clad 180 WS	47.10	-222.0	-192.8	70.62

Fig. 4.118 show the Cyclic polarization scans of 309L & 309L Nb cladded weld overlays developed at 180 mm /min. welding speed in 6% FeCl₃ Solution. Results show that cladded region of 309 L cladded weld overlays exhibit positive hysteresis which indicates that the reverse scan current density is greater than that for the forward scan. Here $E_{rp} < E_{corr}$ that indicate pitting will occur and damaged passive film will not get repaired that results in increase in pitting corrosion susceptibility. But in case of cladded region of 309 L Nb cladded weld overlays exhibit negative hysteresis which indicates that the reverse scan current density is less than that for the forward scan. Here E_{rp} > E_{corr} that indicate pitting will occur but damaged passive film will get repaired that results in decrease in pitting corrosion susceptibility[91].

Fig. 4.119 : Cyclic polarization scans of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed at cladded region in 6 % FeCl₃ Solution

Table-4.115: Electrochemical Parameters of cyclic polarization Scanin 6% FeCl3Solution

Sr. No	Samples	I _{Corr} (µA)	E _{Corr} (mV)	Erp (mV)	Corrosion Rate (mpy)
1	ESSC-309 L Clad 200 WS	264.0	-70.80	-136.2	395.5
2	ESSC- 309L Nb Clad 200 WS	103.0	-153.0	-167.3	155.0

Fig.4.119 show the Cyclic polarization scans of 309L & 309L Nb cladded weld overlays developed at 200 mm /min. welding speed in 6% FeCl₃ Solution. Results show that cladded region of both weld overlays exhibit positive hysteresis which indicates that the reverse scan current density is greater than that for the forward scan.

Here $E_{rp} < E_{corr}$ that indicate pitting will occur and damaged passive film will get not repaired that results in increase in pitting corrosion susceptibility[91].

4.3.4.2.1.4 Comparison of pitting susceptibility of interface region of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed in 6 % FeCl₃ Solution

Fig. 4.120 : Cyclic polarization scans of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed at interface region in 6 % FeCl₃ Solution

Table- 4.116 : Electrochemical Parameters of cyclic polarization Scan in 6% FeCl3Solution

Sr. No	Samples	I _{Corr} (µA)	E _{Corr} (mV)	Erp (mV)	Corrosion Rate (mpy)
1	ESSC-309 L IF 160 WS	489.0	-434.0	-470.03	893.0
2	ESSC- 309L Nb IF 160 WS	352.0	-465.0	-480.0	528.2

Fig. 4.120 show the Cyclic polarization scans of interface region of 309L & 309L Nb cladded weld overlays developed at 160 mm /min. welding speed in 6% FeCl₃ Solution. Results show that interface region of 309 L & 309 L Nb cladded weld overlays exhibit positive hysteresis which indicates that the reverse scan current density is greater than that for the forward scan. Here $E_{rp} < E_{corr}$ that indicate pitting will occur

and damaged passive film will not get repaired that results in increase in pitting corrosion susceptibility.

4.3.4.2.1.5 Comparison of pitting susceptibility of interface region of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed in 6 % FeCl₃ Solution

Fig. 4. 121 : Cyclic polarization scans of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed at interface region in 6 % FeCl₃ Solution

Table-4.117 : Electrochemical Parameters of cyclic polarization Scanin 6% FeCl3Solution

Sr. No	Samples	I _{Corr} (µA)	E _{Corr} (mV)	Erp (mV)	Corrosion Rate (mpy)
1	ESSC-309 L IF 180 WS	434.0	-433.0	-488.68	793.1
2	ESSC- 309L Nb IF 180 WS	305.0	-445.0	-463.3	457.0

Fig. 4.121 show the Cyclic polarization scans of interface region of 309L & 309L Nb cladded weld overlays developed at 180 mm /min. welding speed in 6% FeCl₃ Solution. Results show that interface region of 309L & 309 L Nb cladded weld overlays exhibit positive hysteresis which indicates that the reverse scan current density is greater than that for the forward scan. Here $E_{rp} < E_{corr}$ that indicate pitting will occur

and damaged passive film will not repaired that results in increase in pitting corrosion susceptibility.

Fig. 4.122 : Cyclic polarization scans of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed at interface region in 6 % FeCl₃ Solution

Table-4.118 : Electrochemical Parameters of cyclic polarization Scan in 6% FeCl3Solution

Sr. No	Samples	I _{Corr} (µA)	E _{Corr} (mV)	Erp (mV)	Corrosion Rate (mpy)
1	ESSC-309 L IF 200 WS	267.0	-461.0	-498.6	488.6
2	ESSC- 309L Nb IF 200 WS	460.0	-427.0	-451.6	690.4

Fig. 4.122 shows the Cyclic polarization scans of interface region of 309L & 309L Nb cladded weld overlays developed at 200 mm /min. welding speed in 6% FeCl₃ Solution. Results shows that interface region of 309 L & 309 L Nb cladded weld overlays exhibit positive hysteresis which indicates that the reverse scan current density is greater than that for the forward scan. Here $E_{rp} < E_{corr}$ that indicate pitting will occur

and damaged passive film will not get repaired that results in increase in pitting corrosion susceptibility.

4.3.4.2.2 Effect of Niobium addition on pitting Corrosion susceptibility of weld overlays in as welded conditions after PWHT

4.3.4.2.2.1Comparison of pitting susceptibility of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed after PWHT in 6 % FeCl₃ Solution

Fig. 4.123 : Cyclic polarization scans of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed at cladded region after PWHT in 6 % FeCl₃ Solution

Table-4.119 : Electrochemical Parameters of cyclic polarization Scan in 6% FeCl3Solution

Sr. No	Samples	I _{Corr} (µA)	E _{Corr} (mV)	Erp (mV)	Corrosion Rate (mpy)
1	ESSC-309 L Clad 160 WS PWHT	88.50	-33.10	-87.37	132.9
2	ESSC- 309L Nb Clad 160 WS PWHT	49.10	-126.0	-110.5	73.63

Fig. 4.123 show the Cyclic polarization scans of cladded region of 309L & 309L Nb cladded weld overlays developed at 160 mm /min. welding speed after PWHT in 6% FeCl₃ Solution. Results show that cladded region of 309 L cladded weld overlays

exhibit positive hysteresis which indicates that the reverse scan current density is greater than that for the forward scan. Here $E_{rp} < E_{corr}$ that indicate pitting will occur and damaged passive film will not get repaired that results in increase in pitting corrosion susceptibility. But in case of cladded region of 309 L Nb cladded weld overlays exhibit negative hysteresis which indicates that the reverse scan current density is less than that for the forward scan. Here $E_{ro} > E_{corr}$ that indicate pitting will occur but damaged passive film will get repaired that results in decrease in pitting corrosion susceptibility[92].

4.3.4.2.2.2 Comparison of pitting susceptibility of cladded region of 309 L and 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed after PWHT in 6 % FeCl₃ Solution

Fig. 4.124 : Cyclic polarization scans of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed at cladded region after PWHT in 6 % FeCl_3 Solution

Table-4.120 : Electrochemical Parameters of cyclic polarization Scan in 6% FeCl₃ Solution

Sr. No	Samples	I _{Corr} (µA)	E _{Corr} (mV)	Erp (mV)	Corrosion Rate (mpy)
1	ESSC-309 L Clad 180 WS PWHT	40.80	-127.0	-178.5	61.20
2	ESSC- 309L Nb Clad 180 WS PWHT	215.0	-82.70	-67.37	322.3

243

Fig. 4.124 show the Cyclic polarization scans of cladded region of 309L & 309L Nb cladded weld overlays developed at 180 mm /min. welding speed after PWHT in 6% FeCl₃ Solution. Results show that cladded region of 309 L cladded weld overlays exhibit positive hysteresis which indicates that the reverse scan current density is greater than that for the forward scan. Here $E_{rp} < E_{corr}$ that indicate pitting will occur and damaged passive film will not get repaired that results in increase in pitting corrosion susceptibility. But in case of cladded region of 309 L Nb cladded weld overlays exhibit negative hysteresis which indicates that the reverse scan current density is less than that for the forward scan. Here $E_{rp} > E_{corr}$ that indicate pitting will occur density is less than that for the forward scan. Here $E_{rp} > E_{corr}$ that indicate pitting will occur but damaged passive film will get repaired that results in decrease in pitting will occur but damaged passive film will get repaired that results in decrease in pitting will occur but damaged passive film will get repaired that results in decrease in pitting will occur but damaged passive film will get repaired that results in decrease in pitting corrosion susceptibility[92].

4.3.4.2.2.3 Comparison of pitting susceptibility of cladded region of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed after PWHT in 6 % FeCl₃ Solution

Fig. 4.125 : Cyclic polarization scans of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed $\,$ at cladded region after PWHT in 6 % FeCl₃ Solution

Table-4.121 : Electrochemical Parameters of cyclic polarization Scan in 6% FeCl₃ Solution

Sr. No	Samples	I _{Corr} (µA)	E _{Corr} (mV)	Erp (mV)	Corrosion Rate (mpy)
1	ESSC-309 L Clad 200 WS PWHT	330.0	-412.0	-419.5	494.8
2	ESSC- 309L Nb Clad 200 WS PWHT	124.0	-173.0	-298.8	185.8

Fig.4.125 show the Cyclic polarization scans of cladded region of 309L & 309L Nb cladded weld overlays developed at 200 mm /min. welding speed after PWHT in 6% FeCl₃ Solution. Results show that cladded region of both weld overlays exhibit positive hysteresis which indicates that the reverse scan current density is greater than that for the forward scan. Here $E_{rp} < E_{corr}$ that indicate pitting will occur and damaged passive film will not get repaired that results in increases pitting corrosion susceptibility [92].

4.3.4.2.2.4 Comparison of pitting susceptibility of interface region of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed after PWHT in 6 % FeCl₃ Solution

Fig. 4.126 : Cyclic polarization scans of 309 L & 309 L Nb cladded weld overlay develop with 160 mm / min. welding speed at interface region after PWHT in 6 % FeCl₃ Solution

Table-4.122 : Electrochemical Parameters of cyclic polarization Scanin 6% FeCl3Solution

Sr. No	Samples	I _{Corr} (µA)	E _{Corr} (mV)	Erp (mV)	Corrosion Rate (mpy)
1	ESSC-309 L IF 160 WS PWHT	112.0	-456.0	-467.1	167.9
2	ESSC- 309L Nb IF 160 WS PWHT	98.80	-289.0	-281.2	148.2

Fig. 4.126 shows the Cyclic polarization scans of interface region of 309L & 309L Nb cladded weld overlays developed at 160 mm /min. welding speed after PWHT in 6% FeCl₃ Solution. Results show that interface region of 309 L cladded weld overlays exhibit positive hysteresis which indicates that the reverse scan current density is greater than that for the forward scan. Here $E_{rp} < E_{corr}$ that indicate pitting will occur and damage passive film will not repaired that results in increase in pitting corrosion susceptibility. But in case of interface region of 309 LNb cladded weld overlays exhibit negative hysteresis which indicates that the reverse scan current density is less than that for the forward scan. Here $E_{rp} > E_{corr}$ that indicate pitting will occur but damage passive film will repaired that results in decrease in pitting corrosion susceptibility.

4.3.4.2.2.5 Comparison of pitting susceptibility of interface region of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed after PWHT in 6 % FeCl₃ Solution

Fig. 4.127 : Cyclic polarization scans of 309 L & 309 L Nb cladded weld overlay develop with 180 mm / min. welding speed at interface region after PWHT in 6 % FeCl₃ Solution

Table-4.123 : Electrochemical Parameters of cyclic polarization Scan in 6% FeCl₃ Solution

Sr. No	Samples	I _{Corr} (µA)	E _{Corr} (mV)	Erp (mV)	Corrosion Rate (mpy)
1	ESSC-309 L IF 180 WS PWHT	617.0	-400.0	-412.7	925.5
2	ESSC- 309L Nb IF 180 WS PWHT	344.0	-519.0	-284.7	515.9

Fig. 4.127 shows the Cyclic polarization scans of interface region of 309L & 309L Nb cladded weld overlays developed at 180 mm /min. welding speed after PWHT in 6% FeCl₃ Solution. Results show that interface region of 309 L cladded weld overlays exhibit positive hysteresis which indicates that the reverse scan current density is greater than that for the forward scan. Here $E_{rp} < E_{corr}$ that indicate pitting will occur and damage passive film will not repaired that results in increase in pitting corrosion susceptibility. But in case of interface region of 309 LNb cladded weld overlays exhibit negative hysteresis which indicates that the reverse scan current density is less than that for the forward scan. Here $E_{rp} > E_{corr}$ that indicate pitting will occur but damage passive film will repaired that results in greater density is less than that for the forward scan. Here $E_{rp} > E_{corr}$ that indicate pitting will occur but damage passive film will repaired that results in greater density is less than that for the forward scan. Here $E_{rp} > E_{corr}$ that indicate pitting will occur but damage passive film will repaired that results in decrease in pitting corrosion susceptibility.

4.3.4.2.2.6 Comparison of pitting susceptibility of interface region of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed after PWHT in 6 % FeCl₃ Solution

Fig. 4.128 : Cyclic polarization scans of 309 L & 309 L Nb cladded weld overlay develop with 200 mm / min. welding speed at interface region after PWHT in 6 % FeCl_3 Solution

Table-4.124 : Electrochemical Parameters of cyclic polarization Scan in 6% FeCl3Solution

Sr. No	Samples	I _{Corr} (µA)	E _{Corr} (mV)	Erp (mV)	Corrosion Rate (mpy)
1	ESSC-309 L IF 200 WS PWHT	42.30	-440.0	-447.7	63.52
2	ESSC- 309L Nb IF 200 WS PWHT	82.70	456.0	-418.6	124.1

Fig. 4.128 shows the Cyclic polarization scans of interface region of 309L & 309L Nb cladded weld overlays developed at 200 mm /min. welding speed after PWHT in 6% FeCl₃ Solution. Results show that interface region of 309 L cladded weld overlays exhibit positive hysteresis which indicates that the reverse scan current density is greater than that for the forward scan. Here $E_{rp} < E_{corr}$ that indicate pitting will occur and damage passive film will not repaired that results in increase in pitting corrosion susceptibility. But in case of interface region of 309 LNb cladded weld overlays exhibit negative hysteresis which indicates that the reverse scan current density is less than that for the forward scan. Here $E_{rp} > E_{corr}$ that indicate pitting will occur but damage passive film will repaired that results in greater than that for the forward scan. Here $E_{rp} > E_{corr}$ that indicate pitting will occur but damage passive film will repaired that results in greater than that for the forward scan. Here $E_{rp} > E_{corr}$ that indicate pitting will occur but damage passive film will repaired that results in greater pitting will occur but damage passive film will repaired that results in greater pitting will occur but damage passive film will repaired that results in decrease in pitting corrosion susceptibility.

4.3.4.3 Effect of Niobium addition on IGC susceptibility of weld overlays

4.3.4.3.1 Effect of Niobium addition on IGC susceptibility of weld overlays as welded condition

4.3.4.3.1.1 Effect of Nb addition on IGC susceptibility of cladded region of weld overlays developed at 160 mm/min welding speed as welded condition

Fig. 4.129 : EPR scans of cladded region of 309 L & 309 L Nb cladded weld overlays developed with 160 mm / min. welding speed in 0.1 H_2SO_4 + 0.01 M NaCl Solution

Table-4.125 : Peak Current density ofEPR scans of cladded region of 309 L & 309L Nb cladded weld overlay developed with 160 mm / min. welding speed

Sr. No	Samples	Peak Current density (A/cm ³)
1	ESSC -EPR 309L Clad 160 WS	2.72 x 10 ⁻²
2	ESSC-EPR 309L Nb Clad 160 WS	1.52 x 10 ⁻²

Fig. 4.129 show the combination of single loop electrochemical potentio-kinetic reactivation (EPR) test of cladded region of 309 L & 309 L Nb cladded weld overlays which were developed at 160 mm/min welding speed. EPR test was conducted under deaerated condition at room temperature in 0.1 $H_2SO_4 + 0.01$ M NaCl solution to assess the degree of sensitization (DOS) in terms of peak current density. Results indicate that degree of sensitization was better in 309 L Nb cladded weld overlay than 309L cladded

weld overlay due to the presence of Nb which form NbC in the matix of austenite & minimizing the $Cr_{23}C_6$ precipitation[92-93]. (Fig.4.45 & Table- 4.40 - SEM & EDAX Analysis)

4.3.4.3.1.2 Effect of Nb addition on IGC susceptibility of cladded region of weld overlays developed at 180 mm/min welding speed as welded condition

Fig. 4.130 : EPR scans of cladded region of 309 L & 309 L Nb cladded weld overlays developed with 180 mm / min. welding speed in $0.1 H_2SO_4 + 0.01 M$ NaCl Solution

Table-4.126 : Peak Current density ofEPR scans of cladded region of 309 L & 309L Nb cladded weld overlay developed with 180 mm / min. welding speed

Sr. No	Samples	Peak Current density (A/cm ³)
1	ESSC -EPR 309L Clad 180 WS	1.16 x 10 ⁻²
2	ESSC-EPR 309L Nb Clad 180 WS	1.04 x 10 ⁻²

Fig. 4.130 show the combination of single loop electrochemical potentio-kinetic reactivation (EPR) test of cladded region of 309 L & 309 L Nb cladded weld overlays which were developed at 180 mm/min welding speed. EPR test was conducted under deaerated condition at room temperature in 0.1 $H_2SO_4 + 0.01$ M NaCl solution to assess the degree of sensitization (DOS) in terms of peak current density. Results indicate that
degree of sensitization was better in 309 L Nb cladded weld overlay than 309 L cladded weld overlay due to the presence of Nb which form NbC in the matix of austenite & minimizing the $Cr_{23}C_6$ precipitation [92-93]. (Fig.4.46 & Table- 4.41 - SEM & EDAX Analysis)

4.3.4.3.1.3 Effect of Nb addition on IGC susceptibility of cladded region of weld overlays developed at 200 mm/min welding speed as welded condition

Fig. 4.131 : EPR scans of cladded region of 309 L & 309 L Nb cladded weld overlays developed with 200 mm / min. welding speed in 0.1 $\rm H_2SO_4$ + 0.01 M NaCl Solution

Table-4.127 : Peak Current density ofEPR scans of cladded region of 309 L & 309L Nb cladded weld overlay developed with 200 mm / min. welding speed

Sr. No	Samples	Peak Current density (A/cm ³)
1	ESSC -EPR 309L Clad 200 WS	1.86 x 10 ⁻²
2	ESSC-EPR 309L Nb Clad 200 WS	1.22 x 10 ⁻²

Fig. 4.131 shows the combination of single loop electrochemical potentio-kinetic reactivation (EPR) test of cladded region of 309 L & 309 L Nb cladded weld overlays which were developed at 200 mm/min welding speed. EPR test was conducted under de-

aerated condition at room temperature in 0.1 $H_2SO_4 + 0.01$ M NaCl solution to assess the degree of sensitization (DOS) in terms of peak current density. Results indicate that degree of sensitization was better in 309 L Nb cladded weld overlay than 309L cladded weld overlay due to the presence of Nb which form NbC in the matix of austenite & minimizing the $Cr_{23}C_6$ precipitatio [92-93]. (Fig.4.47 & Table- 4.42 - SEM & EDAX Analysis)

4.3.4.3.1.4 Effect of Nb addition on IGC susceptibility of interface region of weld overlays developed at 160 mm/min welding speed as welded condition

Fig. 4.132 : EPR scans of interface region of 309 L & 309 L Nb cladded weld overlays developed with 160 mm / min. welding speed in 0.1 $H_2SO_4 + 0.01$ M NaCl Solution

Table-4.128 : Peak Current density ofEPR scans ofinterface region of 309 L &309 L Nb cladded weld overlay developed with 160 mm / min. welding speed

Sr. No	Samples	Peak Current density (A/cm ³)
1	ESSC - EPR 309L IF 160 WS	3.86 x 10 ⁻²
2	ESSC-EPR 309L Nb IF 160 WS	3.92 x 10 ⁻²

Fig. 4.132 shows the combination of single loop electrochemical potentio-kinetic reactivation (EPR) test of interface region of 309 L & 309 L Nb cladded weld overlays which were developed at 160 mm/min welding speed. EPR test was conducted under deaerated condition at room temperature in 0.1 $H_2SO_4 + 0.01$ M NaCl solution to assess the

degree of sensitization (DOS) in terms of peak current density. Results indicate that degree of sensitization of interface region 309 L cladded weld overlay was slightly better than 309L Nb cladded weld overlay but the values of peak current density was very nearer to each other and consider being similar behavior as far as sensitization is concerned.

4.3.4.3.1.5 Effect of Nb addition on IGC susceptibility of interface region of weld overlays developed at 180 mm/min welding speed as welded condition

Fig. 4.133 : EPR scans of interface region of 309 L & 309 L Nb cladded weld overlays developed with 180 mm / min. welding speed in 0.1 H_2SO_4 + 0.01 M NaCl Solution

Table-4.129 : Peak Current density ofEPR scans of interface region of 309 L & 309L Nb cladded weld overlay developed with 180 mm / min. welding speed

Sr. No	Samples	Peak Current density (A/cm ³)
1	ESSC -EPR 309L IF 180 WS	2.71 x 10 ⁻²
2	ESSC-EPR 309L Nb 1F 180 WS	1.81 x 10 ⁻²

Fig. 4.133 shows the combination of single loop electrochemical potentio-kinetic reactivation (EPR) test of interface region of 309 L & 309 L Nb cladded weld overlays which were developed at 180 mm/min welding speed. EPR test was conducted under deaerated condition at room temperature in 0.1 $H_2SO_4 + 0.01$ M NaCl solution to assess the

degree of sensitization (DOS) in terms of peak current density. Results indicate that degree of sensitization was better in 309 L Nb cladded weld overlay than 309L cladded weld overlay.

4.3.4.3.1.6 Effect of Nb addition on IGC susceptibility of interface region of weld overlays developed at 200 mm/min welding speed as welded condition

Fig.4.134 : EPR scans of interface region of 309 L & 309 L Nb cladded weld overlay s developed with 200 mm / min. welding speed in 0.1 H_2SO_4 + 0.01 M NaCl Solution

Table-4.130 : Peak Current density of EPR scans of interface region of 309 L & 309 L Nb cladded weld overlays with developed with 200 mm / min. Welding speed

Sr. No	Samples	Peak Current density (A/cm ³)
1	ESSC -EPR 309L IF 200 WS	9.16 x 10 ⁻²
2	ESSC-EPR 309L Nb 1F 200 WS	6.55 x 10 ⁻²

Fig. 4.134 shows the combination of single loop electrochemical potentio-kinetic reactivation (EPR) test of interface region of 309 L & 309 L Nb cladded weld overlay which were developed at 200 mm/min welding speed. EPR test was conducted under deaerated condition at room temperature in 0.1 $H_2SO_4 + 0.01$ M NaCl solution to assess the degree of sensitization (DOS) in terms of peak current density. Results indicate that

degree of sensitization was lower in 309 L Nb cladded weld overlay than 309L cladded weld overlay which were developed at 200 mm / min welding speed.

4.3.4.3.2 Effect of Niobium addition on IGC susceptibility of weld overlays after PWHT condition

4.3.4.3.2.1 Effect of Nb addition on IGC susceptibility of cladded region of weld overlays developed at 160 mm/min welding speed after PWHT condition

Fig. 4.135 : EPR scans of cladded region of 309 L & 309 L Nb cladded weld overlay developed with 160 mm / min. welding speed in 0.1 H_2SO_4 + 0.01 M NaCl Solution after PWHT

Table - 4.131 : Peak Current density ofEPR scans ofcladded region og309 L &309 L Nb cladded weld overlays developed with160 mm / min. welding speed afterPWHT

Sr. No	Samples	Peak Current density (A/cm ³)
1	ESSC -EPR 309L Clad 160 WS PWHT	4.69 x 10 ⁻²
2	ESSC-EPR 309L Nb Clad 160 WS PWHT	8.64 x 10 ⁻³

Fig. 4.135 show the combination of single loop electrochemical potentio-kinetic reactivation (EPR) test of cladded region of 309 L & 309 L Nb cladded weld overlay which were developed at 160 mm/min welding speed after PWHT. EPR test was

conducted under de-aerated condition at room temperature in 0.1 $H_2SO_4 + 0.01$ M NaCl solution to assess the degree of sensitization (DOS) in terms of peak current density. Results indicate that degree of sensitization was better in 309 L Nb cladded weld overlay than 309L cladded weld overlay this is because of presence on Nb as it form NbC in the matrix of austenite & minimizing the $Cr_{23}C_6$ precipitation & relieving of stresses after PWHT.

4.3.4.3.2.2 Effect of Nb addition on IGC susceptibility of cladded region of weld overlays developed at 180 mm/min welding speed after PWHT condition

Fig. 4.136 EPR scans of cladded region of 309 L & 309 L Nb cladded weld overlay developed with 180 mm / min. welding speed in 0.1 H_2SO_4 + 0.01 M NaCl Solution after PWHT

Table-4.132 : Peak Current density of EPR scans of cladded region og 309 L & 309 L Nb cladded weld overlays developed with 180 mm / min. welding speed after PWHT

Sr. No	Samples	Peak Current density (A/cm ³)
1	ESSC -EPR 309L Clad 180 WS PWHT	1.03 x 10 ⁻²
2	ESSC-EPR 309L Nb Clad 180 WS PWHT	2.53 x 10 ⁻³

Fig. 4.136 show the combination of single loop electrochemical potentio-kinetic reactivation (EPR) test of cladded region of 309 L & 309 L Nb cladded weld overlay which were developed at 180 mm/min welding speed after PWHT. EPR test was conducted under de-aerated condition at room temperature in 0.1 $H_2SO_4 + 0.01$ M NaCl solution to assess the degree of sensitization (DOS) in terms of peak current density. Results indicate that degree of sensitization was better in 309 L Nb cladded weld overlay than 309L cladded weld overlay this is because of presence on Nb as it form NbC in the matrix & minimizing the $Cr_{23}C_6$ precipitation & relieving of stresses after PWHT.

4.3.4.3.2.3 Effect of Nb addition on IGC susceptibility of cladded region of weld overlays developed at 200 mm/min welding speed after PWHT condition

Fig. 4.137 : EPR scans of cladded region of 309 L & 309 L Nb cladded weld overlay developed with 200 mm / min. welding speed in 0.1 H_2SO_4 + 0.01 M NaCl Solution after PWHT

Table - 4.133 : Peak Current density ofEPR scans ofcladded region og309 L &309 L Nb cladded weld overlays developed with200 mm / min. welding speed afterPWHT

Sr. No	Samples	Peak Current density (A/cm ³)	
1	ESSC -EPR 309L Clad 200 WS PWHT	3.01 x 10 ⁻²	
2	ESSC-EPR 309L Nb Clad 200 WS PWHT	5.03 x 10 ⁻³	

Fig. 4.137 show the combination of single loop electrochemical potentio-kinetic reactivation (EPR) test of cladded region of 309 L & 309 L Nb cladded weld overlay which were developed at 160 mm/min welding speed after PWHT. EPR test was conducted under de-aerated condition at room temperature in 0.1 H₂SO₄ + 0.01 M NaCl solution to assess the degree of sensitization (DOS) in terms of peak current density. Results indicate that degree of sensitization was lower in 309 L Nb cladded weld overlay than 309L cladded weld overlay which were developed at 200 mm / min welding speed this is because of presence on Nb as it form NbC in the matrix & minimizing the $Cr_{23}C_6$ precipitation & relieving of stresses after PWHT.

4.3.4.3.2.4 Effect of Nb addition on IGC susceptibility of interface region of weld overlays developed at 160 mm/min welding speed after PWHT condition

Fig. 4.138 : EPR scans of interface region of 309 L & 309 L Nb cladded weld overlay developed with 160 mm / min. welding speed in 0.1 H_2SO_4 + 0.01 M NaCl Solution after PWHT

Table - 4.134 : Peak Current density of EPR scans of interface region og 309 L & 309 L Nb cladded weld overlays developed with 160 mm / min. welding speed after PWHT

Sr. No	Samples	Peak Current density (A/cm ³)
1	ESSC -EPR 309L IF 160 WS PWHT	5.68 x 10 ⁻²
2	ESSC-EPR 309L Nb IF 160 WS PWHT	1.37 x 10 ⁻²

Fig. 4.138 show the combination of single loop electrochemical potentio-kinetic reactivation (EPR) test of interface region of 309 L & 309 L Nb cladded weld overlay which were developed at 160 mm/min welding speed after PWHT. EPR test was conducted under de-aerated condition at room temperature in 0.1 $H_2SO_4 + 0.01$ M NaCl solution to assess the degree of sensitization (DOS) in terms of peak current density. Results indicate that degree of sensitization was lower in 309 L Nb cladded weld overlay than 309L cladded weld overlay which were developed at 160 mm / min welding speed this is because of presence on Nb as it form NbC in the matrix & minimizing the $Cr_{23}C_6$ precipitation & relieving of stresses after PWHT.

4.3.4.3.2.5 Effect of Nb addition on IGC susceptibility of interface region of weld overlays developed at 180 mm/min welding speed after PWHT condition

Fig. 4.139 : EPR scans of interface region of 309 L & 309 L Nb cladded weld overlay developed with 180 mm / min. welding speed in 0.1 H_2SO_4 + 0.01 M NaCl Solution after PWHT

Table - 4.135 : Peak Current density ofEPR scans ofinterface region og 309 L &309 L Nb cladded weld overlays developed with 180 mm / min. welding speed afterPWHT

Sr. No	Samples	Peak Current density (A/cm ³)
1	ESSC-EPR 309L IF 180 WS PWHT	3.81 x 10 ⁻²
2	ESSC-EPR 309L Nb IF 180 WS PWHT	1.05 x 10 ⁻²

Fig. 4.139 show the combination of single loop electrochemical potentio-kinetic reactivation (EPR) test of interface region of 309 L & 309 L Nb cladded weld overlay which were developed at 160 mm/min welding speed after PWHT. EPR test was conducted under de-aerated condition at room temperature in 0.1 H₂SO₄ + 0.01 M NaCl solution to assess the degree of sensitization (DOS) in terms of peak current density. Results indicate that degree of sensitization was lower in 309 L Nb cladded weld overlay than 309L cladded weld overlay which were developed at 180 mm / min welding speed this is because of presence on Nb as it form NbC in the matrix & minimizing the $Cr_{23}C_6$ precipitation & relieving of stresses after PWHT)

4.3.4.3.2.6 Effect of Nb addition on IGC susceptibility of interface region of weld overlays developed at 200 mm/min welding speed after PWHT condition

Fig. 4.140 : EPR scans of interface region of 309 L & 309 L Nb cladded weld overlay developed with 200 mm / min. welding speed in 0.1 H_2SO_4 + 0.01 M NaCl Solution after PWHT

Table -4.136 : Peak Current density of EPR scans of interface region og 309 L & 309 L Nb cladded weld overlays developed with 200 mm / min. welding speed after PWHT

Sr. No	Samples	Peak Current density (A/cm ³)
1	ESSC -EPR 309L IF 200 WS PWHT	3.90 x 10 ⁻²
2	ESSC-EPR 309L Nb IF 200 WS PWHT	1.06 x 10 ⁻²

Fig. 4.140 shows the combination of single loop electrochemical potentio-kinetic reactivation (EPR) test of interface region of 309 L & 309 L Nb cladded weld overlay which were developed at 200 mm/min welding speed after PWHT. EPR test was conducted under de-aerated condition at room temperature in 0.1 $H_2SO_4 + 0.01$ M NaCl solution to assess the degree of sensitization (DOS) in terms of peak current density. Results indicate that degree of sensitization was lower in 309 L Nb cladded weld overlay than 309L cladded weld overlay this is because of presence on Nb as it form NbC in the matrix of austenite & minimizing the $Cr_{23}C_6$ precipitation & relieving of stresses after PWHT.

4.4 Result of Effect of Post Weld Heat Treatments (PWHT) on Micro-structural changes, ferrite content, Micro-hardness and Corrosion behaviour of Weld Overlays

4.4.1 Effect of Post Weld Heat Treatment on Microstructure change of

weld overlays:

4.4.1.1 Effect of Post Weld Heat Treatment on Microstructure changes clad region of both weld overlay

Fig.4.141 (a) Cladded region of 309 L Clad at 160 WS as welded condition

Fig.4.142 (a) Cladded region of 309 L Clad at 180 WS as welded condition

Fig.4.143 (a) Cladded region of 309 L Clad at 200 WS as welded condition

Fig.4.141 (b) Cladded region of 309 L Clad at 160 WS after PWHT

Fig. 4.142 (b) Cladded region of 309 L Clad at 180 WS after PWHT

Fig.4.143 (b) Cladded region of 309 L Clad 200 at WS after PWHT

Fig.4.141 (a) to fig. 4.143 (a) shows the microstructure of clad region of 309 L Cladded weld overlay at different welding speeds in welded condition while Fig4.141 (b) to fig.

4.143 (b) shows the microstructure of 309 L Cladded weld overlay at different welding speeds after PWHT conditions.

Fig.4.144 (a) Cladded region of 309 L Nb Clad 160 WS

Fig .4.145 (a) Cladded region of 309 L Nb Clad 180 WS

Fig.4.146 (a) Cladded region of 309 L Nb Clad 200 WS

Fig.4.144 (b) Cladded region of 309 L Nb Clad at 160 WS after PWHT

Fig.4.145 (b) Cladded region of 309 L Nb Clad at 180 WS after PWHT

Fig.4.146 (b) Cladded region of 309 L Nb Clad at 200 WS after PWHT

Fig.4.144 (a) to 4.146 (a) shows the microstructure of clad region of 309 L Nb Cladded weld overlay at different welding speeds as welded condition while Fig. 4.144 (b) to fig.4.146 (b) shows the microstructure of 309 L Nb Cladded weld overlay at different welding speeds after PWHT conditions.

Discussion on the micro-structural change at clad region of both weld overlays as welded condition:

The Aquaregia etchant used reveals predominantly the ferrite distribution in the austenite matrix. In bulk cladding, the modes of solidification were primary ferrite & at the end a peritectic-eutectic reaction results in the formation of austenite along the ferrite cell & dendrite boundaries at all welding speeds at as welded condition for the both weld overlay.

Discussion on the micro-structural change at clad region of both weld overlay after PWHT:

After PWHT at 690^oC for 24 hr holding time the skeletal or vermicular network of ferrite became coarser & amount of austenite phase were increases whereas the ferrite network gets decreases with increase in the welding speed for the both weld overlays. This was further confirmed by ferrite content measurement. It was found that island of ferrite in 309L Nb cladded weld overlay is more thicker as compared to 309L cladded weld overlay which were developed at different speeds[94-96].

4.4.1.2 Effect of Post Weld Heat Treatment on Microstructure changes interface region of both weld overlays

Fig.4.147 (a) Interface region of 309 L Clad at 160 WS as welded condition

Fig.4.1467 (b) Interface region of 309 L Clad at 160 WS after PWHT

Fig.4.148 (a) Interface region of 309 L Clad at 180 WS as welded condition

Fig.4.148 (b) Interface region of 309 L Clad at 180 WS after PWHT

Fig.4.149 (a) Cladded region of 309 L Clad at 200 WS as welded condition

Fig.4.149 (b) Interface region of 309 L Clad 200 at WS after PWHT

Fig.4.147 (a) to fig.4.149 (a) shows the microstructure of interface region of 309 L cladded weld overlay at different welding speeds as welded condition while Fig.4.147 (b) to 4.149 (b) shows the microstructure of interface region 309 L cladded weld overlay at different welding speeds after PWHT conditions. The Aquaregia etchant used reveals predominantly the ferrite distribution in the austenite matrix.

Fig.4.150 (a) Interface region of 309 L Nb Clad at 160 WS as welded condition

Fig.4.150 (b) Interface region of 309 L Nb Clad at 160 WS after PWHT

Fig.4.151 (a) Interface region of 309 L Nb Clad at 180 WS as welded condition

Fig.4.151 (b) Interface region of 309 L Nb Clad at 180 WS after PWHT

Fig.4.152 (a) Cladded region of 309 L Nb Clad at 200 WS as welded condition

Fig.4.152 (b) Interface region of 309 L Nb Clad 200 at WS after PWHT

Fig.4.150 (a) to fig. 4.152 (a) shows the microstructure of interface region of 309 L Nb cladded weld overlay at different welding speeds as welded condition while Fig4.150 (b) to fig. 4.152 (b) shows the microstructure of interface region 309 L Nb cladded weld overlay at different welding speeds after PWHT conditions. The Aquaregia etchant used reveals predominantly the ferrite distribution in the austenite matrix. Micro-structural changes were similar to 309 L cladded weld overlay after PWHT at 690° C for 24 Hr at all welding speeds.

Discussion on the micro-structural change at interface region of both weld overlays as welded condition:

Fig. 4.151 (a) shows the interface region of 309L Nb cladded weld overlay developed at 180 mm/min. welding speed. At interface region there were significant composition gradients produced due to a combination of dilution and other factors which have a profound effect on the micro-structural development. The dilution level in the bulk weld metal under ESSC conditions is known to be not more than about 8 to 10%, but at interface the degree of dilution will be much higher which result in the formation of a stagnant fluid layer in the weld pool adjacent to the base metal. The transition from the low alloy content (Cr, Mo) in the base metal to the high alloy content (Cr, Ni, Nb) in the bulk weld metal occurs in this transition zone. The layer originally had the same composition as the base metal, but develops higher chromium and nickel contents as a result of diffusion from the cladding due to the concentration gradients [97]. The stagnation layer has also been called the unmixed zone. It may be seen from Table -4.39

that Cr contents over 9.06 % and Ni contents around 9.35 % could develop in the transition zone during cladding The composition in the layer is such that during cooling following overlaying this region transforms to martensite. Similar types of micro-structural changes were observed in Fig.4.147 (a) to Fig. 4.152(a).

Discussion on the micro-structural change at interface region of both weld overlays after PWHT condition

The microstructures at the weld interface region of both weld overlay developed at different welding speeds after post weld heat treatment exhibit several features of interest. Fig.4.150 (b) reveals a zone in the base metal adjoining the fusion boundary in which there was heavy de-carburization and a structure that is nearly fully ferritic. It shows a thin dark-etching layer on the weld metal side of the fusion boundary. It should be noted that this was the region of the transition zone which in the as-welded condition exhibited a martensitic condition. During the long post weld heat treatment for 24 h at

 690° C, carbon tends to diffuse from the base metal into the cladding on account of the difference in carbon contents: the base metal had 2 .13% C which was reduced to 1.9 % C at base metal near to interface & at interface it was 4.02 % C. The carbon migration is also aided by the fact that chromium content in the clad is far higher than that in the base metal. The migrated carbon from base metal mainly form iron carbide (FeC) and litter chromium carbide but not $Cr_{23}C_6$ as volume fraction was not matching with Cr23C6 (11.81% Cr & 4.02 % C) at the weld interface. (Ref. Table 4.51 : Percentage elements present at different location of weld overlay by EDAX analysis) As the carbon thus leaves the base metal, a carbon-depleted zone is formed adjacent to the fusion boundary Such decarburized zones are known to form in heat-treated ferritic- austenitic welds.

Next to this layer on the clad metal side the normal epitaxial nucleation of austenite cannot occur and hence the it is forced to nucleate heterogeneously from the fusion boundary & form Type II boundary of austenite phase which is approximately parallel to the dark-etching layer . Further into the weld metal on the left of the Type II boundary austenitic weld metal structure containing ferrite in the substructure boundaries which is refer as type I boundaries [98]. These results in the formation of Type I & Type II boundaries as shown in Fig.4.149 (b). Results of microstructural studies of 309 L & 309 L Nb cladded weld overlay developed at different welding speeds after PWHT shows that at clad region of both weld overlays, the island

of ferrite become courser and the amount of austenite was increases while the ferrite content was decreases at all welding speeds which were confirmed by ferrite measurements. After PWHT, at interface region of both weld overlays, there is diffusion of carbon atom from base metal region near to interface in the form of iron carbide & next to this layer on the clad metal side it formed Type II boundary of austenite phase which is approximately parallel to the dark-etching layer & further into the weld metal on the left of the Type II boundary austenitic weld metal structure containing ferrite in the substructure boundaries which is refer as type I boundaries. Similar types of microstructural changes were observed in Fig.4.147 (b) to Fig. 4.152(b).

4.4.2 Effect of Post Weld Heat Treatment on Ferrite Content of the

weld overlays

Table- 4.137 : Effect of PWHT on of ferrite content in 309 L & 309 L Nb cladded region

Welding speed	Amount of ferri 309 L cladd	ite Content in ed region	Amount of ferr L Nb cla	ite Content in 309 dded region
(mm/min.)	Before PWH1	After PWH1	Before PWH1	After PWH1
160	5.4	3.7	5.1	3.6
180	3.7	3.1	4.6	2.8
200	3.3	2.0	4.3	2.6

Table-4.137 shows the effect PWHT on the amount of ferrite content in clad region of 309 L & 309 L Nb cladded weld overlays. It reveals that after PWHT amount of ferrite was decreased at all welding speed for the both weld overlays.

4.4.3 Effect of Post Weld Heat Treatment on hardness value of weld

overlays

4.4.3.1 Effect of post weld heat treatment on hardness value at cladded region of 309L & 309 L Nb cladded weld overlay

Table- 4.138 : Effect of PWHT on hardness value at clad region

Welding	Micro hardness a region (iess at 309 L cladded Micro hardness a gion (VPN) cladded Regior		at 309 L Nb ion (VPN)
(mm/min.)	Before PWHT	After PWHT	Before PWHT	After PWHT
160	242	227	222	217
180	260	248	235	223
200	271	264	254	249

Table-4.138 shows the effect PWHT on hardness value at clad region of 309 L & 309 L Nb cladded weld overlays. It reveals that after PWHT hardness value was decreased at all welding speed for the both weld overlays due to relieving of stresses.

4.4.3.2 Effect of Post Weld Heat Treatment on hardness value at interface region of 309L & 309 L Nb cladded weld overlay

WeldingMicro hardness at 309 Lspeedcladded region (VPN)		ess at 309 L ion (VPN)	L Micro hardness at 309 L N cladded Region (VPN)		
(mm/min.)	Before PWHT	After PWHT	Before PWHT	After PWHT	
160	278	307	249	294	
180	289	322	266	305	
200	312	346	281	317	

Table- 4.139 : Effect of PWHT on hardness value interface region

Table-4.139 shows the effect PWHT on hardness value at interface region of 309 L & 309 L Nb cladded weld overlays. It reveals that after PWHT hardness value was increased at all welding speed for the both weld overlays due to increases in the amount of austenite & decrease the amount of ferrite at this region during cooling[99].

4.4.3.3 Effect of Post Weld Heat Treatment on hardness value at base metal

Welding speed	Micro hardness (VI	, at base metal 'N)
(mm/min.)	Before PWHT	After PWHT
160	206	190
180	208	184
200	210	179

 Table- 4.140 : Effect of PWHT on Hardness value at base Metal

Table-4.140 shows the effect PWHT on hardness value at base metal. It reveals that after PWHT hardness value was decreased at all welding speed due to relieving of stresses which was generated during solidification of cladding.

4.4.4 Effect of Post Weld Heat Treatment on Corrosion Behaviour of weld overlays

4.4.4.1 Effect of Post Weld Heat Treatment on pitting Corrosion susceptibility:

4.4.4.1.1 Effect of welding speed on pitting corrosion behaviour of base metal of cladded weld overlay after PWHT in 6% FeCl₃ Solution

Fig. 4.153 Cyclic polarization scans of base metal at different welding speed after PWHT in 6% FeCl₃ Solution

Table-4.141 : Electrochemical Parameters of cyclic polarization Scan base metal afterPWHT in 6% FeCl3 Solution

Sr. No	Samples	I _{Corr} (µA)	E _{Corr} (mV)	Erp (mV)	Corrosion Rate (mpy)
1	ESSC-BM 309L 160 WS PWHT	585.0	-429.0	-400.5	878.4
2	ESSC-BM 309L 180 WS PWHT	305.0	-400.0	-401.6	457.0
3	ESSC-BM 309L 200 WS PWHT	330.0	-412.0	-419.5	494.8

Fig. 4.153 show the Cyclic polarization scans of base of cladded weld overlay at different welding speed after PWHT in 6% FeCl₃ Solution. By comparing corrosion behavior of base metal of cladded weld overlay at different welding speeds in 6% FeCL₃ solution it shows that $E_{rp} < E_{corr}$ for 160,180 & 200 mm / minute welding speed so here

pitting will occur and corrosion rate will increase because damaged passive film will not get repaired.

4.4.4.1.2 Effect of Welding Speed on Pitting corrosion behaviours of 309 L cladded weld overlays after PWHT in 6% FeCl₃ Solution

Fig. 4.154 : Cyclic polarization scans of cladded region of 309L cladded weld overlays at different welding speed after PWHT in 6% FeCl₃ Solution

Table-4.142 : Electrochemical Parameters of cyclic polarization Scan of claddedregion 309L cladded weld overlays after PWHT in 6% FeCl₃ Solution

Sr. No	Samples	I _{Corr} (µA)	E _{Corr} (mV)	Erp (mV)	Corrosion Rate (mpy)
1	ESSC-309L Clad 160 WS PWHT	88.50	-33.10	-87.37	132.9
2	ESSC-309L Clad 180 WS PWHT	40.80	-127.0	-178.5	61.20
3	ESSC-309L Clad 200 WS PWHT	124.0	-173.0	-298.8	185.8

Fig. 4.154 show the cyclic polarization scans of 309L cladded weld overlays at different welding speed after PWHT in 6% FeCl₃ Solution. By comparing corrosion behavior of cladded region, it shows that all scans exhibit positive hysteresis which indicates that the reverse scan current density is greater than that for the forward scan. Here $E_{rp} < E_{corr}$ for all welding speeds which implies that pitting will occur and damaged passive film will not get repaired that results in increase in pitting corrosion susceptibility.

4.4.4.1.3 Effect of welding speed on pitting corrosion behaviours of clad region of 309 L Nb cladded weld overlays after PWHT in 6% FeCl₃ Solution

Fig. 4.155 : Cyclic polarization scans of clad region of 309LNb Cladded weld overlays at different welding speed after PWHT in 6% FeCl₃ Solution

Table-4.143 : Electrochemical Parameters of cyclic polarization scan clad region of309LNb Cladded weld overlays after PWHT in 6% FeCl3 Solution

Sr. No	Samples	I _{Corr} (µA)	E _{Corr} (mV)	Erp (mV)	Corrosion Rate (mpy)
1	ESSC-309L Nb Clad 160 WS PWHT	49.10	-126.0	-110.5	73.63
2	ESSC-309L Nb Clad 180 WS PWHT	215.0	-82.70	-67.37	322.3
3	ESSC-309L Nb Clad 200 WS PWHT	268.0	-395.0	-181.9	402.8

Fig. 4.155 show the Cyclic polarization scans of 309L Nb cladded weld overlays at different welding speed after PWHT in 6% FeCl₃ Solution. By comparing corrosion behavior of cladded region, it shows that cladded region of at all welding speeds exhibit negative hysteresis which indicates that the reverse scan current density is less than that for the forward scan. Here $E_{rp} > E_{corr}$ for all welding speeds which indicate that the pitting will occur but damaged passive film will get repaired & protecting further pitting corrosion susceptibility.

4.4.4.1.4 Effect of Welding Speed on Pitting corrosion behaviours of Interface 309 L cladded weld overlays after PWHT in 6% FeCl₃ Solution

Fig. 4.156 : Cyclic polarization scans of interface region 309L cladded weld overlays at different welding speed after PWHT in 6% FeCl₃ Solution

Table-4.144 : Electrochemical Parameters of cyclic polarization Scan of interfaceregion309L cladded weld overlaysafter PWHT in 6% FeCl₃ Solution

Sr. No	Samples	I _{Corr} (µA)	E _{Corr} (mV)	E _{rp} (mV)	Corrosion Rate (mpy)
1	ESSC- 309L IF 160 WS PWHT	112.0	-456.0	-467.1	167.9
2	ESSC- 309L IF 180 WS PWHT	617.0	-400.0	-412.7	925.5
3	ESSC- 309L IF 200 WS PWHT	42.30	-440.0	-447.7	63.52

Fig. 4.156 show the cyclic polarization scans of interface region of 309L cladded weld overlays at different welding speed after PWHT in 6% FeCl₃ Solution. By comparing corrosion behavior of cladded region, it shows that all scans exhibit positive hysteresis which indicates that the reverse scan current density is greater than that for the forward scan. Here $E_{rp} < E_{corr}$ for all welding speeds which implies that pitting will occur and damaged passive film will not get repaired that results in increase in pitting corrosion susceptibility.

Fig. 4.157 : Cyclic polarization scans of interface region of 309LNb Cladded weld overlays at different welding speed in 6% FeCl₃ Solution

Table-4.145 : Electrochemical Parameters of cyclic polarization Scan interfaceregion of 309LNb Cladded weld overlays in 6% FeCl₃ Solution

Sr. No	Samples	I _{Corr} (µA)	E _{Corr} (mV)	Erp (mV)	Corrosion Rate (mpy)
1	ESSC- 309L Nb IF 160 WS PWHT	98.80	-289.0	-281.2	148.2
2	ESSC- 309L Nb IF 180 WS PWHT	344.0	-519.0	-284.7	515.9
3	ESSC- 309L Nb IF 200 WS PWHT	82.70	-456.0	-418.6	124.1

Fig. 4.157 shows the cyclic polarization scans interface region of 309L Nb cladded weld overlays at different welding speed in 6% FeCl₃ Solution. By comparing corrosion behavior of interface region, it shows that cladded region of at all welding speeds exhibit positive hysteresis which indicates that the reverse scan current density is greater than that for the forward scan. Here $E_{rp} > E_{corr}$ for all welding speeds which implies that pitting will occur and damaged passive film will get repaired that results in decreases susceptibility toward pitting corrosion.

Table-4.146: Comparisons of pitting behaviour of both weld overlay before &after PWHT

Sr.		Relation between E _{pp} & E _{corr}		
No	Samples	Before PWHT condition	After PWHT condition	
1	ESSC – 309L Clad 160 WS	E _{rp <} E _{corr}	$E_{rp} < E_{corr}$	
2	ESSC- 309L Clad 180 WS	E _{rp<} E _{corr}	$E_{rp} < E_{corr}$	
3	ESSC- 309L Clad 200 WS	E _{rp <} E _{corr}	$E_{rp <} E_{corr}$	
4	ESSC - 309L IF 160 WS	E _{rp <} E _{corr}	$E_{rp <} E_{corr}$	
5	ESSC- 309L IF 180 WS	E _{rp<} E _{corr}	$E_{rp <} E_{corr}$	
6	ESSC- 309L IF 200 WS	E _{rp <} E _{corr}	$E_{rp} < E_{corr}$	
7	ESSC – 309L Nb Clad 160 WS	E _{rp <} E _{corr}	E _{rp >} E _{corr}	
8	ESSC- 309L Nb Clad 180 WS	E _{rp} > E _{corr}	E _{rp>} E _{corr}	
9	ESSC- 309L Nb Clad 200 WS	E _{rp <} E _{corr}	E _{rp>} E _{corr}	
10	ESSC – 309L Nb IF 160 WS	$E_{rp <} E_{corr}$	E _{rp} > E _{corr}	
11	ESSC- 309L Nb IF 180 WS	$E_{rp <} E_{corr}$	$E_{rp} > E_{corr}$	
12	ESSC- 309L Nb IF 200 WS	$E_{rp <} E_{corr}$	$E_{rp >} E_{corr}$	

The results of cyclic polarization studies of 309 L & 309 L Nb cladded weld overlay developed at different welding speeds before & after PWHT is shown in tablw-4.142. From these results it can be concluded that there is no improvements in pitting resistance at clad as well as at interface region of 309 L cladded weld overlay at different welding speeds but in case of 309 L Nb cladded weld overlays exhibit better pitting resistance at clad as well as at interface region developed at different welding speeds.

4.4.2 Effect of Post Weld Heat Treatment on IGC susceptibility of weld overlays
4.4.2.1 Effect of Welding Speed on corrosion behaviour of clad region of 309 L
cladded weld overlay after PWHT in 0.1 H2SO4 + 0.01 M NaCl Solution

Fig. 4.158 : EPR scans of clad region of 309L cladded weld overlays after PWHT at different welding speed in 0.1 H₂SO₄ + 0.01 M NaCl Solution

Table - 4.147 : Peak Current density ofEPR scans of cladded region of 309Lcladded weld overlays after PWHT

Sr. No	Samples	Peak Current density (A/cm ³)
1	ESSC -EPR 309L Clad 160 WS PWHT	4.69 x 10 ⁻²
2	ESSC-EPR 309L Clad 180 WS PWHT	1.03 x 10 ⁻²
3	ESSC-EPR 309L Clad 200 WS PWHT	3.01 x 10 ⁻²

Fig. 4.158 shows the combination of single loop electrochemical potentio-kinetic reactivation (EPR) test of cladded region of 309L cladded weld overlay which were developed at different welding speed after PWHT. EPR test was conducted under deaerated condition at room temperature in 0.1 $H_2SO_4 + 0.01$ M NaCl solution to assess the degree of sensitization (DOS) in terms of peak current density. Results indicate that sensitization was decreased with increasing the welding speed from 160 to 180 mm /min

welding speed then after it was increased at 200 mm / min welding speed but it was less than that of 160 mm/min welding speed[100-101].

4.4.4.2.2 Effect of Welding Speed on corrosion behaviour of cladded region of 309 L Nb Cladded weld overlay after PWHT in 0.1 H2SO4 + 0.01 M NaCl Solution

Fig. 4.159 : EPR scans of clad region of 309LNb cladded weld overlays at after PWHT at different welding speed in 0.1 H₂SO₄ + 0.01 M NaCl Solution

Table- 4.148: Peak Current density ofEPR scans of cladded region of 309LNbcladded weld overlays after PWHT

Sr. No	Samples	Peak Current density (A/cm)
1	ESSC – EPR 309L Nb Clad 160 WS-PWHT	8.64 x 10 ⁻³
2	ESSC-EPR 309L Nb Clad 180 WS-PWHT	2.53 x 10 ⁻³
3	ESSC-EPR 309L Nb Clad 200 WS-PWHT	5.03 x 10 ⁻³

Fig. 4.159 show the combination of single loop electrochemical potentio-kinetic reactivation (EPR) test of cladded region of 309LNb cladded weld overlay which were developed at different welding speed after PWHT. EPR test was conducted under deaerated condition at room temperature in 0.1 $H_2SO_4 + 0.01$ M NaCl solution to assess the

degree of sensitization (DOS) in terms of peak current density. Results indicate that sensitization was decrease with increasing the welding speed from 160 to 180 mm /min welding speed then after it was increase at 200 mm / min welding speed but it was less than that of 160 mm/min welding speed [100-101].

4.4.4.2.3 Effect of Welding Speed on corrosion behaviour of interface region of 309 L Cladded weld overlay after PWHT in 0.1 H2SO4 + 0.01 M NaCl Solution

Fig. 4.160 : EPR scans of interface of 309L cladded weld overlays after PWHT at different welding speed in $0.1 H_2SO_4 + 0.01 M$ NaCl Solution

Table- 4.149 : Peak Current density ofEPR scans of intefcae region of 309L claddedweld overlays after PWHT

Sr. No	Samples	Peak Current density (A/cm ³)
1	ESSC – EPR 309L IF 160 WS-PWHT	5.68 x 10 ⁻²
2	ESSC-EPR 309L IF 180 WS-PWHT	3.81 x 10 ⁻²
3	ESSC-EPR 309L IF 200 WS-PWHT	3.90 x 10 ⁻²

Fig. 4.160 shows the combination of single loop electrochemical potentio-kinetic reactivation (EPR) test of interface region of 309L cladded weld overlay which were developed at different welding speed after PWHT. EPR test was conducted under de-

aerated condition at room temperature in 0.1 $H_2SO_4 + 0.01$ M NaCl solution to assess the degree of sensitization (DOS) in terms of peak current density. Results indicate that sensitization was decrease with increasing the welding speed from 160 to 180 mm /min welding speed then after it was slightly increase at 200 mm / min welding speed but it was less than that of 160 mm/min welding speed.

4.4.4.2.4 Effect of Welding Speed on corrosion behaviour of interface region of 309 L Nb Cladded weld overlay after PWHT in 0.1 H2SO4 + 0.01 M NaCl Solution

Fig. 4.161 : EPR scans of interface of 309LNb cladded weld overlays after PWHT at different welding speeds in 0.1 $H_2SO_4 + 0.01$ M NaCl Solution

Table-4.150 : Peak Current density ofEPR scans o f intefcae region of 309 LNbcladded weld overlays after PWHT

Sr. No	Samples	Peak Current density (A/cm ³)
1	ESSC – EPR 309L Nb IF 160 WS-PWHT	1.37 x 10 ⁻²
2	ESSC-EPR 309L Nb IF 180 WS-PWHT	1.05 x 10 ⁻²
3	ESSC-EPR 309L Nb IF 200 WS-PWHT	1.06 x 10 ⁻²

Fig. 4.161shows the combination of single loop electrochemical potentio-kinetic reactivation (EPR) test of interface region of 309LNb cladded weld overlay which were developed at different welding speed after PWHT. EPR test was conducted under deaerated condition at room temperature in 0.1 $H_2SO_4 + 0.01$ M NaCl solution to assess the degree of sensitization (DOS) in terms of peak current density. Results indicate that sensitization was decrease with increasing the welding speed from 160 to 180 mm /min welding speed then after it was slightly increase at 200 mm / min welding speed but it was less than that of 160 mm/min welding speed.

 Table- 4.151 : Comparisons of sensitization behaviour of weld overlays before and PWHT

Sr. No	Samples	Peak Current density (A/cm ³)	
		As Received condition	PWHT condition
1	ESSC -EPR 309L Clad 160 WS	2.72 x 10 ⁻²	4.69 x 10 ⁻²
2	ESSC-EPR 309L Clad 180 WS	1.16 x 10 ⁻²	1.03 x 10 ⁻²
3	ESSC-EPR 309L Clad 200 WS	1.86 x 10 ⁻²	3.01 x 10 ⁻²
4	ESSC -EPR 309L IF 160 WS	3.86 x 10 ⁻²	5.68 x 10 ⁻²
5	ESSC-EPR 309L IF 180 WS	2.71 x 10 ⁻²	3.81 x 10 ⁻²
6	ESSC-EPR 309L IF 200 WS	9.16 x 10 ⁻²	3.90 x 10 ⁻²
7	ESSC -EPR 309L Nb Clad 160 WS	1.52 x 10 ⁻²	8.64 x 10 ⁻³
8	ESSC-EPR 309L Nb Clad 180 WS	1.04 x 10 ⁻²	2.53 x 10 ⁻³
9	ESSC-EPR 309L Nb Clad 200 WS	1.22 x 10 ⁻²	5.03 x 10 ⁻³
10	ESSC -EPR 309L Nb IF 160 WS	3.91 x 10 ⁻²	1.37 x 10 ⁻²
11	ESSC-EPR 309L Nb IF 180 WS	1.81 x 10 ⁻²	1.05 x 10 ⁻²
12	ESSC-EPR 309L Nb IF 200 WS	6.55 x 10 ⁻²	1.06 x 10 ⁻²

The results of EPR studies of 309 L & 309 L Nb cladded weld overlay developed at different welding speeds after PWHT shows that the degree of sensitization was decreases at clad region as well as at interface region of 309L Nb cladded weld overlay developed at different welding speeds while in case of 309 L cladded weld overlays, the degree of sensitization was decreases at clad region of weld overlay developed at 180 mm/min welding speed & at interface region of weld overlay developed at 200 mm/min welding speed [100-101].